i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / ata / libata-core.c
blobc06e0ec11556d7696b620fa0b32e5af508863052
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
71 #include "libata.h"
72 #include "libata-transport.h"
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
79 const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
85 const struct ata_port_operations sata_port_ops = {
86 .inherits = &ata_base_port_ops,
88 .qc_defer = ata_std_qc_defer,
89 .hardreset = sata_std_hardreset,
92 static unsigned int ata_dev_init_params(struct ata_device *dev,
93 u16 heads, u16 sectors);
94 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
95 static void ata_dev_xfermask(struct ata_device *dev);
96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
98 unsigned int ata_print_id = 1;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
160 static int atapi_an;
161 module_param(atapi_an, int, 0444);
162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION);
170 static bool ata_sstatus_online(u32 sstatus)
172 return (sstatus & 0xf) == 0x3;
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
181 * LOCKING:
182 * Host lock or EH context.
184 * RETURNS:
185 * Pointer to the next link.
187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 /* fall through */
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 /* fall through */
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 /* fall through */
216 case ATA_LITER_EDGE:
217 return NULL;
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
231 return NULL;
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
240 * LOCKING:
241 * Host lock or EH context.
243 * RETURNS:
244 * Pointer to the next device.
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
288 * ata_dev_phys_link - find physical link for a device
289 * @dev: ATA device to look up physical link for
291 * Look up physical link which @dev is attached to. Note that
292 * this is different from @dev->link only when @dev is on slave
293 * link. For all other cases, it's the same as @dev->link.
295 * LOCKING:
296 * Don't care.
298 * RETURNS:
299 * Pointer to the found physical link.
301 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 struct ata_port *ap = dev->link->ap;
305 if (!ap->slave_link)
306 return dev->link;
307 if (!dev->devno)
308 return &ap->link;
309 return ap->slave_link;
313 * ata_force_cbl - force cable type according to libata.force
314 * @ap: ATA port of interest
316 * Force cable type according to libata.force and whine about it.
317 * The last entry which has matching port number is used, so it
318 * can be specified as part of device force parameters. For
319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320 * same effect.
322 * LOCKING:
323 * EH context.
325 void ata_force_cbl(struct ata_port *ap)
327 int i;
329 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 const struct ata_force_ent *fe = &ata_force_tbl[i];
332 if (fe->port != -1 && fe->port != ap->print_id)
333 continue;
335 if (fe->param.cbl == ATA_CBL_NONE)
336 continue;
338 ap->cbl = fe->param.cbl;
339 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
340 return;
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
357 * LOCKING:
358 * EH context.
360 static void ata_force_link_limits(struct ata_link *link)
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
366 if (ata_is_host_link(link))
367 linkno += 15;
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_notice(link,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
404 * LOCKING:
405 * EH context.
407 static void ata_force_xfermask(struct ata_device *dev)
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
428 if (!fe->param.xfer_mask)
429 continue;
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
444 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
445 fe->param.name);
446 return;
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
458 * LOCKING:
459 * EH context.
461 static void ata_force_horkage(struct ata_device *dev)
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
488 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
489 fe->param.name);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
499 * LOCKING:
500 * None.
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode)
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
541 * LOCKING:
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * LOCKING:
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
642 * LOCKING:
643 * caller.
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647 u8 cmd;
649 int index, fua, lba48, write;
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
672 return -1;
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
680 * LOCKING:
681 * None.
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
687 * RETURNS:
688 * Block address read from @tf.
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692 u64 block = 0;
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
712 if (!sect) {
713 ata_dev_warn(dev,
714 "device reported invalid CHS sector 0\n");
715 sect = 1; /* oh well */
718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
721 return block;
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
731 * @tag: tag
733 * LOCKING:
734 * None.
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
739 * RETURNS:
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 u64 block, u32 n_block, unsigned int tf_flags,
746 unsigned int tag)
748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 tf->flags |= tf_flags;
751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 /* yay, NCQ */
753 if (!lba_48_ok(block, n_block))
754 return -ERANGE;
756 tf->protocol = ATA_PROT_NCQ;
757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759 if (tf->flags & ATA_TFLAG_WRITE)
760 tf->command = ATA_CMD_FPDMA_WRITE;
761 else
762 tf->command = ATA_CMD_FPDMA_READ;
764 tf->nsect = tag << 3;
765 tf->hob_feature = (n_block >> 8) & 0xff;
766 tf->feature = n_block & 0xff;
768 tf->hob_lbah = (block >> 40) & 0xff;
769 tf->hob_lbam = (block >> 32) & 0xff;
770 tf->hob_lbal = (block >> 24) & 0xff;
771 tf->lbah = (block >> 16) & 0xff;
772 tf->lbam = (block >> 8) & 0xff;
773 tf->lbal = block & 0xff;
775 tf->device = 1 << 6;
776 if (tf->flags & ATA_TFLAG_FUA)
777 tf->device |= 1 << 7;
778 } else if (dev->flags & ATA_DFLAG_LBA) {
779 tf->flags |= ATA_TFLAG_LBA;
781 if (lba_28_ok(block, n_block)) {
782 /* use LBA28 */
783 tf->device |= (block >> 24) & 0xf;
784 } else if (lba_48_ok(block, n_block)) {
785 if (!(dev->flags & ATA_DFLAG_LBA48))
786 return -ERANGE;
788 /* use LBA48 */
789 tf->flags |= ATA_TFLAG_LBA48;
791 tf->hob_nsect = (n_block >> 8) & 0xff;
793 tf->hob_lbah = (block >> 40) & 0xff;
794 tf->hob_lbam = (block >> 32) & 0xff;
795 tf->hob_lbal = (block >> 24) & 0xff;
796 } else
797 /* request too large even for LBA48 */
798 return -ERANGE;
800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 return -EINVAL;
803 tf->nsect = n_block & 0xff;
805 tf->lbah = (block >> 16) & 0xff;
806 tf->lbam = (block >> 8) & 0xff;
807 tf->lbal = block & 0xff;
809 tf->device |= ATA_LBA;
810 } else {
811 /* CHS */
812 u32 sect, head, cyl, track;
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block, n_block))
816 return -ERANGE;
818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 return -EINVAL;
821 /* Convert LBA to CHS */
822 track = (u32)block / dev->sectors;
823 cyl = track / dev->heads;
824 head = track % dev->heads;
825 sect = (u32)block % dev->sectors + 1;
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32)block, track, cyl, head, sect);
830 /* Check whether the converted CHS can fit.
831 Cylinder: 0-65535
832 Head: 0-15
833 Sector: 1-255*/
834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 return -ERANGE;
837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 tf->lbal = sect;
839 tf->lbam = cyl;
840 tf->lbah = cyl >> 8;
841 tf->device |= head;
844 return 0;
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
856 * LOCKING:
857 * None.
859 * RETURNS:
860 * Packed xfer_mask.
862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 unsigned long mwdma_mask,
864 unsigned long udma_mask)
866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 unsigned long *mwdma_mask, unsigned long *udma_mask)
884 if (pio_mask)
885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 if (mwdma_mask)
887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 if (udma_mask)
889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892 static const struct ata_xfer_ent {
893 int shift, bits;
894 u8 base;
895 } ata_xfer_tbl[] = {
896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 { -1, },
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
909 * LOCKING:
910 * None.
912 * RETURNS:
913 * Matching XFER_* value, 0xff if no match found.
915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
917 int highbit = fls(xfer_mask) - 1;
918 const struct ata_xfer_ent *ent;
920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 return ent->base + highbit - ent->shift;
923 return 0xff;
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
930 * Return matching xfer_mask for @xfer_mode.
932 * LOCKING:
933 * None.
935 * RETURNS:
936 * Matching xfer_mask, 0 if no match found.
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
940 const struct ata_xfer_ent *ent;
942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 & ~((1 << ent->shift) - 1);
946 return 0;
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
953 * Return matching xfer_shift for @xfer_mode.
955 * LOCKING:
956 * None.
958 * RETURNS:
959 * Matching xfer_shift, -1 if no match found.
961 int ata_xfer_mode2shift(unsigned long xfer_mode)
963 const struct ata_xfer_ent *ent;
965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 return ent->shift;
968 return -1;
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
978 * LOCKING:
979 * None.
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
985 const char *ata_mode_string(unsigned long xfer_mask)
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1009 int highbit;
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1017 const char *sata_spd_string(unsigned int spd)
1019 static const char * const spd_str[] = {
1020 "1.5 Gbps",
1021 "3.0 Gbps",
1022 "6.0 Gbps",
1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 return "<unknown>";
1027 return spd_str[spd - 1];
1031 * ata_dev_classify - determine device type based on ATA-spec signature
1032 * @tf: ATA taskfile register set for device to be identified
1034 * Determine from taskfile register contents whether a device is
1035 * ATA or ATAPI, as per "Signature and persistence" section
1036 * of ATA/PI spec (volume 1, sect 5.14).
1038 * LOCKING:
1039 * None.
1041 * RETURNS:
1042 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 * %ATA_DEV_UNKNOWN the event of failure.
1045 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 /* Apple's open source Darwin code hints that some devices only
1048 * put a proper signature into the LBA mid/high registers,
1049 * So, we only check those. It's sufficient for uniqueness.
1051 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052 * signatures for ATA and ATAPI devices attached on SerialATA,
1053 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1054 * spec has never mentioned about using different signatures
1055 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1056 * Multiplier specification began to use 0x69/0x96 to identify
1057 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059 * 0x69/0x96 shortly and described them as reserved for
1060 * SerialATA.
1062 * We follow the current spec and consider that 0x69/0x96
1063 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065 * SEMB signature. This is worked around in
1066 * ata_dev_read_id().
1068 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069 DPRINTK("found ATA device by sig\n");
1070 return ATA_DEV_ATA;
1073 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074 DPRINTK("found ATAPI device by sig\n");
1075 return ATA_DEV_ATAPI;
1078 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079 DPRINTK("found PMP device by sig\n");
1080 return ATA_DEV_PMP;
1083 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085 return ATA_DEV_SEMB;
1088 DPRINTK("unknown device\n");
1089 return ATA_DEV_UNKNOWN;
1093 * ata_id_string - Convert IDENTIFY DEVICE page into string
1094 * @id: IDENTIFY DEVICE results we will examine
1095 * @s: string into which data is output
1096 * @ofs: offset into identify device page
1097 * @len: length of string to return. must be an even number.
1099 * The strings in the IDENTIFY DEVICE page are broken up into
1100 * 16-bit chunks. Run through the string, and output each
1101 * 8-bit chunk linearly, regardless of platform.
1103 * LOCKING:
1104 * caller.
1107 void ata_id_string(const u16 *id, unsigned char *s,
1108 unsigned int ofs, unsigned int len)
1110 unsigned int c;
1112 BUG_ON(len & 1);
1114 while (len > 0) {
1115 c = id[ofs] >> 8;
1116 *s = c;
1117 s++;
1119 c = id[ofs] & 0xff;
1120 *s = c;
1121 s++;
1123 ofs++;
1124 len -= 2;
1129 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 * @id: IDENTIFY DEVICE results we will examine
1131 * @s: string into which data is output
1132 * @ofs: offset into identify device page
1133 * @len: length of string to return. must be an odd number.
1135 * This function is identical to ata_id_string except that it
1136 * trims trailing spaces and terminates the resulting string with
1137 * null. @len must be actual maximum length (even number) + 1.
1139 * LOCKING:
1140 * caller.
1142 void ata_id_c_string(const u16 *id, unsigned char *s,
1143 unsigned int ofs, unsigned int len)
1145 unsigned char *p;
1147 ata_id_string(id, s, ofs, len - 1);
1149 p = s + strnlen(s, len - 1);
1150 while (p > s && p[-1] == ' ')
1151 p--;
1152 *p = '\0';
1155 static u64 ata_id_n_sectors(const u16 *id)
1157 if (ata_id_has_lba(id)) {
1158 if (ata_id_has_lba48(id))
1159 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160 else
1161 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162 } else {
1163 if (ata_id_current_chs_valid(id))
1164 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165 id[ATA_ID_CUR_SECTORS];
1166 else
1167 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168 id[ATA_ID_SECTORS];
1172 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1174 u64 sectors = 0;
1176 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179 sectors |= (tf->lbah & 0xff) << 16;
1180 sectors |= (tf->lbam & 0xff) << 8;
1181 sectors |= (tf->lbal & 0xff);
1183 return sectors;
1186 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1188 u64 sectors = 0;
1190 sectors |= (tf->device & 0x0f) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1195 return sectors;
1199 * ata_read_native_max_address - Read native max address
1200 * @dev: target device
1201 * @max_sectors: out parameter for the result native max address
1203 * Perform an LBA48 or LBA28 native size query upon the device in
1204 * question.
1206 * RETURNS:
1207 * 0 on success, -EACCES if command is aborted by the drive.
1208 * -EIO on other errors.
1210 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1216 ata_tf_init(dev, &tf);
1218 /* always clear all address registers */
1219 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221 if (lba48) {
1222 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223 tf.flags |= ATA_TFLAG_LBA48;
1224 } else
1225 tf.command = ATA_CMD_READ_NATIVE_MAX;
1227 tf.protocol |= ATA_PROT_NODATA;
1228 tf.device |= ATA_LBA;
1230 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231 if (err_mask) {
1232 ata_dev_warn(dev,
1233 "failed to read native max address (err_mask=0x%x)\n",
1234 err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1240 if (lba48)
1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 else
1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 (*max_sectors)--;
1246 return 0;
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1254 * Set max sectors of @dev to @new_sectors.
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1263 unsigned int err_mask;
1264 struct ata_taskfile tf;
1265 int lba48 = ata_id_has_lba48(dev->id);
1267 new_sectors--;
1269 ata_tf_init(dev, &tf);
1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 } else {
1281 tf.command = ATA_CMD_SET_MAX;
1283 tf.device |= (new_sectors >> 24) & 0xf;
1286 tf.protocol |= ATA_PROT_NODATA;
1287 tf.device |= ATA_LBA;
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 if (err_mask) {
1295 ata_dev_warn(dev,
1296 "failed to set max address (err_mask=0x%x)\n",
1297 err_mask);
1298 if (err_mask == AC_ERR_DEV &&
1299 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300 return -EACCES;
1301 return -EIO;
1304 return 0;
1308 * ata_hpa_resize - Resize a device with an HPA set
1309 * @dev: Device to resize
1311 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 * it if required to the full size of the media. The caller must check
1313 * the drive has the HPA feature set enabled.
1315 * RETURNS:
1316 * 0 on success, -errno on failure.
1318 static int ata_hpa_resize(struct ata_device *dev)
1320 struct ata_eh_context *ehc = &dev->link->eh_context;
1321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323 u64 sectors = ata_id_n_sectors(dev->id);
1324 u64 native_sectors;
1325 int rc;
1327 /* do we need to do it? */
1328 if (dev->class != ATA_DEV_ATA ||
1329 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331 return 0;
1333 /* read native max address */
1334 rc = ata_read_native_max_address(dev, &native_sectors);
1335 if (rc) {
1336 /* If device aborted the command or HPA isn't going to
1337 * be unlocked, skip HPA resizing.
1339 if (rc == -EACCES || !unlock_hpa) {
1340 ata_dev_warn(dev,
1341 "HPA support seems broken, skipping HPA handling\n");
1342 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1344 /* we can continue if device aborted the command */
1345 if (rc == -EACCES)
1346 rc = 0;
1349 return rc;
1351 dev->n_native_sectors = native_sectors;
1353 /* nothing to do? */
1354 if (native_sectors <= sectors || !unlock_hpa) {
1355 if (!print_info || native_sectors == sectors)
1356 return 0;
1358 if (native_sectors > sectors)
1359 ata_dev_info(dev,
1360 "HPA detected: current %llu, native %llu\n",
1361 (unsigned long long)sectors,
1362 (unsigned long long)native_sectors);
1363 else if (native_sectors < sectors)
1364 ata_dev_warn(dev,
1365 "native sectors (%llu) is smaller than sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_warn(dev,
1376 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_err(dev,
1388 "failed to re-read IDENTIFY data after HPA resizing\n");
1389 return rc;
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_info(dev,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1401 return 0;
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1411 * LOCKING:
1412 * caller.
1415 static inline void ata_dump_id(const u16 *id)
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
1439 id[88],
1440 id[93]);
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1450 * FIXME: pre IDE drive timing (do we care ?).
1452 * LOCKING:
1453 * None.
1455 * RETURNS:
1456 * Computed xfermask
1458 unsigned long ata_id_xfermask(const u16 *id)
1460 unsigned long pio_mask, mwdma_mask, udma_mask;
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 if (mode < 5) /* Valid PIO range */
1474 pio_mask = (2 << mode) - 1;
1475 else
1476 pio_mask = 1;
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1488 if (ata_id_is_cfa(id)) {
1490 * Process compact flash extended modes
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1514 struct completion *waiting = qc->private_data;
1516 complete(waiting);
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1541 unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
1543 int dma_dir, struct scatterlist *sgl,
1544 unsigned int n_elem, unsigned long timeout)
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
1548 u8 command = tf->command;
1549 int auto_timeout = 0;
1550 struct ata_queued_cmd *qc;
1551 unsigned int tag, preempted_tag;
1552 u32 preempted_sactive, preempted_qc_active;
1553 int preempted_nr_active_links;
1554 DECLARE_COMPLETION_ONSTACK(wait);
1555 unsigned long flags;
1556 unsigned int err_mask;
1557 int rc;
1559 spin_lock_irqsave(ap->lock, flags);
1561 /* no internal command while frozen */
1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1567 /* initialize internal qc */
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
1581 qc = __ata_qc_from_tag(ap, tag);
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
1591 preempted_qc_active = ap->qc_active;
1592 preempted_nr_active_links = ap->nr_active_links;
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
1595 ap->qc_active = 0;
1596 ap->nr_active_links = 0;
1598 /* prepare & issue qc */
1599 qc->tf = *tf;
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
1605 unsigned int i, buflen = 0;
1606 struct scatterlist *sg;
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
1611 ata_sg_init(qc, sgl, n_elem);
1612 qc->nbytes = buflen;
1615 qc->private_data = &wait;
1616 qc->complete_fn = ata_qc_complete_internal;
1618 ata_qc_issue(qc);
1620 spin_unlock_irqrestore(ap->lock, flags);
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1631 if (ap->ops->error_handler)
1632 ata_eh_release(ap);
1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1636 if (ap->ops->error_handler)
1637 ata_eh_acquire(ap);
1639 ata_sff_flush_pio_task(ap);
1641 if (!rc) {
1642 spin_lock_irqsave(ap->lock, flags);
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
1649 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1650 qc->err_mask |= AC_ERR_TIMEOUT;
1652 if (ap->ops->error_handler)
1653 ata_port_freeze(ap);
1654 else
1655 ata_qc_complete(qc);
1657 if (ata_msg_warn(ap))
1658 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1659 command);
1662 spin_unlock_irqrestore(ap->lock, flags);
1665 /* do post_internal_cmd */
1666 if (ap->ops->post_internal_cmd)
1667 ap->ops->post_internal_cmd(qc);
1669 /* perform minimal error analysis */
1670 if (qc->flags & ATA_QCFLAG_FAILED) {
1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 qc->err_mask |= AC_ERR_DEV;
1674 if (!qc->err_mask)
1675 qc->err_mask |= AC_ERR_OTHER;
1677 if (qc->err_mask & ~AC_ERR_OTHER)
1678 qc->err_mask &= ~AC_ERR_OTHER;
1681 /* finish up */
1682 spin_lock_irqsave(ap->lock, flags);
1684 *tf = qc->result_tf;
1685 err_mask = qc->err_mask;
1687 ata_qc_free(qc);
1688 link->active_tag = preempted_tag;
1689 link->sactive = preempted_sactive;
1690 ap->qc_active = preempted_qc_active;
1691 ap->nr_active_links = preempted_nr_active_links;
1693 spin_unlock_irqrestore(ap->lock, flags);
1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 ata_internal_cmd_timed_out(dev, command);
1698 return err_mask;
1702 * ata_exec_internal - execute libata internal command
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
1709 * @timeout: Timeout in msecs (0 for default)
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1714 * LOCKING:
1715 * None. Should be called with kernel context, might sleep.
