4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/seq_file.h>
47 #include <linux/timer.h>
48 #include <linux/errno.h>
49 #include <linux/spinlock.h>
50 #include <linux/slab.h>
51 #include <linux/delay.h>
52 #include <linux/list.h>
53 #include <linux/pci.h>
54 #include <linux/ioport.h>
55 #include <linux/notifier.h>
56 #include <linux/mutex.h>
57 #include <linux/kthread.h>
59 #include <linux/interrupt.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ipmi.h>
62 #include <linux/ipmi_smi.h>
64 #include "ipmi_si_sm.h"
65 #include <linux/init.h>
66 #include <linux/dmi.h>
67 #include <linux/string.h>
68 #include <linux/ctype.h>
69 #include <linux/pnp.h>
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #include <linux/of_address.h>
73 #include <linux/of_irq.h>
75 #define PFX "ipmi_si: "
77 /* Measure times between events in the driver. */
80 /* Call every 10 ms. */
81 #define SI_TIMEOUT_TIME_USEC 10000
82 #define SI_USEC_PER_JIFFY (1000000/HZ)
83 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
84 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
92 SI_CLEARING_FLAGS_THEN_SET_IRQ
,
94 SI_ENABLE_INTERRUPTS1
,
95 SI_ENABLE_INTERRUPTS2
,
96 SI_DISABLE_INTERRUPTS1
,
97 SI_DISABLE_INTERRUPTS2
98 /* FIXME - add watchdog stuff. */
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107 SI_KCS
, SI_SMIC
, SI_BT
109 static char *si_to_str
[] = { "kcs", "smic", "bt" };
111 static char *ipmi_addr_src_to_str
[] = { NULL
, "hotmod", "hardcoded", "SPMI",
112 "ACPI", "SMBIOS", "PCI",
113 "device-tree", "default" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct platform_driver ipmi_driver
;
120 * Indexes into stats[] in smi_info below.
122 enum si_stat_indexes
{
124 * Number of times the driver requested a timer while an operation
127 SI_STAT_short_timeouts
= 0,
130 * Number of times the driver requested a timer while nothing was in
133 SI_STAT_long_timeouts
,
135 /* Number of times the interface was idle while being polled. */
138 /* Number of interrupts the driver handled. */
141 /* Number of time the driver got an ATTN from the hardware. */
144 /* Number of times the driver requested flags from the hardware. */
145 SI_STAT_flag_fetches
,
147 /* Number of times the hardware didn't follow the state machine. */
150 /* Number of completed messages. */
151 SI_STAT_complete_transactions
,
153 /* Number of IPMI events received from the hardware. */
156 /* Number of watchdog pretimeouts. */
157 SI_STAT_watchdog_pretimeouts
,
159 /* Number of asyncronous messages received. */
160 SI_STAT_incoming_messages
,
163 /* This *must* remain last, add new values above this. */
170 struct si_sm_data
*si_sm
;
171 struct si_sm_handlers
*handlers
;
172 enum si_type si_type
;
175 struct list_head xmit_msgs
;
176 struct list_head hp_xmit_msgs
;
177 struct ipmi_smi_msg
*curr_msg
;
178 enum si_intf_state si_state
;
181 * Used to handle the various types of I/O that can occur with
185 int (*io_setup
)(struct smi_info
*info
);
186 void (*io_cleanup
)(struct smi_info
*info
);
187 int (*irq_setup
)(struct smi_info
*info
);
188 void (*irq_cleanup
)(struct smi_info
*info
);
189 unsigned int io_size
;
190 enum ipmi_addr_src addr_source
; /* ACPI, PCI, SMBIOS, hardcode, etc. */
191 void (*addr_source_cleanup
)(struct smi_info
*info
);
192 void *addr_source_data
;
195 * Per-OEM handler, called from handle_flags(). Returns 1
196 * when handle_flags() needs to be re-run or 0 indicating it
197 * set si_state itself.
199 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 * is set to hold the flags until we are done handling everything
206 #define RECEIVE_MSG_AVAIL 0x01
207 #define EVENT_MSG_BUFFER_FULL 0x02
208 #define WDT_PRE_TIMEOUT_INT 0x08
209 #define OEM0_DATA_AVAIL 0x20
210 #define OEM1_DATA_AVAIL 0x40
211 #define OEM2_DATA_AVAIL 0x80
212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
215 unsigned char msg_flags
;
217 /* Does the BMC have an event buffer? */
218 char has_event_buffer
;
221 * If set to true, this will request events the next time the
222 * state machine is idle.
227 * If true, run the state machine to completion on every send
228 * call. Generally used after a panic to make sure stuff goes
231 int run_to_completion
;
233 /* The I/O port of an SI interface. */
237 * The space between start addresses of the two ports. For
238 * instance, if the first port is 0xca2 and the spacing is 4, then
239 * the second port is 0xca6.
241 unsigned int spacing
;
243 /* zero if no irq; */
246 /* The timer for this si. */
247 struct timer_list si_timer
;
249 /* The time (in jiffies) the last timeout occurred at. */
250 unsigned long last_timeout_jiffies
;
252 /* Used to gracefully stop the timer without race conditions. */
253 atomic_t stop_operation
;
256 * The driver will disable interrupts when it gets into a
257 * situation where it cannot handle messages due to lack of
258 * memory. Once that situation clears up, it will re-enable
261 int interrupt_disabled
;
263 /* From the get device id response... */
264 struct ipmi_device_id device_id
;
266 /* Driver model stuff. */
268 struct platform_device
*pdev
;
271 * True if we allocated the device, false if it came from
272 * someplace else (like PCI).
276 /* Slave address, could be reported from DMI. */
277 unsigned char slave_addr
;
279 /* Counters and things for the proc filesystem. */
280 atomic_t stats
[SI_NUM_STATS
];
282 struct task_struct
*thread
;
284 struct list_head link
;
285 union ipmi_smi_info_union addr_info
;
288 #define smi_inc_stat(smi, stat) \
289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
293 #define SI_MAX_PARMS 4
295 static int force_kipmid
[SI_MAX_PARMS
];
296 static int num_force_kipmid
;
298 static int pci_registered
;
301 static int pnp_registered
;
304 static unsigned int kipmid_max_busy_us
[SI_MAX_PARMS
];
305 static int num_max_busy_us
;
307 static int unload_when_empty
= 1;
309 static int add_smi(struct smi_info
*smi
);
310 static int try_smi_init(struct smi_info
*smi
);
311 static void cleanup_one_si(struct smi_info
*to_clean
);
312 static void cleanup_ipmi_si(void);
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
315 static int register_xaction_notifier(struct notifier_block
*nb
)
317 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
320 static void deliver_recv_msg(struct smi_info
*smi_info
,
321 struct ipmi_smi_msg
*msg
)
323 /* Deliver the message to the upper layer with the lock
326 if (smi_info
->run_to_completion
) {
327 ipmi_smi_msg_received(smi_info
->intf
, msg
);
329 spin_unlock(&(smi_info
->si_lock
));
330 ipmi_smi_msg_received(smi_info
->intf
, msg
);
331 spin_lock(&(smi_info
->si_lock
));
335 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
337 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
339 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
340 cCode
= IPMI_ERR_UNSPECIFIED
;
341 /* else use it as is */
343 /* Make it a response */
344 msg
->rsp
[0] = msg
->data
[0] | 4;
345 msg
->rsp
[1] = msg
->data
[1];
349 smi_info
->curr_msg
= NULL
;
350 deliver_recv_msg(smi_info
, msg
);
353 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
356 struct list_head
*entry
= NULL
;
362 * No need to save flags, we aleady have interrupts off and we
363 * already hold the SMI lock.
365 if (!smi_info
->run_to_completion
)
366 spin_lock(&(smi_info
->msg_lock
));
368 /* Pick the high priority queue first. */
369 if (!list_empty(&(smi_info
->hp_xmit_msgs
))) {
370 entry
= smi_info
->hp_xmit_msgs
.next
;
371 } else if (!list_empty(&(smi_info
->xmit_msgs
))) {
372 entry
= smi_info
->xmit_msgs
.next
;
376 smi_info
->curr_msg
= NULL
;
382 smi_info
->curr_msg
= list_entry(entry
,
387 printk(KERN_DEBUG
"**Start2: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
389 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
391 if (err
& NOTIFY_STOP_MASK
) {
392 rv
= SI_SM_CALL_WITHOUT_DELAY
;
395 err
= smi_info
->handlers
->start_transaction(
397 smi_info
->curr_msg
->data
,
398 smi_info
->curr_msg
->data_size
);
400 return_hosed_msg(smi_info
, err
);
402 rv
= SI_SM_CALL_WITHOUT_DELAY
;
405 if (!smi_info
->run_to_completion
)
406 spin_unlock(&(smi_info
->msg_lock
));
411 static void start_enable_irq(struct smi_info
*smi_info
)
413 unsigned char msg
[2];
416 * If we are enabling interrupts, we have to tell the
419 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
420 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
422 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
423 smi_info
->si_state
= SI_ENABLE_INTERRUPTS1
;
426 static void start_disable_irq(struct smi_info
*smi_info
)
428 unsigned char msg
[2];
430 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
431 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
433 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
434 smi_info
->si_state
= SI_DISABLE_INTERRUPTS1
;
437 static void start_clear_flags(struct smi_info
*smi_info
)
439 unsigned char msg
[3];
441 /* Make sure the watchdog pre-timeout flag is not set at startup. */
442 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
443 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
444 msg
[2] = WDT_PRE_TIMEOUT_INT
;
446 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
447 smi_info
->si_state
= SI_CLEARING_FLAGS
;
451 * When we have a situtaion where we run out of memory and cannot
452 * allocate messages, we just leave them in the BMC and run the system
453 * polled until we can allocate some memory. Once we have some
454 * memory, we will re-enable the interrupt.
