2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
25 #include "framebuffer.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
32 struct psb_intel_clock_t
{
44 struct psb_intel_range_t
{
48 struct psb_intel_p2_t
{
53 #define INTEL_P2_NUM 2
55 struct psb_intel_limit_t
{
56 struct psb_intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
57 struct psb_intel_p2_t p2
;
60 #define I8XX_DOT_MIN 25000
61 #define I8XX_DOT_MAX 350000
62 #define I8XX_VCO_MIN 930000
63 #define I8XX_VCO_MAX 1400000
67 #define I8XX_M_MAX 140
68 #define I8XX_M1_MIN 18
69 #define I8XX_M1_MAX 26
71 #define I8XX_M2_MAX 16
73 #define I8XX_P_MAX 128
75 #define I8XX_P1_MAX 33
76 #define I8XX_P1_LVDS_MIN 1
77 #define I8XX_P1_LVDS_MAX 6
78 #define I8XX_P2_SLOW 4
79 #define I8XX_P2_FAST 2
80 #define I8XX_P2_LVDS_SLOW 14
81 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
82 #define I8XX_P2_SLOW_LIMIT 165000
84 #define I9XX_DOT_MIN 20000
85 #define I9XX_DOT_MAX 400000
86 #define I9XX_VCO_MIN 1400000
87 #define I9XX_VCO_MAX 2800000
91 #define I9XX_M_MAX 120
92 #define I9XX_M1_MIN 10
93 #define I9XX_M1_MAX 20
96 #define I9XX_P_SDVO_DAC_MIN 5
97 #define I9XX_P_SDVO_DAC_MAX 80
98 #define I9XX_P_LVDS_MIN 7
99 #define I9XX_P_LVDS_MAX 98
100 #define I9XX_P1_MIN 1
101 #define I9XX_P1_MAX 8
102 #define I9XX_P2_SDVO_DAC_SLOW 10
103 #define I9XX_P2_SDVO_DAC_FAST 5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
105 #define I9XX_P2_LVDS_SLOW 14
106 #define I9XX_P2_LVDS_FAST 7
107 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
109 #define INTEL_LIMIT_I8XX_DVO_DAC 0
110 #define INTEL_LIMIT_I8XX_LVDS 1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
112 #define INTEL_LIMIT_I9XX_LVDS 3
114 static const struct psb_intel_limit_t psb_intel_limits
[] = {
115 { /* INTEL_LIMIT_I8XX_DVO_DAC */
116 .dot
= {.min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
117 .vco
= {.min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
118 .n
= {.min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
119 .m
= {.min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
120 .m1
= {.min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
121 .m2
= {.min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
122 .p
= {.min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
123 .p1
= {.min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
124 .p2
= {.dot_limit
= I8XX_P2_SLOW_LIMIT
,
125 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
127 { /* INTEL_LIMIT_I8XX_LVDS */
128 .dot
= {.min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
129 .vco
= {.min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
130 .n
= {.min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
131 .m
= {.min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
132 .m1
= {.min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
133 .m2
= {.min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
134 .p
= {.min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
135 .p1
= {.min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
136 .p2
= {.dot_limit
= I8XX_P2_SLOW_LIMIT
,
137 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
139 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
140 .dot
= {.min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
141 .vco
= {.min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
142 .n
= {.min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
143 .m
= {.min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
144 .m1
= {.min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
145 .m2
= {.min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
146 .p
= {.min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
147 .p1
= {.min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
148 .p2
= {.dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
149 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
=
150 I9XX_P2_SDVO_DAC_FAST
},
152 { /* INTEL_LIMIT_I9XX_LVDS */
153 .dot
= {.min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
154 .vco
= {.min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
155 .n
= {.min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
156 .m
= {.min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
157 .m1
= {.min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
158 .m2
= {.min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
159 .p
= {.min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
160 .p1
= {.min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
161 /* The single-channel range is 25-112Mhz, and dual-channel
162 * is 80-224Mhz. Prefer single channel as much as possible.
164 .p2
= {.dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
165 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
169 static const struct psb_intel_limit_t
*psb_intel_limit(struct drm_crtc
*crtc
)
171 const struct psb_intel_limit_t
*limit
;
173 if (psb_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
174 limit
= &psb_intel_limits
[INTEL_LIMIT_I9XX_LVDS
];
176 limit
= &psb_intel_limits
[INTEL_LIMIT_I9XX_SDVO_DAC
];
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
182 static void i8xx_clock(int refclk
, struct psb_intel_clock_t
*clock
)
184 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
185 clock
->p
= clock
->p1
* clock
->p2
;
186 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
187 clock
->dot
= clock
->vco
/ clock
->p
;
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
192 static void i9xx_clock(int refclk
, struct psb_intel_clock_t
*clock
)
194 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
195 clock
->p
= clock
->p1
* clock
->p2
;
196 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
197 clock
->dot
= clock
->vco
/ clock
->p
;
200 static void psb_intel_clock(struct drm_device
*dev
, int refclk
,
201 struct psb_intel_clock_t
*clock
)
203 return i9xx_clock(refclk
, clock
);
207 * Returns whether any output on the specified pipe is of the specified type
209 bool psb_intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
211 struct drm_device
*dev
= crtc
->dev
;
212 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
213 struct drm_connector
*l_entry
;
215 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
216 if (l_entry
->encoder
&& l_entry
->encoder
->crtc
== crtc
) {
217 struct psb_intel_encoder
*psb_intel_encoder
=
218 psb_intel_attached_encoder(l_entry
);
219 if (psb_intel_encoder
->type
== type
)
226 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
232 static bool psb_intel_PLL_is_valid(struct drm_crtc
*crtc
,
233 struct psb_intel_clock_t
*clock
)
235 const struct psb_intel_limit_t
*limit
= psb_intel_limit(crtc
);
237 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
238 INTELPllInvalid("p1 out of range\n");
239 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
240 INTELPllInvalid("p out of range\n");
241 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
242 INTELPllInvalid("m2 out of range\n");
243 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
244 INTELPllInvalid("m1 out of range\n");
245 if (clock
->m1
<= clock
->m2
)
246 INTELPllInvalid("m1 <= m2\n");
247 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
248 INTELPllInvalid("m out of range\n");
249 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
250 INTELPllInvalid("n out of range\n");
251 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
252 INTELPllInvalid("vco out of range\n");
253 /* XXX: We may need to be checking "Dot clock"
254 * depending on the multiplier, connector, etc.,
255 * rather than just a single range.
