dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / mtd / ubi / wl.c
blobcf429716494a46a0b56f0e5b44b94ca6b1a4cd60
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
23 * UBI wear-leveling sub-system.
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
109 #include <linux/slab.h>
110 #include <linux/crc32.h>
111 #include <linux/freezer.h>
112 #include <linux/kthread.h>
113 #include "ubi.h"
115 /* Number of physical eraseblocks reserved for wear-leveling purposes */
116 #define WL_RESERVED_PEBS 1
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
124 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
137 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
143 #define WL_MAX_FAILURES 32
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
157 struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
165 #ifdef CONFIG_MTD_UBI_DEBUG
166 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170 static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172 #else
173 #define paranoid_check_ec(ubi, pnum, ec) 0
174 #define paranoid_check_in_wl_tree(ubi, e, root)
175 #define paranoid_check_in_pq(ubi, e) 0
176 #endif
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
186 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 struct rb_node **p, *parent = NULL;
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
221 static int do_work(struct ubi_device *ubi)
223 int err;
224 struct ubi_work *wrk;
226 cond_resched();
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
258 return err;
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
270 static int produce_free_peb(struct ubi_device *ubi)
272 int err;
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
283 spin_lock(&ubi->wl_lock);
285 spin_unlock(&ubi->wl_lock);
287 return 0;
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
300 struct rb_node *p;
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
326 return 0;
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
341 int pq_tail = ubi->pq_head - 1;
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @max: highest possible erase counter
355 * This function looks for a wear leveling entry with erase counter closest to
356 * @max and less than @max.
358 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
363 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
364 max += e->ec;
366 p = root->rb_node;
367 while (p) {
368 struct ubi_wl_entry *e1;
370 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
371 if (e1->ec >= max)
372 p = p->rb_left;
373 else {
374 p = p->rb_right;
375 e = e1;
379 return e;
383 * ubi_wl_get_peb - get a physical eraseblock.
384 * @ubi: UBI device description object
385 * @dtype: type of data which will be stored in this physical eraseblock
387 * This function returns a physical eraseblock in case of success and a
388 * negative error code in case of failure. Might sleep.
390 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
392 int err;
393 struct ubi_wl_entry *e, *first, *last;
395 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
396 dtype == UBI_UNKNOWN);
398 retry:
399 spin_lock(&ubi->wl_lock);
400 if (!ubi->free.rb_node) {
401 if (ubi->works_count == 0) {
402 ubi_assert(list_empty(&ubi->works));
403 ubi_err("no free eraseblocks");
404 spin_unlock(&ubi->wl_lock);
405 return -ENOSPC;
407 spin_unlock(&ubi->wl_lock);
409 err = produce_free_peb(ubi);
410 if (err < 0)
411 return err;
412 goto retry;
415 switch (dtype) {
416 case UBI_LONGTERM:
418 * For long term data we pick a physical eraseblock with high
419 * erase counter. But the highest erase counter we can pick is
420 * bounded by the the lowest erase counter plus
421 * %WL_FREE_MAX_DIFF.
423 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 break;
425 case UBI_UNKNOWN:
427 * For unknown data we pick a physical eraseblock with medium
428 * erase counter. But we by no means can pick a physical
429 * eraseblock with erase counter greater or equivalent than the
430 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
432 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
433 u.rb);
434 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
436 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
437 e = rb_entry(ubi->free.rb_node,
438 struct ubi_wl_entry, u.rb);
439 else
440 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
441 break;
442 case UBI_SHORTTERM:
444 * For short term data we pick a physical eraseblock with the
445 * lowest erase counter as we expect it will be erased soon.
447 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
448 break;
449 default:
450 BUG();
453 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
456 * Move the physical eraseblock to the protection queue where it will
457 * be protected from being moved for some time.
459 rb_erase(&e->u.rb, &ubi->free);
460 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
461 prot_queue_add(ubi, e);
462 spin_unlock(&ubi->wl_lock);
464 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
465 ubi->peb_size - ubi->vid_hdr_aloffset);
466 if (err) {
467 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
468 return err;
471 return e->pnum;
475 * prot_queue_del - remove a physical eraseblock from the protection queue.
476 * @ubi: UBI device description object
477 * @pnum: the physical eraseblock to remove
479 * This function deletes PEB @pnum from the protection queue and returns zero
480 * in case of success and %-ENODEV if the PEB was not found.
482 static int prot_queue_del(struct ubi_device *ubi, int pnum)
484 struct ubi_wl_entry *e;
486 e = ubi->lookuptbl[pnum];
487 if (!e)
488 return -ENODEV;
490 if (paranoid_check_in_pq(ubi, e))
491 return -ENODEV;
493 list_del(&e->u.list);
494 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
495 return 0;
499 * sync_erase - synchronously erase a physical eraseblock.
