i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / crypto / amcc / crypto4xx_core.c
blob13f8e1a149889076aa41f95b785702c0a6fd02a5
1 /**
2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/of_platform.h>
31 #include <linux/slab.h>
32 #include <asm/dcr.h>
33 #include <asm/dcr-regs.h>
34 #include <asm/cacheflush.h>
35 #include <crypto/aes.h>
36 #include <crypto/sha.h>
37 #include "crypto4xx_reg_def.h"
38 #include "crypto4xx_core.h"
39 #include "crypto4xx_sa.h"
41 #define PPC4XX_SEC_VERSION_STR "0.5"
43 /**
44 * PPC4xx Crypto Engine Initialization Routine
46 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
48 union ce_ring_size ring_size;
49 union ce_ring_contol ring_ctrl;
50 union ce_part_ring_size part_ring_size;
51 union ce_io_threshold io_threshold;
52 u32 rand_num;
53 union ce_pe_dma_cfg pe_dma_cfg;
54 u32 device_ctrl;
56 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
57 /* setup pe dma, include reset sg, pdr and pe, then release reset */
58 pe_dma_cfg.w = 0;
59 pe_dma_cfg.bf.bo_sgpd_en = 1;
60 pe_dma_cfg.bf.bo_data_en = 0;
61 pe_dma_cfg.bf.bo_sa_en = 1;
62 pe_dma_cfg.bf.bo_pd_en = 1;
63 pe_dma_cfg.bf.dynamic_sa_en = 1;
64 pe_dma_cfg.bf.reset_sg = 1;
65 pe_dma_cfg.bf.reset_pdr = 1;
66 pe_dma_cfg.bf.reset_pe = 1;
67 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
68 /* un reset pe,sg and pdr */
69 pe_dma_cfg.bf.pe_mode = 0;
70 pe_dma_cfg.bf.reset_sg = 0;
71 pe_dma_cfg.bf.reset_pdr = 0;
72 pe_dma_cfg.bf.reset_pe = 0;
73 pe_dma_cfg.bf.bo_td_en = 0;
74 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
75 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
76 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
77 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
78 get_random_bytes(&rand_num, sizeof(rand_num));
79 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
80 get_random_bytes(&rand_num, sizeof(rand_num));
81 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
82 ring_size.w = 0;
83 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
84 ring_size.bf.ring_size = PPC4XX_NUM_PD;
85 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
86 ring_ctrl.w = 0;
87 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
88 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
89 device_ctrl |= PPC4XX_DC_3DES_EN;
90 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
91 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
92 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
93 part_ring_size.w = 0;
94 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
95 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
96 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
97 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
98 io_threshold.w = 0;
99 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
100 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
101 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
102 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
103 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
104 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
105 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
106 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
107 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
108 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
109 /* un reset pe,sg and pdr */
110 pe_dma_cfg.bf.pe_mode = 1;
111 pe_dma_cfg.bf.reset_sg = 0;
112 pe_dma_cfg.bf.reset_pdr = 0;
113 pe_dma_cfg.bf.reset_pe = 0;
114 pe_dma_cfg.bf.bo_td_en = 0;
115 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
116 /*clear all pending interrupt*/
117 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
118 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
119 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
120 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
121 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
124 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
126 ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
127 &ctx->sa_in_dma_addr, GFP_ATOMIC);
128 if (ctx->sa_in == NULL)
129 return -ENOMEM;
131 ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
132 &ctx->sa_out_dma_addr, GFP_ATOMIC);
133 if (ctx->sa_out == NULL) {
134 dma_free_coherent(ctx->dev->core_dev->device,
135 ctx->sa_len * 4,
136 ctx->sa_in, ctx->sa_in_dma_addr);
137 return -ENOMEM;
140 memset(ctx->sa_in, 0, size * 4);
141 memset(ctx->sa_out, 0, size * 4);
142 ctx->sa_len = size;
144 return 0;
147 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
149 if (ctx->sa_in != NULL)
150 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
151 ctx->sa_in, ctx->sa_in_dma_addr);
152 if (ctx->sa_out != NULL)