1717 * RETURNS:
1718 * Zero on success, AC_ERR_* mask on failure
1720 unsigned ata_exec_internal(struct ata_device *dev,
1721 struct ata_taskfile *tf, const u8 *cdb,
1722 int dma_dir, void *buf, unsigned int buflen,
1723 unsigned long timeout)
1725 struct scatterlist *psg = NULL, sg;
1726 unsigned int n_elem = 0;
1728 if (dma_dir != DMA_NONE) {
1729 WARN_ON(!buf);
1730 sg_init_one(&sg, buf, buflen);
1731 psg = &sg;
1732 n_elem++;
1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 timeout);
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1747 * LOCKING:
1748 * Kernel thread context (may sleep).
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1755 struct ata_taskfile tf;
1757 ata_tf_init(dev, &tf);
1759 tf.command = cmd;
1760 tf.flags |= ATA_TFLAG_DEVICE;
1761 tf.protocol = ATA_PROT_NODATA;
1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767 * ata_pio_need_iordy - check if iordy needed
1768 * @adev: ATA device
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 return 0;
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1785 return 0;
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev->id)
1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 return 0;
1790 /* PIO3 and higher it is mandatory */
1791 if (adev->pio_mode > XFER_PIO_2)
1792 return 1;
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev->id))
1795 return 1;
1796 return 0;
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1801 * @adev: ATA device
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1810 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1811 /* Is the speed faster than the drive allows non IORDY ? */
1812 if (pio) {
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio > 240) /* PIO2 is 240nS per cycle */
1815 return 3 << ATA_SHIFT_PIO;
1816 return 7 << ATA_SHIFT_PIO;
1819 return 3 << ATA_SHIFT_PIO;
1823 * ata_do_dev_read_id - default ID read method
1824 * @dev: device
1825 * @tf: proposed taskfile
1826 * @id: data buffer
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1832 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 struct ata_taskfile *tf, u16 *id)
1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840 * ata_dev_read_id - Read ID data from the specified device
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
1843 * @flags: ATA_READID_* flags
1844 * @id: buffer to read IDENTIFY data into
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1852 * now we abort if we hit that case.
1854 * LOCKING:
1855 * Kernel thread context (may sleep)
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1861 unsigned int flags, u16 *id)
1863 struct ata_port *ap = dev->link->ap;
1864 unsigned int class = *p_class;
1865 struct ata_taskfile tf;
1866 unsigned int err_mask = 0;
1867 const char *reason;
1868 bool is_semb = class == ATA_DEV_SEMB;
1869 int may_fallback = 1, tried_spinup = 0;
1870 int rc;
1872 if (ata_msg_ctl(ap))
1873 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875 retry:
1876 ata_tf_init(dev, &tf);
1878 switch (class) {
1879 case ATA_DEV_SEMB:
1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1881 case ATA_DEV_ATA:
1882 tf.command = ATA_CMD_ID_ATA;
1883 break;
1884 case ATA_DEV_ATAPI:
1885 tf.command = ATA_CMD_ID_ATAPI;
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1893 tf.protocol = ATA_PROT_PIO;
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1903 tf.flags |= ATA_TFLAG_POLLING;
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1910 if (err_mask) {
1911 if (err_mask & AC_ERR_NODEV_HINT) {
1912 ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 return -ENOENT;
1916 if (is_semb) {
1917 ata_dev_info(dev,
1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 /* SEMB is not supported yet */
1920 *p_class = ATA_DEV_SEMB_UNSUP;
1921 return 0;
1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 /* Device or controller might have reported
1926 * the wrong device class. Give a shot at the
1927 * other IDENTIFY if the current one is
1928 * aborted by the device.
1930 if (may_fallback) {
1931 may_fallback = 0;
1933 if (class == ATA_DEV_ATA)
1934 class = ATA_DEV_ATAPI;
1935 else
1936 class = ATA_DEV_ATA;
1937 goto retry;
1940 /* Control reaches here iff the device aborted
1941 * both flavors of IDENTIFYs which happens
1942 * sometimes with phantom devices.
1944 ata_dev_dbg(dev,
1945 "both IDENTIFYs aborted, assuming NODEV\n");
1946 return -ENOENT;
1949 rc = -EIO;
1950 reason = "I/O error";
1951 goto err_out;
1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 "class=%d may_fallback=%d tried_spinup=%d\n",
1957 class, may_fallback, tried_spinup);
1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1965 may_fallback = 0;
1967 swap_buf_le16(id, ATA_ID_WORDS);
1969 /* sanity check */
1970 rc = -EINVAL;
1971 reason = "device reports invalid type";
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1989 if (err_mask && id[2] != 0x738c) {
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1998 if (id[2] == 0x37c8)
1999 goto retry;
2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * should never trigger.
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2025 flags &= ~ATA_READID_POSTRESET;
2026 goto retry;
2030 *p_class = class;
2032 return 0;
2034 err_out:
2035 if (ata_msg_warn(ap))
2036 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2037 reason, err_mask);
2038 return rc;
2041 static int ata_do_link_spd_horkage(struct ata_device *dev)
2043 struct ata_link *plink = ata_dev_phys_link(dev);
2044 u32 target, target_limit;
2046 if (!sata_scr_valid(plink))
2047 return 0;
2049 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2050 target = 1;
2051 else
2052 return 0;
2054 target_limit = (1 << target) - 1;
2056 /* if already on stricter limit, no need to push further */
2057 if (plink->sata_spd_limit <= target_limit)
2058 return 0;
2060 plink->sata_spd_limit = target_limit;
2062 /* Request another EH round by returning -EAGAIN if link is
2063 * going faster than the target speed. Forward progress is
2064 * guaranteed by setting sata_spd_limit to target_limit above.
2066 if (plink->sata_spd > target) {
2067 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2068 sata_spd_string(target));
2069 return -EAGAIN;
2071 return 0;
2074 static inline u8 ata_dev_knobble(struct ata_device *dev)
2076 struct ata_port *ap = dev->link->ap;
2078 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2079 return 0;
2081 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2084 static int ata_dev_config_ncq(struct ata_device *dev,
2085 char *desc, size_t desc_sz)
2087 struct ata_port *ap = dev->link->ap;
2088 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2089 unsigned int err_mask;
2090 char *aa_desc = "";
2092 if (!ata_id_has_ncq(dev->id)) {
2093 desc[0] = '\0';
2094 return 0;
2096 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2097 snprintf(desc, desc_sz, "NCQ (not used)");
2098 return 0;
2100 if (ap->flags & ATA_FLAG_NCQ) {
2101 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2102 dev->flags |= ATA_DFLAG_NCQ;
2105 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2106 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2107 ata_id_has_fpdma_aa(dev->id)) {
2108 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2109 SATA_FPDMA_AA);
2110 if (err_mask) {
2111 ata_dev_err(dev,
2112 "failed to enable AA (error_mask=0x%x)\n",
2113 err_mask);
2114 if (err_mask != AC_ERR_DEV) {
2115 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2116 return -EIO;
2118 } else
2119 aa_desc = ", AA";
2122 if (hdepth >= ddepth)
2123 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2124 else
2125 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2126 ddepth, aa_desc);
2127 return 0;
2131 * ata_dev_configure - Configure the specified ATA/ATAPI device
2132 * @dev: Target device to configure
2134 * Configure @dev according to @dev->id. Generic and low-level
2135 * driver specific fixups are also applied.
2137 * LOCKING:
2138 * Kernel thread context (may sleep)
2140 * RETURNS:
2141 * 0 on success, -errno otherwise
2143 int ata_dev_configure(struct ata_device *dev)
2145 struct ata_port *ap = dev->link->ap;
2146 struct ata_eh_context *ehc = &dev->link->eh_context;
2147 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2148 const u16 *id = dev->id;
2149 unsigned long xfer_mask;
2150 char revbuf[7]; /* XYZ-99\0 */
2151 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2152 char modelbuf[ATA_ID_PROD_LEN+1];
2153 int rc;
2155 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2156 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2157 return 0;
2160 if (ata_msg_probe(ap))
2161 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2163 /* set horkage */
2164 dev->horkage |= ata_dev_blacklisted(dev);
2165 ata_force_horkage(dev);
2167 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2168 ata_dev_info(dev, "unsupported device, disabling\n");
2169 ata_dev_disable(dev);
2170 return 0;
2173 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2174 dev->class == ATA_DEV_ATAPI) {
2175 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2176 atapi_enabled ? "not supported with this driver"
2177 : "disabled");
2178 ata_dev_disable(dev);
2179 return 0;
2182 rc = ata_do_link_spd_horkage(dev);
2183 if (rc)
2184 return rc;
2186 /* let ACPI work its magic */
2187 rc = ata_acpi_on_devcfg(dev);
2188 if (rc)
2189 return rc;
2191 /* massage HPA, do it early as it might change IDENTIFY data */
2192 rc = ata_hpa_resize(dev);
2193 if (rc)
2194 return rc;
2196 /* print device capabilities */
2197 if (ata_msg_probe(ap))
2198 ata_dev_dbg(dev,
2199 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2200 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2201 __func__,
2202 id[49], id[82], id[83], id[84],
2203 id[85], id[86], id[87], id[88]);
2205 /* initialize to-be-configured parameters */
2206 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2207 dev->max_sectors = 0;
2208 dev->cdb_len = 0;
2209 dev->n_sectors = 0;
2210 dev->cylinders = 0;
2211 dev->heads = 0;
2212 dev->sectors = 0;
2213 dev->multi_count = 0;
2216 * common ATA, ATAPI feature tests
2219 /* find max transfer mode; for printk only */
2220 xfer_mask = ata_id_xfermask(id);
2222 if (ata_msg_probe(ap))
2223 ata_dump_id(id);
2225 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2226 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2227 sizeof(fwrevbuf));
2229 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2230 sizeof(modelbuf));
2232 /* ATA-specific feature tests */
2233 if (dev->class == ATA_DEV_ATA) {
2234 if (ata_id_is_cfa(id)) {
2235 /* CPRM may make this media unusable */
2236 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2237 ata_dev_warn(dev,
2238 "supports DRM functions and may not be fully accessible\n");
2239 snprintf(revbuf, 7, "CFA");
2240 } else {
2241 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2242 /* Warn the user if the device has TPM extensions */
2243 if (ata_id_has_tpm(id))
2244 ata_dev_warn(dev,
2245 "supports DRM functions and may not be fully accessible\n");
2248 dev->n_sectors = ata_id_n_sectors(id);
2250 /* get current R/W Multiple count setting */
2251 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2252 unsigned int max = dev->id[47] & 0xff;
2253 unsigned int cnt = dev->id[59] & 0xff;
2254 /* only recognize/allow powers of two here */
2255 if (is_power_of_2(max) && is_power_of_2(cnt))
2256 if (cnt <= max)
2257 dev->multi_count = cnt;
2260 if (ata_id_has_lba(id)) {
2261 const char *lba_desc;
2262 char ncq_desc[24];
2264 lba_desc = "LBA";
2265 dev->flags |= ATA_DFLAG_LBA;
2266 if (ata_id_has_lba48(id)) {
2267 dev->flags |= ATA_DFLAG_LBA48;
2268 lba_desc = "LBA48";
2270 if (dev->n_sectors >= (1UL << 28) &&
2271 ata_id_has_flush_ext(id))
2272 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2275 /* config NCQ */
2276 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2277 if (rc)
2278 return rc;
2280 /* print device info to dmesg */
2281 if (ata_msg_drv(ap) && print_info) {
2282 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2283 revbuf, modelbuf, fwrevbuf,
2284 ata_mode_string(xfer_mask));
2285 ata_dev_info(dev,
2286 "%llu sectors, multi %u: %s %s\n",
2287 (unsigned long long)dev->n_sectors,
2288 dev->multi_count, lba_desc, ncq_desc);
2290 } else {
2291 /* CHS */
2293 /* Default translation */
2294 dev->cylinders = id[1];
2295 dev->heads = id[3];
2296 dev->sectors = id[6];
2298 if (ata_id_current_chs_valid(id)) {
2299 /* Current CHS translation is valid. */
2300 dev->cylinders = id[54];
2301 dev->heads = id[55];
2302 dev->sectors = id[56];
2305 /* print device info to dmesg */
2306 if (ata_msg_drv(ap) && print_info) {
2307 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2308 revbuf, modelbuf, fwrevbuf,
2309 ata_mode_string(xfer_mask));
2310 ata_dev_info(dev,
2311 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2312 (unsigned long long)dev->n_sectors,
2313 dev->multi_count, dev->cylinders,
2314 dev->heads, dev->sectors);
2318 dev->cdb_len = 16;
2321 /* ATAPI-specific feature tests */
2322 else if (dev->class == ATA_DEV_ATAPI) {
2323 const char *cdb_intr_string = "";
2324 const char *atapi_an_string = "";
2325 const char *dma_dir_string = "";
2326 u32 sntf;
2328 rc = atapi_cdb_len(id);
2329 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2330 if (ata_msg_warn(ap))
2331 ata_dev_warn(dev, "unsupported CDB len\n");
2332 rc = -EINVAL;
2333 goto err_out_nosup;
2335 dev->cdb_len = (unsigned int) rc;
2337 /* Enable ATAPI AN if both the host and device have
2338 * the support. If PMP is attached, SNTF is required
2339 * to enable ATAPI AN to discern between PHY status
2340 * changed notifications and ATAPI ANs.
2342 if (atapi_an &&
2343 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2344 (!sata_pmp_attached(ap) ||
2345 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2346 unsigned int err_mask;
2348 /* issue SET feature command to turn this on */
2349 err_mask = ata_dev_set_feature(dev,
2350 SETFEATURES_SATA_ENABLE, SATA_AN);
2351 if (err_mask)
2352 ata_dev_err(dev,
2353 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2354 err_mask);
2355 else {
2356 dev->flags |= ATA_DFLAG_AN;
2357 atapi_an_string = ", ATAPI AN";
2361 if (ata_id_cdb_intr(dev->id)) {
2362 dev->flags |= ATA_DFLAG_CDB_INTR;
2363 cdb_intr_string = ", CDB intr";
2366 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2367 dev->flags |= ATA_DFLAG_DMADIR;
2368 dma_dir_string = ", DMADIR";
2371 /* print device info to dmesg */
2372 if (ata_msg_drv(ap) && print_info)
2373 ata_dev_info(dev,
2374 "ATAPI: %s, %s, max %s%s%s%s\n",
2375 modelbuf, fwrevbuf,
2376 ata_mode_string(xfer_mask),
2377 cdb_intr_string, atapi_an_string,
2378 dma_dir_string);
2381 /* determine max_sectors */
2382 dev->max_sectors = ATA_MAX_SECTORS;
2383 if (dev->flags & ATA_DFLAG_LBA48)
2384 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2386 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2387 200 sectors */
2388 if (ata_dev_knobble(dev)) {
2389 if (ata_msg_drv(ap) && print_info)
2390 ata_dev_info(dev, "applying bridge limits\n");
2391 dev->udma_mask &= ATA_UDMA5;
2392 dev->max_sectors = ATA_MAX_SECTORS;
2395 if ((dev->class == ATA_DEV_ATAPI) &&
2396 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2397 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2398 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2401 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2402 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2403 dev->max_sectors);
2405 if (ap->ops->dev_config)
2406 ap->ops->dev_config(dev);
2408 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2409 /* Let the user know. We don't want to disallow opens for
2410 rescue purposes, or in case the vendor is just a blithering
2411 idiot. Do this after the dev_config call as some controllers
2412 with buggy firmware may want to avoid reporting false device
2413 bugs */
2415 if (print_info) {
2416 ata_dev_warn(dev,
2417 "Drive reports diagnostics failure. This may indicate a drive\n");
2418 ata_dev_warn(dev,
2419 "fault or invalid emulation. Contact drive vendor for information.\n");
2423 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2424 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2425 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2428 return 0;
2430 err_out_nosup:
2431 if (ata_msg_probe(ap))
2432 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2433 return rc;
2437 * ata_cable_40wire - return 40 wire cable type
2438 * @ap: port
2440 * Helper method for drivers which want to hardwire 40 wire cable
2441 * detection.
2444 int ata_cable_40wire(struct ata_port *ap)
2446 return ATA_CBL_PATA40;
2450 * ata_cable_80wire - return 80 wire cable type
2451 * @ap: port
2453 * Helper method for drivers which want to hardwire 80 wire cable
2454 * detection.
2457 int ata_cable_80wire(struct ata_port *ap)
2459 return ATA_CBL_PATA80;
2463 * ata_cable_unknown - return unknown PATA cable.
2464 * @ap: port
2466 * Helper method for drivers which have no PATA cable detection.
2469 int ata_cable_unknown(struct ata_port *ap)
2471 return ATA_CBL_PATA_UNK;
2475 * ata_cable_ignore - return ignored PATA cable.
2476 * @ap: port
2478 * Helper method for drivers which don't use cable type to limit
2479 * transfer mode.
2481 int ata_cable_ignore(struct ata_port *ap)
2483 return ATA_CBL_PATA_IGN;
2487 * ata_cable_sata - return SATA cable type
2488 * @ap: port
2490 * Helper method for drivers which have SATA cables
2493 int ata_cable_sata(struct ata_port *ap)
2495 return ATA_CBL_SATA;
2499 * ata_bus_probe - Reset and probe ATA bus
2500 * @ap: Bus to probe
2502 * Master ATA bus probing function. Initiates a hardware-dependent
2503 * bus reset, then attempts to identify any devices found on
2504 * the bus.
