i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / iommu / intel-iommu.c
blobc9c6053198d403626d08e2d0826fde7b633baef9
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/cacheflush.h>
46 #include <asm/iommu.h>
48 #define ROOT_SIZE VTD_PAGE_SIZE
49 #define CONTEXT_SIZE VTD_PAGE_SIZE
51 #define IS_BRIDGE_HOST_DEVICE(pdev) \
52 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
53 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
54 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
55 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
57 #define IOAPIC_RANGE_START (0xfee00000)
58 #define IOAPIC_RANGE_END (0xfeefffff)
59 #define IOVA_START_ADDR (0x1000)
61 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
63 #define MAX_AGAW_WIDTH 64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
100 static inline int agaw_to_level(int agaw)
102 return agaw + 2;
105 static inline int agaw_to_width(int agaw)
107 return 30 + agaw * LEVEL_STRIDE;
110 static inline int width_to_agaw(int width)
112 return (width - 30) / LEVEL_STRIDE;
115 static inline unsigned int level_to_offset_bits(int level)
117 return (level - 1) * LEVEL_STRIDE;
120 static inline int pfn_level_offset(unsigned long pfn, int level)
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
125 static inline unsigned long level_mask(int level)
127 return -1UL << level_to_offset_bits(level);
130 static inline unsigned long level_size(int level)
132 return 1UL << level_to_offset_bits(level);
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
137 return (pfn + level_size(level) - 1) & level_mask(level);
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
142 return 1 << ((lvl - 1) * LEVEL_STRIDE);
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
158 return mm_to_dma_pfn(page_to_pfn(pg));
160 static inline unsigned long virt_to_dma_pfn(void *p)
162 return page_to_dma_pfn(virt_to_page(p));
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
175 static int force_on = 0;
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
190 return (root->val & 1);
192 static inline void set_root_present(struct root_entry *root)
194 root->val |= 1;
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
198 root->val |= value & VTD_PAGE_MASK;
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
221 struct context_entry {
222 u64 lo;
223 u64 hi;
226 static inline bool context_present(struct context_entry *context)
228 return (context->lo & 1);
230 static inline void context_set_present(struct context_entry *context)
232 context->lo |= 1;
235 static inline void context_set_fault_enable(struct context_entry *context)
237 context->lo &= (((u64)-1) << 2) | 1;
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
250 context->lo |= value & VTD_PAGE_MASK;
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
256 context->hi |= value & 7;
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 static inline void context_clear_entry(struct context_entry *context)
267 context->lo = 0;
268 context->hi = 0;
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
280 struct dma_pte {
281 u64 val;
284 static inline void dma_clear_pte(struct dma_pte *pte)
286 pte->val = 0;
289 static inline void dma_set_pte_readable(struct dma_pte *pte)
291 pte->val |= DMA_PTE_READ;
294 static inline void dma_set_pte_writable(struct dma_pte *pte)
296 pte->val |= DMA_PTE_WRITE;
299 static inline void dma_set_pte_snp(struct dma_pte *pte)
301 pte->val |= DMA_PTE_SNP;
304 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
306 pte->val = (pte->val & ~3) | (prot & 3);
309 static inline u64 dma_pte_addr(struct dma_pte *pte)
311 #ifdef CONFIG_64BIT
312 return pte->val & VTD_PAGE_MASK;
313 #else
314 /* Must have a full atomic 64-bit read */
315 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
316 #endif
319 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
321 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
324 static inline bool dma_pte_present(struct dma_pte *pte)
326 return (pte->val & 3) != 0;
329 static inline bool dma_pte_superpage(struct dma_pte *pte)
331 return (pte->val & (1 << 7));
334 static inline int first_pte_in_page(struct dma_pte *pte)
336 return !((unsigned long)pte & ~VTD_PAGE_MASK);
340 * This domain is a statically identity mapping domain.
341 * 1. This domain creats a static 1:1 mapping to all usable memory.
342 * 2. It maps to each iommu if successful.