153 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
154 ctx->sa_out, ctx->sa_out_dma_addr);
156 ctx->sa_in_dma_addr = 0;
157 ctx->sa_out_dma_addr = 0;
158 ctx->sa_len = 0;
161 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
163 ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
164 sizeof(struct sa_state_record),
165 &ctx->state_record_dma_addr, GFP_ATOMIC);
166 if (!ctx->state_record_dma_addr)
167 return -ENOMEM;
168 memset(ctx->state_record, 0, sizeof(struct sa_state_record));
170 return 0;
173 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
175 if (ctx->state_record != NULL)
176 dma_free_coherent(ctx->dev->core_dev->device,
177 sizeof(struct sa_state_record),
178 ctx->state_record,
179 ctx->state_record_dma_addr);
180 ctx->state_record_dma_addr = 0;
184 * alloc memory for the gather ring
185 * no need to alloc buf for the ring
186 * gdr_tail, gdr_head and gdr_count are initialized by this function
188 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
190 int i;
191 struct pd_uinfo *pd_uinfo;
192 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
193 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
194 &dev->pdr_pa, GFP_ATOMIC);
195 if (!dev->pdr)
196 return -ENOMEM;
198 dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
199 GFP_KERNEL);
200 if (!dev->pdr_uinfo) {
201 dma_free_coherent(dev->core_dev->device,
202 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
203 dev->pdr,
204 dev->pdr_pa);
205 return -ENOMEM;
207 memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
208 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
209 256 * PPC4XX_NUM_PD,
210 &dev->shadow_sa_pool_pa,
211 GFP_ATOMIC);
212 if (!dev->shadow_sa_pool)
213 return -ENOMEM;
215 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
216 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
217 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
218 if (!dev->shadow_sr_pool)
219 return -ENOMEM;
220 for (i = 0; i < PPC4XX_NUM_PD; i++) {
221 pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
222 sizeof(struct pd_uinfo) * i);
224 /* alloc 256 bytes which is enough for any kind of dynamic sa */
225 pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
226 pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
228 /* alloc state record */
229 pd_uinfo->sr_va = dev->shadow_sr_pool +
230 sizeof(struct sa_state_record) * i;
231 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
232 sizeof(struct sa_state_record) * i;
235 return 0;
238 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
240 if (dev->pdr != NULL)
241 dma_free_coherent(dev->core_dev->device,
242 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
243 dev->pdr, dev->pdr_pa);
244 if (dev->shadow_sa_pool)
245 dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
246 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
247 if (dev->shadow_sr_pool)
248 dma_free_coherent(dev->core_dev->device,
249 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
250 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
252 kfree(dev->pdr_uinfo);
255 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
257 u32 retval;
258 u32 tmp;
260 retval = dev->pdr_head;
261 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
263 if (tmp == dev->pdr_tail)
264 return ERING_WAS_FULL;
266 dev->pdr_head = tmp;
268 return retval;
271 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
273 struct pd_uinfo *pd_uinfo;
274 unsigned long flags;
276 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
277 sizeof(struct pd_uinfo) * idx);
278 spin_lock_irqsave(&dev->core_dev->lock, flags);
279 if (dev->pdr_tail != PPC4XX_LAST_PD)
280 dev->pdr_tail++;
281 else
282 dev->pdr_tail = 0;
283 pd_uinfo->state = PD_ENTRY_FREE;
284 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
286 return 0;
289 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
290 dma_addr_t *pd_dma, u32 idx)
292 *pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
294 return dev->pdr + sizeof(struct ce_pd) * idx;
298 * alloc memory for the gather ring
299 * no need to alloc buf for the ring
300 * gdr_tail, gdr_head and gdr_count are initialized by this function
302 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
304 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
305 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
306 &dev->gdr_pa, GFP_ATOMIC);
307 if (!dev->gdr)
308 return -ENOMEM;
310 memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
312 return 0;
315 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
317 dma_free_coherent(dev->core_dev->device,
318 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
319 dev->gdr, dev->gdr_pa);
323 * when this function is called.