456 static inline void disable_si_irq(struct smi_info
*smi_info
)
458 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
459 start_disable_irq(smi_info
);
460 smi_info
->interrupt_disabled
= 1;
461 if (!atomic_read(&smi_info
->stop_operation
))
462 mod_timer(&smi_info
->si_timer
,
463 jiffies
+ SI_TIMEOUT_JIFFIES
);
467 static inline void enable_si_irq(struct smi_info
*smi_info
)
469 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
470 start_enable_irq(smi_info
);
471 smi_info
->interrupt_disabled
= 0;
475 static void handle_flags(struct smi_info
*smi_info
)
478 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
479 /* Watchdog pre-timeout */
480 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
482 start_clear_flags(smi_info
);
483 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
484 spin_unlock(&(smi_info
->si_lock
));
485 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
486 spin_lock(&(smi_info
->si_lock
));
487 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
488 /* Messages available. */
489 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
490 if (!smi_info
->curr_msg
) {
491 disable_si_irq(smi_info
);
492 smi_info
->si_state
= SI_NORMAL
;
495 enable_si_irq(smi_info
);
497 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
498 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
499 smi_info
->curr_msg
->data_size
= 2;
501 smi_info
->handlers
->start_transaction(
503 smi_info
->curr_msg
->data
,
504 smi_info
->curr_msg
->data_size
);
505 smi_info
->si_state
= SI_GETTING_MESSAGES
;
506 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
507 /* Events available. */
508 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
509 if (!smi_info
->curr_msg
) {
510 disable_si_irq(smi_info
);
511 smi_info
->si_state
= SI_NORMAL
;
514 enable_si_irq(smi_info
);
516 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
517 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
518 smi_info
->curr_msg
->data_size
= 2;
520 smi_info
->handlers
->start_transaction(
522 smi_info
->curr_msg
->data
,
523 smi_info
->curr_msg
->data_size
);
524 smi_info
->si_state
= SI_GETTING_EVENTS
;
525 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
526 smi_info
->oem_data_avail_handler
) {
527 if (smi_info
->oem_data_avail_handler(smi_info
))
530 smi_info
->si_state
= SI_NORMAL
;
533 static void handle_transaction_done(struct smi_info
*smi_info
)
535 struct ipmi_smi_msg
*msg
;
540 printk(KERN_DEBUG
"**Done: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
542 switch (smi_info
->si_state
) {
544 if (!smi_info
->curr_msg
)
547 smi_info
->curr_msg
->rsp_size
548 = smi_info
->handlers
->get_result(
550 smi_info
->curr_msg
->rsp
,
551 IPMI_MAX_MSG_LENGTH
);
554 * Do this here becase deliver_recv_msg() releases the
555 * lock, and a new message can be put in during the
556 * time the lock is released.
558 msg
= smi_info
->curr_msg
;
559 smi_info
->curr_msg
= NULL
;
560 deliver_recv_msg(smi_info
, msg
);
563 case SI_GETTING_FLAGS
:
565 unsigned char msg
[4];
568 /* We got the flags from the SMI, now handle them. */
569 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
571 /* Error fetching flags, just give up for now. */
572 smi_info
->si_state
= SI_NORMAL
;
573 } else if (len
< 4) {
575 * Hmm, no flags. That's technically illegal, but
576 * don't use uninitialized data.
578 smi_info
->si_state
= SI_NORMAL
;
580 smi_info
->msg_flags
= msg
[3];
581 handle_flags(smi_info
);
586 case SI_CLEARING_FLAGS
:
587 case SI_CLEARING_FLAGS_THEN_SET_IRQ
:
589 unsigned char msg
[3];
591 /* We cleared the flags. */
592 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
594 /* Error clearing flags */
595 dev_warn(smi_info
->dev
,
596 "Error clearing flags: %2.2x\n", msg
[2]);
598 if (smi_info
->si_state
== SI_CLEARING_FLAGS_THEN_SET_IRQ
)
599 start_enable_irq(smi_info
);
601 smi_info
->si_state
= SI_NORMAL
;
605 case SI_GETTING_EVENTS
:
607 smi_info
->curr_msg
->rsp_size
608 = smi_info
->handlers
->get_result(
610 smi_info
->curr_msg
->rsp
,
611 IPMI_MAX_MSG_LENGTH
);
614 * Do this here becase deliver_recv_msg() releases the
615 * lock, and a new message can be put in during the
616 * time the lock is released.
618 msg
= smi_info
->curr_msg
;
619 smi_info
->curr_msg
= NULL
;
620 if (msg
->rsp
[2] != 0) {
621 /* Error getting event, probably done. */
624 /* Take off the event flag. */
625 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
626 handle_flags(smi_info
);
628 smi_inc_stat(smi_info
, events
);
631 * Do this before we deliver the message
632 * because delivering the message releases the
633 * lock and something else can mess with the
636 handle_flags(smi_info
);
638 deliver_recv_msg(smi_info
, msg
);
643 case SI_GETTING_MESSAGES
:
645 smi_info
->curr_msg
->rsp_size
646 = smi_info
->handlers
->get_result(
648 smi_info
->curr_msg
->rsp
,
649 IPMI_MAX_MSG_LENGTH
);
652 * Do this here becase deliver_recv_msg() releases the
653 * lock, and a new message can be put in during the
654 * time the lock is released.
656 msg
= smi_info
->curr_msg
;
657 smi_info
->curr_msg
= NULL
;
658 if (msg
->rsp
[2] != 0) {
659 /* Error getting event, probably done. */
662 /* Take off the msg flag. */
663 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
664 handle_flags(smi_info
);
666 smi_inc_stat(smi_info
, incoming_messages
);
669 * Do this before we deliver the message
670 * because delivering the message releases the
671 * lock and something else can mess with the
674 handle_flags(smi_info
);
676 deliver_recv_msg(smi_info
, msg
);
681 case SI_ENABLE_INTERRUPTS1
:
683 unsigned char msg
[4];
685 /* We got the flags from the SMI, now handle them. */
686 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
688 dev_warn(smi_info
->dev
, "Could not enable interrupts"
689 ", failed get, using polled mode.\n");
690 smi_info
->si_state
= SI_NORMAL
;
692 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
693 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
695 IPMI_BMC_RCV_MSG_INTR
|
696 IPMI_BMC_EVT_MSG_INTR
);
697 smi_info
->handlers
->start_transaction(
698 smi_info
->si_sm
, msg
, 3);
699 smi_info
->si_state
= SI_ENABLE_INTERRUPTS2
;
704 case SI_ENABLE_INTERRUPTS2
:
706 unsigned char msg
[4];
708 /* We got the flags from the SMI, now handle them. */
709 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
711 dev_warn(smi_info
->dev
, "Could not enable interrupts"
712 ", failed set, using polled mode.\n");
714 smi_info
->interrupt_disabled
= 0;
715 smi_info
->si_state
= SI_NORMAL
;
719 case SI_DISABLE_INTERRUPTS1
:
721 unsigned char msg
[4];
723 /* We got the flags from the SMI, now handle them. */
724 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
726 dev_warn(smi_info
->dev
, "Could not disable interrupts"
728 smi_info
->si_state
= SI_NORMAL
;
730 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
731 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
733 ~(IPMI_BMC_RCV_MSG_INTR
|
734 IPMI_BMC_EVT_MSG_INTR
));
735 smi_info
->handlers
->start_transaction(
736 smi_info
->si_sm
, msg
, 3);
737 smi_info
->si_state
= SI_DISABLE_INTERRUPTS2
;
742 case SI_DISABLE_INTERRUPTS2
:
744 unsigned char msg
[4];
746 /* We got the flags from the SMI, now handle them. */
747 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
749 dev_warn(smi_info
->dev
, "Could not disable interrupts"
752 smi_info
->si_state
= SI_NORMAL
;
759 * Called on timeouts and events. Timeouts should pass the elapsed
760 * time, interrupts should pass in zero. Must be called with
761 * si_lock held and interrupts disabled.
763 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
766 enum si_sm_result si_sm_result
;
770 * There used to be a loop here that waited a little while
771 * (around 25us) before giving up. That turned out to be
772 * pointless, the minimum delays I was seeing were in the 300us
773 * range, which is far too long to wait in an interrupt. So
774 * we just run until the state machine tells us something
775 * happened or it needs a delay.
777 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
779 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
780 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
782 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
783 smi_inc_stat(smi_info
, complete_transactions
);
785 handle_transaction_done(smi_info
);
786 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
787 } else if (si_sm_result
== SI_SM_HOSED
) {
788 smi_inc_stat(smi_info
, hosed_count
);
791 * Do the before return_hosed_msg, because that
794 smi_info
->si_state
= SI_NORMAL
;
795 if (smi_info
->curr_msg
!= NULL
) {
797 * If we were handling a user message, format
798 * a response to send to the upper layer to
799 * tell it about the error.
801 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
803 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
807 * We prefer handling attn over new messages. But don't do
808 * this if there is not yet an upper layer to handle anything.
810 if (likely(smi_info
->intf
) && si_sm_result
== SI_SM_ATTN
) {
811 unsigned char msg
[2];
813 smi_inc_stat(smi_info
, attentions
);
816 * Got a attn, send down a get message flags to see
817 * what's causing it. It would be better to handle
818 * this in the upper layer, but due to the way
819 * interrupts work with the SMI, that's not really
822 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
823 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
825 smi_info
->handlers
->start_transaction(
826 smi_info
->si_sm
, msg
, 2);
827 smi_info
->si_state
= SI_GETTING_FLAGS
;
831 /* If we are currently idle, try to start the next message. */
832 if (si_sm_result
== SI_SM_IDLE
) {
833 smi_inc_stat(smi_info
, idles
);
835 si_sm_result
= start_next_msg(smi_info
);
836 if (si_sm_result
!= SI_SM_IDLE
)
840 if ((si_sm_result
== SI_SM_IDLE
)
841 && (atomic_read(&smi_info
->req_events
))) {
843 * We are idle and the upper layer requested that I fetch
846 atomic_set(&smi_info
->req_events
, 0);
848 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
849 if (!smi_info
->curr_msg
)
852 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
853 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
854 smi_info
->curr_msg
->data_size
= 2;
856 smi_info
->handlers
->start_transaction(
858 smi_info
->curr_msg
->data
,
859 smi_info
->curr_msg
->data_size
);
860 smi_info
->si_state
= SI_GETTING_EVENTS
;
867 static void sender(void *send_info
,
868 struct ipmi_smi_msg
*msg
,
871 struct smi_info
*smi_info
= send_info
;
872 enum si_sm_result result
;
878 if (atomic_read(&smi_info
->stop_operation
)) {
879 msg
->rsp
[0] = msg
->data
[0] | 4;
880 msg
->rsp
[1] = msg
->data
[1];
881 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
883 deliver_recv_msg(smi_info
, msg
);
889 printk("**Enqueue: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
893 * last_timeout_jiffies is updated here to avoid
894 * smi_timeout() handler passing very large time_diff
895 * value to smi_event_handler() that causes
896 * the send command to abort.