343 * 3. Each iommu mapps to this domain if successful.
345 static struct dmar_domain *si_domain;
346 static int hw_pass_through = 1;
348 /* devices under the same p2p bridge are owned in one domain */
349 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
351 /* domain represents a virtual machine, more than one devices
352 * across iommus may be owned in one domain, e.g. kvm guest.
354 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
356 /* si_domain contains mulitple devices */
357 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
359 struct dmar_domain {
360 int id; /* domain id */
361 int nid; /* node id */
362 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
364 struct list_head devices; /* all devices' list */
365 struct iova_domain iovad; /* iova's that belong to this domain */
367 struct dma_pte *pgd; /* virtual address */
368 int gaw; /* max guest address width */
370 /* adjusted guest address width, 0 is level 2 30-bit */
371 int agaw;
373 int flags; /* flags to find out type of domain */
375 int iommu_coherency;/* indicate coherency of iommu access */
376 int iommu_snooping; /* indicate snooping control feature*/
377 int iommu_count; /* reference count of iommu */
378 int iommu_superpage;/* Level of superpages supported:
379 0 == 4KiB (no superpages), 1 == 2MiB,
380 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
381 spinlock_t iommu_lock; /* protect iommu set in domain */
382 u64 max_addr; /* maximum mapped address */
385 /* PCI domain-device relationship */
386 struct device_domain_info {
387 struct list_head link; /* link to domain siblings */
388 struct list_head global; /* link to global list */
389 int segment; /* PCI domain */
390 u8 bus; /* PCI bus number */
391 u8 devfn; /* PCI devfn number */
392 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
393 struct intel_iommu *iommu; /* IOMMU used by this device */
394 struct dmar_domain *domain; /* pointer to domain */
397 static void flush_unmaps_timeout(unsigned long data);
399 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
401 #define HIGH_WATER_MARK 250
402 struct deferred_flush_tables {
403 int next;
404 struct iova *iova[HIGH_WATER_MARK];
405 struct dmar_domain *domain[HIGH_WATER_MARK];
408 static struct deferred_flush_tables *deferred_flush;
410 /* bitmap for indexing intel_iommus */
411 static int g_num_of_iommus;
413 static DEFINE_SPINLOCK(async_umap_flush_lock);
414 static LIST_HEAD(unmaps_to_do);
416 static int timer_on;
417 static long list_size;
419 static void domain_remove_dev_info(struct dmar_domain *domain);
421 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
422 int dmar_disabled = 0;
423 #else
424 int dmar_disabled = 1;
425 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
427 int intel_iommu_enabled = 0;
428 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
430 static int dmar_map_gfx = 1;
431 static int dmar_forcedac;
432 static int intel_iommu_strict;
433 static int intel_iommu_superpage = 1;
435 int intel_iommu_gfx_mapped;
436 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
438 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
439 static DEFINE_SPINLOCK(device_domain_lock);
440 static LIST_HEAD(device_domain_list);
442 static struct iommu_ops intel_iommu_ops;
444 static int __init intel_iommu_setup(char *str)
446 if (!str)
447 return -EINVAL;
448 while (*str) {
449 if (!strncmp(str, "on", 2)) {
450 dmar_disabled = 0;
451 printk(KERN_INFO "Intel-IOMMU: enabled\n");
452 } else if (!strncmp(str, "off", 3)) {
453 dmar_disabled = 1;
454 printk(KERN_INFO "Intel-IOMMU: disabled\n");
455 } else if (!strncmp(str, "igfx_off", 8)) {
456 dmar_map_gfx = 0;
457 printk(KERN_INFO
458 "Intel-IOMMU: disable GFX device mapping\n");
459 } else if (!strncmp(str, "forcedac", 8)) {
460 printk(KERN_INFO
461 "Intel-IOMMU: Forcing DAC for PCI devices\n");
462 dmar_forcedac = 1;
463 } else if (!strncmp(str, "strict", 6)) {
464 printk(KERN_INFO
465 "Intel-IOMMU: disable batched IOTLB flush\n");
466 intel_iommu_strict = 1;
467 } else if (!strncmp(str, "sp_off", 6)) {
468 printk(KERN_INFO
469 "Intel-IOMMU: disable supported super page\n");
470 intel_iommu_superpage = 0;
473 str += strcspn(str, ",");
474 while (*str == ',')
475 str++;
477 return 0;
479 __setup("intel_iommu=", intel_iommu_setup);
481 static struct kmem_cache *iommu_domain_cache;