324 * preemption or interrupt must be disabled
326 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
328 u32 retval;
329 u32 tmp;
330 if (n >= PPC4XX_NUM_GD)
331 return ERING_WAS_FULL;
333 retval = dev->gdr_head;
334 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
335 if (dev->gdr_head > dev->gdr_tail) {
336 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
337 return ERING_WAS_FULL;
338 } else if (dev->gdr_head < dev->gdr_tail) {
339 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
340 return ERING_WAS_FULL;
342 dev->gdr_head = tmp;
344 return retval;
347 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
349 unsigned long flags;
351 spin_lock_irqsave(&dev->core_dev->lock, flags);
352 if (dev->gdr_tail == dev->gdr_head) {
353 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
354 return 0;
357 if (dev->gdr_tail != PPC4XX_LAST_GD)
358 dev->gdr_tail++;
359 else
360 dev->gdr_tail = 0;
362 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
364 return 0;
367 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
368 dma_addr_t *gd_dma, u32 idx)
370 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
372 return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
376 * alloc memory for the scatter ring
377 * need to alloc buf for the ring
378 * sdr_tail, sdr_head and sdr_count are initialized by this function
380 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
382 int i;
383 struct ce_sd *sd_array;
385 /* alloc memory for scatter descriptor ring */
386 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
387 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
388 &dev->sdr_pa, GFP_ATOMIC);
389 if (!dev->sdr)
390 return -ENOMEM;
392 dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
393 dev->scatter_buffer_va =
394 dma_alloc_coherent(dev->core_dev->device,
395 dev->scatter_buffer_size * PPC4XX_NUM_SD,
396 &dev->scatter_buffer_pa, GFP_ATOMIC);
397 if (!dev->scatter_buffer_va) {
398 dma_free_coherent(dev->core_dev->device,
399 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
400 dev->sdr, dev->sdr_pa);
401 return -ENOMEM;
404 sd_array = dev->sdr;
406 for (i = 0; i < PPC4XX_NUM_SD; i++) {
407 sd_array[i].ptr = dev->scatter_buffer_pa +
408 dev->scatter_buffer_size * i;
411 return 0;
414 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
416 if (dev->sdr != NULL)
417 dma_free_coherent(dev->core_dev->device,
418 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
419 dev->sdr, dev->sdr_pa);
421 if (dev->scatter_buffer_va != NULL)
422 dma_free_coherent(dev->core_dev->device,
423 dev->scatter_buffer_size * PPC4XX_NUM_SD,
424 dev->scatter_buffer_va,
425 dev->scatter_buffer_pa);
429 * when this function is called.
430 * preemption or interrupt must be disabled
432 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
434 u32 retval;
435 u32 tmp;
437 if (n >= PPC4XX_NUM_SD)
438 return ERING_WAS_FULL;
440 retval = dev->sdr_head;
441 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
442 if (dev->sdr_head > dev->gdr_tail) {
443 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
444 return ERING_WAS_FULL;
445 } else if (dev->sdr_head < dev->sdr_tail) {
446 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
447 return ERING_WAS_FULL;
448 } /* the head = tail, or empty case is already take cared */
449 dev->sdr_head = tmp;
451 return retval;
454 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
456 unsigned long flags;
458 spin_lock_irqsave(&dev->core_dev->lock, flags);
459 if (dev->sdr_tail == dev->sdr_head) {
460 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
461 return 0;
463 if (dev->sdr_tail != PPC4XX_LAST_SD)
464 dev->sdr_tail++;
465 else
466 dev->sdr_tail = 0;
467 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
469 return 0;
472 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
473 dma_addr_t *sd_dma, u32 idx)
475 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
477 return (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
480 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
481 dma_addr_t *addr, u32 *length,
482 u32 *idx, u32 *offset, u32 *nbytes)
484 u32 len;
486 if (*length > dev->scatter_buffer_size) {
487 memcpy(phys_to_virt(*addr),
488 dev->scatter_buffer_va +
489 *idx * dev->scatter_buffer_size + *offset,
490 dev->scatter_buffer_size);
491 *offset = 0;
492 *length -= dev->scatter_buffer_size;
493 *nbytes -= dev->scatter_buffer_size;
494 if (*idx == PPC4XX_LAST_SD)
495 *idx = 0;
496 else
497 (*idx)++;
498 *addr = *addr + dev->scatter_buffer_size;
499 return 1;
500 } else if (*length < dev->scatter_buffer_size) {
501 memcpy(phys_to_virt(*addr),
502 dev->scatter_buffer_va +
503 *idx * dev->scatter_buffer_size + *offset, *length);
504 if ((*offset + *length) == dev->scatter_buffer_size) {
505 if (*idx == PPC4XX_LAST_SD)
506 *idx = 0;
507 else
508 (*idx)++;
509 *nbytes -= *length;
510 *offset = 0;
511 } else {
512 *nbytes -= *length;
513 *offset += *length;
516 return 0;
517 } else {
518 len = (*nbytes <= dev->scatter_buffer_size) ?