257 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
258 INTELPllInvalid("dot out of range\n");
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE. The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
268 static bool psb_intel_find_best_PLL(struct drm_crtc
*crtc
, int target
,
270 struct psb_intel_clock_t
*best_clock
)
272 struct drm_device
*dev
= crtc
->dev
;
273 struct psb_intel_clock_t clock
;
274 const struct psb_intel_limit_t
*limit
= psb_intel_limit(crtc
);
277 if (psb_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
278 (REG_READ(LVDS
) & LVDS_PORT_EN
) != 0) {
280 * For LVDS, if the panel is on, just rely on its current
281 * settings for dual-channel. We haven't figured out how to
282 * reliably set up different single/dual channel state, if we
285 if ((REG_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
287 clock
.p2
= limit
->p2
.p2_fast
;
289 clock
.p2
= limit
->p2
.p2_slow
;
291 if (target
< limit
->p2
.dot_limit
)
292 clock
.p2
= limit
->p2
.p2_slow
;
294 clock
.p2
= limit
->p2
.p2_fast
;
297 memset(best_clock
, 0, sizeof(*best_clock
));
299 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
301 for (clock
.m2
= limit
->m2
.min
;
302 clock
.m2
< clock
.m1
&& clock
.m2
<= limit
->m2
.max
;
304 for (clock
.n
= limit
->n
.min
;
305 clock
.n
<= limit
->n
.max
; clock
.n
++) {
306 for (clock
.p1
= limit
->p1
.min
;
307 clock
.p1
<= limit
->p1
.max
;
311 psb_intel_clock(dev
, refclk
, &clock
);
313 if (!psb_intel_PLL_is_valid
317 this_err
= abs(clock
.dot
- target
);
318 if (this_err
< err
) {
327 return err
!= target
;
330 void psb_intel_wait_for_vblank(struct drm_device
*dev
)
332 /* Wait for 20ms, i.e. one cycle at 50hz. */
336 int psb_intel_pipe_set_base(struct drm_crtc
*crtc
,
337 int x
, int y
, struct drm_framebuffer
*old_fb
)
339 struct drm_device
*dev
= crtc
->dev
;
340 /* struct drm_i915_master_private *master_priv; */
341 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
342 struct psb_framebuffer
*psbfb
= to_psb_fb(crtc
->fb
);
343 int pipe
= psb_intel_crtc
->pipe
;
344 unsigned long start
, offset
;
345 int dspbase
= (pipe
== 0 ? DSPABASE
: DSPBBASE
);
346 int dspsurf
= (pipe
== 0 ? DSPASURF
: DSPBSURF
);
347 int dspstride
= (pipe
== 0) ? DSPASTRIDE
: DSPBSTRIDE
;
348 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
352 if (!gma_power_begin(dev
, true))
357 dev_dbg(dev
->dev
, "No FB bound\n");
358 goto psb_intel_pipe_cleaner
;
361 /* We are displaying this buffer, make sure it is actually loaded
363 ret
= psb_gtt_pin(psbfb
->gtt
);
365 goto psb_intel_pipe_set_base_exit
;
366 start
= psbfb
->gtt
->offset
;
368 offset
= y
* crtc
->fb
->pitches
[0] + x
* (crtc
->fb
->bits_per_pixel
/ 8);
370 REG_WRITE(dspstride
, crtc
->fb
->pitches
[0]);
372 dspcntr
= REG_READ(dspcntr_reg
);
373 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
375 switch (crtc
->fb
->bits_per_pixel
) {
377 dspcntr
|= DISPPLANE_8BPP
;
380 if (crtc
->fb
->depth
== 15)
381 dspcntr
|= DISPPLANE_15_16BPP
;
383 dspcntr
|= DISPPLANE_16BPP
;
387 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
390 dev_err(dev
->dev
, "Unknown color depth\n");
392 psb_gtt_unpin(psbfb
->gtt
);
393 goto psb_intel_pipe_set_base_exit
;
395 REG_WRITE(dspcntr_reg
, dspcntr
);
398 if (0 /* FIXMEAC - check what PSB needs */) {
399 REG_WRITE(dspbase
, offset
);
401 REG_WRITE(dspsurf
, start
);
404 REG_WRITE(dspbase
, start
+ offset
);
408 psb_intel_pipe_cleaner
:
409 /* If there was a previous display we can now unpin it */
411 psb_gtt_unpin(to_psb_fb(old_fb
)->gtt
);
413 psb_intel_pipe_set_base_exit
:
419 * Sets the power management mode of the pipe and plane.
421 * This code should probably grow support for turning the cursor off and back
422 * on appropriately at the same time as we're turning the pipe off/on.