482 static struct kmem_cache *iommu_devinfo_cache;
483 static struct kmem_cache *iommu_iova_cache;
485 static inline void *alloc_pgtable_page(int node)
487 struct page *page;
488 void *vaddr = NULL;
490 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
491 if (page)
492 vaddr = page_address(page);
493 return vaddr;
496 static inline void free_pgtable_page(void *vaddr)
498 free_page((unsigned long)vaddr);
501 static inline void *alloc_domain_mem(void)
503 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
506 static void free_domain_mem(void *vaddr)
508 kmem_cache_free(iommu_domain_cache, vaddr);
511 static inline void * alloc_devinfo_mem(void)
513 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
516 static inline void free_devinfo_mem(void *vaddr)
518 kmem_cache_free(iommu_devinfo_cache, vaddr);
521 struct iova *alloc_iova_mem(void)
523 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
526 void free_iova_mem(struct iova *iova)
528 kmem_cache_free(iommu_iova_cache, iova);
532 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
534 unsigned long sagaw;
535 int agaw = -1;
537 sagaw = cap_sagaw(iommu->cap);
538 for (agaw = width_to_agaw(max_gaw);
539 agaw >= 0; agaw--) {
540 if (test_bit(agaw, &sagaw))
541 break;
544 return agaw;
548 * Calculate max SAGAW for each iommu.
550 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
552 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
556 * calculate agaw for each iommu.
557 * "SAGAW" may be different across iommus, use a default agaw, and
558 * get a supported less agaw for iommus that don't support the default agaw.
560 int iommu_calculate_agaw(struct intel_iommu *iommu)
562 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
565 /* This functionin only returns single iommu in a domain */
566 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
568 int iommu_id;
570 /* si_domain and vm domain should not get here. */
571 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
572 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
574 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
575 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
576 return NULL;
578 return g_iommus[iommu_id];
581 static void domain_update_iommu_coherency(struct dmar_domain *domain)
583 int i;
585 domain->iommu_coherency = 1;
587 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
588 if (!ecap_coherent(g_iommus[i]->ecap)) {
589 domain->iommu_coherency = 0;
590 break;
595 static void domain_update_iommu_snooping(struct dmar_domain *domain)
597 int i;
599 domain->iommu_snooping = 1;
601 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
602 if (!ecap_sc_support(g_iommus[i]->ecap)) {
603 domain->iommu_snooping = 0;
604 break;
609 static void domain_update_iommu_superpage(struct dmar_domain *domain)
611 struct dmar_drhd_unit *drhd;
612 struct intel_iommu *iommu = NULL;
613 int mask = 0xf;
615 if (!intel_iommu_superpage) {
616 domain->iommu_superpage = 0;
617 return;
620 /* set iommu_superpage to the smallest common denominator */
621 for_each_active_iommu(iommu, drhd) {
622 mask &= cap_super_page_val(iommu->cap);
623 if (!mask) {
624 break;
627 domain->iommu_superpage = fls(mask);
630 /* Some capabilities may be different across iommus */
631 static void domain_update_iommu_cap(struct dmar_domain *domain)
633 domain_update_iommu_coherency(domain);
634 domain_update_iommu_snooping(domain);
635 domain_update_iommu_superpage(domain);
638 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
640 struct dmar_drhd_unit *drhd = NULL;
641 int i;
643 for_each_drhd_unit(drhd) {
644 if (drhd->ignored)
645 continue;
646 if (segment != drhd->segment)
647 continue;
649 for (i = 0; i < drhd->devices_cnt; i++) {
650 if (drhd->devices[i] &&
651 drhd->devices[i]->bus->number == bus &&
652 drhd->devices[i]->devfn == devfn)
653 return drhd->iommu;
654 if (drhd->devices[i] &&
655 drhd->devices[i]->subordinate &&
656 drhd->devices[i]->subordinate->number <= bus &&
657 drhd->devices[i]->subordinate->subordinate >= bus)
658 return drhd->iommu;
661 if (drhd->include_all)
662 return drhd->iommu;
665 return NULL;
668 static void domain_flush_cache(struct dmar_domain *domain,
669 void *addr, int size)
671 if (!domain->iommu_coherency)
672 clflush_cache_range(addr, size);
675 /* Gets context entry for a given bus and devfn */