519 (*nbytes) : dev->scatter_buffer_size;
520 memcpy(phys_to_virt(*addr),
521 dev->scatter_buffer_va +
522 *idx * dev->scatter_buffer_size + *offset,
523 len);
524 *offset = 0;
525 *nbytes -= len;
527 if (*idx == PPC4XX_LAST_SD)
528 *idx = 0;
529 else
530 (*idx)++;
532 return 0;
536 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
537 struct ce_pd *pd,
538 struct pd_uinfo *pd_uinfo,
539 u32 nbytes,
540 struct scatterlist *dst)
542 dma_addr_t addr;
543 u32 this_sd;
544 u32 offset;
545 u32 len;
546 u32 i;
547 u32 sg_len;
548 struct scatterlist *sg;
550 this_sd = pd_uinfo->first_sd;
551 offset = 0;
552 i = 0;
554 while (nbytes) {
555 sg = &dst[i];
556 sg_len = sg->length;
557 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
558 sg->offset, sg->length, DMA_TO_DEVICE);
560 if (offset == 0) {
561 len = (nbytes <= sg->length) ? nbytes : sg->length;
562 while (crypto4xx_fill_one_page(dev, &addr, &len,
563 &this_sd, &offset, &nbytes))
565 if (!nbytes)
566 return;
567 i++;
568 } else {
569 len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
570 nbytes : (dev->scatter_buffer_size - offset);
571 len = (sg->length < len) ? sg->length : len;
572 while (crypto4xx_fill_one_page(dev, &addr, &len,
573 &this_sd, &offset, &nbytes))
575 if (!nbytes)
576 return;
577 sg_len -= len;
578 if (sg_len) {
579 addr += len;
580 while (crypto4xx_fill_one_page(dev, &addr,
581 &sg_len, &this_sd, &offset, &nbytes))
584 i++;
589 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
590 struct crypto4xx_ctx *ctx)
592 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
593 struct sa_state_record *state_record =
594 (struct sa_state_record *) pd_uinfo->sr_va;
596 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
597 memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
598 SA_HASH_ALG_SHA1_DIGEST_SIZE);
601 return 0;
604 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
605 struct pd_uinfo *pd_uinfo)
607 int i;
608 if (pd_uinfo->num_gd) {
609 for (i = 0; i < pd_uinfo->num_gd; i++)
610 crypto4xx_put_gd_to_gdr(dev);
611 pd_uinfo->first_gd = 0xffffffff;
612 pd_uinfo->num_gd = 0;
614 if (pd_uinfo->num_sd) {
615 for (i = 0; i < pd_uinfo->num_sd; i++)
616 crypto4xx_put_sd_to_sdr(dev);
618 pd_uinfo->first_sd = 0xffffffff;
619 pd_uinfo->num_sd = 0;
623 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
624 struct pd_uinfo *pd_uinfo,
625 struct ce_pd *pd)
627 struct crypto4xx_ctx *ctx;
628 struct ablkcipher_request *ablk_req;
629 struct scatterlist *dst;
630 dma_addr_t addr;
632 ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
633 ctx = crypto_tfm_ctx(ablk_req->base.tfm);
635 if (pd_uinfo->using_sd) {
636 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
637 ablk_req->dst);
638 } else {
639 dst = pd_uinfo->dest_va;
640 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
641 dst->offset, dst->length, DMA_FROM_DEVICE);
643 crypto4xx_ret_sg_desc(dev, pd_uinfo);
644 if (ablk_req->base.complete != NULL)
645 ablk_req->base.complete(&ablk_req->base, 0);
647 return 0;
650 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
651 struct pd_uinfo *pd_uinfo)
653 struct crypto4xx_ctx *ctx;
654 struct ahash_request *ahash_req;
656 ahash_req = ahash_request_cast(pd_uinfo->async_req);
657 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
659 crypto4xx_copy_digest_to_dst(pd_uinfo,
660 crypto_tfm_ctx(ahash_req->base.tfm));
661 crypto4xx_ret_sg_desc(dev, pd_uinfo);
662 /* call user provided callback function x */
663 if (ahash_req->base.complete != NULL)
664 ahash_req->base.complete(&ahash_req->base, 0);
666 return 0;
669 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
671 struct ce_pd *pd;
672 struct pd_uinfo *pd_uinfo;
674 pd = dev->pdr + sizeof(struct ce_pd)*idx;
675 pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
676 if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
677 CRYPTO_ALG_TYPE_ABLKCIPHER)
678 return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
679 else
680 return crypto4xx_ahash_done(dev, pd_uinfo);
684 * Note: Only use this function to copy items that is word aligned.