500 * @ubi: UBI device description object
501 * @e: the the physical eraseblock to erase
502 * @torture: if the physical eraseblock has to be tortured
504 * This function returns zero in case of success and a negative error code in
505 * case of failure.
507 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
508 int torture)
510 int err;
511 struct ubi_ec_hdr *ec_hdr;
512 unsigned long long ec = e->ec;
514 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
516 err = paranoid_check_ec(ubi, e->pnum, e->ec);
517 if (err)
518 return -EINVAL;
520 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
521 if (!ec_hdr)
522 return -ENOMEM;
524 err = ubi_io_sync_erase(ubi, e->pnum, torture);
525 if (err < 0)
526 goto out_free;
528 ec += err;
529 if (ec > UBI_MAX_ERASECOUNTER) {
531 * Erase counter overflow. Upgrade UBI and use 64-bit
532 * erase counters internally.
534 ubi_err("erase counter overflow at PEB %d, EC %llu",
535 e->pnum, ec);
536 err = -EINVAL;
537 goto out_free;
540 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
542 ec_hdr->ec = cpu_to_be64(ec);
544 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
545 if (err)
546 goto out_free;
548 e->ec = ec;
549 spin_lock(&ubi->wl_lock);
550 if (e->ec > ubi->max_ec)
551 ubi->max_ec = e->ec;
552 spin_unlock(&ubi->wl_lock);
554 out_free:
555 kfree(ec_hdr);
556 return err;
560 * serve_prot_queue - check if it is time to stop protecting PEBs.
561 * @ubi: UBI device description object
563 * This function is called after each erase operation and removes PEBs from the
564 * tail of the protection queue. These PEBs have been protected for long enough
565 * and should be moved to the used tree.
567 static void serve_prot_queue(struct ubi_device *ubi)
569 struct ubi_wl_entry *e, *tmp;
570 int count;
573 * There may be several protected physical eraseblock to remove,
574 * process them all.
576 repeat:
577 count = 0;
578 spin_lock(&ubi->wl_lock);
579 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
580 dbg_wl("PEB %d EC %d protection over, move to used tree",
581 e->pnum, e->ec);
583 list_del(&e->u.list);
584 wl_tree_add(e, &ubi->used);
585 if (count++ > 32) {
587 * Let's be nice and avoid holding the spinlock for
588 * too long.
590 spin_unlock(&ubi->wl_lock);
591 cond_resched();
592 goto repeat;
596 ubi->pq_head += 1;
597 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
598 ubi->pq_head = 0;
599 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
600 spin_unlock(&ubi->wl_lock);
604 * schedule_ubi_work - schedule a work.
605 * @ubi: UBI device description object
606 * @wrk: the work to schedule
608 * This function adds a work defined by @wrk to the tail of the pending works
609 * list.
611 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
613 spin_lock(&ubi->wl_lock);
614 list_add_tail(&wrk->list, &ubi->works);
615 ubi_assert(ubi->works_count >= 0);
616 ubi->works_count += 1;
617 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
618 wake_up_process(ubi->bgt_thread);
619 spin_unlock(&ubi->wl_lock);
622 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
623 int cancel);
626 * schedule_erase - schedule an erase work.
627 * @ubi: UBI device description object
628 * @e: the WL entry of the physical eraseblock to erase
629 * @torture: if the physical eraseblock has to be tortured
631 * This function returns zero in case of success and a %-ENOMEM in case of
632 * failure.
634 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
635 int torture)
637 struct ubi_work *wl_wrk;
639 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
640 e->pnum, e->ec, torture);
642 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
643 if (!wl_wrk)
644 return -ENOMEM;
646 wl_wrk->func = &erase_worker;
647 wl_wrk->e = e;
648 wl_wrk->torture = torture;
650 schedule_ubi_work(ubi, wl_wrk);
651 return 0;
655 * wear_leveling_worker - wear-leveling worker function.
656 * @ubi: UBI device description object
657 * @wrk: the work object
658 * @cancel: non-zero if the worker has to free memory and exit
660 * This function copies a more worn out physical eraseblock to a less worn out
661 * one. Returns zero in case of success and a negative error code in case of
662 * failure.
664 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
665 int cancel)
667 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
668 int vol_id = -1, uninitialized_var(lnum);
669 struct ubi_wl_entry *e1, *e2;
670 struct ubi_vid_hdr *vid_hdr;
672 kfree(wrk);
673 if (cancel)
674 return 0;
676 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
677 if (!vid_hdr)
678 return -ENOMEM;
680 mutex_lock(&ubi->move_mutex);
681 spin_lock(&ubi->wl_lock);
682 ubi_assert(!ubi->move_from && !ubi->move_to);
683 ubi_assert(!ubi->move_to_put);
685 if (!ubi->free.rb_node ||
686 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
688 * No free physical eraseblocks? Well, they must be waiting in
689 * the queue to be erased. Cancel movement - it will be
690 * triggered again when a free physical eraseblock appears.