676 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
677 u8 bus, u8 devfn)
679 struct root_entry *root;
680 struct context_entry *context;
681 unsigned long phy_addr;
682 unsigned long flags;
684 spin_lock_irqsave(&iommu->lock, flags);
685 root = &iommu->root_entry[bus];
686 context = get_context_addr_from_root(root);
687 if (!context) {
688 context = (struct context_entry *)
689 alloc_pgtable_page(iommu->node);
690 if (!context) {
691 spin_unlock_irqrestore(&iommu->lock, flags);
692 return NULL;
694 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
695 phy_addr = virt_to_phys((void *)context);
696 set_root_value(root, phy_addr);
697 set_root_present(root);
698 __iommu_flush_cache(iommu, root, sizeof(*root));
700 spin_unlock_irqrestore(&iommu->lock, flags);
701 return &context[devfn];
704 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
706 struct root_entry *root;
707 struct context_entry *context;
708 int ret;
709 unsigned long flags;
711 spin_lock_irqsave(&iommu->lock, flags);
712 root = &iommu->root_entry[bus];
713 context = get_context_addr_from_root(root);
714 if (!context) {
715 ret = 0;
716 goto out;
718 ret = context_present(&context[devfn]);
719 out:
720 spin_unlock_irqrestore(&iommu->lock, flags);
721 return ret;
724 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
726 struct root_entry *root;
727 struct context_entry *context;
728 unsigned long flags;
730 spin_lock_irqsave(&iommu->lock, flags);
731 root = &iommu->root_entry[bus];
732 context = get_context_addr_from_root(root);
733 if (context) {
734 context_clear_entry(&context[devfn]);
735 __iommu_flush_cache(iommu, &context[devfn], \
736 sizeof(*context));
738 spin_unlock_irqrestore(&iommu->lock, flags);
741 static void free_context_table(struct intel_iommu *iommu)
743 struct root_entry *root;
744 int i;
745 unsigned long flags;
746 struct context_entry *context;
748 spin_lock_irqsave(&iommu->lock, flags);
749 if (!iommu->root_entry) {
750 goto out;
752 for (i = 0; i < ROOT_ENTRY_NR; i++) {
753 root = &iommu->root_entry[i];
754 context = get_context_addr_from_root(root);
755 if (context)
756 free_pgtable_page(context);
758 free_pgtable_page(iommu->root_entry);
759 iommu->root_entry = NULL;
760 out:
761 spin_unlock_irqrestore(&iommu->lock, flags);
764 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
765 unsigned long pfn, int target_level)
767 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
768 struct dma_pte *parent, *pte = NULL;
769 int level = agaw_to_level(domain->agaw);
770 int offset;
772 BUG_ON(!domain->pgd);
773 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
774 parent = domain->pgd;
776 while (level > 0) {
777 void *tmp_page;
779 offset = pfn_level_offset(pfn, level);
780 pte = &parent[offset];
781 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
782 break;
783 if (level == target_level)
784 break;
786 if (!dma_pte_present(pte)) {
787 uint64_t pteval;
789 tmp_page = alloc_pgtable_page(domain->nid);
791 if (!tmp_page)
792 return NULL;
794 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
795 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
796 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
797 /* Someone else set it while we were thinking; use theirs. */
798 free_pgtable_page(tmp_page);
799 } else {
800 dma_pte_addr(pte);
801 domain_flush_cache(domain, pte, sizeof(*pte));
804 parent = phys_to_virt(dma_pte_addr(pte));
805 level--;
808 return pte;
812 /* return address's pte at specific level */
813 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
814 unsigned long pfn,
815 int level, int *large_page)
817 struct dma_pte *parent, *pte = NULL;
818 int total = agaw_to_level(domain->agaw);
819 int offset;
821 parent = domain->pgd;
822 while (level <= total) {
823 offset = pfn_level_offset(pfn, total);
824 pte = &parent[offset];
825 if (level == total)
826 return pte;
828 if (!dma_pte_present(pte)) {
829 *large_page = total;
830 break;
833 if (pte->val & DMA_PTE_LARGE_PAGE) {
834 *large_page = total;
835 return pte;
838 parent = phys_to_virt(dma_pte_addr(pte));
839 total--;
841 return NULL;
844 /* clear last level pte, a tlb flush should be followed */
845 static int dma_pte_clear_range(struct dmar_domain *domain,
846 unsigned long start_pfn,
847 unsigned long last_pfn)
849 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
850 unsigned int large_page = 1;