686 void crypto4xx_memcpy_le(unsigned int *dst,
687 const unsigned char *buf,
688 int len)
690 u8 *tmp;
691 for (; len >= 4; buf += 4, len -= 4)
692 *dst++ = cpu_to_le32(*(unsigned int *) buf);
694 tmp = (u8 *)dst;
695 switch (len) {
696 case 3:
697 *tmp++ = 0;
698 *tmp++ = *(buf+2);
699 *tmp++ = *(buf+1);
700 *tmp++ = *buf;
701 break;
702 case 2:
703 *tmp++ = 0;
704 *tmp++ = 0;
705 *tmp++ = *(buf+1);
706 *tmp++ = *buf;
707 break;
708 case 1:
709 *tmp++ = 0;
710 *tmp++ = 0;
711 *tmp++ = 0;
712 *tmp++ = *buf;
713 break;
714 default:
715 break;
719 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
721 crypto4xx_destroy_pdr(core_dev->dev);
722 crypto4xx_destroy_gdr(core_dev->dev);
723 crypto4xx_destroy_sdr(core_dev->dev);
724 dev_set_drvdata(core_dev->device, NULL);
725 iounmap(core_dev->dev->ce_base);
726 kfree(core_dev->dev);
727 kfree(core_dev);
730 void crypto4xx_return_pd(struct crypto4xx_device *dev,
731 u32 pd_entry, struct ce_pd *pd,
732 struct pd_uinfo *pd_uinfo)
734 /* irq should be already disabled */
735 dev->pdr_head = pd_entry;
736 pd->pd_ctl.w = 0;
737 pd->pd_ctl_len.w = 0;
738 pd_uinfo->state = PD_ENTRY_FREE;
742 * derive number of elements in scatterlist
743 * Shamlessly copy from talitos.c
745 static int get_sg_count(struct scatterlist *sg_list, int nbytes)
747 struct scatterlist *sg = sg_list;
748 int sg_nents = 0;
750 while (nbytes) {
751 sg_nents++;
752 if (sg->length > nbytes)
753 break;
754 nbytes -= sg->length;
755 sg = sg_next(sg);
758 return sg_nents;
761 static u32 get_next_gd(u32 current)
763 if (current != PPC4XX_LAST_GD)
764 return current + 1;
765 else
766 return 0;
769 static u32 get_next_sd(u32 current)
771 if (current != PPC4XX_LAST_SD)
772 return current + 1;
773 else
774 return 0;
777 u32 crypto4xx_build_pd(struct crypto_async_request *req,
778 struct crypto4xx_ctx *ctx,
779 struct scatterlist *src,
780 struct scatterlist *dst,
781 unsigned int datalen,
782 void *iv, u32 iv_len)
784 struct crypto4xx_device *dev = ctx->dev;
785 dma_addr_t addr, pd_dma, sd_dma, gd_dma;
786 struct dynamic_sa_ctl *sa;
787 struct scatterlist *sg;
788 struct ce_gd *gd;
789 struct ce_pd *pd;
790 u32 num_gd, num_sd;
791 u32 fst_gd = 0xffffffff;
792 u32 fst_sd = 0xffffffff;
793 u32 pd_entry;
794 unsigned long flags;
795 struct pd_uinfo *pd_uinfo = NULL;
796 unsigned int nbytes = datalen, idx;
797 unsigned int ivlen = 0;
798 u32 gd_idx = 0;
800 /* figure how many gd is needed */
801 num_gd = get_sg_count(src, datalen);
802 if (num_gd == 1)
803 num_gd = 0;
805 /* figure how many sd is needed */
806 if (sg_is_last(dst) || ctx->is_hash) {
807 num_sd = 0;
808 } else {
809 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
810 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
811 if (datalen % PPC4XX_SD_BUFFER_SIZE)
812 num_sd++;
813 } else {
814 num_sd = 1;
819 * The follow section of code needs to be protected
820 * The gather ring and scatter ring needs to be consecutive
821 * In case of run out of any kind of descriptor, the descriptor
822 * already got must be return the original place.