424 static void psb_intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
426 struct drm_device
*dev
= crtc
->dev
;
427 /* struct drm_i915_master_private *master_priv; */
428 /* struct drm_i915_private *dev_priv = dev->dev_private; */
429 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
430 int pipe
= psb_intel_crtc
->pipe
;
431 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
432 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
433 int dspbase_reg
= (pipe
== 0) ? DSPABASE
: DSPBBASE
;
434 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
438 /* XXX: When our outputs are all unaware of DPMS modes other than off
439 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
442 case DRM_MODE_DPMS_ON
:
443 case DRM_MODE_DPMS_STANDBY
:
444 case DRM_MODE_DPMS_SUSPEND
:
445 /* Enable the DPLL */
446 temp
= REG_READ(dpll_reg
);
447 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
448 REG_WRITE(dpll_reg
, temp
);
450 /* Wait for the clocks to stabilize. */
452 REG_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
454 /* Wait for the clocks to stabilize. */
456 REG_WRITE(dpll_reg
, temp
| DPLL_VCO_ENABLE
);
458 /* Wait for the clocks to stabilize. */
462 /* Enable the pipe */
463 temp
= REG_READ(pipeconf_reg
);
464 if ((temp
& PIPEACONF_ENABLE
) == 0)
465 REG_WRITE(pipeconf_reg
, temp
| PIPEACONF_ENABLE
);
467 /* Enable the plane */
468 temp
= REG_READ(dspcntr_reg
);
469 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
470 REG_WRITE(dspcntr_reg
,
471 temp
| DISPLAY_PLANE_ENABLE
);
472 /* Flush the plane changes */
473 REG_WRITE(dspbase_reg
, REG_READ(dspbase_reg
));
476 psb_intel_crtc_load_lut(crtc
);
478 /* Give the overlay scaler a chance to enable
479 * if it's on this pipe */
480 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
482 case DRM_MODE_DPMS_OFF
:
483 /* Give the overlay scaler a chance to disable
484 * if it's on this pipe */
485 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
487 /* Disable the VGA plane that we never use */
488 REG_WRITE(VGACNTRL
, VGA_DISP_DISABLE
);
490 /* Disable display plane */
491 temp
= REG_READ(dspcntr_reg
);
492 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
493 REG_WRITE(dspcntr_reg
,
494 temp
& ~DISPLAY_PLANE_ENABLE
);
495 /* Flush the plane changes */
496 REG_WRITE(dspbase_reg
, REG_READ(dspbase_reg
));
497 REG_READ(dspbase_reg
);
500 /* Next, disable display pipes */
501 temp
= REG_READ(pipeconf_reg
);
502 if ((temp
& PIPEACONF_ENABLE
) != 0) {
503 REG_WRITE(pipeconf_reg
, temp
& ~PIPEACONF_ENABLE
);
504 REG_READ(pipeconf_reg
);
507 /* Wait for vblank for the disable to take effect. */
508 psb_intel_wait_for_vblank(dev
);
510 temp
= REG_READ(dpll_reg
);
511 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
512 REG_WRITE(dpll_reg
, temp
& ~DPLL_VCO_ENABLE
);
516 /* Wait for the clocks to turn off. */
521 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
523 /*Set FIFO Watermarks*/
524 REG_WRITE(DSPARB
, 0x3F3E);
527 static void psb_intel_crtc_prepare(struct drm_crtc
*crtc
)
529 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
530 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
533 static void psb_intel_crtc_commit(struct drm_crtc
*crtc
)
535 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
536 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
539 void psb_intel_encoder_prepare(struct drm_encoder
*encoder
)
541 struct drm_encoder_helper_funcs
*encoder_funcs
=
542 encoder
->helper_private
;
543 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
544 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
547 void psb_intel_encoder_commit(struct drm_encoder
*encoder
)
549 struct drm_encoder_helper_funcs
*encoder_funcs
=
550 encoder
->helper_private
;
551 /* lvds has its own version of commit see psb_intel_lvds_commit */
552 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
555 void psb_intel_encoder_destroy(struct drm_encoder
*encoder
)
557 struct psb_intel_encoder
*intel_encoder
= to_psb_intel_encoder(encoder
);
559 drm_encoder_cleanup(encoder
);
560 kfree(intel_encoder
);
563 static bool psb_intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
564 struct drm_display_mode
*mode
,
565 struct drm_display_mode
*adjusted_mode
)
572 * Return the pipe currently connected to the panel fitter,
573 * or -1 if the panel fitter is not present or not in use
575 static int psb_intel_panel_fitter_pipe(struct drm_device
*dev
)
579 pfit_control
= REG_READ(PFIT_CONTROL
);
581 /* See if the panel fitter is in use */
582 if ((pfit_control
& PFIT_ENABLE
) == 0)
584 /* Must be on PIPE 1 for PSB */
588 static int psb_intel_crtc_mode_set(struct drm_crtc
*crtc
,
589 struct drm_display_mode
*mode
,
590 struct drm_display_mode
*adjusted_mode
,
592 struct drm_framebuffer
*old_fb
)
594 struct drm_device
*dev
= crtc
->dev
;
595 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
596 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
597 int pipe
= psb_intel_crtc
->pipe