692 * No used physical eraseblocks? They must be temporarily
693 * protected from being moved. They will be moved to the
694 * @ubi->used tree later and the wear-leveling will be
695 * triggered again.
697 dbg_wl("cancel WL, a list is empty: free %d, used %d",
698 !ubi->free.rb_node, !ubi->used.rb_node);
699 goto out_cancel;
702 if (!ubi->scrub.rb_node) {
704 * Now pick the least worn-out used physical eraseblock and a
705 * highly worn-out free physical eraseblock. If the erase
706 * counters differ much enough, start wear-leveling.
708 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
709 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
711 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
712 dbg_wl("no WL needed: min used EC %d, max free EC %d",
713 e1->ec, e2->ec);
714 goto out_cancel;
716 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
717 rb_erase(&e1->u.rb, &ubi->used);
718 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
719 e1->pnum, e1->ec, e2->pnum, e2->ec);
720 } else {
721 /* Perform scrubbing */
722 scrubbing = 1;
723 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
724 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
725 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
726 rb_erase(&e1->u.rb, &ubi->scrub);
727 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
730 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
731 rb_erase(&e2->u.rb, &ubi->free);
732 ubi->move_from = e1;
733 ubi->move_to = e2;
734 spin_unlock(&ubi->wl_lock);
737 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
738 * We so far do not know which logical eraseblock our physical
739 * eraseblock (@e1) belongs to. We have to read the volume identifier
740 * header first.
742 * Note, we are protected from this PEB being unmapped and erased. The
743 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
744 * which is being moved was unmapped.
747 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
748 if (err && err != UBI_IO_BITFLIPS) {
749 if (err == UBI_IO_FF) {
751 * We are trying to move PEB without a VID header. UBI
752 * always write VID headers shortly after the PEB was
753 * given, so we have a situation when it has not yet
754 * had a chance to write it, because it was preempted.
755 * So add this PEB to the protection queue so far,
756 * because presumably more data will be written there
757 * (including the missing VID header), and then we'll
758 * move it.
760 dbg_wl("PEB %d has no VID header", e1->pnum);
761 protect = 1;
762 goto out_not_moved;
763 } else if (err == UBI_IO_FF_BITFLIPS) {
765 * The same situation as %UBI_IO_FF, but bit-flips were
766 * detected. It is better to schedule this PEB for
767 * scrubbing.
769 dbg_wl("PEB %d has no VID header but has bit-flips",
770 e1->pnum);
771 scrubbing = 1;
772 goto out_not_moved;
775 ubi_err("error %d while reading VID header from PEB %d",
776 err, e1->pnum);
777 goto out_error;
780 vol_id = be32_to_cpu(vid_hdr->vol_id);
781 lnum = be32_to_cpu(vid_hdr->lnum);
783 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
784 if (err) {
785 if (err == MOVE_CANCEL_RACE) {
787 * The LEB has not been moved because the volume is
788 * being deleted or the PEB has been put meanwhile. We
789 * should prevent this PEB from being selected for
790 * wear-leveling movement again, so put it to the
791 * protection queue.
793 protect = 1;
794 goto out_not_moved;
796 if (err == MOVE_RETRY) {
797 scrubbing = 1;
798 goto out_not_moved;
800 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
801 err == MOVE_TARGET_RD_ERR) {
803 * Target PEB had bit-flips or write error - torture it.
805 torture = 1;
806 goto out_not_moved;
809 if (err == MOVE_SOURCE_RD_ERR) {
811 * An error happened while reading the source PEB. Do
812 * not switch to R/O mode in this case, and give the
813 * upper layers a possibility to recover from this,
814 * e.g. by unmapping corresponding LEB. Instead, just
815 * put this PEB to the @ubi->erroneous list to prevent
816 * UBI from trying to move it over and over again.
818 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
819 ubi_err("too many erroneous eraseblocks (%d)",
820 ubi->erroneous_peb_count);
821 goto out_error;
823 erroneous = 1;
824 goto out_not_moved;
827 if (err < 0)
828 goto out_error;
830 ubi_assert(0);
833 /* The PEB has been successfully moved */
834 if (scrubbing)
835 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
836 e1->pnum, vol_id, lnum, e2->pnum);
837 ubi_free_vid_hdr(ubi, vid_hdr);
839 spin_lock(&ubi->wl_lock);
840 if (!ubi->move_to_put) {
841 wl_tree_add(e2, &ubi->used);
842 e2 = NULL;
844 ubi->move_from = ubi->move_to = NULL;
845 ubi->move_to_put = ubi->wl_scheduled = 0;
846 spin_unlock(&ubi->wl_lock);
848 err = schedule_erase(ubi, e1, 0);
849 if (err) {
850 kmem_cache_free(ubi_wl_entry_slab, e1);
851 if (e2)
852 kmem_cache_free(ubi_wl_entry_slab, e2);
853 goto out_ro;
856 if (e2) {
858 * Well, the target PEB was put meanwhile, schedule it for
859 * erasure.