824 spin_lock_irqsave(&dev->core_dev->lock, flags);
825 if (num_gd) {
826 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
827 if (fst_gd == ERING_WAS_FULL) {
828 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
829 return -EAGAIN;
832 if (num_sd) {
833 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
834 if (fst_sd == ERING_WAS_FULL) {
835 if (num_gd)
836 dev->gdr_head = fst_gd;
837 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
838 return -EAGAIN;
841 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
842 if (pd_entry == ERING_WAS_FULL) {
843 if (num_gd)
844 dev->gdr_head = fst_gd;
845 if (num_sd)
846 dev->sdr_head = fst_sd;
847 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
848 return -EAGAIN;
850 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
852 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
853 sizeof(struct pd_uinfo) * pd_entry);
854 pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
855 pd_uinfo->async_req = req;
856 pd_uinfo->num_gd = num_gd;
857 pd_uinfo->num_sd = num_sd;
859 if (iv_len || ctx->is_hash) {
860 ivlen = iv_len;
861 pd->sa = pd_uinfo->sa_pa;
862 sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
863 if (ctx->direction == DIR_INBOUND)
864 memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
865 else
866 memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
868 memcpy((void *) sa + ctx->offset_to_sr_ptr,
869 &pd_uinfo->sr_pa, 4);
871 if (iv_len)
872 crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
873 } else {
874 if (ctx->direction == DIR_INBOUND) {
875 pd->sa = ctx->sa_in_dma_addr;
876 sa = (struct dynamic_sa_ctl *) ctx->sa_in;
877 } else {
878 pd->sa = ctx->sa_out_dma_addr;
879 sa = (struct dynamic_sa_ctl *) ctx->sa_out;
882 pd->sa_len = ctx->sa_len;
883 if (num_gd) {
884 /* get first gd we are going to use */
885 gd_idx = fst_gd;
886 pd_uinfo->first_gd = fst_gd;
887 pd_uinfo->num_gd = num_gd;
888 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
889 pd->src = gd_dma;
890 /* enable gather */
891 sa->sa_command_0.bf.gather = 1;
892 idx = 0;
893 src = &src[0];
894 /* walk the sg, and setup gather array */
895 while (nbytes) {
896 sg = &src[idx];
897 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
898 sg->offset, sg->length, DMA_TO_DEVICE);
899 gd->ptr = addr;
900 gd->ctl_len.len = sg->length;
901 gd->ctl_len.done = 0;
902 gd->ctl_len.ready = 1;
903 if (sg->length >= nbytes)
904 break;
905 nbytes -= sg->length;
906 gd_idx = get_next_gd(gd_idx);
907 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
908 idx++;
910 } else {
911 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
912 src->offset, src->length, DMA_TO_DEVICE);
914 * Disable gather in sa command
916 sa->sa_command_0.bf.gather = 0;
918 * Indicate gather array is not used
920 pd_uinfo->first_gd = 0xffffffff;
921 pd_uinfo->num_gd = 0;
923 if (ctx->is_hash || sg_is_last(dst)) {
925 * we know application give us dst a whole piece of memory
926 * no need to use scatter ring.
927 * In case of is_hash, the icv is always at end of src data.
929 pd_uinfo->using_sd = 0;
930 pd_uinfo->first_sd = 0xffffffff;
931 pd_uinfo->num_sd = 0;
932 pd_uinfo->dest_va = dst;
933 sa->sa_command_0.bf.scatter = 0;
934 if (ctx->is_hash)
935 pd->dest = virt_to_phys((void *)dst);
936 else
937 pd->dest = (u32)dma_map_page(dev->core_dev->device,
938 sg_page(dst), dst->offset,
939 dst->length, DMA_TO_DEVICE);
940 } else {
941 struct ce_sd *sd = NULL;
942 u32 sd_idx = fst_sd;
943 nbytes = datalen;
944 sa->sa_command_0.bf.scatter = 1;
945 pd_uinfo->using_sd = 1;
946 pd_uinfo->dest_va = dst;
947 pd_uinfo->first_sd = fst_sd;
948 pd_uinfo->num_sd = num_sd;
949 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
950 pd->dest = sd_dma;
951 /* setup scatter descriptor */
952 sd->ctl.done = 0;
953 sd->ctl.rdy = 1;
954 /* sd->ptr should be setup by sd_init routine*/
955 idx = 0;
956 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
957 nbytes -= PPC4XX_SD_BUFFER_SIZE;
958 else
959 nbytes = 0;
960 while (nbytes) {
961 sd_idx = get_next_sd(sd_idx);
962 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
963 /* setup scatter descriptor */
964 sd->ctl.done = 0;
965 sd->ctl.rdy = 1;
966 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
967 nbytes -= PPC4XX_SD_BUFFER_SIZE;
968 else
970 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
971 * which is more than nbytes, so done.