;
598 int fp_reg
= (pipe
== 0) ? FPA0
: FPB0
;
599 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
600 int dspcntr_reg
= (pipe
== 0) ? DSPACNTR
: DSPBCNTR
;
601 int pipeconf_reg
= (pipe
== 0) ? PIPEACONF
: PIPEBCONF
;
602 int htot_reg
= (pipe
== 0) ? HTOTAL_A
: HTOTAL_B
;
603 int hblank_reg
= (pipe
== 0) ? HBLANK_A
: HBLANK_B
;
604 int hsync_reg
= (pipe
== 0) ? HSYNC_A
: HSYNC_B
;
605 int vtot_reg
= (pipe
== 0) ? VTOTAL_A
: VTOTAL_B
;
606 int vblank_reg
= (pipe
== 0) ? VBLANK_A
: VBLANK_B
;
607 int vsync_reg
= (pipe
== 0) ? VSYNC_A
: VSYNC_B
;
608 int dspsize_reg
= (pipe
== 0) ? DSPASIZE
: DSPBSIZE
;
609 int dsppos_reg
= (pipe
== 0) ? DSPAPOS
: DSPBPOS
;
610 int pipesrc_reg
= (pipe
== 0) ? PIPEASRC
: PIPEBSRC
;
612 struct psb_intel_clock_t clock
;
613 u32 dpll
= 0, fp
= 0, dspcntr
, pipeconf
;
614 bool ok
, is_sdvo
= false, is_dvo
= false;
615 bool is_crt
= false, is_lvds
= false, is_tv
= false;
616 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
617 struct drm_connector
*connector
;
619 /* No scan out no play */
620 if (crtc
->fb
== NULL
) {
621 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
625 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
626 struct psb_intel_encoder
*psb_intel_encoder
=
627 psb_intel_attached_encoder(connector
);
629 if (!connector
->encoder
630 || connector
->encoder
->crtc
!= crtc
)
633 switch (psb_intel_encoder
->type
) {
634 case INTEL_OUTPUT_LVDS
:
637 case INTEL_OUTPUT_SDVO
:
640 case INTEL_OUTPUT_DVO
:
643 case INTEL_OUTPUT_TVOUT
:
646 case INTEL_OUTPUT_ANALOG
:
654 ok
= psb_intel_find_best_PLL(crtc
, adjusted_mode
->clock
, refclk
,
657 dev_err(dev
->dev
, "Couldn't find PLL settings for mode!\n");
661 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
663 dpll
= DPLL_VGA_MODE_DIS
;
665 dpll
|= DPLLB_MODE_LVDS
;
666 dpll
|= DPLL_DVO_HIGH_SPEED
;
668 dpll
|= DPLLB_MODE_DAC_SERIAL
;
670 int sdvo_pixel_multiply
=
671 adjusted_mode
->clock
/ mode
->clock
;
672 dpll
|= DPLL_DVO_HIGH_SPEED
;
674 (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
677 /* compute bitmask from p1 value */
678 dpll
|= (1 << (clock
.p1
- 1)) << 16;
681 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
684 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
687 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
690 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
695 /* XXX: just matching BIOS for now */
696 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
699 dpll
|= PLL_REF_INPUT_DREFCLK
;
702 pipeconf
= REG_READ(pipeconf_reg
);
704 /* Set up the display plane register */
705 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
708 dspcntr
|= DISPPLANE_SEL_PIPE_A
;
710 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
712 dspcntr
|= DISPLAY_PLANE_ENABLE
;
713 pipeconf
|= PIPEACONF_ENABLE
;
714 dpll
|= DPLL_VCO_ENABLE
;
717 /* Disable the panel fitter if it was on our pipe */
718 if (psb_intel_panel_fitter_pipe(dev
) == pipe
)
719 REG_WRITE(PFIT_CONTROL
, 0);
721 drm_mode_debug_printmodeline(mode
);
723 if (dpll
& DPLL_VCO_ENABLE
) {
724 REG_WRITE(fp_reg
, fp
);
725 REG_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
730 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
731 * This is an exception to the general rule that mode_set doesn't turn
735 u32 lvds
= REG_READ(LVDS
);
737 lvds
&= ~LVDS_PIPEB_SELECT
;
739 lvds
|= LVDS_PIPEB_SELECT
;
741 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
742 /* Set the B0-B3 data pairs corresponding to
743 * whether we're going to
744 * set the DPLLs for dual-channel mode or not.
746 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
748 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
750 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
751 * appropriately here, but we need to look more
752 * thoroughly into how panels behave in the two modes.
755 REG_WRITE(LVDS
, lvds
);
759 REG_WRITE(fp_reg
, fp
);
760 REG_WRITE(dpll_reg
, dpll
);
762 /* Wait for the clocks to stabilize. */
765 /* write it again -- the BIOS does, after all */
766 REG_WRITE(dpll_reg
, dpll
);
769 /* Wait for the clocks to stabilize. */
772 REG_WRITE(htot_reg
, (adjusted_mode
->crtc_hdisplay
- 1) |
773 ((adjusted_mode
->crtc_htotal
- 1) << 16));
774 REG_WRITE(hblank_reg
, (adjusted_mode
->crtc_hblank_start
- 1) |
775 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
776 REG_WRITE(hsync_reg
, (adjusted_mode
->crtc_hsync_start
- 1) |
777 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
778 REG_WRITE(vtot_reg
, (adjusted_mode
->crtc_vdisplay
- 1) |
779 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
780 REG_WRITE(vblank_reg
, (adjusted_mode
->crtc_vblank_start
- 1) |
781 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
782 REG_WRITE(vsync_reg
, (adjusted_mode
->crtc_vsync_start
- 1) |
783 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
784 /* pipesrc and dspsize control the size that is scaled from,
785 * which should always be the user's requested size.