898 smi_info
->last_timeout_jiffies
= jiffies
;
900 mod_timer(&smi_info
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
902 if (smi_info
->thread
)
903 wake_up_process(smi_info
->thread
);
905 if (smi_info
->run_to_completion
) {
907 * If we are running to completion, then throw it in
908 * the list and run transactions until everything is
909 * clear. Priority doesn't matter here.
913 * Run to completion means we are single-threaded, no
916 list_add_tail(&(msg
->link
), &(smi_info
->xmit_msgs
));
918 result
= smi_event_handler(smi_info
, 0);
919 while (result
!= SI_SM_IDLE
) {
920 udelay(SI_SHORT_TIMEOUT_USEC
);
921 result
= smi_event_handler(smi_info
,
922 SI_SHORT_TIMEOUT_USEC
);
927 spin_lock_irqsave(&smi_info
->msg_lock
, flags
);
929 list_add_tail(&msg
->link
, &smi_info
->hp_xmit_msgs
);
931 list_add_tail(&msg
->link
, &smi_info
->xmit_msgs
);
932 spin_unlock_irqrestore(&smi_info
->msg_lock
, flags
);
934 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
935 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
)
936 start_next_msg(smi_info
);
937 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
940 static void set_run_to_completion(void *send_info
, int i_run_to_completion
)
942 struct smi_info
*smi_info
= send_info
;
943 enum si_sm_result result
;
945 smi_info
->run_to_completion
= i_run_to_completion
;
946 if (i_run_to_completion
) {
947 result
= smi_event_handler(smi_info
, 0);
948 while (result
!= SI_SM_IDLE
) {
949 udelay(SI_SHORT_TIMEOUT_USEC
);
950 result
= smi_event_handler(smi_info
,
951 SI_SHORT_TIMEOUT_USEC
);
957 * Use -1 in the nsec value of the busy waiting timespec to tell that
958 * we are spinning in kipmid looking for something and not delaying
961 static inline void ipmi_si_set_not_busy(struct timespec
*ts
)
965 static inline int ipmi_si_is_busy(struct timespec
*ts
)
967 return ts
->tv_nsec
!= -1;
970 static int ipmi_thread_busy_wait(enum si_sm_result smi_result
,
971 const struct smi_info
*smi_info
,
972 struct timespec
*busy_until
)
974 unsigned int max_busy_us
= 0;
976 if (smi_info
->intf_num
< num_max_busy_us
)
977 max_busy_us
= kipmid_max_busy_us
[smi_info
->intf_num
];
978 if (max_busy_us
== 0 || smi_result
!= SI_SM_CALL_WITH_DELAY
)
979 ipmi_si_set_not_busy(busy_until
);
980 else if (!ipmi_si_is_busy(busy_until
)) {
981 getnstimeofday(busy_until
);
982 timespec_add_ns(busy_until
, max_busy_us
*NSEC_PER_USEC
);
985 getnstimeofday(&now
);
986 if (unlikely(timespec_compare(&now
, busy_until
) > 0)) {
987 ipmi_si_set_not_busy(busy_until
);
996 * A busy-waiting loop for speeding up IPMI operation.
998 * Lousy hardware makes this hard. This is only enabled for systems
999 * that are not BT and do not have interrupts. It starts spinning
1000 * when an operation is complete or until max_busy tells it to stop
1001 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1002 * Documentation/IPMI.txt for details.
1004 static int ipmi_thread(void *data
)
1006 struct smi_info
*smi_info
= data
;
1007 unsigned long flags
;
1008 enum si_sm_result smi_result
;
1009 struct timespec busy_until
;
1011 ipmi_si_set_not_busy(&busy_until
);
1012 set_user_nice(current
, 19);
1013 while (!kthread_should_stop()) {
1016 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1017 smi_result
= smi_event_handler(smi_info
, 0);
1018 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1019 busy_wait
= ipmi_thread_busy_wait(smi_result
, smi_info
,
1021 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
1023 else if (smi_result
== SI_SM_CALL_WITH_DELAY
&& busy_wait
)
1025 else if (smi_result
== SI_SM_IDLE
)
1026 schedule_timeout_interruptible(100);
1028 schedule_timeout_interruptible(1);
1034 static void poll(void *send_info
)
1036 struct smi_info
*smi_info
= send_info
;
1037 unsigned long flags
;
1040 * Make sure there is some delay in the poll loop so we can
1041 * drive time forward and timeout things.
1044 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
1045 smi_event_handler(smi_info
, 10);
1046 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
1049 static void request_events(void *send_info
)
1051 struct smi_info
*smi_info
= send_info
;
1053 if (atomic_read(&smi_info
->stop_operation
) ||
1054 !smi_info
->has_event_buffer
)
1057 atomic_set(&smi_info
->req_events
, 1);
1060 static int initialized
;
1062 static void smi_timeout(unsigned long data
)
1064 struct smi_info
*smi_info
= (struct smi_info
*) data
;
1065 enum si_sm_result smi_result
;
1066 unsigned long flags
;
1067 unsigned long jiffies_now
;
1074 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1076 do_gettimeofday(&t
);
1077 printk(KERN_DEBUG
"**Timer: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1079 jiffies_now
= jiffies
;
1080 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
1081 * SI_USEC_PER_JIFFY
);
1082 smi_result
= smi_event_handler(smi_info
, time_diff
);
1084 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1086 smi_info
->last_timeout_jiffies
= jiffies_now
;
1088 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1089 /* Running with interrupts, only do long timeouts. */
1090 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1091 smi_inc_stat(smi_info
, long_timeouts
);
1096 * If the state machine asks for a short delay, then shorten
1097 * the timer timeout.
1099 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1100 smi_inc_stat(smi_info
, short_timeouts
);
1101 timeout
= jiffies
+ 1;
1103 smi_inc_stat(smi_info
, long_timeouts
);
1104 timeout
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1108 if (smi_result
!= SI_SM_IDLE
)
1109 mod_timer(&(smi_info
->si_timer
), timeout
);
1112 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1114 struct smi_info
*smi_info
= data
;
1115 unsigned long flags
;
1120 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1122 smi_inc_stat(smi_info
, interrupts
);
1125 do_gettimeofday(&t
);
1126 printk(KERN_DEBUG
"**Interrupt: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1128 smi_event_handler(smi_info
, 0);
1129 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1133 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1135 struct smi_info
*smi_info
= data
;
1136 /* We need to clear the IRQ flag for the BT interface. */
1137 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1138 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1139 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1140 return si_irq_handler(irq
, data
);
1143 static int smi_start_processing(void *send_info
,
1146 struct smi_info
*new_smi
= send_info
;
1149 new_smi
->intf
= intf
;
1151 /* Try to claim any interrupts. */
1152 if (new_smi
->irq_setup
)
1153 new_smi
->irq_setup(new_smi
);
1155 /* Set up the timer that drives the interface. */
1156 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1157 new_smi
->last_timeout_jiffies
= jiffies
;
1158 mod_timer(&new_smi
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1161 * Check if the user forcefully enabled the daemon.
1163 if (new_smi
->intf_num
< num_force_kipmid
)
1164 enable
= force_kipmid
[new_smi
->intf_num
];
1166 * The BT interface is efficient enough to not need a thread,
1167 * and there is no need for a thread if we have interrupts.