861 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
862 e2->pnum, vol_id, lnum);
863 err = schedule_erase(ubi, e2, 0);
864 if (err) {
865 kmem_cache_free(ubi_wl_entry_slab, e2);
866 goto out_ro;
870 dbg_wl("done");
871 mutex_unlock(&ubi->move_mutex);
872 return 0;
875 * For some reasons the LEB was not moved, might be an error, might be
876 * something else. @e1 was not changed, so return it back. @e2 might
877 * have been changed, schedule it for erasure.
879 out_not_moved:
880 if (vol_id != -1)
881 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
882 e1->pnum, vol_id, lnum, e2->pnum, err);
883 else
884 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
885 e1->pnum, e2->pnum, err);
886 spin_lock(&ubi->wl_lock);
887 if (protect)
888 prot_queue_add(ubi, e1);
889 else if (erroneous) {
890 wl_tree_add(e1, &ubi->erroneous);
891 ubi->erroneous_peb_count += 1;
892 } else if (scrubbing)
893 wl_tree_add(e1, &ubi->scrub);
894 else
895 wl_tree_add(e1, &ubi->used);
896 ubi_assert(!ubi->move_to_put);
897 ubi->move_from = ubi->move_to = NULL;
898 ubi->wl_scheduled = 0;
899 spin_unlock(&ubi->wl_lock);
901 ubi_free_vid_hdr(ubi, vid_hdr);
902 err = schedule_erase(ubi, e2, torture);
903 if (err) {
904 kmem_cache_free(ubi_wl_entry_slab, e2);
905 goto out_ro;
907 mutex_unlock(&ubi->move_mutex);
908 return 0;
910 out_error:
911 if (vol_id != -1)
912 ubi_err("error %d while moving PEB %d to PEB %d",
913 err, e1->pnum, e2->pnum);
914 else
915 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
916 err, e1->pnum, vol_id, lnum, e2->pnum);
917 spin_lock(&ubi->wl_lock);
918 ubi->move_from = ubi->move_to = NULL;
919 ubi->move_to_put = ubi->wl_scheduled = 0;
920 spin_unlock(&ubi->wl_lock);
922 ubi_free_vid_hdr(ubi, vid_hdr);
923 kmem_cache_free(ubi_wl_entry_slab, e1);
924 kmem_cache_free(ubi_wl_entry_slab, e2);
926 out_ro:
927 ubi_ro_mode(ubi);
928 mutex_unlock(&ubi->move_mutex);
929 ubi_assert(err != 0);
930 return err < 0 ? err : -EIO;
932 out_cancel:
933 ubi->wl_scheduled = 0;
934 spin_unlock(&ubi->wl_lock);
935 mutex_unlock(&ubi->move_mutex);
936 ubi_free_vid_hdr(ubi, vid_hdr);
937 return 0;
941 * ensure_wear_leveling - schedule wear-leveling if it is needed.
942 * @ubi: UBI device description object
944 * This function checks if it is time to start wear-leveling and schedules it
945 * if yes. This function returns zero in case of success and a negative error
946 * code in case of failure.
948 static int ensure_wear_leveling(struct ubi_device *ubi)
950 int err = 0;
951 struct ubi_wl_entry *e1;
952 struct ubi_wl_entry *e2;
953 struct ubi_work *wrk;
955 spin_lock(&ubi->wl_lock);
956 if (ubi->wl_scheduled)
957 /* Wear-leveling is already in the work queue */
958 goto out_unlock;
961 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
962 * the WL worker has to be scheduled anyway.
964 if (!ubi->scrub.rb_node) {
965 if (!ubi->used.rb_node || !ubi->free.rb_node)
966 /* No physical eraseblocks - no deal */
967 goto out_unlock;
970 * We schedule wear-leveling only if the difference between the
971 * lowest erase counter of used physical eraseblocks and a high
972 * erase counter of free physical eraseblocks is greater than
973 * %UBI_WL_THRESHOLD.