787 REG_WRITE(dspsize_reg
,
788 ((mode
->vdisplay
- 1) << 16) | (mode
->hdisplay
- 1));
789 REG_WRITE(dsppos_reg
, 0);
790 REG_WRITE(pipesrc_reg
,
791 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
792 REG_WRITE(pipeconf_reg
, pipeconf
);
793 REG_READ(pipeconf_reg
);
795 psb_intel_wait_for_vblank(dev
);
797 REG_WRITE(dspcntr_reg
, dspcntr
);
799 /* Flush the plane changes */
800 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
802 psb_intel_wait_for_vblank(dev
);
807 /** Loads the palette/gamma unit for the CRTC with the prepared values */
808 void psb_intel_crtc_load_lut(struct drm_crtc
*crtc
)
810 struct drm_device
*dev
= crtc
->dev
;
811 struct drm_psb_private
*dev_priv
=
812 (struct drm_psb_private
*)dev
->dev_private
;
813 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
814 int palreg
= PALETTE_A
;
817 /* The clocks have to be on to load the palette. */
821 switch (psb_intel_crtc
->pipe
) {
831 dev_err(dev
->dev
, "Illegal Pipe Number.\n");
835 if (gma_power_begin(dev
, false)) {
836 for (i
= 0; i
< 256; i
++) {
837 REG_WRITE(palreg
+ 4 * i
,
838 ((psb_intel_crtc
->lut_r
[i
] +
839 psb_intel_crtc
->lut_adj
[i
]) << 16) |
840 ((psb_intel_crtc
->lut_g
[i
] +
841 psb_intel_crtc
->lut_adj
[i
]) << 8) |
842 (psb_intel_crtc
->lut_b
[i
] +
843 psb_intel_crtc
->lut_adj
[i
]));
847 for (i
= 0; i
< 256; i
++) {
848 dev_priv
->save_palette_a
[i
] =
849 ((psb_intel_crtc
->lut_r
[i
] +
850 psb_intel_crtc
->lut_adj
[i
]) << 16) |
851 ((psb_intel_crtc
->lut_g
[i
] +
852 psb_intel_crtc
->lut_adj
[i
]) << 8) |
853 (psb_intel_crtc
->lut_b
[i
] +
854 psb_intel_crtc
->lut_adj
[i
]);
861 * Save HW states of giving crtc
863 static void psb_intel_crtc_save(struct drm_crtc
*crtc
)
865 struct drm_device
*dev
= crtc
->dev
;
866 /* struct drm_psb_private *dev_priv =
867 (struct drm_psb_private *)dev->dev_private; */
868 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
869 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
870 int pipeA
= (psb_intel_crtc
->pipe
== 0);
875 dev_err(dev
->dev
, "No CRTC state found\n");
879 crtc_state
->saveDSPCNTR
= REG_READ(pipeA
? DSPACNTR
: DSPBCNTR
);
880 crtc_state
->savePIPECONF
= REG_READ(pipeA
? PIPEACONF
: PIPEBCONF
);
881 crtc_state
->savePIPESRC
= REG_READ(pipeA
? PIPEASRC
: PIPEBSRC
);
882 crtc_state
->saveFP0
= REG_READ(pipeA
? FPA0
: FPB0
);
883 crtc_state
->saveFP1
= REG_READ(pipeA
? FPA1
: FPB1
);
884 crtc_state
->saveDPLL
= REG_READ(pipeA
? DPLL_A
: DPLL_B
);
885 crtc_state
->saveHTOTAL
= REG_READ(pipeA
? HTOTAL_A
: HTOTAL_B
);
886 crtc_state
->saveHBLANK
= REG_READ(pipeA
? HBLANK_A
: HBLANK_B
);
887 crtc_state
->saveHSYNC
= REG_READ(pipeA
? HSYNC_A
: HSYNC_B
);
888 crtc_state
->saveVTOTAL
= REG_READ(pipeA
? VTOTAL_A
: VTOTAL_B
);
889 crtc_state
->saveVBLANK
= REG_READ(pipeA
? VBLANK_A
: VBLANK_B
);
890 crtc_state
->saveVSYNC
= REG_READ(pipeA
? VSYNC_A
: VSYNC_B
);
891 crtc_state
->saveDSPSTRIDE
= REG_READ(pipeA
? DSPASTRIDE
: DSPBSTRIDE
);
893 /*NOTE: DSPSIZE DSPPOS only for psb*/
894 crtc_state
->saveDSPSIZE
= REG_READ(pipeA
? DSPASIZE
: DSPBSIZE
);
895 crtc_state
->saveDSPPOS
= REG_READ(pipeA
? DSPAPOS
: DSPBPOS
);
897 crtc_state
->saveDSPBASE
= REG_READ(pipeA
? DSPABASE
: DSPBBASE
);
899 paletteReg
= pipeA
? PALETTE_A
: PALETTE_B
;
900 for (i
= 0; i
< 256; ++i
)
901 crtc_state
->savePalette
[i
] = REG_READ(paletteReg
+ (i
<< 2));
905 * Restore HW states of giving crtc
907 static void psb_intel_crtc_restore(struct drm_crtc
*crtc
)
909 struct drm_device
*dev
= crtc
->dev
;
910 /* struct drm_psb_private * dev_priv =
911 (struct drm_psb_private *)dev->dev_private; */
912 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
913 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
914 /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
915 int pipeA
= (psb_intel_crtc
->pipe
== 0);
920 dev_err(dev
->dev
, "No crtc state\n");
924 if (crtc_state
->saveDPLL
& DPLL_VCO_ENABLE
) {
925 REG_WRITE(pipeA
? DPLL_A
: DPLL_B
,
926 crtc_state
->saveDPLL
& ~DPLL_VCO_ENABLE
);
927 REG_READ(pipeA
? DPLL_A
: DPLL_B
);
931 REG_WRITE(pipeA
? FPA0
: FPB0
, crtc_state
->saveFP0
);
932 REG_READ(pipeA
? FPA0
: FPB0
);
934 REG_WRITE(pipeA
? FPA1
: FPB1
, crtc_state
->saveFP1
);
935 REG_READ(pipeA
? FPA1
: FPB1
);
937 REG_WRITE(pipeA
? DPLL_A
: DPLL_B
, crtc_state
->saveDPLL
);
938 REG_READ(pipeA
? DPLL_A
: DPLL_B
);
941 REG_WRITE(pipeA
? HTOTAL_A
: HTOTAL_B
, crtc_state
->saveHTOTAL
);
942 REG_WRITE(pipeA
? HBLANK_A
: HBLANK_B
, crtc_state
->saveHBLANK
);
943 REG_WRITE(pipeA
? HSYNC_A
: HSYNC_B
, crtc_state
->saveHSYNC
);
944 REG_WRITE(pipeA
? VTOTAL_A
: VTOTAL_B
, crtc_state
->saveVTOTAL
);
945 REG_WRITE(pipeA
? VBLANK_A
: VBLANK_B
, crtc_state
->saveVBLANK
);
946 REG_WRITE(pipeA
? VSYNC_A
: VSYNC_B
, crtc_state
->saveVSYNC
);
947 REG_WRITE(pipeA
? DSPASTRIDE
: DSPBSTRIDE
, crtc_state
->saveDSPSTRIDE
);
949 REG_WRITE(pipeA
? DSPASIZE
: DSPBSIZE
, crtc_state
->saveDSPSIZE
);
950 REG_WRITE(pipeA