1169 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1173 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1174 "kipmi%d", new_smi
->intf_num
);
1175 if (IS_ERR(new_smi
->thread
)) {
1176 dev_notice(new_smi
->dev
, "Could not start"
1177 " kernel thread due to error %ld, only using"
1178 " timers to drive the interface\n",
1179 PTR_ERR(new_smi
->thread
));
1180 new_smi
->thread
= NULL
;
1187 static int get_smi_info(void *send_info
, struct ipmi_smi_info
*data
)
1189 struct smi_info
*smi
= send_info
;
1191 data
->addr_src
= smi
->addr_source
;
1192 data
->dev
= smi
->dev
;
1193 data
->addr_info
= smi
->addr_info
;
1194 get_device(smi
->dev
);
1199 static void set_maintenance_mode(void *send_info
, int enable
)
1201 struct smi_info
*smi_info
= send_info
;
1204 atomic_set(&smi_info
->req_events
, 0);
1207 static struct ipmi_smi_handlers handlers
= {
1208 .owner
= THIS_MODULE
,
1209 .start_processing
= smi_start_processing
,
1210 .get_smi_info
= get_smi_info
,
1212 .request_events
= request_events
,
1213 .set_maintenance_mode
= set_maintenance_mode
,
1214 .set_run_to_completion
= set_run_to_completion
,
1219 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1220 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1223 static LIST_HEAD(smi_infos
);
1224 static DEFINE_MUTEX(smi_infos_lock
);
1225 static int smi_num
; /* Used to sequence the SMIs */
1227 #define DEFAULT_REGSPACING 1
1228 #define DEFAULT_REGSIZE 1
1230 static bool si_trydefaults
= 1;
1231 static char *si_type
[SI_MAX_PARMS
];
1232 #define MAX_SI_TYPE_STR 30
1233 static char si_type_str
[MAX_SI_TYPE_STR
];
1234 static unsigned long addrs
[SI_MAX_PARMS
];
1235 static unsigned int num_addrs
;
1236 static unsigned int ports
[SI_MAX_PARMS
];
1237 static unsigned int num_ports
;
1238 static int irqs
[SI_MAX_PARMS
];
1239 static unsigned int num_irqs
;
1240 static int regspacings
[SI_MAX_PARMS
];
1241 static unsigned int num_regspacings
;
1242 static int regsizes
[SI_MAX_PARMS
];
1243 static unsigned int num_regsizes
;
1244 static int regshifts
[SI_MAX_PARMS
];
1245 static unsigned int num_regshifts
;
1246 static int slave_addrs
[SI_MAX_PARMS
]; /* Leaving 0 chooses the default value */
1247 static unsigned int num_slave_addrs
;
1249 #define IPMI_IO_ADDR_SPACE 0
1250 #define IPMI_MEM_ADDR_SPACE 1
1251 static char *addr_space_to_str
[] = { "i/o", "mem" };
1253 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1255 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1256 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1257 " Documentation/IPMI.txt in the kernel sources for the"
1260 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1261 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1262 " default scan of the KCS and SMIC interface at the standard"
1264 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1265 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1266 " interface separated by commas. The types are 'kcs',"
1267 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1268 " the first interface to kcs and the second to bt");
1269 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1270 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1271 " addresses separated by commas. Only use if an interface"
1272 " is in memory. Otherwise, set it to zero or leave"
1274 module_param_array(ports
, uint
, &num_ports
, 0);
1275 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1276 " addresses separated by commas. Only use if an interface"
1277 " is a port. Otherwise, set it to zero or leave"
1279 module_param_array(irqs
, int, &num_irqs
, 0);
1280 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1281 " addresses separated by commas. Only use if an interface"
1282 " has an interrupt. Otherwise, set it to zero or leave"
1284 module_param_array(regspacings
, int, &num_regspacings
, 0);
1285 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1286 " and each successive register used by the interface. For"
1287 " instance, if the start address is 0xca2 and the spacing"
1288 " is 2, then the second address is at 0xca4. Defaults"
1290 module_param_array(regsizes
, int, &num_regsizes
, 0);
1291 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1292 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1293 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1294 " the 8-bit IPMI register has to be read from a larger"
1296 module_param_array(regshifts
, int, &num_regshifts
, 0);
1297 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1298 " IPMI register, in bits. For instance, if the data"
1299 " is read from a 32-bit word and the IPMI data is in"
1300 " bit 8-15, then the shift would be 8");
1301 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1302 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1303 " the controller. Normally this is 0x20, but can be"
1304 " overridden by this parm. This is an array indexed"
1305 " by interface number.");
1306 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1307 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1308 " disabled(0). Normally the IPMI driver auto-detects"
1309 " this, but the value may be overridden by this parm.");
1310 module_param(unload_when_empty
, int, 0);
1311 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1312 " specified or found, default is 1. Setting to 0"
1313 " is useful for hot add of devices using hotmod.");
1314 module_param_array(kipmid_max_busy_us
, uint
, &num_max_busy_us
, 0644);
1315 MODULE_PARM_DESC(kipmid_max_busy_us
,
1316 "Max time (in microseconds) to busy-wait for IPMI data before"
1317 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1318 " if kipmid is using up a lot of CPU time.");
1321 static void std_irq_cleanup(struct smi_info
*info
)
1323 if (info
->si_type
== SI_BT
)
1324 /* Disable the interrupt in the BT interface. */
1325 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1326 free_irq(info
->irq
, info
);
1329 static int std_irq_setup(struct smi_info
*info
)
1336 if (info
->si_type
== SI_BT
) {
1337 rv
= request_irq(info
->irq
,
1339 IRQF_SHARED
| IRQF_DISABLED
,
1343 /* Enable the interrupt in the BT interface. */
1344 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1345 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1347 rv
= request_irq(info
->irq
,
1349 IRQF_SHARED
| IRQF_DISABLED
,
1353 dev_warn(info
->dev
, "%s unable to claim interrupt %d,"
1354 " running polled\n",
1355 DEVICE_NAME
, info
->irq
);
1358 info
->irq_cleanup
= std_irq_cleanup
;
1359 dev_info(info
->dev
, "Using irq %d\n", info
->irq
);
1365 static unsigned char port_inb(struct si_sm_io
*io
, unsigned int offset
)
1367 unsigned int addr
= io
->addr_data
;
1369 return inb(addr
+ (offset
* io
->regspacing
));
1372 static void port_outb(struct si_sm_io
*io
, unsigned int offset
,
1375 unsigned int addr
= io
->addr_data
;
1377 outb(b
, addr
+ (offset
* io
->regspacing
));
1380 static unsigned char port_inw(struct si_sm_io
*io
, unsigned int offset
)
1382 unsigned int addr
= io
->addr_data
;
1384 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1387 static void port_outw(struct si_sm_io
*io
, unsigned int offset
,
1390 unsigned int addr
= io
->addr_data
;
1392 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1395 static unsigned char port_inl(struct si_sm_io
*io
, unsigned int offset
)
1397 unsigned int addr
= io
->addr_data
;
1399 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1402 static void port_outl(struct si_sm_io
*io
, unsigned int offset
,
1405 unsigned int addr
= io
->addr_data
;
1407 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1410 static void port_cleanup(struct smi_info
*info
)
1412 unsigned int addr
= info
->io
.addr_data
;
1416 for (idx
= 0; idx
< info
->io_size
; idx
++)
1417 release_region(addr
+ idx
* info
->io
.regspacing
,
1422 static int port_setup(struct smi_info
*info
)
1424 unsigned int addr
= info
->io
.addr_data
;
1430 info
->io_cleanup
= port_cleanup
;
1433 * Figure out the actual inb/inw/inl/etc routine to use based
1434 * upon the register size.
1436 switch (info
->io
.regsize
) {
1438 info
->io
.inputb
= port_inb
;
1439 info
->io
.outputb
= port_outb
;
1442 info
->io
.inputb
= port_inw
;
1443 info
->io
.outputb
= port_outw
;
1446 info
->io
.inputb
= port_inl
;
1447 info
->io
.outputb
= port_outl
;
1450 dev_warn(info
->dev
, "Invalid register size: %d\n",
1456 * Some BIOSes reserve disjoint I/O regions in their ACPI
1457 * tables. This causes problems when trying to register the
1458 * entire I/O region. Therefore we must register each I/O
1461 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1462 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1463 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1464 /* Undo allocations */
1466 release_region(addr
+ idx
* info
->io
.regspacing
,
1475 static unsigned char intf_mem_inb(struct si_sm_io
*io
, unsigned int offset
)
1477 return readb((io
->addr
)+(offset
* io
->regspacing
));
1480 static void intf_mem_outb(struct si_sm_io
*io
, unsigned int offset
,
1483 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1486 static unsigned char intf_mem_inw(struct si_sm_io
*io
, unsigned int offset
)
1488 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1492 static void intf_mem_outw(struct si_sm_io
*io
, unsigned int offset
,
1495 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1498 static unsigned char intf_mem_inl(struct si_sm_io
*io
, unsigned int offset
)
1500 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1504 static void intf_mem_outl(struct si_sm_io
*io
, unsigned int offset
,
1507 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1511 static unsigned char mem_inq(struct si_sm_io
*io
, unsigned int offset
)
1513 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1517 static void mem_outq(struct si_sm_io
*io
, unsigned int offset
,
1520 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1524 static void mem_cleanup(struct smi_info
*info
)
1526 unsigned long addr
= info
->io
.addr_data
;
1529 if (info
->io
.addr
) {
1530 iounmap(info
->io
.addr
);
1532 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1533 - (info
->io
.regspacing
- info
->io
.regsize
));
1535 release_mem_region(addr
, mapsize
);
1539 static int mem_setup(struct smi_info
*info
)
1541 unsigned long addr
= info
->io
.addr_data
;
1547 info
->io_cleanup
= mem_cleanup
;
1550 * Figure out the actual readb/readw/readl/etc routine to use based
1551 * upon the register size.
1553 switch (info
->io
.regsize
) {
1555 info
->io
.inputb
= intf_mem_inb
;
1556 info
->io
.outputb
= intf_mem_outb
;
1559 info
->io
.inputb
= intf_mem_inw
;
1560 info
->io
.outputb
= intf_mem_outw
;
1563 info
->io
.inputb
= intf_mem_inl
;
1564 info
->io
.outputb
= intf_mem_outl
;
1568 info
->io
.inputb
= mem_inq
;
1569 info
->io
.outputb
= mem_outq
;
1573 dev_warn(info
->dev
, "Invalid register size: %d\n",
1579 * Calculate the total amount of memory to claim. This is an
1580 * unusual looking calculation, but it avoids claiming any
1581 * more memory than it has to. It will claim everything