2506 * LOCKING:
2507 * PCI/etc. bus probe sem.
2509 * RETURNS:
2510 * Zero on success, negative errno otherwise.
2513 int ata_bus_probe(struct ata_port *ap)
2515 unsigned int classes[ATA_MAX_DEVICES];
2516 int tries[ATA_MAX_DEVICES];
2517 int rc;
2518 struct ata_device *dev;
2520 ata_for_each_dev(dev, &ap->link, ALL)
2521 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2523 retry:
2524 ata_for_each_dev(dev, &ap->link, ALL) {
2525 /* If we issue an SRST then an ATA drive (not ATAPI)
2526 * may change configuration and be in PIO0 timing. If
2527 * we do a hard reset (or are coming from power on)
2528 * this is true for ATA or ATAPI. Until we've set a
2529 * suitable controller mode we should not touch the
2530 * bus as we may be talking too fast.
2532 dev->pio_mode = XFER_PIO_0;
2534 /* If the controller has a pio mode setup function
2535 * then use it to set the chipset to rights. Don't
2536 * touch the DMA setup as that will be dealt with when
2537 * configuring devices.
2539 if (ap->ops->set_piomode)
2540 ap->ops->set_piomode(ap, dev);
2543 /* reset and determine device classes */
2544 ap->ops->phy_reset(ap);
2546 ata_for_each_dev(dev, &ap->link, ALL) {
2547 if (dev->class != ATA_DEV_UNKNOWN)
2548 classes[dev->devno] = dev->class;
2549 else
2550 classes[dev->devno] = ATA_DEV_NONE;
2552 dev->class = ATA_DEV_UNKNOWN;
2555 /* read IDENTIFY page and configure devices. We have to do the identify
2556 specific sequence bass-ackwards so that PDIAG- is released by
2557 the slave device */
2559 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2560 if (tries[dev->devno])
2561 dev->class = classes[dev->devno];
2563 if (!ata_dev_enabled(dev))
2564 continue;
2566 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2567 dev->id);
2568 if (rc)
2569 goto fail;
2572 /* Now ask for the cable type as PDIAG- should have been released */
2573 if (ap->ops->cable_detect)
2574 ap->cbl = ap->ops->cable_detect(ap);
2576 /* We may have SATA bridge glue hiding here irrespective of
2577 * the reported cable types and sensed types. When SATA
2578 * drives indicate we have a bridge, we don't know which end
2579 * of the link the bridge is which is a problem.
2581 ata_for_each_dev(dev, &ap->link, ENABLED)
2582 if (ata_id_is_sata(dev->id))
2583 ap->cbl = ATA_CBL_SATA;
2585 /* After the identify sequence we can now set up the devices. We do
2586 this in the normal order so that the user doesn't get confused */
2588 ata_for_each_dev(dev, &ap->link, ENABLED) {
2589 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2590 rc = ata_dev_configure(dev);
2591 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2592 if (rc)
2593 goto fail;
2596 /* configure transfer mode */
2597 rc = ata_set_mode(&ap->link, &dev);
2598 if (rc)
2599 goto fail;
2601 ata_for_each_dev(dev, &ap->link, ENABLED)
2602 return 0;
2604 return -ENODEV;
2606 fail:
2607 tries[dev->devno]--;
2609 switch (rc) {
2610 case -EINVAL:
2611 /* eeek, something went very wrong, give up */
2612 tries[dev->devno] = 0;
2613 break;
2615 case -ENODEV:
2616 /* give it just one more chance */
2617 tries[dev->devno] = min(tries[dev->devno], 1);
2618 case -EIO:
2619 if (tries[dev->devno] == 1) {
2620 /* This is the last chance, better to slow
2621 * down than lose it.
2623 sata_down_spd_limit(&ap->link, 0);
2624 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2628 if (!tries[dev->devno])
2629 ata_dev_disable(dev);
2631 goto retry;
2635 * sata_print_link_status - Print SATA link status
2636 * @link: SATA link to printk link status about
2638 * This function prints link speed and status of a SATA link.
2640 * LOCKING:
2641 * None.
2643 static void sata_print_link_status(struct ata_link *link)
2645 u32 sstatus, scontrol, tmp;
2647 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2648 return;
2649 sata_scr_read(link, SCR_CONTROL, &scontrol);
2651 if (ata_phys_link_online(link)) {
2652 tmp = (sstatus >> 4) & 0xf;
2653 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2654 sata_spd_string(tmp), sstatus, scontrol);
2655 } else {
2656 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2657 sstatus, scontrol);
2662 * ata_dev_pair - return other device on cable
2663 * @adev: device
2665 * Obtain the other device on the same cable, or if none is
2666 * present NULL is returned
2669 struct ata_device *ata_dev_pair(struct ata_device *adev)
2671 struct ata_link *link = adev->link;
2672 struct ata_device *pair = &link->device[1 - adev->devno];
2673 if (!ata_dev_enabled(pair))
2674 return NULL;
2675 return pair;
2679 * sata_down_spd_limit - adjust SATA spd limit downward
2680 * @link: Link to adjust SATA spd limit for
2681 * @spd_limit: Additional limit
2683 * Adjust SATA spd limit of @link downward. Note that this
2684 * function only adjusts the limit. The change must be applied
2685 * using sata_set_spd().
2687 * If @spd_limit is non-zero, the speed is limited to equal to or
2688 * lower than @spd_limit if such speed is supported. If
2689 * @spd_limit is slower than any supported speed, only the lowest
2690 * supported speed is allowed.
2692 * LOCKING:
2693 * Inherited from caller.
2695 * RETURNS:
2696 * 0 on success, negative errno on failure
2698 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2700 u32 sstatus, spd, mask;
2701 int rc, bit;
2703 if (!sata_scr_valid(link))
2704 return -EOPNOTSUPP;
2706 /* If SCR can be read, use it to determine the current SPD.
2707 * If not, use cached value in link->sata_spd.
2709 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2710 if (rc == 0 && ata_sstatus_online(sstatus))
2711 spd = (sstatus >> 4) & 0xf;
2712 else
2713 spd = link->sata_spd;
2715 mask = link->sata_spd_limit;
2716 if (mask <= 1)
2717 return -EINVAL;
2719 /* unconditionally mask off the highest bit */
2720 bit = fls(mask) - 1;
2721 mask &= ~(1 << bit);
2723 /* Mask off all speeds higher than or equal to the current
2724 * one. Force 1.5Gbps if current SPD is not available.
2726 if (spd > 1)
2727 mask &= (1 << (spd - 1)) - 1;
2728 else
2729 mask &= 1;
2731 /* were we already at the bottom? */
2732 if (!mask)
2733 return -EINVAL;
2735 if (spd_limit) {
2736 if (mask & ((1 << spd_limit) - 1))
2737 mask &= (1 << spd_limit) - 1;
2738 else {
2739 bit = ffs(mask) - 1;
2740 mask = 1 << bit;
2744 link->sata_spd_limit = mask;
2746 ata_link_warn(link, "limiting SATA link speed to %s\n",
2747 sata_spd_string(fls(mask)));
2749 return 0;
2752 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2754 struct ata_link *host_link = &link->ap->link;
2755 u32 limit, target, spd;
2757 limit = link->sata_spd_limit;
2759 /* Don't configure downstream link faster than upstream link.
2760 * It doesn't speed up anything and some PMPs choke on such
2761 * configuration.
2763 if (!ata_is_host_link(link) && host_link->sata_spd)
2764 limit &= (1 << host_link->sata_spd) - 1;
2766 if (limit == UINT_MAX)
2767 target = 0;
2768 else
2769 target = fls(limit);
2771 spd = (*scontrol >> 4) & 0xf;
2772 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2774 return spd != target;
2778 * sata_set_spd_needed - is SATA spd configuration needed
2779 * @link: Link in question
2781 * Test whether the spd limit in SControl matches
2782 * @link->sata_spd_limit. This function is used to determine
2783 * whether hardreset is necessary to apply SATA spd
2784 * configuration.
2786 * LOCKING:
2787 * Inherited from caller.
2789 * RETURNS:
2790 * 1 if SATA spd configuration is needed, 0 otherwise.
2792 static int sata_set_spd_needed(struct ata_link *link)
2794 u32 scontrol;
2796 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2797 return 1;
2799 return __sata_set_spd_needed(link, &scontrol);
2803 * sata_set_spd - set SATA spd according to spd limit
2804 * @link: Link to set SATA spd for
2806 * Set SATA spd of @link according to sata_spd_limit.
2808 * LOCKING:
2809 * Inherited from caller.
2811 * RETURNS:
2812 * 0 if spd doesn't need to be changed, 1 if spd has been
2813 * changed. Negative errno if SCR registers are inaccessible.
2815 int sata_set_spd(struct ata_link *link)
2817 u32 scontrol;
2818 int rc;
2820 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2821 return rc;
2823 if (!__sata_set_spd_needed(link, &scontrol))
2824 return 0;
2826 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2827 return rc;
2829 return 1;
2833 * This mode timing computation functionality is ported over from
2834 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2837 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2838 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2839 * for UDMA6, which is currently supported only by Maxtor drives.
2841 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2844 static const struct ata_timing ata_timing[] = {
2845 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2846 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2847 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2848 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2849 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2850 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2851 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2852 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2854 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2855 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2856 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2858 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2859 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2860 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2861 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2862 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2864 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2865 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2866 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2867 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2868 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2869 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2870 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2871 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2873 { 0xFF }
2876 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2877 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2879 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2881 q->setup = EZ(t->setup * 1000, T);
2882 q->act8b = EZ(t->act8b * 1000, T);
2883 q->rec8b = EZ(t->rec8b * 1000, T);
2884 q->cyc8b = EZ(t->cyc8b * 1000, T);
2885 q->active = EZ(t->active * 1000, T);
2886 q->recover = EZ(t->recover * 1000, T);
2887 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2888 q->cycle = EZ(t->cycle * 1000, T);
2889 q->udma = EZ(t->udma * 1000, UT);
2892 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2893 struct ata_timing *m, unsigned int what)
2895 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2896 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2897 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2898 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2899 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2900 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2901 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2902 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2903 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2906 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2908 const struct ata_timing *t = ata_timing;
2910 while (xfer_mode > t->mode)
2911 t++;
2913 if (xfer_mode == t->mode)
2914 return t;
2915 return NULL;
2918 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2919 struct ata_timing *t, int T, int UT)
2921 const u16 *id = adev->id;
2922 const struct ata_timing *s;
2923 struct ata_timing p;
2926 * Find the mode.
2929 if (!(s = ata_timing_find_mode(speed)))
2930 return -EINVAL;
2932 memcpy(t, s, sizeof(*s));
2935 * If the drive is an EIDE drive, it can tell us it needs extended
2936 * PIO/MW_DMA cycle timing.
2939 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2940 memset(&p, 0, sizeof(p));
2942 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2943 if (speed <= XFER_PIO_2)
2944 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2945 else if ((speed <= XFER_PIO_4) ||
2946 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2947 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2948 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2949 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2951 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2955 * Convert the timing to bus clock counts.
2958 ata_timing_quantize(t, t, T, UT);
2961 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2962 * S.M.A.R.T * and some other commands. We have to ensure that the
2963 * DMA cycle timing is slower/equal than the fastest PIO timing.
2966 if (speed > XFER_PIO_6) {
2967 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2968 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2972 * Lengthen active & recovery time so that cycle time is correct.
2975 if (t->act8b + t->rec8b < t->cyc8b) {
2976 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2977 t->rec8b = t->cyc8b - t->act8b;
2980 if (t->active + t->recover < t->cycle) {
2981 t->active += (t->cycle - (t->active + t->recover)) / 2;
2982 t->recover = t->cycle - t->active;
2985 /* In a few cases quantisation may produce enough errors to
2986 leave t->cycle too low for the sum of active and recovery
2987 if so we must correct this */
2988 if (t->active + t->recover > t->cycle)
2989 t->cycle = t->active + t->recover;
2991 return 0;
2995 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2996 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2997 * @cycle: cycle duration in ns
2999 * Return matching xfer mode for @cycle. The returned mode is of
3000 * the transfer type specified by @xfer_shift. If @cycle is too
3001 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3002 * than the fastest known mode, the fasted mode is returned.
3004 * LOCKING:
3005 * None.
3007 * RETURNS:
3008 * Matching xfer_mode, 0xff if no match found.
3010 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3012 u8 base_mode = 0xff, last_mode = 0xff;
3013 const struct ata_xfer_ent *ent;
3014 const struct ata_timing *t;
3016 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3017 if (ent->shift == xfer_shift)
3018 base_mode = ent->base;
3020 for (t = ata_timing_find_mode(base_mode);
3021 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3022 unsigned short this_cycle;
3024 switch (xfer_shift) {
3025 case ATA_SHIFT_PIO:
3026 case ATA_SHIFT_MWDMA:
3027 this_cycle = t->cycle;
3028 break;
3029 case ATA_SHIFT_UDMA:
3030 this_cycle = t->udma;
3031 break;
3032 default:
3033 return 0xff;
3036 if (cycle > this_cycle)
3037 break;
3039 last_mode = t->mode;
3042 return last_mode;
3046 * ata_down_xfermask_limit - adjust dev xfer masks downward
3047 * @dev: Device to adjust xfer masks
3048 * @sel: ATA_DNXFER_* selector
3050 * Adjust xfer masks of @dev downward. Note that this function
3051 * does not apply the change. Invoking ata_set_mode() afterwards
3052 * will apply the limit.
3054 * LOCKING:
3055 * Inherited from caller.
3057 * RETURNS:
3058 * 0 on success, negative errno on failure
3060 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3062 char buf[32];
3063 unsigned long orig_mask, xfer_mask;
3064 unsigned long pio_mask, mwdma_mask, udma_mask;
3065 int quiet, highbit;
3067 quiet = !!(sel & ATA_DNXFER_QUIET);
3068 sel &= ~ATA_DNXFER_QUIET;
3070 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3071 dev->mwdma_mask,
3072 dev->udma_mask);
3073 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3075 switch (sel) {
3076 case ATA_DNXFER_PIO:
3077 highbit = fls(pio_mask) - 1;
3078 pio_mask &= ~(1 << highbit);
3079 break;
3081 case ATA_DNXFER_DMA:
3082 if (udma_mask) {
3083 highbit = fls(udma_mask) - 1;
3084 udma_mask &= ~(1 << highbit);
3085 if (!udma_mask)
3086 return -ENOENT;
3087 } else if (mwdma_mask) {
3088 highbit = fls(mwdma_mask) - 1;
3089 mwdma_mask &= ~(1 << highbit);
3090 if (!mwdma_mask)
3091 return -ENOENT;
3093 break;
3095 case ATA_DNXFER_40C:
3096 udma_mask &= ATA_UDMA_MASK_40C;
3097 break;
3099 case ATA_DNXFER_FORCE_PIO0:
3100 pio_mask &= 1;
3101 case ATA_DNXFER_FORCE_PIO:
3102 mwdma_mask = 0;
3103 udma_mask = 0;
3104 break;
3106 default:
3107 BUG();
3110 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3112 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3113 return -ENOENT;
3115 if (!quiet) {
3116 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3117 snprintf(buf, sizeof(buf), "%s:%s",
3118 ata_mode_string(xfer_mask),
3119 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3120 else
3121 snprintf(buf, sizeof(buf), "%s",
3122 ata_mode_string(xfer_mask));
3124 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3127 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3128 &dev->udma_mask);
3130 return 0;
3133 static int ata_dev_set_mode(struct ata_device *dev)
3135 struct ata_port *ap = dev->link->ap;
3136 struct ata_eh_context *ehc = &dev->link->eh_context;
3137 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3138 const char *dev_err_whine = "";
3139 int ign_dev_err = 0;
3140 unsigned int err_mask = 0;
3141 int rc;
3143 dev->flags &= ~ATA_DFLAG_PIO;
3144 if (dev->xfer_shift == ATA_SHIFT_PIO)
3145 dev->flags |= ATA_DFLAG_PIO;
3147 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3148 dev_err_whine = " (SET_XFERMODE skipped)";
3149 else {
3150 if (nosetxfer)
3151 ata_dev_warn(dev,
3152 "NOSETXFER but PATA detected - can't "
3153 "skip SETXFER, might malfunction\n");
3154 err_mask = ata_dev_set_xfermode(dev);
3157 if (err_mask & ~AC_ERR_DEV)
3158 goto fail;
3160 /* revalidate */
3161 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3162 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3163 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3164 if (rc)
3165 return rc;
3167 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3168 /* Old CFA may refuse this command, which is just fine */
3169 if (ata_id_is_cfa(dev->id))
3170 ign_dev_err = 1;
3171 /* Catch several broken garbage emulations plus some pre
3172 ATA devices */
3173 if (ata_id_major_version(dev->id) == 0 &&
3174 dev->pio_mode <= XFER_PIO_2)
3175 ign_dev_err = 1;
3176 /* Some very old devices and some bad newer ones fail
3177 any kind of SET_XFERMODE request but support PIO0-2
3178 timings and no IORDY */
3179 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3180 ign_dev_err = 1;
3182 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3183 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3184 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3185 dev->dma_mode == XFER_MW_DMA_0 &&
3186 (dev->id[63] >> 8) & 1)
3187 ign_dev_err = 1;
3189 /* if the device is actually configured correctly, ignore dev err */
3190 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3191 ign_dev_err = 1;
3193 if (err_mask & AC_ERR_DEV) {
3194 if (!ign_dev_err)
3195 goto fail;
3196 else
3197 dev_err_whine = " (device error ignored)";
3200 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3201 dev->xfer_shift, (int)dev->xfer_mode);
3203 ata_dev_info(dev, "configured for %s%s\n",
3204 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3205 dev_err_whine);
3207 return 0;
3209 fail:
3210 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3211 return -EIO;
3215 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3216 * @link: link on which timings will be programmed
3217 * @r_failed_dev: out parameter for failed device
3219 * Standard implementation of the function used to tune and set
3220 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3221 * ata_dev_set_mode() fails, pointer to the failing device is
3222 * returned in @r_failed_dev.
3224 * LOCKING:
3225 * PCI/etc. bus probe sem.