? DSPAPOS
: DSPBPOS
, crtc_state
->saveDSPPOS
);
952 REG_WRITE(pipeA
? PIPEASRC
: PIPEBSRC
, crtc_state
->savePIPESRC
);
953 REG_WRITE(pipeA
? DSPABASE
: DSPBBASE
, crtc_state
->saveDSPBASE
);
954 REG_WRITE(pipeA
? PIPEACONF
: PIPEBCONF
, crtc_state
->savePIPECONF
);
956 psb_intel_wait_for_vblank(dev
);
958 REG_WRITE(pipeA
? DSPACNTR
: DSPBCNTR
, crtc_state
->saveDSPCNTR
);
959 REG_WRITE(pipeA
? DSPABASE
: DSPBBASE
, crtc_state
->saveDSPBASE
);
961 psb_intel_wait_for_vblank(dev
);
963 paletteReg
= pipeA
? PALETTE_A
: PALETTE_B
;
964 for (i
= 0; i
< 256; ++i
)
965 REG_WRITE(paletteReg
+ (i
<< 2), crtc_state
->savePalette
[i
]);
968 static int psb_intel_crtc_cursor_set(struct drm_crtc
*crtc
,
969 struct drm_file
*file_priv
,
971 uint32_t width
, uint32_t height
)
973 struct drm_device
*dev
= crtc
->dev
;
974 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
975 int pipe
= psb_intel_crtc
->pipe
;
976 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
977 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
980 struct gtt_range
*gt
;
981 struct drm_gem_object
*obj
;
984 /* if we want to turn of the cursor ignore width and height */
986 /* turn off the cursor */
987 temp
= CURSOR_MODE_DISABLE
;
989 if (gma_power_begin(dev
, false)) {
990 REG_WRITE(control
, temp
);
995 /* Unpin the old GEM object */
996 if (psb_intel_crtc
->cursor_obj
) {
997 gt
= container_of(psb_intel_crtc
->cursor_obj
,
998 struct gtt_range
, gem
);
1000 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1001 psb_intel_crtc
->cursor_obj
= NULL
;
1007 /* Currently we only support 64x64 cursors */
1008 if (width
!= 64 || height
!= 64) {
1009 dev_dbg(dev
->dev
, "we currently only support 64x64 cursors\n");
1013 obj
= drm_gem_object_lookup(dev
, file_priv
, handle
);
1017 if (obj
->size
< width
* height
* 4) {
1018 dev_dbg(dev
->dev
, "buffer is to small\n");
1022 gt
= container_of(obj
, struct gtt_range
, gem
);
1024 /* Pin the memory into the GTT */
1025 ret
= psb_gtt_pin(gt
);
1027 dev_err(dev
->dev
, "Can not pin down handle 0x%x\n", handle
);
1032 addr
= gt
->offset
; /* Or resource.start ??? */
1034 psb_intel_crtc
->cursor_addr
= addr
;
1037 /* set the pipe for the cursor */
1038 temp
|= (pipe
<< 28);
1039 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
1041 if (gma_power_begin(dev
, false)) {
1042 REG_WRITE(control
, temp
);
1043 REG_WRITE(base
, addr
);
1047 /* unpin the old bo */
1048 if (psb_intel_crtc
->cursor_obj
) {
1049 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1050 struct gtt_range
, gem
);
1052 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1053 psb_intel_crtc
->cursor_obj
= obj
;
1058 static int psb_intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1060 struct drm_device
*dev
= crtc
->dev
;
1061 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1062 int pipe
= psb_intel_crtc
->pipe
;
1068 temp
|= (CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
);
1072 temp
|= (CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
);
1076 temp
|= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
);
1077 temp
|= ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1079 addr
= psb_intel_crtc
->cursor_addr
;
1081 if (gma_power_begin(dev
, false)) {
1082 REG_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
1083 REG_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, addr
);
1089 void psb_intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
,
1090 u16
*green
, u16
*blue
, uint32_t type
, uint32_t size
)
1092 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1098 for (i
= 0; i
< 256; i
++) {
1099 psb_intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
1100 psb_intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
1101 psb_intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
1104 psb_intel_crtc_load_lut(crtc
);
1107 static int psb_crtc_set_config(struct drm_mode_set
*set
)
1110 struct drm_device
*dev
= set
->crtc
->dev
;
1111 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1113 if (!dev_priv
->rpm_enabled
)
1114 return drm_crtc_helper_set_config(set
);
1116 pm_runtime_forbid(&dev
->pdev
->dev
);
1117 ret
= drm_crtc_helper_set_config(set
);
1118 pm_runtime_allow(&dev
->pdev
->dev
);
1122 /* Returns the clock of the currently programmed mode of the given pipe. */
1123 static int psb_intel_crtc_clock_get(struct drm_device
*dev
,
1124 struct drm_crtc
*crtc
)
1126 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1127 int pipe
= psb_intel_crtc
->pipe
;
1130 struct psb_intel_clock_t clock
;
1132 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1134 if (gma_power_begin(dev
, false)) {
1135 dpll
= REG_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
1136 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1137 fp
= REG_READ((pipe
== 0) ? FPA0
: FPB0
);
1139 fp
= REG_READ((pipe
== 0) ? FPA1
: FPB1
);
1140 is_lvds
= (pipe
== 1) && (REG_READ(LVDS
) & LVDS_PORT_EN
);
1143 dpll
= (pipe
== 0) ?