975 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
976 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
978 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
979 goto out_unlock;
980 dbg_wl("schedule wear-leveling");
981 } else
982 dbg_wl("schedule scrubbing");
984 ubi->wl_scheduled = 1;
985 spin_unlock(&ubi->wl_lock);
987 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
988 if (!wrk) {
989 err = -ENOMEM;
990 goto out_cancel;
993 wrk->func = &wear_leveling_worker;
994 schedule_ubi_work(ubi, wrk);
995 return err;
997 out_cancel:
998 spin_lock(&ubi->wl_lock);
999 ubi->wl_scheduled = 0;
1000 out_unlock:
1001 spin_unlock(&ubi->wl_lock);
1002 return err;
1006 * erase_worker - physical eraseblock erase worker function.
1007 * @ubi: UBI device description object
1008 * @wl_wrk: the work object
1009 * @cancel: non-zero if the worker has to free memory and exit
1011 * This function erases a physical eraseblock and perform torture testing if
1012 * needed. It also takes care about marking the physical eraseblock bad if
1013 * needed. Returns zero in case of success and a negative error code in case of
1014 * failure.
1016 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1017 int cancel)
1019 struct ubi_wl_entry *e = wl_wrk->e;
1020 int pnum = e->pnum, err, need;
1022 if (cancel) {
1023 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1024 kfree(wl_wrk);
1025 kmem_cache_free(ubi_wl_entry_slab, e);
1026 return 0;
1029 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1031 err = sync_erase(ubi, e, wl_wrk->torture);
1032 if (!err) {
1033 /* Fine, we've erased it successfully */
1034 kfree(wl_wrk);
1036 spin_lock(&ubi->wl_lock);
1037 wl_tree_add(e, &ubi->free);
1038 spin_unlock(&ubi->wl_lock);
1041 * One more erase operation has happened, take care about
1042 * protected physical eraseblocks.
1044 serve_prot_queue(ubi);
1046 /* And take care about wear-leveling */
1047 err = ensure_wear_leveling(ubi);
1048 return err;
1051 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1052 kfree(wl_wrk);
1054 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1055 err == -EBUSY) {
1056 int err1;
1058 /* Re-schedule the LEB for erasure */
1059 err1 = schedule_erase(ubi, e, 0);
1060 if (err1) {
1061 err = err1;
1062 goto out_ro;
1064 return err;
1067 kmem_cache_free(ubi_wl_entry_slab, e);
1068 if (err != -EIO)
1070 * If this is not %-EIO, we have no idea what to do. Scheduling
1071 * this physical eraseblock for erasure again would cause
1072 * errors again and again. Well, lets switch to R/O mode.
1074 goto out_ro;
1076 /* It is %-EIO, the PEB went bad */
1078 if (!ubi->bad_allowed) {
1079 ubi_err("bad physical eraseblock %d detected", pnum);
1080 goto out_ro;
1083 spin_lock(&ubi->volumes_lock);
1084 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1085 if (need > 0) {
1086 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1087 ubi->avail_pebs -= need;
1088 ubi->rsvd_pebs += need;
1089 ubi->beb_rsvd_pebs += need;
1090 if (need > 0)
1091 ubi_msg("reserve more %d PEBs", need);
1094 if (ubi->beb_rsvd_pebs == 0) {
1095 spin_unlock(&ubi->volumes_lock);
1096 ubi_err("no reserved physical eraseblocks");
1097 goto out_ro;
1099 spin_unlock(&ubi->volumes_lock);
1101 ubi_msg("mark PEB %d as bad", pnum);
1102 err = ubi_io_mark_bad(ubi, pnum);
1103 if (err)
1104 goto out_ro;
1106 spin_lock(&ubi->volumes_lock);
1107 ubi->beb_rsvd_pebs -= 1;
1108 ubi->bad_peb_count += 1;
1109 ubi->good_peb_count -= 1;
1110 ubi_calculate_reserved(ubi);
1111 if (ubi->beb_rsvd_pebs)
1112 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1113 else
1114 ubi_warn("last PEB from the reserved pool was used");
1115 spin_unlock(&ubi->volumes_lock);
1117 return err;
1119 out_ro:
1120 ubi_ro_mode(ubi);
1121 return err;
1125 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1126 * @ubi: UBI device description object
1127 * @pnum: physical eraseblock to return
1128 * @torture: if this physical eraseblock has to be tortured
1130 * This function is called to return physical eraseblock @pnum to the pool of
1131 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1132 * occurred to this @pnum and it has to be tested. This function returns zero
1133 * in case of success, and a negative error code in case of failure.
1135 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1137 int err;
1138 struct ubi_wl_entry *e;
1140 dbg_wl("PEB %d", pnum);
1141 ubi_assert(pnum >= 0);
1142 ubi_assert(pnum < ubi->peb_count);
1144 retry:
1145 spin_lock(&ubi->wl_lock);
1146 e = ubi->lookuptbl[pnum];
1147 if (e == ubi->move_from) {
1149 * User is putting the physical eraseblock which was selected to
1150 * be moved. It will be scheduled for erasure in the
1151 * wear-leveling worker.