973 nbytes = 0;
977 sa->sa_command_1.bf.hash_crypto_offset = 0;
978 pd->pd_ctl.w = ctx->pd_ctl;
979 pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
980 pd_uinfo->state = PD_ENTRY_INUSE;
981 wmb();
982 /* write any value to push engine to read a pd */
983 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
984 return -EINPROGRESS;
988 * Algorithm Registration Functions
990 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
992 struct crypto_alg *alg = tfm->__crt_alg;
993 struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
994 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
996 ctx->dev = amcc_alg->dev;
997 ctx->sa_in = NULL;
998 ctx->sa_out = NULL;
999 ctx->sa_in_dma_addr = 0;
1000 ctx->sa_out_dma_addr = 0;
1001 ctx->sa_len = 0;
1003 switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1004 default:
1005 tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1006 break;
1007 case CRYPTO_ALG_TYPE_AHASH:
1008 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1009 sizeof(struct crypto4xx_ctx));
1010 break;
1013 return 0;
1016 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1018 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1020 crypto4xx_free_sa(ctx);
1021 crypto4xx_free_state_record(ctx);
1024 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1025 struct crypto4xx_alg_common *crypto_alg,
1026 int array_size)
1028 struct crypto4xx_alg *alg;
1029 int i;
1030 int rc = 0;
1032 for (i = 0; i < array_size; i++) {
1033 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1034 if (!alg)
1035 return -ENOMEM;
1037 alg->alg = crypto_alg[i];
1038 alg->dev = sec_dev;
1040 switch (alg->alg.type) {
1041 case CRYPTO_ALG_TYPE_AHASH:
1042 rc = crypto_register_ahash(&alg->alg.u.hash);
1043 break;
1045 default:
1046 rc = crypto_register_alg(&alg->alg.u.cipher);
1047 break;
1050 if (rc) {
1051 list_del(&alg->entry);
1052 kfree(alg);
1053 } else {
1054 list_add_tail(&alg->entry, &sec_dev->alg_list);
1058 return 0;
1061 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1063 struct crypto4xx_alg *alg, *tmp;
1065 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1066 list_del(&alg->entry);
1067 switch (alg->alg.type) {
1068 case CRYPTO_ALG_TYPE_AHASH:
1069 crypto_unregister_ahash(&alg->alg.u.hash);
1070 break;
1072 default:
1073 crypto_unregister_alg(&alg->alg.u.cipher);
1075 kfree(alg);
1079 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1081 struct device *dev = (struct device *)data;
1082 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1083 struct pd_uinfo *pd_uinfo;
1084 struct ce_pd *pd;
1085 u32 tail;
1087 while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1088 tail = core_dev->dev->pdr_tail;
1089 pd_uinfo = core_dev->dev->pdr_uinfo +
1090 sizeof(struct pd_uinfo)*tail;
1091 pd = core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1092 if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1093 pd->pd_ctl.bf.pe_done &&
1094 !pd->pd_ctl.bf.host_ready) {
1095 pd->pd_ctl.bf.pe_done = 0;
1096 crypto4xx_pd_done(core_dev->dev, tail);
1097 crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1098 pd_uinfo->state = PD_ENTRY_FREE;
1099 } else {
1100 /* if tail not done, break */
1101 break;
1107 * Top Half of isr.