1582 * between the first address to the end of the last full
1585 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1586 - (info
->io
.regspacing
- info
->io
.regsize
));
1588 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1591 info
->io
.addr
= ioremap(addr
, mapsize
);
1592 if (info
->io
.addr
== NULL
) {
1593 release_mem_region(addr
, mapsize
);
1600 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1601 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1609 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1610 struct hotmod_vals
{
1614 static struct hotmod_vals hotmod_ops
[] = {
1616 { "remove", HM_REMOVE
},
1619 static struct hotmod_vals hotmod_si
[] = {
1621 { "smic", SI_SMIC
},
1625 static struct hotmod_vals hotmod_as
[] = {
1626 { "mem", IPMI_MEM_ADDR_SPACE
},
1627 { "i/o", IPMI_IO_ADDR_SPACE
},
1631 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1636 s
= strchr(*curr
, ',');
1638 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1643 for (i
= 0; hotmod_ops
[i
].name
; i
++) {
1644 if (strcmp(*curr
, v
[i
].name
) == 0) {
1651 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1655 static int check_hotmod_int_op(const char *curr
, const char *option
,
1656 const char *name
, int *val
)
1660 if (strcmp(curr
, name
) == 0) {
1662 printk(KERN_WARNING PFX
1663 "No option given for '%s'\n",
1667 *val
= simple_strtoul(option
, &n
, 0);
1668 if ((*n
!= '\0') || (*option
== '\0')) {
1669 printk(KERN_WARNING PFX
1670 "Bad option given for '%s'\n",
1679 static struct smi_info
*smi_info_alloc(void)
1681 struct smi_info
*info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1684 spin_lock_init(&info
->si_lock
);
1685 spin_lock_init(&info
->msg_lock
);
1690 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1692 char *str
= kstrdup(val
, GFP_KERNEL
);
1694 char *next
, *curr
, *s
, *n
, *o
;
1696 enum si_type si_type
;
1706 struct smi_info
*info
;
1711 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1714 while ((ival
>= 0) && isspace(str
[ival
])) {
1719 for (curr
= str
; curr
; curr
= next
) {
1724 ipmb
= 0; /* Choose the default if not specified */
1726 next
= strchr(curr
, ':');
1732 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1737 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1742 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1746 s
= strchr(curr
, ',');
1751 addr
= simple_strtoul(curr
, &n
, 0);
1752 if ((*n
!= '\0') || (*curr
== '\0')) {
1753 printk(KERN_WARNING PFX
"Invalid hotmod address"
1760 s
= strchr(curr
, ',');
1765 o
= strchr(curr
, '=');
1770 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1775 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1780 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1785 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1790 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1797 printk(KERN_WARNING PFX
1798 "Invalid hotmod option '%s'\n",
1804 info
= smi_info_alloc();
1810 info
->addr_source
= SI_HOTMOD
;
1811 info
->si_type
= si_type
;
1812 info
->io
.addr_data
= addr
;
1813 info
->io
.addr_type
= addr_space
;
1814 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1815 info
->io_setup
= mem_setup
;
1817 info
->io_setup
= port_setup
;
1819 info
->io
.addr
= NULL
;
1820 info
->io
.regspacing
= regspacing
;
1821 if (!info
->io
.regspacing
)
1822 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1823 info
->io
.regsize
= regsize
;
1824 if (!info
->io
.regsize
)
1825 info
->io
.regsize
= DEFAULT_REGSPACING
;
1826 info
->io
.regshift
= regshift
;
1829 info
->irq_setup
= std_irq_setup
;
1830 info
->slave_addr
= ipmb
;
1832 if (!add_smi(info
)) {
1833 if (try_smi_init(info
))
1834 cleanup_one_si(info
);
1840 struct smi_info
*e
, *tmp_e
;
1842 mutex_lock(&smi_infos_lock
);
1843 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1844 if (e
->io
.addr_type
!= addr_space
)
1846 if (e
->si_type
!= si_type
)
1848 if (e
->io
.addr_data
== addr
)
1851 mutex_unlock(&smi_infos_lock
);
1860 static int __devinit
hardcode_find_bmc(void)
1864 struct smi_info
*info
;
1866 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1867 if (!ports
[i
] && !addrs
[i
])
1870 info
= smi_info_alloc();
1874 info
->addr_source
= SI_HARDCODED
;
1875 printk(KERN_INFO PFX
"probing via hardcoded address\n");
1877 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1878 info
->si_type
= SI_KCS
;
1879 } else if (strcmp(si_type
[i
], "smic") == 0) {
1880 info
->si_type
= SI_SMIC
;
1881 } else if (strcmp(si_type
[i
], "bt") == 0) {
1882 info
->si_type
= SI_BT
;
1884 printk(KERN_WARNING PFX
"Interface type specified "
1885 "for interface %d, was invalid: %s\n",
1893 info
->io_setup
= port_setup
;
1894 info
->io
.addr_data
= ports
[i
];
1895 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1896 } else if (addrs
[i
]) {
1898 info
->io_setup
= mem_setup
;
1899 info
->io
.addr_data
= addrs
[i
];
1900 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1902 printk(KERN_WARNING PFX
"Interface type specified "
1903 "for interface %d, but port and address were "
1904 "not set or set to zero.\n", i
);
1909 info
->io
.addr
= NULL
;
1910 info
->io
.regspacing
= regspacings
[i
];
1911 if (!info
->io
.regspacing
)
1912 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1913 info
->io
.regsize
= regsizes
[i
];
1914 if (!info
->io
.regsize
)
1915 info
->io
.regsize
= DEFAULT_REGSPACING
;
1916 info
->io
.regshift
= regshifts
[i
];
1917 info
->irq
= irqs
[i
];
1919 info
->irq_setup
= std_irq_setup
;
1920 info
->slave_addr
= slave_addrs
[i
];
1922 if (!add_smi(info
)) {
1923 if (try_smi_init(info
))
1924 cleanup_one_si(info
);
1935 #include <linux/acpi.h>
1938 * Once we get an ACPI failure, we don't try any more, because we go
1939 * through the tables sequentially. Once we don't find a table, there
1942 static int acpi_failure
;
1944 /* For GPE-type interrupts. */
1945 static u32
ipmi_acpi_gpe(acpi_handle gpe_device
,
1946 u32 gpe_number
, void *context
)
1948 struct smi_info
*smi_info
= context
;
1949 unsigned long flags
;
1954 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1956 smi_inc_stat(smi_info
, interrupts
);
1959 do_gettimeofday(&t
);
1960 printk("**ACPI_GPE: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1962 smi_event_handler(smi_info
, 0);
1963 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1965 return ACPI_INTERRUPT_HANDLED
;
1968 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
1973 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
1976 static int acpi_gpe_irq_setup(struct smi_info
*info
)
1983 /* FIXME - is level triggered right? */
1984 status
= acpi_install_gpe_handler(NULL
,
1986 ACPI_GPE_LEVEL_TRIGGERED
,
1989 if (status
!= AE_OK
) {
1990 dev_warn(info
->dev
, "%s unable to claim ACPI GPE %d,"
1991 " running polled\n", DEVICE_NAME
, info
->irq
);
1995 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
1996 dev_info(info
->dev
, "Using ACPI GPE %d\n", info
->irq
);
2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2014 s8 CreatorRevision
[4];
2017 s16 SpecificationRevision
;
2020 * Bit 0 - SCI interrupt supported
2021 * Bit 1 - I/O APIC/SAPIC
2026 * If bit 0 of InterruptType is set, then this is the SCI
2027 * interrupt in the GPEx_STS register.
2034 * If bit 1 of InterruptType is set, then this is the I/O
2035 * APIC/SAPIC interrupt.
2037 u32 GlobalSystemInterrupt
;
2039 /* The actual register address. */
2040 struct acpi_generic_address addr
;
2044 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
2047 static int __devinit
try_init_spmi(struct SPMITable
*spmi
)
2049 struct smi_info
*info
;
2051 if (spmi
->IPMIlegacy
!= 1) {
2052 printk(KERN_INFO PFX
"Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
2056 info
= smi_info_alloc();
2058 printk(KERN_ERR PFX
"Could not allocate SI data (3)\n");
2062 info
->addr_source
= SI_SPMI
;
2063 printk(KERN_INFO PFX
"probing via SPMI\n");
2065 /* Figure out the interface type. */
2066 switch (spmi
->InterfaceType
) {
2068 info
->si_type
= SI_KCS
;
2071 info
->si_type
= SI_SMIC
;
2074 info
->si_type
= SI_BT
;
2077 printk(KERN_INFO PFX
"Unknown ACPI/SPMI SI type %d\n",
2078 spmi
->InterfaceType
);
2083 if (spmi
->InterruptType
& 1) {
2084 /* We've got a GPE interrupt. */
2085 info
->irq
= spmi
->GPE
;
2086 info
->irq_setup
= acpi_gpe_irq_setup
;
2087 } else if (spmi
->InterruptType
& 2) {
2088 /* We've got an APIC/SAPIC interrupt. */
2089 info
->irq
= spmi
->GlobalSystemInterrupt
;
2090 info
->irq_setup
= std_irq_setup
;
2092 /* Use the default interrupt setting. */
2094 info
->irq_setup
= NULL
;
2097 if (spmi
->addr
.bit_width
) {
2098 /* A (hopefully) properly formed register bit width. */
2099 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
2101 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2103 info
->io
.regsize
= info
->io
.regspacing
;
2104 info
->io
.regshift
= spmi
->addr
.bit_offset
;
2106 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
2107 info
->io_setup
= mem_setup
;
2108 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2109 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
2110 info
->io_setup
= port_setup
;
2111 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2114 printk(KERN_WARNING PFX
"Unknown ACPI I/O Address type\n");
2117 info
->io
.addr_data
= spmi
->addr
.address
;
2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2121 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2130 static void __devinit
spmi_find_bmc(void)
2133 struct SPMITable
*spmi
;
2142 for (i
= 0; ; i
++) {
2143 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2144 (struct acpi_table_header
**)&spmi
);
2145 if (status
!= AE_OK
)
2148 try_init_spmi(spmi
);
2152 static int __devinit
ipmi_pnp_probe(struct pnp_dev
*dev
,
2153 const struct pnp_device_id
*dev_id
)
2155 struct acpi_device
*acpi_dev
;
2156 struct smi_info
*info
;
2157 struct resource
*res
, *res_second
;
2160 unsigned long long tmp
;
2162 acpi_dev
= pnp_acpi_device(dev
);
2166 info
= smi_info_alloc();
2170 info
->addr_source
= SI_ACPI
;
2171 printk(KERN_INFO PFX
"probing via ACPI\n");
2173 handle
= acpi_dev
->handle
;
2174 info
->addr_info
.acpi_info
.acpi_handle
= handle
;
2176 /* _IFT tells us the interface type: KCS, BT, etc */
2177 status
= acpi_evaluate_integer(handle
, "_IFT", NULL
, &tmp
);
2178 if (ACPI_FAILURE(status
))
2183 info
->si_type
= SI_KCS
;
2186 info
->si_type
= SI_SMIC
;
2189 info
->si_type
= SI_BT
;
2192 dev_info(&dev
->dev
, "unknown IPMI type %lld\n", tmp
);
2196 res
= pnp_get_resource(dev
, IORESOURCE_IO
, 0);
2198 info
->io_setup
= port_setup
;
2199 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2201 res
= pnp_get_resource(dev
, IORESOURCE_MEM
, 0);
2203 info
->io_setup
= mem_setup
;
2204 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2208 dev_err(&dev
->dev
, "no I/O or memory address\n");
2211 info
->io
.addr_data
= res
->start
;
2213 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2214 res_second
= pnp_get_resource(dev
,
2215 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ?