3227 * RETURNS:
3228 * 0 on success, negative errno otherwise
3231 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3233 struct ata_port *ap = link->ap;
3234 struct ata_device *dev;
3235 int rc = 0, used_dma = 0, found = 0;
3237 /* step 1: calculate xfer_mask */
3238 ata_for_each_dev(dev, link, ENABLED) {
3239 unsigned long pio_mask, dma_mask;
3240 unsigned int mode_mask;
3242 mode_mask = ATA_DMA_MASK_ATA;
3243 if (dev->class == ATA_DEV_ATAPI)
3244 mode_mask = ATA_DMA_MASK_ATAPI;
3245 else if (ata_id_is_cfa(dev->id))
3246 mode_mask = ATA_DMA_MASK_CFA;
3248 ata_dev_xfermask(dev);
3249 ata_force_xfermask(dev);
3251 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3253 if (libata_dma_mask & mode_mask)
3254 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3255 dev->udma_mask);
3256 else
3257 dma_mask = 0;
3259 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3260 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3262 found = 1;
3263 if (ata_dma_enabled(dev))
3264 used_dma = 1;
3266 if (!found)
3267 goto out;
3269 /* step 2: always set host PIO timings */
3270 ata_for_each_dev(dev, link, ENABLED) {
3271 if (dev->pio_mode == 0xff) {
3272 ata_dev_warn(dev, "no PIO support\n");
3273 rc = -EINVAL;
3274 goto out;
3277 dev->xfer_mode = dev->pio_mode;
3278 dev->xfer_shift = ATA_SHIFT_PIO;
3279 if (ap->ops->set_piomode)
3280 ap->ops->set_piomode(ap, dev);
3283 /* step 3: set host DMA timings */
3284 ata_for_each_dev(dev, link, ENABLED) {
3285 if (!ata_dma_enabled(dev))
3286 continue;
3288 dev->xfer_mode = dev->dma_mode;
3289 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3290 if (ap->ops->set_dmamode)
3291 ap->ops->set_dmamode(ap, dev);
3294 /* step 4: update devices' xfer mode */
3295 ata_for_each_dev(dev, link, ENABLED) {
3296 rc = ata_dev_set_mode(dev);
3297 if (rc)
3298 goto out;
3301 /* Record simplex status. If we selected DMA then the other
3302 * host channels are not permitted to do so.
3304 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3305 ap->host->simplex_claimed = ap;
3307 out:
3308 if (rc)
3309 *r_failed_dev = dev;
3310 return rc;
3314 * ata_wait_ready - wait for link to become ready
3315 * @link: link to be waited on
3316 * @deadline: deadline jiffies for the operation
3317 * @check_ready: callback to check link readiness
3319 * Wait for @link to become ready. @check_ready should return
3320 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3321 * link doesn't seem to be occupied, other errno for other error
3322 * conditions.
3324 * Transient -ENODEV conditions are allowed for
3325 * ATA_TMOUT_FF_WAIT.
3327 * LOCKING:
3328 * EH context.
3330 * RETURNS:
3331 * 0 if @linke is ready before @deadline; otherwise, -errno.
3333 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3334 int (*check_ready)(struct ata_link *link))
3336 unsigned long start = jiffies;
3337 unsigned long nodev_deadline;
3338 int warned = 0;
3340 /* choose which 0xff timeout to use, read comment in libata.h */
3341 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3342 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3343 else
3344 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3346 /* Slave readiness can't be tested separately from master. On
3347 * M/S emulation configuration, this function should be called
3348 * only on the master and it will handle both master and slave.
3350 WARN_ON(link == link->ap->slave_link);
3352 if (time_after(nodev_deadline, deadline))
3353 nodev_deadline = deadline;
3355 while (1) {
3356 unsigned long now = jiffies;
3357 int ready, tmp;
3359 ready = tmp = check_ready(link);
3360 if (ready > 0)
3361 return 0;
3364 * -ENODEV could be transient. Ignore -ENODEV if link
3365 * is online. Also, some SATA devices take a long
3366 * time to clear 0xff after reset. Wait for
3367 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3368 * offline.
3370 * Note that some PATA controllers (pata_ali) explode
3371 * if status register is read more than once when
3372 * there's no device attached.
3374 if (ready == -ENODEV) {
3375 if (ata_link_online(link))
3376 ready = 0;
3377 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3378 !ata_link_offline(link) &&
3379 time_before(now, nodev_deadline))
3380 ready = 0;
3383 if (ready)
3384 return ready;
3385 if (time_after(now, deadline))
3386 return -EBUSY;
3388 if (!warned && time_after(now, start + 5 * HZ) &&
3389 (deadline - now > 3 * HZ)) {
3390 ata_link_warn(link,
3391 "link is slow to respond, please be patient "
3392 "(ready=%d)\n", tmp);
3393 warned = 1;
3396 ata_msleep(link->ap, 50);
3401 * ata_wait_after_reset - wait for link to become ready after reset
3402 * @link: link to be waited on
3403 * @deadline: deadline jiffies for the operation
3404 * @check_ready: callback to check link readiness
3406 * Wait for @link to become ready after reset.
3408 * LOCKING:
3409 * EH context.
3411 * RETURNS:
3412 * 0 if @linke is ready before @deadline; otherwise, -errno.
3414 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3415 int (*check_ready)(struct ata_link *link))
3417 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3419 return ata_wait_ready(link, deadline, check_ready);
3423 * sata_link_debounce - debounce SATA phy status
3424 * @link: ATA link to debounce SATA phy status for
3425 * @params: timing parameters { interval, duratinon, timeout } in msec
3426 * @deadline: deadline jiffies for the operation
3428 * Make sure SStatus of @link reaches stable state, determined by
3429 * holding the same value where DET is not 1 for @duration polled
3430 * every @interval, before @timeout. Timeout constraints the
3431 * beginning of the stable state. Because DET gets stuck at 1 on
3432 * some controllers after hot unplugging, this functions waits
3433 * until timeout then returns 0 if DET is stable at 1.
3435 * @timeout is further limited by @deadline. The sooner of the
3436 * two is used.
3438 * LOCKING:
3439 * Kernel thread context (may sleep)
3441 * RETURNS:
3442 * 0 on success, -errno on failure.
3444 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3445 unsigned long deadline)
3447 unsigned long interval = params[0];
3448 unsigned long duration = params[1];
3449 unsigned long last_jiffies, t;
3450 u32 last, cur;
3451 int rc;
3453 t = ata_deadline(jiffies, params[2]);
3454 if (time_before(t, deadline))
3455 deadline = t;
3457 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3458 return rc;
3459 cur &= 0xf;
3461 last = cur;
3462 last_jiffies = jiffies;
3464 while (1) {
3465 ata_msleep(link->ap, interval);
3466 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3467 return rc;
3468 cur &= 0xf;
3470 /* DET stable? */
3471 if (cur == last) {
3472 if (cur == 1 && time_before(jiffies, deadline))
3473 continue;
3474 if (time_after(jiffies,
3475 ata_deadline(last_jiffies, duration)))
3476 return 0;
3477 continue;
3480 /* unstable, start over */
3481 last = cur;
3482 last_jiffies = jiffies;
3484 /* Check deadline. If debouncing failed, return
3485 * -EPIPE to tell upper layer to lower link speed.
3487 if (time_after(jiffies, deadline))
3488 return -EPIPE;
3493 * sata_link_resume - resume SATA link
3494 * @link: ATA link to resume SATA
3495 * @params: timing parameters { interval, duratinon, timeout } in msec
3496 * @deadline: deadline jiffies for the operation
3498 * Resume SATA phy @link and debounce it.
3500 * LOCKING:
3501 * Kernel thread context (may sleep)
3503 * RETURNS:
3504 * 0 on success, -errno on failure.
3506 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3507 unsigned long deadline)
3509 int tries = ATA_LINK_RESUME_TRIES;
3510 u32 scontrol, serror;
3511 int rc;
3513 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3514 return rc;
3517 * Writes to SControl sometimes get ignored under certain
3518 * controllers (ata_piix SIDPR). Make sure DET actually is
3519 * cleared.
3521 do {
3522 scontrol = (scontrol & 0x0f0) | 0x300;
3523 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3524 return rc;
3526 * Some PHYs react badly if SStatus is pounded
3527 * immediately after resuming. Delay 200ms before
3528 * debouncing.
3530 ata_msleep(link->ap, 200);
3532 /* is SControl restored correctly? */
3533 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3534 return rc;
3535 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3537 if ((scontrol & 0xf0f) != 0x300) {
3538 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3539 scontrol);
3540 return 0;
3543 if (tries < ATA_LINK_RESUME_TRIES)
3544 ata_link_warn(link, "link resume succeeded after %d retries\n",
3545 ATA_LINK_RESUME_TRIES - tries);
3547 if ((rc = sata_link_debounce(link, params, deadline)))
3548 return rc;
3550 /* clear SError, some PHYs require this even for SRST to work */
3551 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3552 rc = sata_scr_write(link, SCR_ERROR, serror);
3554 return rc != -EINVAL ? rc : 0;
3558 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3559 * @link: ATA link to manipulate SControl for
3560 * @policy: LPM policy to configure
3561 * @spm_wakeup: initiate LPM transition to active state
3563 * Manipulate the IPM field of the SControl register of @link
3564 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3565 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3566 * the link. This function also clears PHYRDY_CHG before
3567 * returning.
3569 * LOCKING:
3570 * EH context.
3572 * RETURNS:
3573 * 0 on succes, -errno otherwise.
3575 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3576 bool spm_wakeup)
3578 struct ata_eh_context *ehc = &link->eh_context;
3579 bool woken_up = false;
3580 u32 scontrol;
3581 int rc;
3583 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3584 if (rc)
3585 return rc;
3587 switch (policy) {
3588 case ATA_LPM_MAX_POWER:
3589 /* disable all LPM transitions */
3590 scontrol |= (0x3 << 8);
3591 /* initiate transition to active state */
3592 if (spm_wakeup) {
3593 scontrol |= (0x4 << 12);
3594 woken_up = true;
3596 break;
3597 case ATA_LPM_MED_POWER:
3598 /* allow LPM to PARTIAL */
3599 scontrol &= ~(0x1 << 8);
3600 scontrol |= (0x2 << 8);
3601 break;
3602 case ATA_LPM_MIN_POWER:
3603 if (ata_link_nr_enabled(link) > 0)
3604 /* no restrictions on LPM transitions */
3605 scontrol &= ~(0x3 << 8);
3606 else {
3607 /* empty port, power off */
3608 scontrol &= ~0xf;
3609 scontrol |= (0x1 << 2);
3611 break;
3612 default:
3613 WARN_ON(1);
3616 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3617 if (rc)
3618 return rc;
3620 /* give the link time to transit out of LPM state */
3621 if (woken_up)
3622 msleep(10);
3624 /* clear PHYRDY_CHG from SError */
3625 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3626 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3630 * ata_std_prereset - prepare for reset
3631 * @link: ATA link to be reset
3632 * @deadline: deadline jiffies for the operation
3634 * @link is about to be reset. Initialize it. Failure from
3635 * prereset makes libata abort whole reset sequence and give up
3636 * that port, so prereset should be best-effort. It does its
3637 * best to prepare for reset sequence but if things go wrong, it
3638 * should just whine, not fail.
3640 * LOCKING:
3641 * Kernel thread context (may sleep)
3643 * RETURNS:
3644 * 0 on success, -errno otherwise.
3646 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3648 struct ata_port *ap = link->ap;
3649 struct ata_eh_context *ehc = &link->eh_context;
3650 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3651 int rc;
3653 /* if we're about to do hardreset, nothing more to do */
3654 if (ehc->i.action & ATA_EH_HARDRESET)
3655 return 0;
3657 /* if SATA, resume link */
3658 if (ap->flags & ATA_FLAG_SATA) {
3659 rc = sata_link_resume(link, timing, deadline);
3660 /* whine about phy resume failure but proceed */
3661 if (rc && rc != -EOPNOTSUPP)
3662 ata_link_warn(link,
3663 "failed to resume link for reset (errno=%d)\n",
3664 rc);
3667 /* no point in trying softreset on offline link */
3668 if (ata_phys_link_offline(link))
3669 ehc->i.action &= ~ATA_EH_SOFTRESET;
3671 return 0;
3675 * sata_link_hardreset - reset link via SATA phy reset
3676 * @link: link to reset
3677 * @timing: timing parameters { interval, duratinon, timeout } in msec
3678 * @deadline: deadline jiffies for the operation
3679 * @online: optional out parameter indicating link onlineness
3680 * @check_ready: optional callback to check link readiness
3682 * SATA phy-reset @link using DET bits of SControl register.
3683 * After hardreset, link readiness is waited upon using
3684 * ata_wait_ready() if @check_ready is specified. LLDs are
3685 * allowed to not specify @check_ready and wait itself after this
3686 * function returns. Device classification is LLD's
3687 * responsibility.
3689 * *@online is set to one iff reset succeeded and @link is online
3690 * after reset.
3692 * LOCKING:
3693 * Kernel thread context (may sleep)
3695 * RETURNS:
3696 * 0 on success, -errno otherwise.
3698 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3699 unsigned long deadline,
3700 bool *online, int (*check_ready)(struct ata_link *))
3702 u32 scontrol;
3703 int rc;
3705 DPRINTK("ENTER\n");
3707 if (online)
3708 *online = false;
3710 if (sata_set_spd_needed(link)) {
3711 /* SATA spec says nothing about how to reconfigure
3712 * spd. To be on the safe side, turn off phy during
3713 * reconfiguration. This works for at least ICH7 AHCI
3714 * and Sil3124.
3716 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3717 goto out;
3719 scontrol = (scontrol & 0x0f0) | 0x304;
3721 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3722 goto out;
3724 sata_set_spd(link);
3727 /* issue phy wake/reset */
3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729 goto out;
3731 scontrol = (scontrol & 0x0f0) | 0x301;
3733 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3734 goto out;
3736 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3737 * 10.4.2 says at least 1 ms.
3739 ata_msleep(link->ap, 1);
3741 /* bring link back */
3742 rc = sata_link_resume(link, timing, deadline);
3743 if (rc)
3744 goto out;
3745 /* if link is offline nothing more to do */
3746 if (ata_phys_link_offline(link))
3747 goto out;
3749 /* Link is online. From this point, -ENODEV too is an error. */
3750 if (online)
3751 *online = true;
3753 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3754 /* If PMP is supported, we have to do follow-up SRST.
3755 * Some PMPs don't send D2H Reg FIS after hardreset if
3756 * the first port is empty. Wait only for
3757 * ATA_TMOUT_PMP_SRST_WAIT.
3759 if (check_ready) {
3760 unsigned long pmp_deadline;
3762 pmp_deadline = ata_deadline(jiffies,
3763 ATA_TMOUT_PMP_SRST_WAIT);
3764 if (time_after(pmp_deadline, deadline))
3765 pmp_deadline = deadline;
3766 ata_wait_ready(link, pmp_deadline, check_ready);
3768 rc = -EAGAIN;
3769 goto out;
3772 rc = 0;
3773 if (check_ready)
3774 rc = ata_wait_ready(link, deadline, check_ready);
3775 out:
3776 if (rc && rc != -EAGAIN) {
3777 /* online is set iff link is online && reset succeeded */
3778 if (online)
3779 *online = false;
3780 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3782 DPRINTK("EXIT, rc=%d\n", rc);
3783 return rc;
3787 * sata_std_hardreset - COMRESET w/o waiting or classification
3788 * @link: link to reset
3789 * @class: resulting class of attached device
3790 * @deadline: deadline jiffies for the operation
3792 * Standard SATA COMRESET w/o waiting or classification.
3794 * LOCKING:
3795 * Kernel thread context (may sleep)
3797 * RETURNS:
3798 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3800 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3801 unsigned long deadline)
3803 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3804 bool online;
3805 int rc;
3807 /* do hardreset */
3808 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3809 return online ? -EAGAIN : rc;
3813 * ata_std_postreset - standard postreset callback
3814 * @link: the target ata_link
3815 * @classes: classes of attached devices
3817 * This function is invoked after a successful reset. Note that
3818 * the device might have been reset more than once using
3819 * different reset methods before postreset is invoked.
3821 * LOCKING:
3822 * Kernel thread context (may sleep)
3824 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3826 u32 serror;
3828 DPRINTK("ENTER\n");
3830 /* reset complete, clear SError */
3831 if (!sata_scr_read(link, SCR_ERROR, &serror))
3832 sata_scr_write(link, SCR_ERROR, serror);
3834 /* print link status */
3835 sata_print_link_status(link);
3837 DPRINTK("EXIT\n");
3841 * ata_dev_same_device - Determine whether new ID matches configured device
3842 * @dev: device to compare against
3843 * @new_class: class of the new device
3844 * @new_id: IDENTIFY page of the new device
3846 * Compare @new_class and @new_id against @dev and determine
3847 * whether @dev is the device indicated by @new_class and
3848 * @new_id.
3850 * LOCKING:
3851 * None.
3853 * RETURNS:
3854 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3856 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3857 const u16 *new_id)
3859 const u16 *old_id = dev->id;
3860 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3861 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3863 if (dev->class != new_class) {
3864 ata_dev_info(dev, "class mismatch %d != %d\n",
3865 dev->class, new_class);
3866 return 0;
3869 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3870 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3871 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3872 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3874 if (strcmp(model[0], model[1])) {
3875 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3876 model[0], model[1]);
3877 return 0;
3880 if (strcmp(serial[0], serial[1])) {
3881 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3882 serial[0], serial[1]);
3883 return 0;
3886 return 1;
3890 * ata_dev_reread_id - Re-read IDENTIFY data
3891 * @dev: target ATA device
3892 * @readid_flags: read ID flags
3894 * Re-read IDENTIFY page and make sure @dev is still attached to
3895 * the port.
3897 * LOCKING:
3898 * Kernel thread context (may sleep)
3900 * RETURNS:
3901 * 0 on success, negative errno otherwise
3903 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3905 unsigned int class = dev->class;
3906 u16 *id = (void *)dev->link->ap->sector_buf;
3907 int rc;
3909 /* read ID data */
3910 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3911 if (rc)
3912 return rc;
3914 /* is the device still there? */
3915 if (!ata_dev_same_device(dev, class, id))
3916 return -ENODEV;
3918 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3919 return 0;
3923 * ata_dev_revalidate - Revalidate ATA device
3924 * @dev: device to revalidate
3925 * @new_class: new class code
3926 * @readid_flags: read ID flags
3928 * Re-read IDENTIFY page, make sure @dev is still attached to the
3929 * port and reconfigure it according to the new IDENTIFY page.
3931 * LOCKING:
3932 * Kernel thread context (may sleep)
3934 * RETURNS:
3935 * 0 on success, negative errno otherwise
3937 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3938 unsigned int readid_flags)
3940 u64 n_sectors = dev->n_sectors;
3941 u64 n_native_sectors = dev->n_native_sectors;
3942 int rc;
3944 if (!ata_dev_enabled(dev))
3945 return -ENODEV;
3947 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3948 if (ata_class_enabled(new_class) &&
3949 new_class != ATA_DEV_ATA &&
3950 new_class != ATA_DEV_ATAPI &&
3951 new_class != ATA_DEV_SEMB) {
3952 ata_dev_info(dev, "class mismatch %u != %u\n",
3953 dev->class, new_class);
3954 rc = -ENODEV;
3955 goto fail;
3958 /* re-read ID */
3959 rc = ata_dev_reread_id(dev, readid_flags);
3960 if (rc)
3961 goto fail;
3963 /* configure device according to the new ID */
3964 rc = ata_dev_configure(dev);
3965 if (rc)
3966 goto fail;
3968 /* verify n_sectors hasn't changed */
3969 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3970 dev->n_sectors == n_sectors)
3971 return 0;
3973 /* n_sectors has changed */
3974 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3975 (unsigned long long)n_sectors,
3976 (unsigned long long)dev->n_sectors);
3979 * Something could have caused HPA to be unlocked
3980 * involuntarily. If n_native_sectors hasn't changed and the
3981 * new size matches it, keep the device.