1153 dbg_wl("PEB %d is being moved, wait", pnum);
1154 spin_unlock(&ubi->wl_lock);
1156 /* Wait for the WL worker by taking the @ubi->move_mutex */
1157 mutex_lock(&ubi->move_mutex);
1158 mutex_unlock(&ubi->move_mutex);
1159 goto retry;
1160 } else if (e == ubi->move_to) {
1162 * User is putting the physical eraseblock which was selected
1163 * as the target the data is moved to. It may happen if the EBA
1164 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1165 * but the WL sub-system has not put the PEB to the "used" tree
1166 * yet, but it is about to do this. So we just set a flag which
1167 * will tell the WL worker that the PEB is not needed anymore
1168 * and should be scheduled for erasure.
1170 dbg_wl("PEB %d is the target of data moving", pnum);
1171 ubi_assert(!ubi->move_to_put);
1172 ubi->move_to_put = 1;
1173 spin_unlock(&ubi->wl_lock);
1174 return 0;
1175 } else {
1176 if (in_wl_tree(e, &ubi->used)) {
1177 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1178 rb_erase(&e->u.rb, &ubi->used);
1179 } else if (in_wl_tree(e, &ubi->scrub)) {
1180 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1181 rb_erase(&e->u.rb, &ubi->scrub);
1182 } else if (in_wl_tree(e, &ubi->erroneous)) {
1183 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1184 rb_erase(&e->u.rb, &ubi->erroneous);
1185 ubi->erroneous_peb_count -= 1;
1186 ubi_assert(ubi->erroneous_peb_count >= 0);
1187 /* Erroneous PEBs should be tortured */
1188 torture = 1;
1189 } else {
1190 err = prot_queue_del(ubi, e->pnum);
1191 if (err) {
1192 ubi_err("PEB %d not found", pnum);
1193 ubi_ro_mode(ubi);
1194 spin_unlock(&ubi->wl_lock);
1195 return err;
1199 spin_unlock(&ubi->wl_lock);
1201 err = schedule_erase(ubi, e, torture);
1202 if (err) {
1203 spin_lock(&ubi->wl_lock);
1204 wl_tree_add(e, &ubi->used);
1205 spin_unlock(&ubi->wl_lock);
1208 return err;
1212 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1213 * @ubi: UBI device description object
1214 * @pnum: the physical eraseblock to schedule
1216 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1217 * needs scrubbing. This function schedules a physical eraseblock for
1218 * scrubbing which is done in background. This function returns zero in case of
1219 * success and a negative error code in case of failure.
1221 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1223 struct ubi_wl_entry *e;
1225 dbg_msg("schedule PEB %d for scrubbing", pnum);
1227 retry:
1228 spin_lock(&ubi->wl_lock);
1229 e = ubi->lookuptbl[pnum];
1230 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1231 in_wl_tree(e, &ubi->erroneous)) {
1232 spin_unlock(&ubi->wl_lock);
1233 return 0;
1236 if (e == ubi->move_to) {
1238 * This physical eraseblock was used to move data to. The data
1239 * was moved but the PEB was not yet inserted to the proper
1240 * tree. We should just wait a little and let the WL worker
1241 * proceed.
1243 spin_unlock(&ubi->wl_lock);
1244 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1245 yield();
1246 goto retry;
1249 if (in_wl_tree(e, &ubi->used)) {
1250 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1251 rb_erase(&e->u.rb, &ubi->used);
1252 } else {
1253 int err;
1255 err = prot_queue_del(ubi, e->pnum);
1256 if (err) {
1257 ubi_err("PEB %d not found", pnum);
1258 ubi_ro_mode(ubi);
1259 spin_unlock(&ubi->wl_lock);
1260 return err;
1264 wl_tree_add(e, &ubi->scrub);
1265 spin_unlock(&ubi->wl_lock);
1268 * Technically scrubbing is the same as wear-leveling, so it is done
1269 * by the WL worker.
1271 return ensure_wear_leveling(ubi);
1275 * ubi_wl_flush - flush all pending works.
1276 * @ubi: UBI device description object
1278 * This function returns zero in case of success and a negative error code in
1279 * case of failure.
1281 int ubi_wl_flush(struct ubi_device *ubi)
1283 int err;
1286 * Erase while the pending works queue is not empty, but not more than
1287 * the number of currently pending works.
1289 dbg_wl("flush (%d pending works)", ubi->works_count);
1290 while (ubi->works_count) {
1291 err = do_work(ubi);
1292 if (err)
1293 return err;
1297 * Make sure all the works which have been done in parallel are
1298 * finished.