1144 dev_priv
->saveDPLL_A
: dev_priv
->saveDPLL_B
;
1146 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1148 dev_priv
->saveFPA0
:
1152 dev_priv
->saveFPA1
:
1155 is_lvds
= (pipe
== 1) && (dev_priv
->saveLVDS
& LVDS_PORT_EN
);
1158 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
1159 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
1160 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
1165 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
1166 DPLL_FPA01_P1_POST_DIV_SHIFT
);
1169 if ((dpll
& PLL_REF_INPUT_MASK
) ==
1170 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
1171 /* XXX: might not be 66MHz */
1172 i8xx_clock(66000, &clock
);
1174 i8xx_clock(48000, &clock
);
1176 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
1181 DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
1182 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
1184 if (dpll
& PLL_P2_DIVIDE_BY_4
)
1189 i8xx_clock(48000, &clock
);
1192 /* XXX: It would be nice to validate the clocks, but we can't reuse
1193 * i830PllIsValid() because it relies on the xf86_config connector
1194 * configuration being accurate, which it isn't necessarily.
1200 /** Returns the currently programmed mode of the given pipe. */
1201 struct drm_display_mode
*psb_intel_crtc_mode_get(struct drm_device
*dev
,
1202 struct drm_crtc
*crtc
)
1204 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1205 int pipe
= psb_intel_crtc
->pipe
;
1206 struct drm_display_mode
*mode
;
1211 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1213 if (gma_power_begin(dev
, false)) {
1214 htot
= REG_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
1215 hsync
= REG_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
1216 vtot
= REG_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
1217 vsync
= REG_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
1220 htot
= (pipe
== 0) ?
1221 dev_priv
->saveHTOTAL_A
: dev_priv
->saveHTOTAL_B
;
1222 hsync
= (pipe
== 0) ?
1223 dev_priv
->saveHSYNC_A
: dev_priv
->saveHSYNC_B
;
1224 vtot
= (pipe
== 0) ?
1225 dev_priv
->saveVTOTAL_A
: dev_priv
->saveVTOTAL_B
;
1226 vsync
= (pipe
== 0) ?
1227 dev_priv
->saveVSYNC_A
: dev_priv
->saveVSYNC_B
;
1230 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
1234 mode
->clock
= psb_intel_crtc_clock_get(dev
, crtc
);
1235 mode
->hdisplay
= (htot
& 0xffff) + 1;
1236 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
1237 mode
->hsync_start
= (hsync
& 0xffff) + 1;
1238 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
1239 mode
->vdisplay
= (vtot
& 0xffff) + 1;
1240 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
1241 mode
->vsync_start
= (vsync
& 0xffff) + 1;
1242 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
1244 drm_mode_set_name(mode
);
1245 drm_mode_set_crtcinfo(mode
, 0);
1250 void psb_intel_crtc_destroy(struct drm_crtc
*crtc
)
1252 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1253 struct gtt_range
*gt
;
1255 /* Unpin the old GEM object */
1256 if (psb_intel_crtc
->cursor_obj
) {
1257 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1258 struct gtt_range
, gem
);
1260 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1261 psb_intel_crtc
->cursor_obj
= NULL
;
1263 kfree(psb_intel_crtc
->crtc_state
);
1264 drm_crtc_cleanup(crtc
);
1265 kfree(psb_intel_crtc
);
1268 const struct drm_crtc_helper_funcs psb_intel_helper_funcs
= {
1269 .dpms
= psb_intel_crtc_dpms
,
1270 .mode_fixup
= psb_intel_crtc_mode_fixup
,
1271 .mode_set
= psb_intel_crtc_mode_set
,
1272 .mode_set_base
= psb_intel_pipe_set_base
,
1273 .prepare
= psb_intel_crtc_prepare
,
1274 .commit
= psb_intel_crtc_commit
,
1277 const struct drm_crtc_funcs psb_intel_crtc_funcs
= {
1278 .save
= psb_intel_crtc_save
,
1279 .restore
= psb_intel_crtc_restore
,
1280 .cursor_set
= psb_intel_crtc_cursor_set
,
1281 .cursor_move
= psb_intel_crtc_cursor_move
,
1282 .gamma_set
= psb_intel_crtc_gamma_set
,
1283 .set_config
= psb_crtc_set_config
,
1284 .destroy
= psb_intel_crtc_destroy
,
1288 * Set the default value of cursor control and base register
1289 * to zero. This is a workaround for h/w defect on Oaktrail
1291 static void psb_intel_cursor_init(struct drm_device
*dev
, int pipe
)
1293 u32 control