2216 IORESOURCE_IO
: IORESOURCE_MEM
,
2219 if (res_second
->start
> info
->io
.addr_data
)
2220 info
->io
.regspacing
= res_second
->start
- info
->io
.addr_data
;
2222 info
->io
.regsize
= DEFAULT_REGSPACING
;
2223 info
->io
.regshift
= 0;
2225 /* If _GPE exists, use it; otherwise use standard interrupts */
2226 status
= acpi_evaluate_integer(handle
, "_GPE", NULL
, &tmp
);
2227 if (ACPI_SUCCESS(status
)) {
2229 info
->irq_setup
= acpi_gpe_irq_setup
;
2230 } else if (pnp_irq_valid(dev
, 0)) {
2231 info
->irq
= pnp_irq(dev
, 0);
2232 info
->irq_setup
= std_irq_setup
;
2235 info
->dev
= &dev
->dev
;
2236 pnp_set_drvdata(dev
, info
);
2238 dev_info(info
->dev
, "%pR regsize %d spacing %d irq %d\n",
2239 res
, info
->io
.regsize
, info
->io
.regspacing
,
2252 static void __devexit
ipmi_pnp_remove(struct pnp_dev
*dev
)
2254 struct smi_info
*info
= pnp_get_drvdata(dev
);
2256 cleanup_one_si(info
);
2259 static const struct pnp_device_id pnp_dev_table
[] = {
2264 static struct pnp_driver ipmi_pnp_driver
= {
2265 .name
= DEVICE_NAME
,
2266 .probe
= ipmi_pnp_probe
,
2267 .remove
= __devexit_p(ipmi_pnp_remove
),
2268 .id_table
= pnp_dev_table
,
2273 struct dmi_ipmi_data
{
2276 unsigned long base_addr
;
2282 static int __devinit
decode_dmi(const struct dmi_header
*dm
,
2283 struct dmi_ipmi_data
*dmi
)
2285 const u8
*data
= (const u8
*)dm
;
2286 unsigned long base_addr
;
2288 u8 len
= dm
->length
;
2290 dmi
->type
= data
[4];
2292 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2294 if (base_addr
& 1) {
2296 base_addr
&= 0xFFFE;
2297 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2300 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2306 dmi
->irq
= data
[0x11];
2308 /* The top two bits of byte 0x10 hold the register spacing. */
2309 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2310 switch (reg_spacing
) {
2311 case 0x00: /* Byte boundaries */
2314 case 0x01: /* 32-bit boundaries */
2317 case 0x02: /* 16-byte boundaries */
2321 /* Some other interface, just ignore it. */
2327 * Note that technically, the lower bit of the base
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
2332 * memory should use the newer spec, anyway.
2334 dmi
->base_addr
= base_addr
& 0xfffe;
2335 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2339 dmi
->slave_addr
= data
[6];
2344 static void __devinit
try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2346 struct smi_info
*info
;
2348 info
= smi_info_alloc();
2350 printk(KERN_ERR PFX
"Could not allocate SI data\n");
2354 info
->addr_source
= SI_SMBIOS
;
2355 printk(KERN_INFO PFX
"probing via SMBIOS\n");
2357 switch (ipmi_data
->type
) {
2358 case 0x01: /* KCS */
2359 info
->si_type
= SI_KCS
;
2361 case 0x02: /* SMIC */
2362 info
->si_type
= SI_SMIC
;
2365 info
->si_type
= SI_BT
;
2372 switch (ipmi_data
->addr_space
) {
2373 case IPMI_MEM_ADDR_SPACE
:
2374 info
->io_setup
= mem_setup
;
2375 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2378 case IPMI_IO_ADDR_SPACE
:
2379 info
->io_setup
= port_setup
;
2380 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2385 printk(KERN_WARNING PFX
"Unknown SMBIOS I/O Address type: %d\n",
2386 ipmi_data
->addr_space
);
2389 info
->io
.addr_data
= ipmi_data
->base_addr
;
2391 info
->io
.regspacing
= ipmi_data
->offset
;
2392 if (!info
->io
.regspacing
)
2393 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2394 info
->io
.regsize
= DEFAULT_REGSPACING
;
2395 info
->io
.regshift
= 0;
2397 info
->slave_addr
= ipmi_data
->slave_addr
;
2399 info
->irq
= ipmi_data
->irq
;
2401 info
->irq_setup
= std_irq_setup
;
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info
->io
.addr_type
== IPMI_IO_ADDR_SPACE
) ? "io" : "mem",
2405 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2412 static void __devinit
dmi_find_bmc(void)
2414 const struct dmi_device
*dev
= NULL
;
2415 struct dmi_ipmi_data data
;
2418 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2419 memset(&data
, 0, sizeof(data
));
2420 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2423 try_init_dmi(&data
);
2426 #endif /* CONFIG_DMI */
2430 #define PCI_ERMC_CLASSCODE 0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2437 #define PCI_HP_VENDOR_ID 0x103C
2438 #define PCI_MMC_DEVICE_ID 0x121A
2439 #define PCI_MMC_ADDR_CW 0x10
2441 static void ipmi_pci_cleanup(struct smi_info
*info
)
2443 struct pci_dev
*pdev
= info
->addr_source_data
;
2445 pci_disable_device(pdev
);
2448 static int __devinit
ipmi_pci_probe(struct pci_dev
*pdev
,
2449 const struct pci_device_id
*ent
)
2452 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2453 struct smi_info
*info
;
2455 info
= smi_info_alloc();
2459 info
->addr_source
= SI_PCI
;
2460 dev_info(&pdev
->dev
, "probing via PCI");
2462 switch (class_type
) {
2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2464 info
->si_type
= SI_SMIC
;
2467 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2468 info
->si_type
= SI_KCS
;
2471 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2472 info
->si_type
= SI_BT
;
2477 dev_info(&pdev
->dev
, "Unknown IPMI type: %d\n", class_type
);
2481 rv
= pci_enable_device(pdev
);
2483 dev_err(&pdev
->dev
, "couldn't enable PCI device\n");
2488 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2489 info
->addr_source_data
= pdev
;
2491 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2492 info
->io_setup
= port_setup
;
2493 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2495 info
->io_setup
= mem_setup
;
2496 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2498 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2500 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2501 info
->io
.regsize
= DEFAULT_REGSPACING
;
2502 info
->io
.regshift
= 0;
2504 info
->irq
= pdev
->irq
;
2506 info
->irq_setup
= std_irq_setup
;
2508 info
->dev
= &pdev
->dev
;
2509 pci_set_drvdata(pdev
, info
);
2511 dev_info(&pdev
->dev
, "%pR regsize %d spacing %d irq %d\n",
2512 &pdev
->resource
[0], info
->io
.regsize
, info
->io
.regspacing
,
2521 static void __devexit
ipmi_pci_remove(struct pci_dev
*pdev
)
2523 struct smi_info
*info
= pci_get_drvdata(pdev
);
2524 cleanup_one_si(info
);
2528 static int ipmi_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2533 static int ipmi_pci_resume(struct pci_dev
*pdev
)
2539 static struct pci_device_id ipmi_pci_devices
[] = {
2540 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2544 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2546 static struct pci_driver ipmi_pci_driver
= {
2547 .name
= DEVICE_NAME
,
2548 .id_table
= ipmi_pci_devices
,
2549 .probe
= ipmi_pci_probe
,
2550 .remove
= __devexit_p(ipmi_pci_remove
),
2552 .suspend
= ipmi_pci_suspend
,
2553 .resume
= ipmi_pci_resume
,
2556 #endif /* CONFIG_PCI */
2558 static struct of_device_id ipmi_match
[];
2559 static int __devinit
ipmi_probe(struct platform_device
*dev
)
2562 const struct of_device_id
*match
;
2563 struct smi_info
*info
;
2564 struct resource resource
;
2565 const __be32
*regsize
, *regspacing
, *regshift
;
2566 struct device_node
*np
= dev
->dev
.of_node
;
2570 dev_info(&dev
->dev
, "probing via device tree\n");
2572 match
= of_match_device(ipmi_match
, &dev
->dev
);
2576 ret
= of_address_to_resource(np
, 0, &resource
);
2578 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2582 regsize
= of_get_property(np
, "reg-size", &proplen
);
2583 if (regsize
&& proplen
!= 4) {
2584 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2588 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2589 if (regspacing
&& proplen
!= 4) {
2590 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2594 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2595 if (regshift
&& proplen
!= 4) {
2596 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2600 info
= smi_info_alloc();
2604 "could not allocate memory for OF probe\n");
2608 info
->si_type
= (enum si_type
) match
->data
;
2609 info
->addr_source
= SI_DEVICETREE
;
2610 info
->irq_setup
= std_irq_setup
;
2612 if (resource
.flags
& IORESOURCE_IO
) {
2613 info
->io_setup
= port_setup
;
2614 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2616 info
->io_setup
= mem_setup
;
2617 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2620 info
->io
.addr_data
= resource
.start
;
2622 info
->io
.regsize
= regsize
? be32_to_cpup(regsize
) : DEFAULT_REGSIZE
;
2623 info
->io
.regspacing
= regspacing
? be32_to_cpup(regspacing
) : DEFAULT_REGSPACING
;
2624 info
->io
.regshift
= regshift
? be32_to_cpup(regshift
) : 0;
2626 info
->irq
= irq_of_parse_and_map(dev
->dev
.of_node
, 0);
2627 info
->dev
= &dev
->dev
;
2629 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %d\n",
2630 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2633 dev_set_drvdata(&dev
->dev
, info
);
2635 if (add_smi(info
)) {
2643 static int __devexit
ipmi_remove(struct platform_device
*dev
)
2646 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2651 static struct of_device_id ipmi_match
[] =
2653 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2654 .data
= (void *)(unsigned long) SI_KCS
},
2655 { .type
= "ipmi", .compatible
= "ipmi-smic",
2656 .data
= (void *)(unsigned long) SI_SMIC
},
2657 { .type
= "ipmi", .compatible
= "ipmi-bt",
2658 .data
= (void *)(unsigned long) SI_BT
},
2662 static struct platform_driver ipmi_driver
= {
2664 .name
= DEVICE_NAME
,
2665 .owner
= THIS_MODULE
,
2666 .of_match_table
= ipmi_match
,
2668 .probe
= ipmi_probe
,
2669 .remove
= __devexit_p(ipmi_remove
),
2672 static int wait_for_msg_done(struct smi_info
*smi_info
)
2674 enum si_sm_result smi_result
;
2676 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2678 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2679 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2680 schedule_timeout_uninterruptible(1);
2681 smi_result
= smi_info
->handlers
->event(
2682 smi_info
->si_sm
, 100);
2683 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2684 smi_result
= smi_info
->handlers
->event(
2685 smi_info
->si_sm
, 0);
2689 if (smi_result
== SI_SM_HOSED
)
2691 * We couldn't get the state machine to run, so whatever's at
2692 * the port is probably not an IPMI SMI interface.