3983 if (dev->n_native_sectors == n_native_sectors &&
3984 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3985 ata_dev_warn(dev,
3986 "new n_sectors matches native, probably "
3987 "late HPA unlock, n_sectors updated\n");
3988 /* use the larger n_sectors */
3989 return 0;
3993 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3994 * unlocking HPA in those cases.
3996 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3998 if (dev->n_native_sectors == n_native_sectors &&
3999 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4000 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4001 ata_dev_warn(dev,
4002 "old n_sectors matches native, probably "
4003 "late HPA lock, will try to unlock HPA\n");
4004 /* try unlocking HPA */
4005 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4006 rc = -EIO;
4007 } else
4008 rc = -ENODEV;
4010 /* restore original n_[native_]sectors and fail */
4011 dev->n_native_sectors = n_native_sectors;
4012 dev->n_sectors = n_sectors;
4013 fail:
4014 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4015 return rc;
4018 struct ata_blacklist_entry {
4019 const char *model_num;
4020 const char *model_rev;
4021 unsigned long horkage;
4024 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4025 /* Devices with DMA related problems under Linux */
4026 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4027 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4028 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4029 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4030 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4031 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4032 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4033 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4034 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4035 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4036 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4037 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4038 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4039 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4040 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4041 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4042 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4043 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4044 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4045 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4046 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4047 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4048 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4049 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4050 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4051 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4052 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4053 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4054 /* Odd clown on sil3726/4726 PMPs */
4055 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4057 /* Weird ATAPI devices */
4058 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4059 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4061 /* Devices we expect to fail diagnostics */
4063 /* Devices where NCQ should be avoided */
4064 /* NCQ is slow */
4065 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4066 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4067 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4068 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4069 /* NCQ is broken */
4070 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4071 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4072 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4073 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4074 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4076 /* Seagate NCQ + FLUSH CACHE firmware bug */
4077 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4078 ATA_HORKAGE_FIRMWARE_WARN },
4080 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4081 ATA_HORKAGE_FIRMWARE_WARN },
4083 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4084 ATA_HORKAGE_FIRMWARE_WARN },
4086 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4087 ATA_HORKAGE_FIRMWARE_WARN },
4089 /* Blacklist entries taken from Silicon Image 3124/3132
4090 Windows driver .inf file - also several Linux problem reports */
4091 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4092 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4093 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4095 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4096 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4098 /* devices which puke on READ_NATIVE_MAX */
4099 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4100 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4101 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4102 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4104 /* this one allows HPA unlocking but fails IOs on the area */
4105 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4107 /* Devices which report 1 sector over size HPA */
4108 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4109 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4110 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4112 /* Devices which get the IVB wrong */
4113 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4114 /* Maybe we should just blacklist TSSTcorp... */
4115 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4117 /* Devices that do not need bridging limits applied */
4118 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4120 /* Devices which aren't very happy with higher link speeds */
4121 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4124 * Devices which choke on SETXFER. Applies only if both the
4125 * device and controller are SATA.
4127 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4128 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4129 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4130 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4131 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4133 /* End Marker */
4138 * glob_match - match a text string against a glob-style pattern
4139 * @text: the string to be examined
4140 * @pattern: the glob-style pattern to be matched against
4142 * Either/both of text and pattern can be empty strings.
4144 * Match text against a glob-style pattern, with wildcards and simple sets:
4146 * ? matches any single character.
4147 * * matches any run of characters.
4148 * [xyz] matches a single character from the set: x, y, or z.
4149 * [a-d] matches a single character from the range: a, b, c, or d.
4150 * [a-d0-9] matches a single character from either range.
4152 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4153 * Behaviour with malformed patterns is undefined, though generally reasonable.
4155 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4157 * This function uses one level of recursion per '*' in pattern.
4158 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4159 * this will not cause stack problems for any reasonable use here.
4161 * RETURNS:
4162 * 0 on match, 1 otherwise.
4164 static int glob_match (const char *text, const char *pattern)
4166 do {
4167 /* Match single character or a '?' wildcard */
4168 if (*text == *pattern || *pattern == '?') {
4169 if (!*pattern++)
4170 return 0; /* End of both strings: match */
4171 } else {
4172 /* Match single char against a '[' bracketed ']' pattern set */
4173 if (!*text || *pattern != '[')
4174 break; /* Not a pattern set */
4175 while (*++pattern && *pattern != ']' && *text != *pattern) {
4176 if (*pattern == '-' && *(pattern - 1) != '[')
4177 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4178 ++pattern;
4179 break;
4182 if (!*pattern || *pattern == ']')
4183 return 1; /* No match */
4184 while (*pattern && *pattern++ != ']');
4186 } while (*++text && *pattern);
4188 /* Match any run of chars against a '*' wildcard */
4189 if (*pattern == '*') {
4190 if (!*++pattern)
4191 return 0; /* Match: avoid recursion at end of pattern */
4192 /* Loop to handle additional pattern chars after the wildcard */
4193 while (*text) {
4194 if (glob_match(text, pattern) == 0)
4195 return 0; /* Remainder matched */
4196 ++text; /* Absorb (match) this char and try again */
4199 if (!*text && !*pattern)
4200 return 0; /* End of both strings: match */
4201 return 1; /* No match */
4204 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4206 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4207 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4208 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4210 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4211 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4213 while (ad->model_num) {
4214 if (!glob_match(model_num, ad->model_num)) {
4215 if (ad->model_rev == NULL)
4216 return ad->horkage;
4217 if (!glob_match(model_rev, ad->model_rev))
4218 return ad->horkage;
4220 ad++;
4222 return 0;
4225 static int ata_dma_blacklisted(const struct ata_device *dev)
4227 /* We don't support polling DMA.
4228 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4229 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4231 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4232 (dev->flags & ATA_DFLAG_CDB_INTR))
4233 return 1;
4234 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4238 * ata_is_40wire - check drive side detection
4239 * @dev: device
4241 * Perform drive side detection decoding, allowing for device vendors
4242 * who can't follow the documentation.
4245 static int ata_is_40wire(struct ata_device *dev)
4247 if (dev->horkage & ATA_HORKAGE_IVB)
4248 return ata_drive_40wire_relaxed(dev->id);
4249 return ata_drive_40wire(dev->id);
4253 * cable_is_40wire - 40/80/SATA decider
4254 * @ap: port to consider
4256 * This function encapsulates the policy for speed management
4257 * in one place. At the moment we don't cache the result but
4258 * there is a good case for setting ap->cbl to the result when
4259 * we are called with unknown cables (and figuring out if it
4260 * impacts hotplug at all).
4262 * Return 1 if the cable appears to be 40 wire.
4265 static int cable_is_40wire(struct ata_port *ap)
4267 struct ata_link *link;
4268 struct ata_device *dev;
4270 /* If the controller thinks we are 40 wire, we are. */
4271 if (ap->cbl == ATA_CBL_PATA40)
4272 return 1;
4274 /* If the controller thinks we are 80 wire, we are. */
4275 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4276 return 0;
4278 /* If the system is known to be 40 wire short cable (eg
4279 * laptop), then we allow 80 wire modes even if the drive
4280 * isn't sure.
4282 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4283 return 0;
4285 /* If the controller doesn't know, we scan.
4287 * Note: We look for all 40 wire detects at this point. Any
4288 * 80 wire detect is taken to be 80 wire cable because
4289 * - in many setups only the one drive (slave if present) will
4290 * give a valid detect
4291 * - if you have a non detect capable drive you don't want it
4292 * to colour the choice
4294 ata_for_each_link(link, ap, EDGE) {
4295 ata_for_each_dev(dev, link, ENABLED) {
4296 if (!ata_is_40wire(dev))
4297 return 0;
4300 return 1;
4304 * ata_dev_xfermask - Compute supported xfermask of the given device
4305 * @dev: Device to compute xfermask for
4307 * Compute supported xfermask of @dev and store it in
4308 * dev->*_mask. This function is responsible for applying all
4309 * known limits including host controller limits, device
4310 * blacklist, etc...
4312 * LOCKING:
4313 * None.
4315 static void ata_dev_xfermask(struct ata_device *dev)
4317 struct ata_link *link = dev->link;
4318 struct ata_port *ap = link->ap;
4319 struct ata_host *host = ap->host;
4320 unsigned long xfer_mask;
4322 /* controller modes available */
4323 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4324 ap->mwdma_mask, ap->udma_mask);
4326 /* drive modes available */
4327 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4328 dev->mwdma_mask, dev->udma_mask);
4329 xfer_mask &= ata_id_xfermask(dev->id);
4332 * CFA Advanced TrueIDE timings are not allowed on a shared
4333 * cable
4335 if (ata_dev_pair(dev)) {
4336 /* No PIO5 or PIO6 */
4337 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4338 /* No MWDMA3 or MWDMA 4 */
4339 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4342 if (ata_dma_blacklisted(dev)) {
4343 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4344 ata_dev_warn(dev,
4345 "device is on DMA blacklist, disabling DMA\n");
4348 if ((host->flags & ATA_HOST_SIMPLEX) &&
4349 host->simplex_claimed && host->simplex_claimed != ap) {
4350 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4351 ata_dev_warn(dev,
4352 "simplex DMA is claimed by other device, disabling DMA\n");
4355 if (ap->flags & ATA_FLAG_NO_IORDY)
4356 xfer_mask &= ata_pio_mask_no_iordy(dev);
4358 if (ap->ops->mode_filter)
4359 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4361 /* Apply cable rule here. Don't apply it early because when
4362 * we handle hot plug the cable type can itself change.
4363 * Check this last so that we know if the transfer rate was
4364 * solely limited by the cable.
4365 * Unknown or 80 wire cables reported host side are checked
4366 * drive side as well. Cases where we know a 40wire cable
4367 * is used safely for 80 are not checked here.
4369 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4370 /* UDMA/44 or higher would be available */
4371 if (cable_is_40wire(ap)) {
4372 ata_dev_warn(dev,
4373 "limited to UDMA/33 due to 40-wire cable\n");
4374 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4377 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4378 &dev->mwdma_mask, &dev->udma_mask);
4382 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4383 * @dev: Device to which command will be sent
4385 * Issue SET FEATURES - XFER MODE command to device @dev
4386 * on port @ap.
4388 * LOCKING:
4389 * PCI/etc. bus probe sem.
4391 * RETURNS:
4392 * 0 on success, AC_ERR_* mask otherwise.
4395 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4397 struct ata_taskfile tf;
4398 unsigned int err_mask;
4400 /* set up set-features taskfile */
4401 DPRINTK("set features - xfer mode\n");
4403 /* Some controllers and ATAPI devices show flaky interrupt
4404 * behavior after setting xfer mode. Use polling instead.
4406 ata_tf_init(dev, &tf);
4407 tf.command = ATA_CMD_SET_FEATURES;
4408 tf.feature = SETFEATURES_XFER;
4409 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4410 tf.protocol = ATA_PROT_NODATA;
4411 /* If we are using IORDY we must send the mode setting command */
4412 if (ata_pio_need_iordy(dev))
4413 tf.nsect = dev->xfer_mode;
4414 /* If the device has IORDY and the controller does not - turn it off */
4415 else if (ata_id_has_iordy(dev->id))
4416 tf.nsect = 0x01;
4417 else /* In the ancient relic department - skip all of this */
4418 return 0;
4420 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4422 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4423 return err_mask;
4427 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4428 * @dev: Device to which command will be sent
4429 * @enable: Whether to enable or disable the feature
4430 * @feature: The sector count represents the feature to set
4432 * Issue SET FEATURES - SATA FEATURES command to device @dev
4433 * on port @ap with sector count
4435 * LOCKING:
4436 * PCI/etc. bus probe sem.
4438 * RETURNS:
4439 * 0 on success, AC_ERR_* mask otherwise.
4441 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4443 struct ata_taskfile tf;
4444 unsigned int err_mask;
4446 /* set up set-features taskfile */
4447 DPRINTK("set features - SATA features\n");
4449 ata_tf_init(dev, &tf);
4450 tf.command = ATA_CMD_SET_FEATURES;
4451 tf.feature = enable;
4452 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4453 tf.protocol = ATA_PROT_NODATA;
4454 tf.nsect = feature;
4456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4458 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4459 return err_mask;
4463 * ata_dev_init_params - Issue INIT DEV PARAMS command
4464 * @dev: Device to which command will be sent
4465 * @heads: Number of heads (taskfile parameter)
4466 * @sectors: Number of sectors (taskfile parameter)
4468 * LOCKING:
4469 * Kernel thread context (may sleep)
4471 * RETURNS:
4472 * 0 on success, AC_ERR_* mask otherwise.
4474 static unsigned int ata_dev_init_params(struct ata_device *dev,
4475 u16 heads, u16 sectors)
4477 struct ata_taskfile tf;
4478 unsigned int err_mask;
4480 /* Number of sectors per track 1-255. Number of heads 1-16 */
4481 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4482 return AC_ERR_INVALID;
4484 /* set up init dev params taskfile */
4485 DPRINTK("init dev params \n");
4487 ata_tf_init(dev, &tf);
4488 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4489 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4490 tf.protocol = ATA_PROT_NODATA;
4491 tf.nsect = sectors;
4492 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4494 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4495 /* A clean abort indicates an original or just out of spec drive
4496 and we should continue as we issue the setup based on the
4497 drive reported working geometry */
4498 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4499 err_mask = 0;
4501 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4502 return err_mask;
4506 * ata_sg_clean - Unmap DMA memory associated with command
4507 * @qc: Command containing DMA memory to be released
4509 * Unmap all mapped DMA memory associated with this command.
4511 * LOCKING:
4512 * spin_lock_irqsave(host lock)
4514 void ata_sg_clean(struct ata_queued_cmd *qc)
4516 struct ata_port *ap = qc->ap;
4517 struct scatterlist *sg = qc->sg;
4518 int dir = qc->dma_dir;
4520 WARN_ON_ONCE(sg == NULL);
4522 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4524 if (qc->n_elem)
4525 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4527 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4528 qc->sg = NULL;
4532 * atapi_check_dma - Check whether ATAPI DMA can be supported
4533 * @qc: Metadata associated with taskfile to check
4535 * Allow low-level driver to filter ATA PACKET commands, returning
4536 * a status indicating whether or not it is OK to use DMA for the
4537 * supplied PACKET command.
4539 * LOCKING:
4540 * spin_lock_irqsave(host lock)
4542 * RETURNS: 0 when ATAPI DMA can be used
4543 * nonzero otherwise
4545 int atapi_check_dma(struct ata_queued_cmd *qc)
4547 struct ata_port *ap = qc->ap;
4549 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4550 * few ATAPI devices choke on such DMA requests.
4552 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4553 unlikely(qc->nbytes & 15))
4554 return 1;
4556 if (ap->ops->check_atapi_dma)
4557 return ap->ops->check_atapi_dma(qc);
4559 return 0;
4563 * ata_std_qc_defer - Check whether a qc needs to be deferred
4564 * @qc: ATA command in question
4566 * Non-NCQ commands cannot run with any other command, NCQ or
4567 * not. As upper layer only knows the queue depth, we are
4568 * responsible for maintaining exclusion. This function checks
4569 * whether a new command @qc can be issued.
4571 * LOCKING:
4572 * spin_lock_irqsave(host lock)
4574 * RETURNS:
4575 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4577 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4579 struct ata_link *link = qc->dev->link;
4581 if (qc->tf.protocol == ATA_PROT_NCQ) {
4582 if (!ata_tag_valid(link->active_tag))
4583 return 0;
4584 } else {
4585 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4586 return 0;
4589 return ATA_DEFER_LINK;
4592 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4595 * ata_sg_init - Associate command with scatter-gather table.
4596 * @qc: Command to be associated
4597 * @sg: Scatter-gather table.
4598 * @n_elem: Number of elements in s/g table.
4600 * Initialize the data-related elements of queued_cmd @qc
4601 * to point to a scatter-gather table @sg, containing @n_elem
4602 * elements.
4604 * LOCKING:
4605 * spin_lock_irqsave(host lock)
4607 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4608 unsigned int n_elem)
4610 qc->sg = sg;
4611 qc->n_elem = n_elem;
4612 qc->cursg = qc->sg;
4616 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4617 * @qc: Command with scatter-gather table to be mapped.
4619 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4621 * LOCKING:
4622 * spin_lock_irqsave(host lock)
4624 * RETURNS:
4625 * Zero on success, negative on error.
4628 static int ata_sg_setup(struct ata_queued_cmd *qc)
4630 struct ata_port *ap = qc->ap;
4631 unsigned int n_elem;
4633 VPRINTK("ENTER, ata%u\n", ap->print_id);
4635 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4636 if (n_elem < 1)
4637 return -1;
4639 DPRINTK("%d sg elements mapped\n", n_elem);
4640 qc->orig_n_elem = qc->n_elem;
4641 qc->n_elem = n_elem;
4642 qc->flags |= ATA_QCFLAG_DMAMAP;
4644 return 0;
4648 * swap_buf_le16 - swap halves of 16-bit words in place
4649 * @buf: Buffer to swap
4650 * @buf_words: Number of 16-bit words in buffer.
4652 * Swap halves of 16-bit words if needed to convert from
4653 * little-endian byte order to native cpu byte order, or
4654 * vice-versa.
4656 * LOCKING:
4657 * Inherited from caller.
4659 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4661 #ifdef __BIG_ENDIAN
4662 unsigned int i;
4664 for (i = 0; i < buf_words; i++)
4665 buf[i] = le16_to_cpu(buf[i]);
4666 #endif /* __BIG_ENDIAN */
4670 * ata_qc_new - Request an available ATA command, for queueing
4671 * @ap: target port
4673 * LOCKING:
4674 * None.
4677 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4679 struct ata_queued_cmd *qc = NULL;
4680 unsigned int i;
4682 /* no command while frozen */
4683 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4684 return NULL;
4686 /* the last tag is reserved for internal command. */
4687 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4688 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4689 qc = __ata_qc_from_tag(ap, i);
4690 break;
4693 if (qc)
4694 qc->tag = i;
4696 return qc;
4700 * ata_qc_new_init - Request an available ATA command, and initialize it
4701 * @dev: Device from whom we request an available command structure
4703 * LOCKING:
4704 * None.