851 struct dma_pte *first_pte, *pte;
852 int order;
854 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
855 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
856 BUG_ON(start_pfn > last_pfn);
858 /* we don't need lock here; nobody else touches the iova range */
859 do {
860 large_page = 1;
861 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
862 if (!pte) {
863 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
864 continue;
866 do {
867 dma_clear_pte(pte);
868 start_pfn += lvl_to_nr_pages(large_page);
869 pte++;
870 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
872 domain_flush_cache(domain, first_pte,
873 (void *)pte - (void *)first_pte);
875 } while (start_pfn && start_pfn <= last_pfn);
877 order = (large_page - 1) * 9;
878 return order;
881 /* free page table pages. last level pte should already be cleared */
882 static void dma_pte_free_pagetable(struct dmar_domain *domain,
883 unsigned long start_pfn,
884 unsigned long last_pfn)
886 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
887 struct dma_pte *first_pte, *pte;
888 int total = agaw_to_level(domain->agaw);
889 int level;
890 unsigned long tmp;
891 int large_page = 2;
893 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
894 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
895 BUG_ON(start_pfn > last_pfn);
897 /* We don't need lock here; nobody else touches the iova range */
898 level = 2;
899 while (level <= total) {
900 tmp = align_to_level(start_pfn, level);
902 /* If we can't even clear one PTE at this level, we're done */
903 if (tmp + level_size(level) - 1 > last_pfn)
904 return;
906 do {
907 large_page = level;
908 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
909 if (large_page > level)
910 level = large_page + 1;
911 if (!pte) {
912 tmp = align_to_level(tmp + 1, level + 1);
913 continue;
915 do {
916 if (dma_pte_present(pte)) {
917 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
918 dma_clear_pte(pte);
920 pte++;
921 tmp += level_size(level);
922 } while (!first_pte_in_page(pte) &&
923 tmp + level_size(level) - 1 <= last_pfn);
925 domain_flush_cache(domain, first_pte,
926 (void *)pte - (void *)first_pte);
928 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
929 level++;
931 /* free pgd */
932 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
933 free_pgtable_page(domain->pgd);
934 domain->pgd = NULL;
938 /* iommu handling */
939 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
941 struct root_entry *root;
942 unsigned long flags;
944 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
945 if (!root)
946 return -ENOMEM;
948 __iommu_flush_cache(iommu, root, ROOT_SIZE);
950 spin_lock_irqsave(&iommu->lock, flags);
951 iommu->root_entry = root;
952 spin_unlock_irqrestore(&iommu->lock, flags);
954 return 0;
957 static void iommu_set_root_entry(struct intel_iommu *iommu)
959 void *addr;
960 u32 sts;
961 unsigned long flag;
963 addr = iommu->root_entry;
965 raw_spin_lock_irqsave(&iommu->register_lock, flag);
966 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
968 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
970 /* Make sure hardware complete it */
971 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
972 readl, (sts & DMA_GSTS_RTPS), sts);
974 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
977 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
979 u32 val;
980 unsigned long flag;
982 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
983 return;
985 raw_spin_lock_irqsave(&iommu->register_lock, flag);
986 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
988 /* Make sure hardware complete it */
989 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
990 readl, (!(val & DMA_GSTS_WBFS)), val);
992 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
995 /* return value determine if we need a write buffer flush */
996 static void __iommu_flush_context(struct intel_iommu *iommu,
997 u16 did, u16 source_id, u8 function_mask,
998 u64 type)
1000 u64 val = 0;
1001 unsigned long flag;
1003 switch (type) {
1004 case DMA_CCMD_GLOBAL_INVL:
1005 val = DMA_CCMD_GLOBAL_INVL;
1006 break;
1007 case DMA_CCMD_DOMAIN_INVL:
1008 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1009 break;
1010 case DMA_CCMD_DEVICE_INVL:
1011 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1012 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1013 break;