2699 static int try_get_dev_id(struct smi_info
*smi_info
)
2701 unsigned char msg
[2];
2702 unsigned char *resp
;
2703 unsigned long resp_len
;
2706 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2711 * Do a Get Device ID command, since it comes back with some
2714 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2715 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2716 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2718 rv
= wait_for_msg_done(smi_info
);
2722 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2723 resp
, IPMI_MAX_MSG_LENGTH
);
2725 /* Check and record info from the get device id, in case we need it. */
2726 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2733 static int try_enable_event_buffer(struct smi_info
*smi_info
)
2735 unsigned char msg
[3];
2736 unsigned char *resp
;
2737 unsigned long resp_len
;
2740 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2744 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2745 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2746 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2748 rv
= wait_for_msg_done(smi_info
);
2750 printk(KERN_WARNING PFX
"Error getting response from get"
2751 " global enables command, the event buffer is not"
2756 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2757 resp
, IPMI_MAX_MSG_LENGTH
);
2760 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2761 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2763 printk(KERN_WARNING PFX
"Invalid return from get global"
2764 " enables command, cannot enable the event buffer.\n");
2769 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
)
2770 /* buffer is already enabled, nothing to do. */
2773 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2774 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2775 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
2776 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2778 rv
= wait_for_msg_done(smi_info
);
2780 printk(KERN_WARNING PFX
"Error getting response from set"
2781 " global, enables command, the event buffer is not"
2786 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2787 resp
, IPMI_MAX_MSG_LENGTH
);
2790 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2791 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
2792 printk(KERN_WARNING PFX
"Invalid return from get global,"
2793 "enables command, not enable the event buffer.\n");
2800 * An error when setting the event buffer bit means
2801 * that the event buffer is not supported.
2809 static int smi_type_proc_show(struct seq_file
*m
, void *v
)
2811 struct smi_info
*smi
= m
->private;
2813 return seq_printf(m
, "%s\n", si_to_str
[smi
->si_type
]);
2816 static int smi_type_proc_open(struct inode
*inode
, struct file
*file
)
2818 return single_open(file
, smi_type_proc_show
, PDE(inode
)->data
);
2821 static const struct file_operations smi_type_proc_ops
= {
2822 .open
= smi_type_proc_open
,
2824 .llseek
= seq_lseek
,
2825 .release
= single_release
,
2828 static int smi_si_stats_proc_show(struct seq_file
*m
, void *v
)
2830 struct smi_info
*smi
= m
->private;
2832 seq_printf(m
, "interrupts_enabled: %d\n",
2833 smi
->irq
&& !smi
->interrupt_disabled
);
2834 seq_printf(m
, "short_timeouts: %u\n",
2835 smi_get_stat(smi
, short_timeouts
));
2836 seq_printf(m
, "long_timeouts: %u\n",
2837 smi_get_stat(smi
, long_timeouts
));
2838 seq_printf(m
, "idles: %u\n",
2839 smi_get_stat(smi
, idles
));
2840 seq_printf(m
, "interrupts: %u\n",
2841 smi_get_stat(smi
, interrupts
));
2842 seq_printf(m
, "attentions: %u\n",
2843 smi_get_stat(smi
, attentions
));
2844 seq_printf(m
, "flag_fetches: %u\n",
2845 smi_get_stat(smi
, flag_fetches
));
2846 seq_printf(m
, "hosed_count: %u\n",
2847 smi_get_stat(smi
, hosed_count
));
2848 seq_printf(m
, "complete_transactions: %u\n",
2849 smi_get_stat(smi
, complete_transactions
));
2850 seq_printf(m
, "events: %u\n",
2851 smi_get_stat(smi
, events
));
2852 seq_printf(m
, "watchdog_pretimeouts: %u\n",
2853 smi_get_stat(smi
, watchdog_pretimeouts
));
2854 seq_printf(m
, "incoming_messages: %u\n",
2855 smi_get_stat(smi
, incoming_messages
));
2859 static int smi_si_stats_proc_open(struct inode
*inode
, struct file
*file
)
2861 return single_open(file
, smi_si_stats_proc_show
, PDE(inode
)->data
);
2864 static const struct file_operations smi_si_stats_proc_ops
= {
2865 .open
= smi_si_stats_proc_open
,
2867 .llseek
= seq_lseek
,
2868 .release
= single_release
,
2871 static int smi_params_proc_show(struct seq_file
*m
, void *v
)
2873 struct smi_info
*smi
= m
->private;
2875 return seq_printf(m
,
2876 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2877 si_to_str
[smi
->si_type
],
2878 addr_space_to_str
[smi
->io
.addr_type
],
2887 static int smi_params_proc_open(struct inode
*inode
, struct file
*file
)
2889 return single_open(file
, smi_params_proc_show
, PDE(inode
)->data
);
2892 static const struct file_operations smi_params_proc_ops
= {
2893 .open
= smi_params_proc_open
,
2895 .llseek
= seq_lseek
,
2896 .release
= single_release
,
2900 * oem_data_avail_to_receive_msg_avail
2901 * @info - smi_info structure with msg_flags set
2903 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2904 * Returns 1 indicating need to re-run handle_flags().
2906 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
2908 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
2914 * setup_dell_poweredge_oem_data_handler
2915 * @info - smi_info.device_id must be populated
2917 * Systems that match, but have firmware version < 1.40 may assert
2918 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2919 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2920 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2921 * as RECEIVE_MSG_AVAIL instead.
2923 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2924 * assert the OEM[012] bits, and if it did, the driver would have to
2925 * change to handle that properly, we don't actually check for the
2927 * Device ID = 0x20 BMC on PowerEdge 8G servers
2928 * Device Revision = 0x80
2929 * Firmware Revision1 = 0x01 BMC version 1.40
2930 * Firmware Revision2 = 0x40 BCD encoded
2931 * IPMI Version = 0x51 IPMI 1.5
2932 * Manufacturer ID = A2 02 00 Dell IANA
2934 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2935 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2938 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2939 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2940 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2941 #define DELL_IANA_MFR_ID 0x0002a2
2942 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
2944 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2945 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
2946 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
2947 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
2948 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
2949 smi_info
->oem_data_avail_handler
=
2950 oem_data_avail_to_receive_msg_avail
;
2951 } else if (ipmi_version_major(id
) < 1 ||
2952 (ipmi_version_major(id
) == 1 &&
2953 ipmi_version_minor(id
) < 5)) {
2954 smi_info
->oem_data_avail_handler
=
2955 oem_data_avail_to_receive_msg_avail
;
2960 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2961 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
2963 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
2965 /* Make it a response */
2966 msg
->rsp
[0] = msg
->data
[0] | 4;
2967 msg
->rsp
[1] = msg
->data
[1];
2968 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
2970 smi_info
->curr_msg
= NULL
;
2971 deliver_recv_msg(smi_info
, msg
);
2975 * dell_poweredge_bt_xaction_handler
2976 * @info - smi_info.device_id must be populated
2978 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2979 * not respond to a Get SDR command if the length of the data
2980 * requested is exactly 0x3A, which leads to command timeouts and no
2981 * data returned. This intercepts such commands, and causes userspace
2982 * callers to try again with a different-sized buffer, which succeeds.
2985 #define STORAGE_NETFN 0x0A
2986 #define STORAGE_CMD_GET_SDR 0x23
2987 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
2988 unsigned long unused
,
2991 struct smi_info
*smi_info
= in
;
2992 unsigned char *data
= smi_info
->curr_msg
->data
;
2993 unsigned int size
= smi_info
->curr_msg
->data_size
;
2995 (data
[0]>>2) == STORAGE_NETFN
&&
2996 data
[1] == STORAGE_CMD_GET_SDR
&&
2998 return_hosed_msg_badsize(smi_info
);
3004 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
3005 .notifier_call
= dell_poweredge_bt_xaction_handler
,
3009 * setup_dell_poweredge_bt_xaction_handler
3010 * @info - smi_info.device_id must be filled in already
3012 * Fills in smi_info.device_id.start_transaction_pre_hook
3013 * when we know what function to use there.
3016 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
3018 struct ipmi_device_id
*id
= &smi_info
->device_id
;
3019 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
3020 smi_info
->si_type
== SI_BT
)
3021 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
3025 * setup_oem_data_handler
3026 * @info - smi_info.device_id must be filled in already
3028 * Fills in smi_info.device_id.oem_data_available_handler
3029 * when we know what function to use there.
3032 static void setup_oem_data_handler(struct smi_info
*smi_info
)
3034 setup_dell_poweredge_oem_data_handler(smi_info
);
3037 static void setup_xaction_handlers(struct smi_info
*smi_info
)
3039 setup_dell_poweredge_bt_xaction_handler(smi_info
);
3042 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
3044 if (smi_info
->intf
) {
3046 * The timer and thread are only running if the
3047 * interface has been started up and registered.
3049 if (smi_info
->thread
!= NULL
)
3050 kthread_stop(smi_info
->thread
);
3051 del_timer_sync(&smi_info
->si_timer
);
3055 static __devinitdata
struct ipmi_default_vals
3061 { .type
= SI_KCS
, .port
= 0xca2 },
3062 { .type
= SI_SMIC
, .port
= 0xca9 },
3063 { .type
= SI_BT
, .port
= 0xe4 },
3067 static void __devinit
default_find_bmc(void)
3069 struct smi_info
*info
;
3072 for (i
= 0; ; i
++) {
3073 if (!ipmi_defaults
[i
].port
)
3076 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
3079 info
= smi_info_alloc();
3083 info
->addr_source
= SI_DEFAULT
;
3085 info
->si_type
= ipmi_defaults
[i
].type
;
3086 info
->io_setup
= port_setup
;
3087 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
3088 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
3090 info
->io
.addr
= NULL
;
3091 info
->io
.regspacing
= DEFAULT_REGSPACING
;
3092 info
->io
.regsize
= DEFAULT_REGSPACING
;
3093 info
->io
.regshift
= 0;
3095 if (add_smi(info
) == 0) {
3096 if ((try_smi_init(info
)) == 0) {
3098 printk(KERN_INFO PFX
"Found default %s"
3099 " state machine at %s address 0x%lx\n",
3100 si_to_str
[info
->si_type
],
3101 addr_space_to_str
[info
->io
.addr_type
],
3102 info
->io
.addr_data
);
3104 cleanup_one_si(info
);
3111 static int is_new_interface(struct smi_info
*info
)
3115 list_for_each_entry(e
, &smi_infos
, link
) {
3116 if (e
->io
.addr_type
!= info
->io
.addr_type
)
3118 if (e
->io
.addr_data
== info
->io
.addr_data
)
3125 static int add_smi(struct smi_info
*new_smi
)
3129 printk(KERN_INFO PFX
"Adding %s-specified %s state machine",
3130 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3131 si_to_str
[new_smi
->si_type
]);
3132 mutex_lock(&smi_infos_lock
);
3133 if (!is_new_interface(new_smi
)) {
3134 printk(KERN_CONT
" duplicate interface\n");
3139 printk(KERN_CONT
"\n");
3141 /* So we know not to free it unless we have allocated one. */
3142 new_smi
->intf
= NULL
;
3143 new_smi
->si_sm
= NULL
;
3144 new_smi
->handlers
= NULL
;
3146 list_add_tail(&new_smi
->link
, &smi_infos
);
3149 mutex_unlock(&smi_infos_lock
);
3153 static int try_smi_init(struct smi_info
*new_smi
)
3158 printk(KERN_INFO PFX
"Trying %s-specified %s state"
3159 " machine at %s address 0x%lx, slave address 0x%x,"
3161 ipmi_addr_src_to_str
[new_smi
->addr_source
],
3162 si_to_str
[new_smi
->si_type
],
3163 addr_space_to_str
[new_smi
->io
.addr_type
],
3164 new_smi
->io
.addr_data
,
3165 new_smi
->slave_addr
, new_smi
->irq
);
3167 switch (new_smi
->si_type
) {
3169 new_smi
->handlers
= &kcs_smi_handlers
;
3173 new_smi
->handlers
= &smic_smi_handlers
;
3177 new_smi
->handlers
= &bt_smi_handlers
;
3181 /* No support for anything else yet. */
3186 /* Allocate the state machine's data and initialize it. */
3187 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
3188 if (!new_smi
->si_sm
) {
3190 "Could not allocate state machine memory\n");
3194 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
3197 /* Now that we know the I/O size, we can set up the I/O. */
3198 rv
= new_smi
->io_setup(new_smi
);
3200 printk(KERN_ERR PFX
"Could not set up I/O space\n");
3204 /* Do low-level detection first. */
3205 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
3206 if (new_smi
->addr_source
)
3207 printk(KERN_INFO PFX
"Interface detection failed\n");
3213 * Attempt a get device id command. If it fails, we probably
3214 * don't have a BMC here.