1300 down_write(&ubi->work_sem);
1301 up_write(&ubi->work_sem);
1304 * And in case last was the WL worker and it canceled the LEB
1305 * movement, flush again.
1307 while (ubi->works_count) {
1308 dbg_wl("flush more (%d pending works)", ubi->works_count);
1309 err = do_work(ubi);
1310 if (err)
1311 return err;
1314 return 0;
1318 * tree_destroy - destroy an RB-tree.
1319 * @root: the root of the tree to destroy
1321 static void tree_destroy(struct rb_root *root)
1323 struct rb_node *rb;
1324 struct ubi_wl_entry *e;
1326 rb = root->rb_node;
1327 while (rb) {
1328 if (rb->rb_left)
1329 rb = rb->rb_left;
1330 else if (rb->rb_right)
1331 rb = rb->rb_right;
1332 else {
1333 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1335 rb = rb_parent(rb);
1336 if (rb) {
1337 if (rb->rb_left == &e->u.rb)
1338 rb->rb_left = NULL;
1339 else
1340 rb->rb_right = NULL;
1343 kmem_cache_free(ubi_wl_entry_slab, e);
1349 * ubi_thread - UBI background thread.
1350 * @u: the UBI device description object pointer
1352 int ubi_thread(void *u)
1354 int failures = 0;
1355 struct ubi_device *ubi = u;
1357 ubi_msg("background thread \"%s\" started, PID %d",
1358 ubi->bgt_name, task_pid_nr(current));
1360 set_freezable();
1361 for (;;) {
1362 int err;
1364 if (kthread_should_stop())
1365 break;
1367 if (try_to_freeze())
1368 continue;
1370 spin_lock(&ubi->wl_lock);
1371 if (list_empty(&ubi->works) || ubi->ro_mode ||
1372 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1373 set_current_state(TASK_INTERRUPTIBLE);
1374 spin_unlock(&ubi->wl_lock);
1375 schedule();
1376 continue;
1378 spin_unlock(&ubi->wl_lock);
1380 err = do_work(ubi);
1381 if (err) {
1382 ubi_err("%s: work failed with error code %d",
1383 ubi->bgt_name, err);
1384 if (failures++ > WL_MAX_FAILURES) {
1386 * Too many failures, disable the thread and
1387 * switch to read-only mode.
1389 ubi_msg("%s: %d consecutive failures",
1390 ubi->bgt_name, WL_MAX_FAILURES);
1391 ubi_ro_mode(ubi);
1392 ubi->thread_enabled = 0;
1393 continue;
1395 } else
1396 failures = 0;
1398 cond_resched();
1401 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1402 return 0;
1406 * cancel_pending - cancel all pending works.
1407 * @ubi: UBI device description object
1409 static void cancel_pending(struct ubi_device *ubi)
1411 while (!list_empty(&ubi->works)) {
1412 struct ubi_work *wrk;
1414 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1415 list_del(&wrk->list);
1416 wrk->func(ubi, wrk, 1);
1417 ubi->works_count -= 1;
1418 ubi_assert(ubi->works_count >= 0);
1423 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1424 * @ubi: UBI device description object
1425 * @si: scanning information
1427 * This function returns zero in case of success, and a negative error code in
1428 * case of failure.
1430 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1432 int err, i;
1433 struct rb_node *rb1, *rb2;
1434 struct ubi_scan_volume *sv;
1435 struct ubi_scan_leb *seb, *tmp;
1436 struct ubi_wl_entry *e;
1438 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1439 spin_lock_init(&ubi->wl_lock);
1440 mutex_init(&ubi->move_mutex);
1441 init_rwsem(&ubi->work_sem);
1442 ubi->max_ec = si->max_ec;
1443 INIT_LIST_HEAD(&ubi->works);
1445 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1447 err = -ENOMEM;
1448 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1449 if (!ubi->lookuptbl)
1450 return err;
1452 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1453 INIT_LIST_HEAD(&ubi->pq[i]);
1454 ubi->pq_head = 0;
1456 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1457 cond_resched();
1459 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1460 if (!e)
1461 goto out_free;
1463 e->pnum = seb->pnum;
1464 e->ec = seb->ec;
1465 ubi->lookuptbl[e->pnum] = e;
1466 if (schedule_erase(ubi, e, 0)) {
1467 kmem_cache_free(ubi_wl_entry_slab, e);
1468 goto out_free;
1472 list_for_each_entry(seb, &si->free, u.list) {
1473 cond_resched();
1475 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1476 if (!e)
1477 goto out_free;
1479 e->pnum = seb->pnum;
1480 e->ec = seb->ec;
1481 ubi_assert(e->ec >= 0);
1482 wl_tree_add(e, &ubi->free);
1483 ubi->lookuptbl[e->pnum] = e;
1486 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1487 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1488 cond_resched();
1490 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1491 if (!e)