1014 default:
1015 BUG();
1017 val |= DMA_CCMD_ICC;
1019 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1020 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1022 /* Make sure hardware complete it */
1023 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1024 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1026 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1029 /* return value determine if we need a write buffer flush */
1030 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1031 u64 addr, unsigned int size_order, u64 type)
1033 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1034 u64 val = 0, val_iva = 0;
1035 unsigned long flag;
1037 switch (type) {
1038 case DMA_TLB_GLOBAL_FLUSH:
1039 /* global flush doesn't need set IVA_REG */
1040 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1041 break;
1042 case DMA_TLB_DSI_FLUSH:
1043 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1044 break;
1045 case DMA_TLB_PSI_FLUSH:
1046 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1047 /* Note: always flush non-leaf currently */
1048 val_iva = size_order | addr;
1049 break;
1050 default:
1051 BUG();
1053 /* Note: set drain read/write */
1054 #if 0
1056 * This is probably to be super secure.. Looks like we can
1057 * ignore it without any impact.
1059 if (cap_read_drain(iommu->cap))
1060 val |= DMA_TLB_READ_DRAIN;
1061 #endif
1062 if (cap_write_drain(iommu->cap))
1063 val |= DMA_TLB_WRITE_DRAIN;
1065 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1066 /* Note: Only uses first TLB reg currently */
1067 if (val_iva)
1068 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1069 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1071 /* Make sure hardware complete it */
1072 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1073 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1075 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1077 /* check IOTLB invalidation granularity */
1078 if (DMA_TLB_IAIG(val) == 0)
1079 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1080 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1081 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1082 (unsigned long long)DMA_TLB_IIRG(type),
1083 (unsigned long long)DMA_TLB_IAIG(val));
1086 static struct device_domain_info *iommu_support_dev_iotlb(
1087 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1089 int found = 0;
1090 unsigned long flags;
1091 struct device_domain_info *info;
1092 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1094 if (!ecap_dev_iotlb_support(iommu->ecap))
1095 return NULL;
1097 if (!iommu->qi)
1098 return NULL;
1100 spin_lock_irqsave(&device_domain_lock, flags);
1101 list_for_each_entry(info, &domain->devices, link)
1102 if (info->bus == bus && info->devfn == devfn) {
1103 found = 1;
1104 break;
1106 spin_unlock_irqrestore(&device_domain_lock, flags);
1108 if (!found || !info->dev)
1109 return NULL;
1111 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1112 return NULL;
1114 if (!dmar_find_matched_atsr_unit(info->dev))
1115 return NULL;
1117 info->iommu = iommu;
1119 return info;
1122 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1124 if (!info)
1125 return;
1127 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1130 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1132 if (!info->dev || !pci_ats_enabled(info->dev))
1133 return;
1135 pci_disable_ats(info->dev);
1138 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1139 u64 addr, unsigned mask)
1141 u16 sid, qdep;
1142 unsigned long flags;
1143 struct device_domain_info *info;
1145 spin_lock_irqsave(&device_domain_lock, flags);
1146 list_for_each_entry(info, &domain->devices, link) {
1147 if (!info->dev || !pci_ats_enabled(info->dev))
1148 continue;
1150 sid = info->bus << 8 | info->devfn;
1151 qdep = pci_ats_queue_depth(info->dev);
1152 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1154 spin_unlock_irqrestore(&device_domain_lock, flags);
1157 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1158 unsigned long pfn, unsigned int pages, int map)
1160 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1161 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1163 BUG_ON(pages == 0);
1166 * Fallback to domain selective flush if no PSI support or the size is
1167 * too big.