[3] = { CURACNTR
, CURBCNTR
, CURCCNTR
};
1294 u32 base
[3] = { CURABASE
, CURBBASE
, CURCBASE
};
1296 REG_WRITE(control
[pipe
], 0);
1297 REG_WRITE(base
[pipe
], 0);
1300 void psb_intel_crtc_init(struct drm_device
*dev
, int pipe
,
1301 struct psb_intel_mode_device
*mode_dev
)
1303 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1304 struct psb_intel_crtc
*psb_intel_crtc
;
1306 uint16_t *r_base
, *g_base
, *b_base
;
1308 /* We allocate a extra array of drm_connector pointers
1309 * for fbdev after the crtc */
1311 kzalloc(sizeof(struct psb_intel_crtc
) +
1312 (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)),
1314 if (psb_intel_crtc
== NULL
)
1317 psb_intel_crtc
->crtc_state
=
1318 kzalloc(sizeof(struct psb_intel_crtc_state
), GFP_KERNEL
);
1319 if (!psb_intel_crtc
->crtc_state
) {
1320 dev_err(dev
->dev
, "Crtc state error: No memory\n");
1321 kfree(psb_intel_crtc
);
1325 /* Set the CRTC operations from the chip specific data */
1326 drm_crtc_init(dev
, &psb_intel_crtc
->base
, dev_priv
->ops
->crtc_funcs
);
1328 drm_mode_crtc_set_gamma_size(&psb_intel_crtc
->base
, 256);
1329 psb_intel_crtc
->pipe
= pipe
;
1330 psb_intel_crtc
->plane
= pipe
;
1332 r_base
= psb_intel_crtc
->base
.gamma_store
;
1333 g_base
= r_base
+ 256;
1334 b_base
= g_base
+ 256;
1335 for (i
= 0; i
< 256; i
++) {
1336 psb_intel_crtc
->lut_r
[i
] = i
;
1337 psb_intel_crtc
->lut_g
[i
] = i
;
1338 psb_intel_crtc
->lut_b
[i
] = i
;
1343 psb_intel_crtc
->lut_adj
[i
] = 0;
1346 psb_intel_crtc
->mode_dev
= mode_dev
;
1347 psb_intel_crtc
->cursor_addr
= 0;
1349 drm_crtc_helper_add(&psb_intel_crtc
->base
,
1350 dev_priv
->ops
->crtc_helper
);
1352 /* Setup the array of drm_connector pointer array */
1353 psb_intel_crtc
->mode_set
.crtc
= &psb_intel_crtc
->base
;
1354 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
1355 dev_priv
->plane_to_crtc_mapping
[psb_intel_crtc
->plane
] != NULL
);
1356 dev_priv
->plane_to_crtc_mapping
[psb_intel_crtc
->plane
] =
1357 &psb_intel_crtc
->base
;
1358 dev_priv
->pipe_to_crtc_mapping
[psb_intel_crtc
->pipe
] =
1359 &psb_intel_crtc
->base
;
1360 psb_intel_crtc
->mode_set
.connectors
=
1361 (struct drm_connector
**) (psb_intel_crtc
+ 1);
1362 psb_intel_crtc
->mode_set
.num_connectors
= 0;
1363 psb_intel_cursor_init(dev
, pipe
);
1366 int psb_intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
1367 struct drm_file
*file_priv
)
1369 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1370 struct drm_psb_get_pipe_from_crtc_id_arg
*pipe_from_crtc_id
= data
;
1371 struct drm_mode_object
*drmmode_obj
;
1372 struct psb_intel_crtc
*crtc
;
1375 dev_err(dev
->dev
, "called with no initialization\n");
1379 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
1380 DRM_MODE_OBJECT_CRTC
);
1383 dev_err(dev
->dev
, "no such CRTC id\n");
1387 crtc
= to_psb_intel_crtc(obj_to_crtc(drmmode_obj
));
1388 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
1393 struct drm_crtc
*psb_intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
1395 struct drm_crtc
*crtc
= NULL
;
1397 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1398 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1399 if (psb_intel_crtc
->pipe
== pipe
)
1405 int psb_intel_connector_clones(struct drm_device
*dev
, int type_mask
)
1408 struct drm_connector
*connector
;
1411 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
1413 struct psb_intel_encoder
*psb_intel_encoder
=
1414 psb_intel_attached_encoder(connector
);
1415 if (type_mask
& (1 << psb_intel_encoder
->type
))
1416 index_mask
|= (1 << entry
);
1423 void psb_intel_modeset_cleanup(struct drm_device
*dev
)
1425 drm_mode_config_cleanup(dev
);
1429 /* current intel driver doesn't take advantage of encoders
1430 always give back the encoder for the connector
1432 struct drm_encoder
*psb_intel_best_encoder(struct drm_connector
*connector
)
1434 struct psb_intel_encoder
*psb_intel_encoder
=
1435 psb_intel_attached_encoder(connector
);
1437 return &psb_intel_encoder
->base
;
1440 void psb_intel_connector_attach_encoder(struct psb_intel_connector
*connector
,
1441 struct psb_intel_encoder
*encoder
)
1443 connector
->encoder
= encoder
;
1444 drm_mode_connector_attach_encoder(&connector
->base
,