4707 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4709 struct ata_port *ap = dev->link->ap;
4710 struct ata_queued_cmd *qc;
4712 qc = ata_qc_new(ap);
4713 if (qc) {
4714 qc->scsicmd = NULL;
4715 qc->ap = ap;
4716 qc->dev = dev;
4718 ata_qc_reinit(qc);
4721 return qc;
4725 * ata_qc_free - free unused ata_queued_cmd
4726 * @qc: Command to complete
4728 * Designed to free unused ata_queued_cmd object
4729 * in case something prevents using it.
4731 * LOCKING:
4732 * spin_lock_irqsave(host lock)
4734 void ata_qc_free(struct ata_queued_cmd *qc)
4736 struct ata_port *ap;
4737 unsigned int tag;
4739 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4740 ap = qc->ap;
4742 qc->flags = 0;
4743 tag = qc->tag;
4744 if (likely(ata_tag_valid(tag))) {
4745 qc->tag = ATA_TAG_POISON;
4746 clear_bit(tag, &ap->qc_allocated);
4750 void __ata_qc_complete(struct ata_queued_cmd *qc)
4752 struct ata_port *ap;
4753 struct ata_link *link;
4755 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4756 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4757 ap = qc->ap;
4758 link = qc->dev->link;
4760 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4761 ata_sg_clean(qc);
4763 /* command should be marked inactive atomically with qc completion */
4764 if (qc->tf.protocol == ATA_PROT_NCQ) {
4765 link->sactive &= ~(1 << qc->tag);
4766 if (!link->sactive)
4767 ap->nr_active_links--;
4768 } else {
4769 link->active_tag = ATA_TAG_POISON;
4770 ap->nr_active_links--;
4773 /* clear exclusive status */
4774 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4775 ap->excl_link == link))
4776 ap->excl_link = NULL;
4778 /* atapi: mark qc as inactive to prevent the interrupt handler
4779 * from completing the command twice later, before the error handler
4780 * is called. (when rc != 0 and atapi request sense is needed)
4782 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4783 ap->qc_active &= ~(1 << qc->tag);
4785 /* call completion callback */
4786 qc->complete_fn(qc);
4789 static void fill_result_tf(struct ata_queued_cmd *qc)
4791 struct ata_port *ap = qc->ap;
4793 qc->result_tf.flags = qc->tf.flags;
4794 ap->ops->qc_fill_rtf(qc);
4797 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4799 struct ata_device *dev = qc->dev;
4801 if (ata_is_nodata(qc->tf.protocol))
4802 return;
4804 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4805 return;
4807 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4811 * ata_qc_complete - Complete an active ATA command
4812 * @qc: Command to complete
4814 * Indicate to the mid and upper layers that an ATA command has
4815 * completed, with either an ok or not-ok status.
4817 * Refrain from calling this function multiple times when
4818 * successfully completing multiple NCQ commands.
4819 * ata_qc_complete_multiple() should be used instead, which will
4820 * properly update IRQ expect state.
4822 * LOCKING:
4823 * spin_lock_irqsave(host lock)
4825 void ata_qc_complete(struct ata_queued_cmd *qc)
4827 struct ata_port *ap = qc->ap;
4829 /* XXX: New EH and old EH use different mechanisms to
4830 * synchronize EH with regular execution path.
4832 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4833 * Normal execution path is responsible for not accessing a
4834 * failed qc. libata core enforces the rule by returning NULL
4835 * from ata_qc_from_tag() for failed qcs.
4837 * Old EH depends on ata_qc_complete() nullifying completion
4838 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4839 * not synchronize with interrupt handler. Only PIO task is
4840 * taken care of.
4842 if (ap->ops->error_handler) {
4843 struct ata_device *dev = qc->dev;
4844 struct ata_eh_info *ehi = &dev->link->eh_info;
4846 if (unlikely(qc->err_mask))
4847 qc->flags |= ATA_QCFLAG_FAILED;
4850 * Finish internal commands without any further processing
4851 * and always with the result TF filled.
4853 if (unlikely(ata_tag_internal(qc->tag))) {
4854 fill_result_tf(qc);
4855 __ata_qc_complete(qc);
4856 return;
4860 * Non-internal qc has failed. Fill the result TF and
4861 * summon EH.
4863 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4864 fill_result_tf(qc);
4865 ata_qc_schedule_eh(qc);
4866 return;
4869 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4871 /* read result TF if requested */
4872 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4873 fill_result_tf(qc);
4875 /* Some commands need post-processing after successful
4876 * completion.
4878 switch (qc->tf.command) {
4879 case ATA_CMD_SET_FEATURES:
4880 if (qc->tf.feature != SETFEATURES_WC_ON &&
4881 qc->tf.feature != SETFEATURES_WC_OFF)
4882 break;
4883 /* fall through */
4884 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4885 case ATA_CMD_SET_MULTI: /* multi_count changed */
4886 /* revalidate device */
4887 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4888 ata_port_schedule_eh(ap);
4889 break;
4891 case ATA_CMD_SLEEP:
4892 dev->flags |= ATA_DFLAG_SLEEPING;
4893 break;
4896 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4897 ata_verify_xfer(qc);
4899 __ata_qc_complete(qc);
4900 } else {
4901 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4902 return;
4904 /* read result TF if failed or requested */
4905 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4906 fill_result_tf(qc);
4908 __ata_qc_complete(qc);
4913 * ata_qc_complete_multiple - Complete multiple qcs successfully
4914 * @ap: port in question
4915 * @qc_active: new qc_active mask
4917 * Complete in-flight commands. This functions is meant to be
4918 * called from low-level driver's interrupt routine to complete
4919 * requests normally. ap->qc_active and @qc_active is compared
4920 * and commands are completed accordingly.
4922 * Always use this function when completing multiple NCQ commands
4923 * from IRQ handlers instead of calling ata_qc_complete()
4924 * multiple times to keep IRQ expect status properly in sync.
4926 * LOCKING:
4927 * spin_lock_irqsave(host lock)
4929 * RETURNS:
4930 * Number of completed commands on success, -errno otherwise.
4932 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4934 int nr_done = 0;
4935 u32 done_mask;
4937 done_mask = ap->qc_active ^ qc_active;
4939 if (unlikely(done_mask & qc_active)) {
4940 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4941 ap->qc_active, qc_active);
4942 return -EINVAL;
4945 while (done_mask) {
4946 struct ata_queued_cmd *qc;
4947 unsigned int tag = __ffs(done_mask);
4949 qc = ata_qc_from_tag(ap, tag);
4950 if (qc) {
4951 ata_qc_complete(qc);
4952 nr_done++;
4954 done_mask &= ~(1 << tag);
4957 return nr_done;
4961 * ata_qc_issue - issue taskfile to device
4962 * @qc: command to issue to device
4964 * Prepare an ATA command to submission to device.
4965 * This includes mapping the data into a DMA-able
4966 * area, filling in the S/G table, and finally
4967 * writing the taskfile to hardware, starting the command.
4969 * LOCKING:
4970 * spin_lock_irqsave(host lock)
4972 void ata_qc_issue(struct ata_queued_cmd *qc)
4974 struct ata_port *ap = qc->ap;
4975 struct ata_link *link = qc->dev->link;
4976 u8 prot = qc->tf.protocol;
4978 /* Make sure only one non-NCQ command is outstanding. The
4979 * check is skipped for old EH because it reuses active qc to
4980 * request ATAPI sense.
4982 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4984 if (ata_is_ncq(prot)) {
4985 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4987 if (!link->sactive)
4988 ap->nr_active_links++;
4989 link->sactive |= 1 << qc->tag;
4990 } else {
4991 WARN_ON_ONCE(link->sactive);
4993 ap->nr_active_links++;
4994 link->active_tag = qc->tag;
4997 qc->flags |= ATA_QCFLAG_ACTIVE;
4998 ap->qc_active |= 1 << qc->tag;
5001 * We guarantee to LLDs that they will have at least one
5002 * non-zero sg if the command is a data command.
5004 if (WARN_ON_ONCE(ata_is_data(prot) &&
5005 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5006 goto sys_err;
5008 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5009 (ap->flags & ATA_FLAG_PIO_DMA)))
5010 if (ata_sg_setup(qc))
5011 goto sys_err;
5013 /* if device is sleeping, schedule reset and abort the link */
5014 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5015 link->eh_info.action |= ATA_EH_RESET;
5016 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5017 ata_link_abort(link);
5018 return;
5021 ap->ops->qc_prep(qc);
5023 qc->err_mask |= ap->ops->qc_issue(qc);
5024 if (unlikely(qc->err_mask))
5025 goto err;
5026 return;
5028 sys_err:
5029 qc->err_mask |= AC_ERR_SYSTEM;
5030 err:
5031 ata_qc_complete(qc);
5035 * sata_scr_valid - test whether SCRs are accessible
5036 * @link: ATA link to test SCR accessibility for
5038 * Test whether SCRs are accessible for @link.
5040 * LOCKING:
5041 * None.
5043 * RETURNS:
5044 * 1 if SCRs are accessible, 0 otherwise.
5046 int sata_scr_valid(struct ata_link *link)
5048 struct ata_port *ap = link->ap;
5050 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5054 * sata_scr_read - read SCR register of the specified port
5055 * @link: ATA link to read SCR for
5056 * @reg: SCR to read
5057 * @val: Place to store read value
5059 * Read SCR register @reg of @link into *@val. This function is
5060 * guaranteed to succeed if @link is ap->link, the cable type of
5061 * the port is SATA and the port implements ->scr_read.
5063 * LOCKING:
5064 * None if @link is ap->link. Kernel thread context otherwise.
5066 * RETURNS:
5067 * 0 on success, negative errno on failure.
5069 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5071 if (ata_is_host_link(link)) {
5072 if (sata_scr_valid(link))
5073 return link->ap->ops->scr_read(link, reg, val);
5074 return -EOPNOTSUPP;
5077 return sata_pmp_scr_read(link, reg, val);
5081 * sata_scr_write - write SCR register of the specified port
5082 * @link: ATA link to write SCR for
5083 * @reg: SCR to write
5084 * @val: value to write
5086 * Write @val to SCR register @reg of @link. This function is
5087 * guaranteed to succeed if @link is ap->link, the cable type of
5088 * the port is SATA and the port implements ->scr_read.
5090 * LOCKING:
5091 * None if @link is ap->link. Kernel thread context otherwise.
5093 * RETURNS:
5094 * 0 on success, negative errno on failure.
5096 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5098 if (ata_is_host_link(link)) {
5099 if (sata_scr_valid(link))
5100 return link->ap->ops->scr_write(link, reg, val);
5101 return -EOPNOTSUPP;
5104 return sata_pmp_scr_write(link, reg, val);
5108 * sata_scr_write_flush - write SCR register of the specified port and flush
5109 * @link: ATA link to write SCR for
5110 * @reg: SCR to write
5111 * @val: value to write
5113 * This function is identical to sata_scr_write() except that this
5114 * function performs flush after writing to the register.
5116 * LOCKING:
5117 * None if @link is ap->link. Kernel thread context otherwise.
5119 * RETURNS:
5120 * 0 on success, negative errno on failure.
5122 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5124 if (ata_is_host_link(link)) {
5125 int rc;
5127 if (sata_scr_valid(link)) {
5128 rc = link->ap->ops->scr_write(link, reg, val);
5129 if (rc == 0)
5130 rc = link->ap->ops->scr_read(link, reg, &val);
5131 return rc;
5133 return -EOPNOTSUPP;
5136 return sata_pmp_scr_write(link, reg, val);
5140 * ata_phys_link_online - test whether the given link is online
5141 * @link: ATA link to test
5143 * Test whether @link is online. Note that this function returns
5144 * 0 if online status of @link cannot be obtained, so
5145 * ata_link_online(link) != !ata_link_offline(link).
5147 * LOCKING:
5148 * None.
5150 * RETURNS:
5151 * True if the port online status is available and online.
5153 bool ata_phys_link_online(struct ata_link *link)
5155 u32 sstatus;
5157 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5158 ata_sstatus_online(sstatus))
5159 return true;
5160 return false;
5164 * ata_phys_link_offline - test whether the given link is offline
5165 * @link: ATA link to test
5167 * Test whether @link is offline. Note that this function
5168 * returns 0 if offline status of @link cannot be obtained, so
5169 * ata_link_online(link) != !ata_link_offline(link).
5171 * LOCKING:
5172 * None.
5174 * RETURNS:
5175 * True if the port offline status is available and offline.
5177 bool ata_phys_link_offline(struct ata_link *link)
5179 u32 sstatus;
5181 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5182 !ata_sstatus_online(sstatus))
5183 return true;
5184 return false;
5188 * ata_link_online - test whether the given link is online
5189 * @link: ATA link to test
5191 * Test whether @link is online. This is identical to
5192 * ata_phys_link_online() when there's no slave link. When
5193 * there's a slave link, this function should only be called on
5194 * the master link and will return true if any of M/S links is
5195 * online.
5197 * LOCKING:
5198 * None.
5200 * RETURNS:
5201 * True if the port online status is available and online.
5203 bool ata_link_online(struct ata_link *link)
5205 struct ata_link *slave = link->ap->slave_link;
5207 WARN_ON(link == slave); /* shouldn't be called on slave link */
5209 return ata_phys_link_online(link) ||
5210 (slave && ata_phys_link_online(slave));
5214 * ata_link_offline - test whether the given link is offline
5215 * @link: ATA link to test
5217 * Test whether @link is offline. This is identical to
5218 * ata_phys_link_offline() when there's no slave link. When
5219 * there's a slave link, this function should only be called on
5220 * the master link and will return true if both M/S links are
5221 * offline.
5223 * LOCKING:
5224 * None.
5226 * RETURNS:
5227 * True if the port offline status is available and offline.
5229 bool ata_link_offline(struct ata_link *link)
5231 struct ata_link *slave = link->ap->slave_link;
5233 WARN_ON(link == slave); /* shouldn't be called on slave link */
5235 return ata_phys_link_offline(link) &&
5236 (!slave || ata_phys_link_offline(slave));
5239 #ifdef CONFIG_PM
5240 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5241 unsigned int action, unsigned int ehi_flags,
5242 int wait)
5244 struct ata_link *link;
5245 unsigned long flags;
5246 int rc;
5248 /* Previous resume operation might still be in
5249 * progress. Wait for PM_PENDING to clear.
5251 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252 ata_port_wait_eh(ap);
5253 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5256 /* request PM ops to EH */
5257 spin_lock_irqsave(ap->lock, flags);
5259 ap->pm_mesg = mesg;
5260 if (wait) {
5261 rc = 0;
5262 ap->pm_result = &rc;
5265 ap->pflags |= ATA_PFLAG_PM_PENDING;
5266 ata_for_each_link(link, ap, HOST_FIRST) {
5267 link->eh_info.action |= action;
5268 link->eh_info.flags |= ehi_flags;
5271 ata_port_schedule_eh(ap);
5273 spin_unlock_irqrestore(ap->lock, flags);
5275 /* wait and check result */
5276 if (wait) {
5277 ata_port_wait_eh(ap);
5278 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5281 return rc;
5284 #define to_ata_port(d) container_of(d, struct ata_port, tdev)
5286 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5288 struct ata_port *ap = to_ata_port(dev);
5289 unsigned int ehi_flags = ATA_EHI_QUIET;
5290 int rc;
5293 * On some hardware, device fails to respond after spun down
5294 * for suspend. As the device won't be used before being
5295 * resumed, we don't need to touch the device. Ask EH to skip
5296 * the usual stuff and proceed directly to suspend.
5298 * http://thread.gmane.org/gmane.linux.ide/46764
5300 if (mesg.event == PM_EVENT_SUSPEND)
5301 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5303 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5304 return rc;
5307 static int ata_port_suspend(struct device *dev)
5309 if (pm_runtime_suspended(dev))
5310 return 0;
5312 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5315 static int ata_port_do_freeze(struct device *dev)
5317 if (pm_runtime_suspended(dev))
5318 pm_runtime_resume(dev);
5320 return ata_port_suspend_common(dev, PMSG_FREEZE);
5323 static int ata_port_poweroff(struct device *dev)
5325 if (pm_runtime_suspended(dev))
5326 return 0;
5328 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5331 static int ata_port_resume_common(struct device *dev)
5333 struct ata_port *ap = to_ata_port(dev);
5334 int rc;
5336 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5337 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5338 return rc;
5341 static int ata_port_resume(struct device *dev)
5343 int rc;
5345 rc = ata_port_resume_common(dev);
5346 if (!rc) {
5347 pm_runtime_disable(dev);
5348 pm_runtime_set_active(dev);
5349 pm_runtime_enable(dev);
5352 return rc;
5355 static int ata_port_runtime_idle(struct device *dev)
5357 return pm_runtime_suspend(dev);
5360 static const struct dev_pm_ops ata_port_pm_ops = {
5361 .suspend = ata_port_suspend,
5362 .resume = ata_port_resume,
5363 .freeze = ata_port_do_freeze,
5364 .thaw = ata_port_resume,
5365 .poweroff = ata_port_poweroff,
5366 .restore = ata_port_resume,
5368 .runtime_suspend = ata_port_suspend,
5369 .runtime_resume = ata_port_resume_common,
5370 .runtime_idle = ata_port_runtime_idle,
5374 * ata_host_suspend - suspend host
5375 * @host: host to suspend
5376 * @mesg: PM message
5378 * Suspend @host. Actual operation is performed by port suspend.
5380 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5382 host->dev->power.power_state = mesg;
5383 return 0;
5387 * ata_host_resume - resume host
5388 * @host: host to resume
5390 * Resume @host. Actual operation is performed by port resume.
5392 void ata_host_resume(struct ata_host *host)
5394 host->dev->power.power_state = PMSG_ON;
5396 #endif
5398 struct device_type ata_port_type = {
5399 .name = "ata_port",
5400 #ifdef CONFIG_PM
5401 .pm = &ata_port_pm_ops,
5402 #endif
5406 * ata_dev_init - Initialize an ata_device structure
5407 * @dev: Device structure to initialize
5409 * Initialize @dev in preparation for probing.
5411 * LOCKING:
5412 * Inherited from caller.
5414 void ata_dev_init(struct ata_device *dev)
5416 struct ata_link *link = ata_dev_phys_link(dev);
5417 struct ata_port *ap = link->ap;
5418 unsigned long flags;
5420 /* SATA spd limit is bound to the attached device, reset together */
5421 link->sata_spd_limit = link->hw_sata_spd_limit;
5422 link->sata_spd = 0;
5424 /* High bits of dev->flags are used to record warm plug
5425 * requests which occur asynchronously. Synchronize using
5426 * host lock.