1109 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1111 struct device *dev = (struct device *)data;
1112 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1114 if (core_dev->dev->ce_base == 0)
1115 return 0;
1117 writel(PPC4XX_INTERRUPT_CLR,
1118 core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1119 tasklet_schedule(&core_dev->tasklet);
1121 return IRQ_HANDLED;
1125 * Supported Crypto Algorithms
1127 struct crypto4xx_alg_common crypto4xx_alg[] = {
1128 /* Crypto AES modes */
1129 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1130 .cra_name = "cbc(aes)",
1131 .cra_driver_name = "cbc-aes-ppc4xx",
1132 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1133 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1134 .cra_blocksize = AES_BLOCK_SIZE,
1135 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1136 .cra_type = &crypto_ablkcipher_type,
1137 .cra_init = crypto4xx_alg_init,
1138 .cra_exit = crypto4xx_alg_exit,
1139 .cra_module = THIS_MODULE,
1140 .cra_u = {
1141 .ablkcipher = {
1142 .min_keysize = AES_MIN_KEY_SIZE,
1143 .max_keysize = AES_MAX_KEY_SIZE,
1144 .ivsize = AES_IV_SIZE,
1145 .setkey = crypto4xx_setkey_aes_cbc,
1146 .encrypt = crypto4xx_encrypt,
1147 .decrypt = crypto4xx_decrypt,
1154 * Module Initialization Routine
1156 static int __init crypto4xx_probe(struct platform_device *ofdev)
1158 int rc;
1159 struct resource res;
1160 struct device *dev = &ofdev->dev;
1161 struct crypto4xx_core_device *core_dev;
1163 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1164 if (rc)
1165 return -ENODEV;
1167 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1168 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1169 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1170 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1171 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1172 } else if (of_find_compatible_node(NULL, NULL,
1173 "amcc,ppc405ex-crypto")) {
1174 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1175 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1176 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1177 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1178 } else if (of_find_compatible_node(NULL, NULL,
1179 "amcc,ppc460sx-crypto")) {
1180 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1181 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1182 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1183 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1184 } else {
1185 printk(KERN_ERR "Crypto Function Not supported!\n");
1186 return -EINVAL;
1189 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1190 if (!core_dev)
1191 return -ENOMEM;
1193 dev_set_drvdata(dev, core_dev);
1194 core_dev->ofdev = ofdev;
1195 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1196 if (!core_dev->dev)
1197 goto err_alloc_dev;
1199 core_dev->dev->core_dev = core_dev;
1200 core_dev->device = dev;
1201 spin_lock_init(&core_dev->lock);
1202 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1203 rc = crypto4xx_build_pdr(core_dev->dev);
1204 if (rc)
1205 goto err_build_pdr;
1207 rc = crypto4xx_build_gdr(core_dev->dev);
1208 if (rc)
1209 goto err_build_gdr;
1211 rc = crypto4xx_build_sdr(core_dev->dev);
1212 if (rc)
1213 goto err_build_sdr;
1215 /* Init tasklet for bottom half processing */
1216 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1217 (unsigned long) dev);
1219 /* Register for Crypto isr, Crypto Engine IRQ */
1220 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1221 rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1222 core_dev->dev->name, dev);
1223 if (rc)
1224 goto err_request_irq;
1226 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1227 if (!core_dev->dev->ce_base) {
1228 dev_err(dev, "failed to of_iomap\n");
1229 goto err_iomap;
1232 /* need to setup pdr, rdr, gdr and sdr before this */
1233 crypto4xx_hw_init(core_dev->dev);
1235 /* Register security algorithms with Linux CryptoAPI */
1236 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1237 ARRAY_SIZE(crypto4xx_alg));
1238 if (rc)
1239 goto err_start_dev;
1241 return 0;
1243 err_start_dev:
1244 iounmap(core_dev->dev->ce_base);
1245 err_iomap:
1246 free_irq(core_dev->irq, dev);
1247 irq_dispose_mapping(core_dev->irq);
1248 tasklet_kill(&core_dev->tasklet);
1249 err_request_irq:
1250 crypto4xx_destroy_sdr(core_dev->dev);
1251 err_build_sdr:
1252 crypto4xx_destroy_gdr(core_dev->dev);
1253 err_build_gdr:
1254 crypto4xx_destroy_pdr(core_dev->dev);
1255 err_build_pdr:
1256 kfree(core_dev->dev);
1257 err_alloc_dev:
1258 kfree(core_dev);
1260 return rc;
1263 static int __exit crypto4xx_remove(struct platform_device *ofdev)
1265 struct device *dev = &ofdev->dev;
1266 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1268 free_irq(core_dev->irq, dev);
1269 irq_dispose_mapping(core_dev->irq);
1271 tasklet_kill(&core_dev->tasklet);
1272 /* Un-register with Linux CryptoAPI */
1273 crypto4xx_unregister_alg(core_dev->dev);
1274 /* Free all allocated memory */
1275 crypto4xx_stop_all(core_dev);
1277 return 0;
1280 static const struct of_device_id crypto4xx_match[] = {
1281 { .compatible = "amcc,ppc4xx-crypto",},
1282 { },
1285 static struct platform_driver crypto4xx_driver = {
1286 .driver = {
1287 .name = "crypto4xx",
1288 .owner = THIS_MODULE,
1289 .of_match_table = crypto4xx_match,
1291 .probe = crypto4xx_probe,
1292 .remove = crypto4xx_remove,
1295 module_platform_driver(crypto4xx_driver);
1297 MODULE_LICENSE("GPL");
1298 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1299 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");