3216 rv
= try_get_dev_id(new_smi
);
3218 if (new_smi
->addr_source
)
3219 printk(KERN_INFO PFX
"There appears to be no BMC"
3220 " at this location\n");
3224 setup_oem_data_handler(new_smi
);
3225 setup_xaction_handlers(new_smi
);
3227 INIT_LIST_HEAD(&(new_smi
->xmit_msgs
));
3228 INIT_LIST_HEAD(&(new_smi
->hp_xmit_msgs
));
3229 new_smi
->curr_msg
= NULL
;
3230 atomic_set(&new_smi
->req_events
, 0);
3231 new_smi
->run_to_completion
= 0;
3232 for (i
= 0; i
< SI_NUM_STATS
; i
++)
3233 atomic_set(&new_smi
->stats
[i
], 0);
3235 new_smi
->interrupt_disabled
= 1;
3236 atomic_set(&new_smi
->stop_operation
, 0);
3237 new_smi
->intf_num
= smi_num
;
3240 rv
= try_enable_event_buffer(new_smi
);
3242 new_smi
->has_event_buffer
= 1;
3245 * Start clearing the flags before we enable interrupts or the
3246 * timer to avoid racing with the timer.
3248 start_clear_flags(new_smi
);
3249 /* IRQ is defined to be set when non-zero. */
3251 new_smi
->si_state
= SI_CLEARING_FLAGS_THEN_SET_IRQ
;
3253 if (!new_smi
->dev
) {
3255 * If we don't already have a device from something
3256 * else (like PCI), then register a new one.
3258 new_smi
->pdev
= platform_device_alloc("ipmi_si",
3260 if (!new_smi
->pdev
) {
3262 "Unable to allocate platform device\n");
3265 new_smi
->dev
= &new_smi
->pdev
->dev
;
3266 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
3268 rv
= platform_device_add(new_smi
->pdev
);
3271 "Unable to register system interface device:"
3276 new_smi
->dev_registered
= 1;
3279 rv
= ipmi_register_smi(&handlers
,
3281 &new_smi
->device_id
,
3284 new_smi
->slave_addr
);
3286 dev_err(new_smi
->dev
, "Unable to register device: error %d\n",
3288 goto out_err_stop_timer
;
3291 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
3295 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3296 goto out_err_stop_timer
;
3299 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
3300 &smi_si_stats_proc_ops
,
3303 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3304 goto out_err_stop_timer
;
3307 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3308 &smi_params_proc_ops
,
3311 dev_err(new_smi
->dev
, "Unable to create proc entry: %d\n", rv
);
3312 goto out_err_stop_timer
;
3315 dev_info(new_smi
->dev
, "IPMI %s interface initialized\n",
3316 si_to_str
[new_smi
->si_type
]);
3321 atomic_inc(&new_smi
->stop_operation
);
3322 wait_for_timer_and_thread(new_smi
);
3325 new_smi
->interrupt_disabled
= 1;
3327 if (new_smi
->intf
) {
3328 ipmi_unregister_smi(new_smi
->intf
);
3329 new_smi
->intf
= NULL
;
3332 if (new_smi
->irq_cleanup
) {
3333 new_smi
->irq_cleanup(new_smi
);
3334 new_smi
->irq_cleanup
= NULL
;
3338 * Wait until we know that we are out of any interrupt
3339 * handlers might have been running before we freed the
3342 synchronize_sched();
3344 if (new_smi
->si_sm
) {
3345 if (new_smi
->handlers
)
3346 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3347 kfree(new_smi
->si_sm
);
3348 new_smi
->si_sm
= NULL
;
3350 if (new_smi
->addr_source_cleanup
) {
3351 new_smi
->addr_source_cleanup(new_smi
);
3352 new_smi
->addr_source_cleanup
= NULL
;
3354 if (new_smi
->io_cleanup
) {
3355 new_smi
->io_cleanup(new_smi
);
3356 new_smi
->io_cleanup
= NULL
;
3359 if (new_smi
->dev_registered
) {
3360 platform_device_unregister(new_smi
->pdev
);
3361 new_smi
->dev_registered
= 0;
3367 static int __devinit
init_ipmi_si(void)
3373 enum ipmi_addr_src type
= SI_INVALID
;
3379 rv
= platform_driver_register(&ipmi_driver
);
3381 printk(KERN_ERR PFX
"Unable to register driver: %d\n", rv
);
3386 /* Parse out the si_type string into its components. */
3389 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3391 str
= strchr(str
, ',');
3401 printk(KERN_INFO
"IPMI System Interface driver.\n");
3403 /* If the user gave us a device, they presumably want us to use it */
3404 if (!hardcode_find_bmc())
3408 rv
= pci_register_driver(&ipmi_pci_driver
);
3410 printk(KERN_ERR PFX
"Unable to register PCI driver: %d\n", rv
);
3416 pnp_register_driver(&ipmi_pnp_driver
);
3428 /* We prefer devices with interrupts, but in the case of a machine
3429 with multiple BMCs we assume that there will be several instances
3430 of a given type so if we succeed in registering a type then also
3431 try to register everything else of the same type */
3433 mutex_lock(&smi_infos_lock
);
3434 list_for_each_entry(e
, &smi_infos
, link
) {
3435 /* Try to register a device if it has an IRQ and we either
3436 haven't successfully registered a device yet or this
3437 device has the same type as one we successfully registered */
3438 if (e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3439 if (!try_smi_init(e
)) {
3440 type
= e
->addr_source
;
3445 /* type will only have been set if we successfully registered an si */
3447 mutex_unlock(&smi_infos_lock
);
3451 /* Fall back to the preferred device */
3453 list_for_each_entry(e
, &smi_infos
, link
) {
3454 if (!e
->irq
&& (!type
|| e
->addr_source
== type
)) {
3455 if (!try_smi_init(e
)) {
3456 type
= e
->addr_source
;
3460 mutex_unlock(&smi_infos_lock
);
3465 if (si_trydefaults
) {
3466 mutex_lock(&smi_infos_lock
);
3467 if (list_empty(&smi_infos
)) {
3468 /* No BMC was found, try defaults. */
3469 mutex_unlock(&smi_infos_lock
);
3472 mutex_unlock(&smi_infos_lock
);
3475 mutex_lock(&smi_infos_lock
);
3476 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3477 mutex_unlock(&smi_infos_lock
);
3479 printk(KERN_WARNING PFX
3480 "Unable to find any System Interface(s)\n");
3483 mutex_unlock(&smi_infos_lock
);
3487 module_init(init_ipmi_si
);
3489 static void cleanup_one_si(struct smi_info
*to_clean
)
3492 unsigned long flags
;
3497 list_del(&to_clean
->link
);
3499 /* Tell the driver that we are shutting down. */
3500 atomic_inc(&to_clean
->stop_operation
);
3503 * Make sure the timer and thread are stopped and will not run
3506 wait_for_timer_and_thread(to_clean
);
3509 * Timeouts are stopped, now make sure the interrupts are off
3510 * for the device. A little tricky with locks to make sure
3511 * there are no races.
3513 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3514 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3515 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3517 schedule_timeout_uninterruptible(1);
3518 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3520 disable_si_irq(to_clean
);
3521 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3522 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3524 schedule_timeout_uninterruptible(1);
3527 /* Clean up interrupts and make sure that everything is done. */
3528 if (to_clean
->irq_cleanup
)
3529 to_clean
->irq_cleanup(to_clean
);
3530 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3532 schedule_timeout_uninterruptible(1);
3536 rv
= ipmi_unregister_smi(to_clean
->intf
);
3539 printk(KERN_ERR PFX
"Unable to unregister device: errno=%d\n",
3543 if (to_clean
->handlers
)
3544 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3546 kfree(to_clean
->si_sm
);
3548 if (to_clean
->addr_source_cleanup
)
3549 to_clean
->addr_source_cleanup(to_clean
);
3550 if (to_clean
->io_cleanup
)
3551 to_clean
->io_cleanup(to_clean
);
3553 if (to_clean
->dev_registered
)
3554 platform_device_unregister(to_clean
->pdev
);
3559 static void cleanup_ipmi_si(void)
3561 struct smi_info
*e
, *tmp_e
;
3568 pci_unregister_driver(&ipmi_pci_driver
);
3572 pnp_unregister_driver(&ipmi_pnp_driver
);
3575 platform_driver_unregister(&ipmi_driver
);
3577 mutex_lock(&smi_infos_lock
);
3578 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3580 mutex_unlock(&smi_infos_lock
);
3582 module_exit(cleanup_ipmi_si
);
3584 MODULE_LICENSE("GPL");
3585 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3586 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3587 " system interfaces.");