5428 spin_lock_irqsave(ap->lock, flags);
5429 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5430 dev->horkage = 0;
5431 spin_unlock_irqrestore(ap->lock, flags);
5433 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5434 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5435 dev->pio_mask = UINT_MAX;
5436 dev->mwdma_mask = UINT_MAX;
5437 dev->udma_mask = UINT_MAX;
5441 * ata_link_init - Initialize an ata_link structure
5442 * @ap: ATA port link is attached to
5443 * @link: Link structure to initialize
5444 * @pmp: Port multiplier port number
5446 * Initialize @link.
5448 * LOCKING:
5449 * Kernel thread context (may sleep)
5451 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5453 int i;
5455 /* clear everything except for devices */
5456 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5457 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5459 link->ap = ap;
5460 link->pmp = pmp;
5461 link->active_tag = ATA_TAG_POISON;
5462 link->hw_sata_spd_limit = UINT_MAX;
5464 /* can't use iterator, ap isn't initialized yet */
5465 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5466 struct ata_device *dev = &link->device[i];
5468 dev->link = link;
5469 dev->devno = dev - link->device;
5470 #ifdef CONFIG_ATA_ACPI
5471 dev->gtf_filter = ata_acpi_gtf_filter;
5472 #endif
5473 ata_dev_init(dev);
5478 * sata_link_init_spd - Initialize link->sata_spd_limit
5479 * @link: Link to configure sata_spd_limit for
5481 * Initialize @link->[hw_]sata_spd_limit to the currently
5482 * configured value.
5484 * LOCKING:
5485 * Kernel thread context (may sleep).
5487 * RETURNS:
5488 * 0 on success, -errno on failure.
5490 int sata_link_init_spd(struct ata_link *link)
5492 u8 spd;
5493 int rc;
5495 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5496 if (rc)
5497 return rc;
5499 spd = (link->saved_scontrol >> 4) & 0xf;
5500 if (spd)
5501 link->hw_sata_spd_limit &= (1 << spd) - 1;
5503 ata_force_link_limits(link);
5505 link->sata_spd_limit = link->hw_sata_spd_limit;
5507 return 0;
5511 * ata_port_alloc - allocate and initialize basic ATA port resources
5512 * @host: ATA host this allocated port belongs to
5514 * Allocate and initialize basic ATA port resources.
5516 * RETURNS:
5517 * Allocate ATA port on success, NULL on failure.
5519 * LOCKING:
5520 * Inherited from calling layer (may sleep).
5522 struct ata_port *ata_port_alloc(struct ata_host *host)
5524 struct ata_port *ap;
5526 DPRINTK("ENTER\n");
5528 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5529 if (!ap)
5530 return NULL;
5532 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5533 ap->lock = &host->lock;
5534 ap->print_id = -1;
5535 ap->host = host;
5536 ap->dev = host->dev;
5538 #if defined(ATA_VERBOSE_DEBUG)
5539 /* turn on all debugging levels */
5540 ap->msg_enable = 0x00FF;
5541 #elif defined(ATA_DEBUG)
5542 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5543 #else
5544 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5545 #endif
5547 mutex_init(&ap->scsi_scan_mutex);
5548 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5549 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5550 INIT_LIST_HEAD(&ap->eh_done_q);
5551 init_waitqueue_head(&ap->eh_wait_q);
5552 init_completion(&ap->park_req_pending);
5553 init_timer_deferrable(&ap->fastdrain_timer);
5554 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5555 ap->fastdrain_timer.data = (unsigned long)ap;
5557 ap->cbl = ATA_CBL_NONE;
5559 ata_link_init(ap, &ap->link, 0);
5561 #ifdef ATA_IRQ_TRAP
5562 ap->stats.unhandled_irq = 1;
5563 ap->stats.idle_irq = 1;
5564 #endif
5565 ata_sff_port_init(ap);
5567 return ap;
5570 static void ata_host_release(struct device *gendev, void *res)
5572 struct ata_host *host = dev_get_drvdata(gendev);
5573 int i;
5575 for (i = 0; i < host->n_ports; i++) {
5576 struct ata_port *ap = host->ports[i];
5578 if (!ap)
5579 continue;
5581 if (ap->scsi_host)
5582 scsi_host_put(ap->scsi_host);
5584 kfree(ap->pmp_link);
5585 kfree(ap->slave_link);
5586 kfree(ap);
5587 host->ports[i] = NULL;
5590 dev_set_drvdata(gendev, NULL);
5594 * ata_host_alloc - allocate and init basic ATA host resources
5595 * @dev: generic device this host is associated with
5596 * @max_ports: maximum number of ATA ports associated with this host
5598 * Allocate and initialize basic ATA host resources. LLD calls
5599 * this function to allocate a host, initializes it fully and
5600 * attaches it using ata_host_register().
5602 * @max_ports ports are allocated and host->n_ports is
5603 * initialized to @max_ports. The caller is allowed to decrease
5604 * host->n_ports before calling ata_host_register(). The unused
5605 * ports will be automatically freed on registration.
5607 * RETURNS:
5608 * Allocate ATA host on success, NULL on failure.
5610 * LOCKING:
5611 * Inherited from calling layer (may sleep).
5613 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5615 struct ata_host *host;
5616 size_t sz;
5617 int i;
5619 DPRINTK("ENTER\n");
5621 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5622 return NULL;
5624 /* alloc a container for our list of ATA ports (buses) */
5625 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5626 /* alloc a container for our list of ATA ports (buses) */
5627 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5628 if (!host)
5629 goto err_out;
5631 devres_add(dev, host);
5632 dev_set_drvdata(dev, host);
5634 spin_lock_init(&host->lock);
5635 mutex_init(&host->eh_mutex);
5636 host->dev = dev;
5637 host->n_ports = max_ports;
5639 /* allocate ports bound to this host */
5640 for (i = 0; i < max_ports; i++) {
5641 struct ata_port *ap;
5643 ap = ata_port_alloc(host);
5644 if (!ap)
5645 goto err_out;
5647 ap->port_no = i;
5648 host->ports[i] = ap;
5651 devres_remove_group(dev, NULL);
5652 return host;
5654 err_out:
5655 devres_release_group(dev, NULL);
5656 return NULL;
5660 * ata_host_alloc_pinfo - alloc host and init with port_info array
5661 * @dev: generic device this host is associated with
5662 * @ppi: array of ATA port_info to initialize host with
5663 * @n_ports: number of ATA ports attached to this host
5665 * Allocate ATA host and initialize with info from @ppi. If NULL
5666 * terminated, @ppi may contain fewer entries than @n_ports. The
5667 * last entry will be used for the remaining ports.
5669 * RETURNS:
5670 * Allocate ATA host on success, NULL on failure.
5672 * LOCKING:
5673 * Inherited from calling layer (may sleep).
5675 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5676 const struct ata_port_info * const * ppi,
5677 int n_ports)
5679 const struct ata_port_info *pi;
5680 struct ata_host *host;
5681 int i, j;
5683 host = ata_host_alloc(dev, n_ports);
5684 if (!host)
5685 return NULL;
5687 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5688 struct ata_port *ap = host->ports[i];
5690 if (ppi[j])
5691 pi = ppi[j++];
5693 ap->pio_mask = pi->pio_mask;
5694 ap->mwdma_mask = pi->mwdma_mask;
5695 ap->udma_mask = pi->udma_mask;
5696 ap->flags |= pi->flags;
5697 ap->link.flags |= pi->link_flags;
5698 ap->ops = pi->port_ops;
5700 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5701 host->ops = pi->port_ops;
5704 return host;
5708 * ata_slave_link_init - initialize slave link
5709 * @ap: port to initialize slave link for
5711 * Create and initialize slave link for @ap. This enables slave
5712 * link handling on the port.
5714 * In libata, a port contains links and a link contains devices.
5715 * There is single host link but if a PMP is attached to it,
5716 * there can be multiple fan-out links. On SATA, there's usually
5717 * a single device connected to a link but PATA and SATA
5718 * controllers emulating TF based interface can have two - master
5719 * and slave.
5721 * However, there are a few controllers which don't fit into this
5722 * abstraction too well - SATA controllers which emulate TF
5723 * interface with both master and slave devices but also have
5724 * separate SCR register sets for each device. These controllers
5725 * need separate links for physical link handling
5726 * (e.g. onlineness, link speed) but should be treated like a
5727 * traditional M/S controller for everything else (e.g. command
5728 * issue, softreset).
5730 * slave_link is libata's way of handling this class of
5731 * controllers without impacting core layer too much. For
5732 * anything other than physical link handling, the default host
5733 * link is used for both master and slave. For physical link
5734 * handling, separate @ap->slave_link is used. All dirty details
5735 * are implemented inside libata core layer. From LLD's POV, the
5736 * only difference is that prereset, hardreset and postreset are
5737 * called once more for the slave link, so the reset sequence
5738 * looks like the following.
5740 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5741 * softreset(M) -> postreset(M) -> postreset(S)
5743 * Note that softreset is called only for the master. Softreset
5744 * resets both M/S by definition, so SRST on master should handle
5745 * both (the standard method will work just fine).
5747 * LOCKING:
5748 * Should be called before host is registered.
5750 * RETURNS:
5751 * 0 on success, -errno on failure.
5753 int ata_slave_link_init(struct ata_port *ap)
5755 struct ata_link *link;
5757 WARN_ON(ap->slave_link);
5758 WARN_ON(ap->flags & ATA_FLAG_PMP);
5760 link = kzalloc(sizeof(*link), GFP_KERNEL);
5761 if (!link)
5762 return -ENOMEM;
5764 ata_link_init(ap, link, 1);
5765 ap->slave_link = link;
5766 return 0;
5769 static void ata_host_stop(struct device *gendev, void *res)
5771 struct ata_host *host = dev_get_drvdata(gendev);
5772 int i;
5774 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5776 for (i = 0; i < host->n_ports; i++) {
5777 struct ata_port *ap = host->ports[i];
5779 if (ap->ops->port_stop)
5780 ap->ops->port_stop(ap);
5783 if (host->ops->host_stop)
5784 host->ops->host_stop(host);
5788 * ata_finalize_port_ops - finalize ata_port_operations
5789 * @ops: ata_port_operations to finalize
5791 * An ata_port_operations can inherit from another ops and that
5792 * ops can again inherit from another. This can go on as many
5793 * times as necessary as long as there is no loop in the
5794 * inheritance chain.
5796 * Ops tables are finalized when the host is started. NULL or
5797 * unspecified entries are inherited from the closet ancestor
5798 * which has the method and the entry is populated with it.
5799 * After finalization, the ops table directly points to all the
5800 * methods and ->inherits is no longer necessary and cleared.
5802 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5804 * LOCKING:
5805 * None.
5807 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5809 static DEFINE_SPINLOCK(lock);
5810 const struct ata_port_operations *cur;
5811 void **begin = (void **)ops;
5812 void **end = (void **)&ops->inherits;
5813 void **pp;
5815 if (!ops || !ops->inherits)
5816 return;
5818 spin_lock(&lock);
5820 for (cur = ops->inherits; cur; cur = cur->inherits) {
5821 void **inherit = (void **)cur;
5823 for (pp = begin; pp < end; pp++, inherit++)
5824 if (!*pp)
5825 *pp = *inherit;
5828 for (pp = begin; pp < end; pp++)
5829 if (IS_ERR(*pp))
5830 *pp = NULL;
5832 ops->inherits = NULL;
5834 spin_unlock(&lock);
5838 * ata_host_start - start and freeze ports of an ATA host
5839 * @host: ATA host to start ports for
5841 * Start and then freeze ports of @host. Started status is
5842 * recorded in host->flags, so this function can be called
5843 * multiple times. Ports are guaranteed to get started only
5844 * once. If host->ops isn't initialized yet, its set to the
5845 * first non-dummy port ops.
5847 * LOCKING:
5848 * Inherited from calling layer (may sleep).
5850 * RETURNS:
5851 * 0 if all ports are started successfully, -errno otherwise.
5853 int ata_host_start(struct ata_host *host)
5855 int have_stop = 0;
5856 void *start_dr = NULL;
5857 int i, rc;
5859 if (host->flags & ATA_HOST_STARTED)
5860 return 0;
5862 ata_finalize_port_ops(host->ops);
5864 for (i = 0; i < host->n_ports; i++) {
5865 struct ata_port *ap = host->ports[i];
5867 ata_finalize_port_ops(ap->ops);
5869 if (!host->ops && !ata_port_is_dummy(ap))
5870 host->ops = ap->ops;
5872 if (ap->ops->port_stop)
5873 have_stop = 1;
5876 if (host->ops->host_stop)
5877 have_stop = 1;
5879 if (have_stop) {
5880 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5881 if (!start_dr)
5882 return -ENOMEM;
5885 for (i = 0; i < host->n_ports; i++) {
5886 struct ata_port *ap = host->ports[i];
5888 if (ap->ops->port_start) {
5889 rc = ap->ops->port_start(ap);
5890 if (rc) {
5891 if (rc != -ENODEV)
5892 dev_err(host->dev,
5893 "failed to start port %d (errno=%d)\n",
5894 i, rc);
5895 goto err_out;
5898 ata_eh_freeze_port(ap);
5901 if (start_dr)
5902 devres_add(host->dev, start_dr);
5903 host->flags |= ATA_HOST_STARTED;
5904 return 0;
5906 err_out:
5907 while (--i >= 0) {
5908 struct ata_port *ap = host->ports[i];
5910 if (ap->ops->port_stop)
5911 ap->ops->port_stop(ap);
5913 devres_free(start_dr);
5914 return rc;
5918 * ata_sas_host_init - Initialize a host struct
5919 * @host: host to initialize
5920 * @dev: device host is attached to
5921 * @flags: host flags
5922 * @ops: port_ops
5924 * LOCKING:
5925 * PCI/etc. bus probe sem.
5928 /* KILLME - the only user left is ipr */
5929 void ata_host_init(struct ata_host *host, struct device *dev,
5930 unsigned long flags, struct ata_port_operations *ops)
5932 spin_lock_init(&host->lock);
5933 mutex_init(&host->eh_mutex);
5934 host->dev = dev;
5935 host->flags = flags;
5936 host->ops = ops;
5939 int ata_port_probe(struct ata_port *ap)
5941 int rc = 0;
5943 /* probe */
5944 if (ap->ops->error_handler) {
5945 struct ata_eh_info *ehi = &ap->link.eh_info;
5946 unsigned long flags;
5948 /* kick EH for boot probing */
5949 spin_lock_irqsave(ap->lock, flags);
5951 ehi->probe_mask |= ATA_ALL_DEVICES;
5952 ehi->action |= ATA_EH_RESET;
5953 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5955 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5956 ap->pflags |= ATA_PFLAG_LOADING;
5957 ata_port_schedule_eh(ap);
5959 spin_unlock_irqrestore(ap->lock, flags);
5961 /* wait for EH to finish */
5962 ata_port_wait_eh(ap);
5963 } else {
5964 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5965 rc = ata_bus_probe(ap);
5966 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5968 return rc;
5972 static void async_port_probe(void *data, async_cookie_t cookie)
5974 struct ata_port *ap = data;
5977 * If we're not allowed to scan this host in parallel,
5978 * we need to wait until all previous scans have completed
5979 * before going further.
5980 * Jeff Garzik says this is only within a controller, so we
5981 * don't need to wait for port 0, only for later ports.
5983 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5984 async_synchronize_cookie(cookie);
5986 (void)ata_port_probe(ap);
5988 /* in order to keep device order, we need to synchronize at this point */
5989 async_synchronize_cookie(cookie);
5991 ata_scsi_scan_host(ap, 1);
5995 * ata_host_register - register initialized ATA host
5996 * @host: ATA host to register
5997 * @sht: template for SCSI host
5999 * Register initialized ATA host. @host is allocated using
6000 * ata_host_alloc() and fully initialized by LLD. This function
6001 * starts ports, registers @host with ATA and SCSI layers and
6002 * probe registered devices.
6004 * LOCKING:
6005 * Inherited from calling layer (may sleep).
6007 * RETURNS:
6008 * 0 on success, -errno otherwise.
6010 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6012 int i, rc;
6014 /* host must have been started */
6015 if (!(host->flags & ATA_HOST_STARTED)) {
6016 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6017 WARN_ON(1);
6018 return -EINVAL;
6021 /* Blow away unused ports. This happens when LLD can't
6022 * determine the exact number of ports to allocate at
6023 * allocation time.
6025 for (i = host->n_ports; host->ports[i]; i++)
6026 kfree(host->ports[i]);
6028 /* give ports names and add SCSI hosts */
6029 for (i = 0; i < host->n_ports; i++)
6030 host->ports[i]->print_id = ata_print_id++;
6033 /* Create associated sysfs transport objects */
6034 for (i = 0; i < host->n_ports; i++) {
6035 rc = ata_tport_add(host->dev,host->ports[i]);
6036 if (rc) {
6037 goto err_tadd;
6041 rc = ata_scsi_add_hosts(host, sht);
6042 if (rc)
6043 goto err_tadd;
6045 /* associate with ACPI nodes */
6046 ata_acpi_associate(host);
6048 /* set cable, sata_spd_limit and report */
6049 for (i = 0; i < host->n_ports; i++) {
6050 struct ata_port *ap = host->ports[i];
6051 unsigned long xfer_mask;
6053 /* set SATA cable type if still unset */
6054 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6055 ap->cbl = ATA_CBL_SATA;
6057 /* init sata_spd_limit to the current value */
6058 sata_link_init_spd(&ap->link);
6059 if (ap->slave_link)
6060 sata_link_init_spd(ap->slave_link);
6062 /* print per-port info to dmesg */
6063 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6064 ap->udma_mask);
6066 if (!ata_port_is_dummy(ap)) {
6067 ata_port_info(ap, "%cATA max %s %s\n",
6068 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6069 ata_mode_string(xfer_mask),
6070 ap->link.eh_info.desc);
6071 ata_ehi_clear_desc(&ap->link.eh_info);
6072 } else
6073 ata_port_info(ap, "DUMMY\n");
6076 /* perform each probe asynchronously */
6077 for (i = 0; i < host->n_ports; i++) {
6078 struct ata_port *ap = host->ports[i];
6079 async_schedule(async_port_probe, ap);
6082 return 0;
6084 err_tadd:
6085 while (--i >= 0) {
6086 ata_tport_delete(host->ports[i]);
6088 return rc;
6093 * ata_host_activate - start host, request IRQ and register it
6094 * @host: target ATA host
6095 * @irq: IRQ to request
6096 * @irq_handler: irq_handler used when requesting IRQ
6097 * @irq_flags: irq_flags used when requesting IRQ
6098 * @sht: scsi_host_template to use when registering the host
6100 * After allocating an ATA host and initializing it, most libata
6101 * LLDs perform three steps to activate the host - start host,
6102 * request IRQ and register it. This helper takes necessasry
6103 * arguments and performs the three steps in one go.