1492 goto out_free;
1494 e->pnum = seb->pnum;
1495 e->ec = seb->ec;
1496 ubi->lookuptbl[e->pnum] = e;
1497 if (!seb->scrub) {
1498 dbg_wl("add PEB %d EC %d to the used tree",
1499 e->pnum, e->ec);
1500 wl_tree_add(e, &ubi->used);
1501 } else {
1502 dbg_wl("add PEB %d EC %d to the scrub tree",
1503 e->pnum, e->ec);
1504 wl_tree_add(e, &ubi->scrub);
1509 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1510 ubi_err("no enough physical eraseblocks (%d, need %d)",
1511 ubi->avail_pebs, WL_RESERVED_PEBS);
1512 if (ubi->corr_peb_count)
1513 ubi_err("%d PEBs are corrupted and not used",
1514 ubi->corr_peb_count);
1515 goto out_free;
1517 ubi->avail_pebs -= WL_RESERVED_PEBS;
1518 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1520 /* Schedule wear-leveling if needed */
1521 err = ensure_wear_leveling(ubi);
1522 if (err)
1523 goto out_free;
1525 return 0;
1527 out_free:
1528 cancel_pending(ubi);
1529 tree_destroy(&ubi->used);
1530 tree_destroy(&ubi->free);
1531 tree_destroy(&ubi->scrub);
1532 kfree(ubi->lookuptbl);
1533 return err;
1537 * protection_queue_destroy - destroy the protection queue.
1538 * @ubi: UBI device description object
1540 static void protection_queue_destroy(struct ubi_device *ubi)
1542 int i;
1543 struct ubi_wl_entry *e, *tmp;
1545 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1546 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1547 list_del(&e->u.list);
1548 kmem_cache_free(ubi_wl_entry_slab, e);
1554 * ubi_wl_close - close the wear-leveling sub-system.
1555 * @ubi: UBI device description object
1557 void ubi_wl_close(struct ubi_device *ubi)
1559 dbg_wl("close the WL sub-system");
1560 cancel_pending(ubi);
1561 protection_queue_destroy(ubi);
1562 tree_destroy(&ubi->used);
1563 tree_destroy(&ubi->erroneous);
1564 tree_destroy(&ubi->free);
1565 tree_destroy(&ubi->scrub);
1566 kfree(ubi->lookuptbl);
1569 #ifdef CONFIG_MTD_UBI_DEBUG
1572 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1573 * @ubi: UBI device description object
1574 * @pnum: the physical eraseblock number to check
1575 * @ec: the erase counter to check
1577 * This function returns zero if the erase counter of physical eraseblock @pnum
1578 * is equivalent to @ec, and a negative error code if not or if an error
1579 * occurred.
1581 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1583 int err;
1584 long long read_ec;
1585 struct ubi_ec_hdr *ec_hdr;
1587 if (!ubi->dbg->chk_gen)
1588 return 0;
1590 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1591 if (!ec_hdr)
1592 return -ENOMEM;
1594 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1595 if (err && err != UBI_IO_BITFLIPS) {
1596 /* The header does not have to exist */
1597 err = 0;
1598 goto out_free;
1601 read_ec = be64_to_cpu(ec_hdr->ec);
1602 if (ec != read_ec) {
1603 ubi_err("paranoid check failed for PEB %d", pnum);
1604 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1605 ubi_dbg_dump_stack();
1606 err = 1;
1607 } else
1608 err = 0;
1610 out_free:
1611 kfree(ec_hdr);
1612 return err;
1616 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1617 * @ubi: UBI device description object
1618 * @e: the wear-leveling entry to check
1619 * @root: the root of the tree
1621 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1622 * is not.
1624 static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1625 struct ubi_wl_entry *e,
1626 struct rb_root *root)
1628 if (!ubi->dbg->chk_gen)
1629 return 0;
1631 if (in_wl_tree(e, root))
1632 return 0;
1634 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1635 e->pnum, e->ec, root);
1636 ubi_dbg_dump_stack();
1637 return -EINVAL;
1641 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1642 * queue.
1643 * @ubi: UBI device description object
1644 * @e: the wear-leveling entry to check
1646 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1648 static int paranoid_check_in_pq(const struct ubi_device *ubi,
1649 struct ubi_wl_entry *e)
1651 struct ubi_wl_entry *p;
1652 int i;
1654 if (!ubi->dbg->chk_gen)
1655 return 0;
1657 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1658 list_for_each_entry(p, &ubi->pq[i], u.list)
1659 if (p == e)
1660 return 0;
1662 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1663 e->pnum, e->ec);
1664 ubi_dbg_dump_stack();
1665 return -EINVAL;
1668 #endif /* CONFIG_MTD_UBI_DEBUG */