6105 * An invalid IRQ skips the IRQ registration and expects the host to
6106 * have set polling mode on the port. In this case, @irq_handler
6107 * should be NULL.
6109 * LOCKING:
6110 * Inherited from calling layer (may sleep).
6112 * RETURNS:
6113 * 0 on success, -errno otherwise.
6115 int ata_host_activate(struct ata_host *host, int irq,
6116 irq_handler_t irq_handler, unsigned long irq_flags,
6117 struct scsi_host_template *sht)
6119 int i, rc;
6121 rc = ata_host_start(host);
6122 if (rc)
6123 return rc;
6125 /* Special case for polling mode */
6126 if (!irq) {
6127 WARN_ON(irq_handler);
6128 return ata_host_register(host, sht);
6131 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6132 dev_driver_string(host->dev), host);
6133 if (rc)
6134 return rc;
6136 for (i = 0; i < host->n_ports; i++)
6137 ata_port_desc(host->ports[i], "irq %d", irq);
6139 rc = ata_host_register(host, sht);
6140 /* if failed, just free the IRQ and leave ports alone */
6141 if (rc)
6142 devm_free_irq(host->dev, irq, host);
6144 return rc;
6148 * ata_port_detach - Detach ATA port in prepration of device removal
6149 * @ap: ATA port to be detached
6151 * Detach all ATA devices and the associated SCSI devices of @ap;
6152 * then, remove the associated SCSI host. @ap is guaranteed to
6153 * be quiescent on return from this function.
6155 * LOCKING:
6156 * Kernel thread context (may sleep).
6158 static void ata_port_detach(struct ata_port *ap)
6160 unsigned long flags;
6162 if (!ap->ops->error_handler)
6163 goto skip_eh;
6165 /* tell EH we're leaving & flush EH */
6166 spin_lock_irqsave(ap->lock, flags);
6167 ap->pflags |= ATA_PFLAG_UNLOADING;
6168 ata_port_schedule_eh(ap);
6169 spin_unlock_irqrestore(ap->lock, flags);
6171 /* wait till EH commits suicide */
6172 ata_port_wait_eh(ap);
6174 /* it better be dead now */
6175 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6177 cancel_delayed_work_sync(&ap->hotplug_task);
6179 skip_eh:
6180 if (ap->pmp_link) {
6181 int i;
6182 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6183 ata_tlink_delete(&ap->pmp_link[i]);
6185 ata_tport_delete(ap);
6187 /* remove the associated SCSI host */
6188 scsi_remove_host(ap->scsi_host);
6192 * ata_host_detach - Detach all ports of an ATA host
6193 * @host: Host to detach
6195 * Detach all ports of @host.
6197 * LOCKING:
6198 * Kernel thread context (may sleep).
6200 void ata_host_detach(struct ata_host *host)
6202 int i;
6204 for (i = 0; i < host->n_ports; i++)
6205 ata_port_detach(host->ports[i]);
6207 /* the host is dead now, dissociate ACPI */
6208 ata_acpi_dissociate(host);
6211 #ifdef CONFIG_PCI
6214 * ata_pci_remove_one - PCI layer callback for device removal
6215 * @pdev: PCI device that was removed
6217 * PCI layer indicates to libata via this hook that hot-unplug or
6218 * module unload event has occurred. Detach all ports. Resource
6219 * release is handled via devres.
6221 * LOCKING:
6222 * Inherited from PCI layer (may sleep).
6224 void ata_pci_remove_one(struct pci_dev *pdev)
6226 struct device *dev = &pdev->dev;
6227 struct ata_host *host = dev_get_drvdata(dev);
6229 ata_host_detach(host);
6232 /* move to PCI subsystem */
6233 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6235 unsigned long tmp = 0;
6237 switch (bits->width) {
6238 case 1: {
6239 u8 tmp8 = 0;
6240 pci_read_config_byte(pdev, bits->reg, &tmp8);
6241 tmp = tmp8;
6242 break;
6244 case 2: {
6245 u16 tmp16 = 0;
6246 pci_read_config_word(pdev, bits->reg, &tmp16);
6247 tmp = tmp16;
6248 break;
6250 case 4: {
6251 u32 tmp32 = 0;
6252 pci_read_config_dword(pdev, bits->reg, &tmp32);
6253 tmp = tmp32;
6254 break;
6257 default:
6258 return -EINVAL;
6261 tmp &= bits->mask;
6263 return (tmp == bits->val) ? 1 : 0;
6266 #ifdef CONFIG_PM
6267 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6269 pci_save_state(pdev);
6270 pci_disable_device(pdev);
6272 if (mesg.event & PM_EVENT_SLEEP)
6273 pci_set_power_state(pdev, PCI_D3hot);
6276 int ata_pci_device_do_resume(struct pci_dev *pdev)
6278 int rc;
6280 pci_set_power_state(pdev, PCI_D0);
6281 pci_restore_state(pdev);
6283 rc = pcim_enable_device(pdev);
6284 if (rc) {
6285 dev_err(&pdev->dev,
6286 "failed to enable device after resume (%d)\n", rc);
6287 return rc;
6290 pci_set_master(pdev);
6291 return 0;
6294 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6296 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6297 int rc = 0;
6299 rc = ata_host_suspend(host, mesg);
6300 if (rc)
6301 return rc;
6303 ata_pci_device_do_suspend(pdev, mesg);
6305 return 0;
6308 int ata_pci_device_resume(struct pci_dev *pdev)
6310 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6311 int rc;
6313 rc = ata_pci_device_do_resume(pdev);
6314 if (rc == 0)
6315 ata_host_resume(host);
6316 return rc;
6318 #endif /* CONFIG_PM */
6320 #endif /* CONFIG_PCI */
6322 static int __init ata_parse_force_one(char **cur,
6323 struct ata_force_ent *force_ent,
6324 const char **reason)
6326 /* FIXME: Currently, there's no way to tag init const data and
6327 * using __initdata causes build failure on some versions of
6328 * gcc. Once __initdataconst is implemented, add const to the
6329 * following structure.
6331 static struct ata_force_param force_tbl[] __initdata = {
6332 { "40c", .cbl = ATA_CBL_PATA40 },
6333 { "80c", .cbl = ATA_CBL_PATA80 },
6334 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6335 { "unk", .cbl = ATA_CBL_PATA_UNK },
6336 { "ign", .cbl = ATA_CBL_PATA_IGN },
6337 { "sata", .cbl = ATA_CBL_SATA },
6338 { "1.5Gbps", .spd_limit = 1 },
6339 { "3.0Gbps", .spd_limit = 2 },
6340 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6341 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6342 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6343 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6344 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6345 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6346 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6347 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6348 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6349 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6350 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6351 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6352 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6353 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6354 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6355 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6356 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6357 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6358 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6359 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6360 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6361 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6362 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6363 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6364 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6365 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6366 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6367 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6368 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6369 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6370 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6371 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6372 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6373 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6374 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6375 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6376 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6377 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6378 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6379 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6381 char *start = *cur, *p = *cur;
6382 char *id, *val, *endp;
6383 const struct ata_force_param *match_fp = NULL;
6384 int nr_matches = 0, i;
6386 /* find where this param ends and update *cur */
6387 while (*p != '\0' && *p != ',')
6388 p++;
6390 if (*p == '\0')
6391 *cur = p;
6392 else
6393 *cur = p + 1;
6395 *p = '\0';
6397 /* parse */
6398 p = strchr(start, ':');
6399 if (!p) {
6400 val = strstrip(start);
6401 goto parse_val;
6403 *p = '\0';
6405 id = strstrip(start);
6406 val = strstrip(p + 1);
6408 /* parse id */
6409 p = strchr(id, '.');
6410 if (p) {
6411 *p++ = '\0';
6412 force_ent->device = simple_strtoul(p, &endp, 10);
6413 if (p == endp || *endp != '\0') {
6414 *reason = "invalid device";
6415 return -EINVAL;
6419 force_ent->port = simple_strtoul(id, &endp, 10);
6420 if (p == endp || *endp != '\0') {
6421 *reason = "invalid port/link";
6422 return -EINVAL;
6425 parse_val:
6426 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6427 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6428 const struct ata_force_param *fp = &force_tbl[i];
6430 if (strncasecmp(val, fp->name, strlen(val)))
6431 continue;
6433 nr_matches++;
6434 match_fp = fp;
6436 if (strcasecmp(val, fp->name) == 0) {
6437 nr_matches = 1;
6438 break;
6442 if (!nr_matches) {
6443 *reason = "unknown value";
6444 return -EINVAL;
6446 if (nr_matches > 1) {
6447 *reason = "ambigious value";
6448 return -EINVAL;
6451 force_ent->param = *match_fp;
6453 return 0;
6456 static void __init ata_parse_force_param(void)
6458 int idx = 0, size = 1;
6459 int last_port = -1, last_device = -1;
6460 char *p, *cur, *next;
6462 /* calculate maximum number of params and allocate force_tbl */
6463 for (p = ata_force_param_buf; *p; p++)
6464 if (*p == ',')
6465 size++;
6467 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6468 if (!ata_force_tbl) {
6469 printk(KERN_WARNING "ata: failed to extend force table, "
6470 "libata.force ignored\n");
6471 return;
6474 /* parse and populate the table */
6475 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6476 const char *reason = "";
6477 struct ata_force_ent te = { .port = -1, .device = -1 };
6479 next = cur;
6480 if (ata_parse_force_one(&next, &te, &reason)) {
6481 printk(KERN_WARNING "ata: failed to parse force "
6482 "parameter \"%s\" (%s)\n",
6483 cur, reason);
6484 continue;
6487 if (te.port == -1) {
6488 te.port = last_port;
6489 te.device = last_device;
6492 ata_force_tbl[idx++] = te;
6494 last_port = te.port;
6495 last_device = te.device;
6498 ata_force_tbl_size = idx;
6501 static int __init ata_init(void)
6503 int rc;
6505 ata_parse_force_param();
6507 rc = ata_sff_init();
6508 if (rc) {
6509 kfree(ata_force_tbl);
6510 return rc;
6513 libata_transport_init();
6514 ata_scsi_transport_template = ata_attach_transport();
6515 if (!ata_scsi_transport_template) {
6516 ata_sff_exit();
6517 rc = -ENOMEM;
6518 goto err_out;
6521 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6522 return 0;
6524 err_out:
6525 return rc;
6528 static void __exit ata_exit(void)
6530 ata_release_transport(ata_scsi_transport_template);
6531 libata_transport_exit();
6532 ata_sff_exit();
6533 kfree(ata_force_tbl);
6536 subsys_initcall(ata_init);
6537 module_exit(ata_exit);
6539 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6541 int ata_ratelimit(void)
6543 return __ratelimit(&ratelimit);
6547 * ata_msleep - ATA EH owner aware msleep
6548 * @ap: ATA port to attribute the sleep to
6549 * @msecs: duration to sleep in milliseconds
6551 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6552 * ownership is released before going to sleep and reacquired
6553 * after the sleep is complete. IOW, other ports sharing the
6554 * @ap->host will be allowed to own the EH while this task is
6555 * sleeping.
6557 * LOCKING:
6558 * Might sleep.
6560 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6562 bool owns_eh = ap && ap->host->eh_owner == current;
6564 if (owns_eh)
6565 ata_eh_release(ap);
6567 msleep(msecs);
6569 if (owns_eh)
6570 ata_eh_acquire(ap);
6574 * ata_wait_register - wait until register value changes
6575 * @ap: ATA port to wait register for, can be NULL
6576 * @reg: IO-mapped register
6577 * @mask: Mask to apply to read register value
6578 * @val: Wait condition
6579 * @interval: polling interval in milliseconds
6580 * @timeout: timeout in milliseconds
6582 * Waiting for some bits of register to change is a common
6583 * operation for ATA controllers. This function reads 32bit LE
6584 * IO-mapped register @reg and tests for the following condition.
6586 * (*@reg & mask) != val
6588 * If the condition is met, it returns; otherwise, the process is
6589 * repeated after @interval_msec until timeout.
6591 * LOCKING:
6592 * Kernel thread context (may sleep)
6594 * RETURNS:
6595 * The final register value.
6597 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6598 unsigned long interval, unsigned long timeout)
6600 unsigned long deadline;
6601 u32 tmp;
6603 tmp = ioread32(reg);
6605 /* Calculate timeout _after_ the first read to make sure
6606 * preceding writes reach the controller before starting to
6607 * eat away the timeout.
6609 deadline = ata_deadline(jiffies, timeout);
6611 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6612 ata_msleep(ap, interval);
6613 tmp = ioread32(reg);
6616 return tmp;
6620 * Dummy port_ops
6622 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6624 return AC_ERR_SYSTEM;
6627 static void ata_dummy_error_handler(struct ata_port *ap)
6629 /* truly dummy */
6632 struct ata_port_operations ata_dummy_port_ops = {
6633 .qc_prep = ata_noop_qc_prep,
6634 .qc_issue = ata_dummy_qc_issue,
6635 .error_handler = ata_dummy_error_handler,
6638 const struct ata_port_info ata_dummy_port_info = {
6639 .port_ops = &ata_dummy_port_ops,
6643 * Utility print functions
6645 int ata_port_printk(const struct ata_port *ap, const char *level,
6646 const char *fmt, ...)
6648 struct va_format vaf;
6649 va_list args;
6650 int r;
6652 va_start(args, fmt);
6654 vaf.fmt = fmt;
6655 vaf.va = &args;
6657 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6659 va_end(args);
6661 return r;
6663 EXPORT_SYMBOL(ata_port_printk);
6665 int ata_link_printk(const struct ata_link *link, const char *level,
6666 const char *fmt, ...)
6668 struct va_format vaf;
6669 va_list args;
6670 int r;
6672 va_start(args, fmt);
6674 vaf.fmt = fmt;
6675 vaf.va = &args;
6677 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6678 r = printk("%sata%u.%02u: %pV",
6679 level, link->ap->print_id, link->pmp, &vaf);
6680 else
6681 r = printk("%sata%u: %pV",
6682 level, link->ap->print_id, &vaf);
6684 va_end(args);
6686 return r;
6688 EXPORT_SYMBOL(ata_link_printk);
6690 int ata_dev_printk(const struct ata_device *dev, const char *level,
6691 const char *fmt, ...)
6693 struct va_format vaf;
6694 va_list args;
6695 int r;
6697 va_start(args, fmt);
6699 vaf.fmt = fmt;
6700 vaf.va = &args;
6702 r = printk("%sata%u.%02u: %pV",
6703 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6704 &vaf);
6706 va_end(args);
6708 return r;
6710 EXPORT_SYMBOL(ata_dev_printk);
6712 void ata_print_version(const struct device *dev, const char *version)
6714 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6716 EXPORT_SYMBOL(ata_print_version);
6719 * libata is essentially a library of internal helper functions for
6720 * low-level ATA host controller drivers. As such, the API/ABI is
6721 * likely to change as new drivers are added and updated.
6722 * Do not depend on ABI/API stability.
6724 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6725 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6726 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6727 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6728 EXPORT_SYMBOL_GPL(sata_port_ops);
6729 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6730 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6731 EXPORT_SYMBOL_GPL(ata_link_next);
6732 EXPORT_SYMBOL_GPL(ata_dev_next);
6733 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6734 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6735 EXPORT_SYMBOL_GPL(ata_host_init);
6736 EXPORT_SYMBOL_GPL(ata_host_alloc);
6737 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6738 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6739 EXPORT_SYMBOL_GPL(ata_host_start);
6740 EXPORT_SYMBOL_GPL(ata_host_register);
6741 EXPORT_SYMBOL_GPL(ata_host_activate);
6742 EXPORT_SYMBOL_GPL(ata_host_detach);
6743 EXPORT_SYMBOL_GPL(ata_sg_init);
6744 EXPORT_SYMBOL_GPL(ata_qc_complete);
6745 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6746 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6747 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6748 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6749 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6750 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6751 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6752 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6753 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6754 EXPORT_SYMBOL_GPL(ata_mode_string);
6755 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6756 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6757 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6758 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6759 EXPORT_SYMBOL_GPL(ata_dev_disable);
6760 EXPORT_SYMBOL_GPL(sata_set_spd);
6761 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6762 EXPORT_SYMBOL_GPL(sata_link_debounce);
6763 EXPORT_SYMBOL_GPL(sata_link_resume);
6764 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6765 EXPORT_SYMBOL_GPL(ata_std_prereset);
6766 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6767 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6768 EXPORT_SYMBOL_GPL(ata_std_postreset);
6769 EXPORT_SYMBOL_GPL(ata_dev_classify);
6770 EXPORT_SYMBOL_GPL(ata_dev_pair);
6771 EXPORT_SYMBOL_GPL(ata_ratelimit);
6772 EXPORT_SYMBOL_GPL(ata_msleep);
6773 EXPORT_SYMBOL_GPL(ata_wait_register);
6774 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6775 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6776 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6777 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6778 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6779 EXPORT_SYMBOL_GPL(sata_scr_valid);
6780 EXPORT_SYMBOL_GPL(sata_scr_read);
6781 EXPORT_SYMBOL_GPL(sata_scr_write);
6782 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6783 EXPORT_SYMBOL_GPL(ata_link_online);
6784 EXPORT_SYMBOL_GPL(ata_link_offline);
6785 #ifdef CONFIG_PM
6786 EXPORT_SYMBOL_GPL(ata_host_suspend);
6787 EXPORT_SYMBOL_GPL(ata_host_resume);
6788 #endif /* CONFIG_PM */
6789 EXPORT_SYMBOL_GPL(ata_id_string);
6790 EXPORT_SYMBOL_GPL(ata_id_c_string);
6791 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6792 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6794 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6795 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6796 EXPORT_SYMBOL_GPL(ata_timing_compute);
6797 EXPORT_SYMBOL_GPL(ata_timing_merge);
6798 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6800 #ifdef CONFIG_PCI
6801 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6802 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6803 #ifdef CONFIG_PM
6804 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6805 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6806 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6807 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6808 #endif /* CONFIG_PM */
6809 #endif /* CONFIG_PCI */
6811 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6812 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6813 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6814 EXPORT_SYMBOL_GPL(ata_port_desc);
6815 #ifdef CONFIG_PCI
6816 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6817 #endif /* CONFIG_PCI */
6818 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6819 EXPORT_SYMBOL_GPL(ata_link_abort);
6820 EXPORT_SYMBOL_GPL(ata_port_abort);
6821 EXPORT_SYMBOL_GPL(ata_port_freeze);
6822 EXPORT_SYMBOL_GPL(sata_async_notification);
6823 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6824 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6825 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6826 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6827 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6828 EXPORT_SYMBOL_GPL(ata_do_eh);
6829 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6831 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6832 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6833 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6834 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6835 EXPORT_SYMBOL_GPL(ata_cable_sata);