1168 * PSI requires page size to be 2 ^ x, and the base address is naturally
1169 * aligned to the size
1171 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1172 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1173 DMA_TLB_DSI_FLUSH);
1174 else
1175 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1176 DMA_TLB_PSI_FLUSH);
1179 * In caching mode, changes of pages from non-present to present require
1180 * flush. However, device IOTLB doesn't need to be flushed in this case.
1182 if (!cap_caching_mode(iommu->cap) || !map)
1183 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1186 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1188 u32 pmen;
1189 unsigned long flags;
1191 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1192 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1193 pmen &= ~DMA_PMEN_EPM;
1194 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1196 /* wait for the protected region status bit to clear */
1197 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1198 readl, !(pmen & DMA_PMEN_PRS), pmen);
1200 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1203 static int iommu_enable_translation(struct intel_iommu *iommu)
1205 u32 sts;
1206 unsigned long flags;
1208 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1209 iommu->gcmd |= DMA_GCMD_TE;
1210 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1212 /* Make sure hardware complete it */
1213 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1214 readl, (sts & DMA_GSTS_TES), sts);
1216 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1217 return 0;
1220 static int iommu_disable_translation(struct intel_iommu *iommu)
1222 u32 sts;
1223 unsigned long flag;
1225 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1226 iommu->gcmd &= ~DMA_GCMD_TE;
1227 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1229 /* Make sure hardware complete it */
1230 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1231 readl, (!(sts & DMA_GSTS_TES)), sts);
1233 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1234 return 0;
1238 static int iommu_init_domains(struct intel_iommu *iommu)
1240 unsigned long ndomains;
1241 unsigned long nlongs;
1243 ndomains = cap_ndoms(iommu->cap);
1244 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1245 ndomains);
1246 nlongs = BITS_TO_LONGS(ndomains);
1248 spin_lock_init(&iommu->lock);
1250 /* TBD: there might be 64K domains,
1251 * consider other allocation for future chip
1253 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1254 if (!iommu->domain_ids) {
1255 printk(KERN_ERR "Allocating domain id array failed\n");
1256 return -ENOMEM;
1258 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1259 GFP_KERNEL);
1260 if (!iommu->domains) {
1261 printk(KERN_ERR "Allocating domain array failed\n");
1262 return -ENOMEM;
1266 * if Caching mode is set, then invalid translations are tagged
1267 * with domainid 0. Hence we need to pre-allocate it.
1269 if (cap_caching_mode(iommu->cap))
1270 set_bit(0, iommu->domain_ids);
1271 return 0;
1275 static void domain_exit(struct dmar_domain *domain);
1276 static void vm_domain_exit(struct dmar_domain *domain);
1278 void free_dmar_iommu(struct intel_iommu *iommu)
1280 struct dmar_domain *domain;
1281 int i;
1282 unsigned long flags;
1284 if ((iommu->domains) && (iommu->domain_ids)) {
1285 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1286 domain = iommu->domains[i];
1287 clear_bit(i, iommu->domain_ids);
1289 spin_lock_irqsave(&domain->iommu_lock, flags);
1290 if (--domain->iommu_count == 0) {
1291 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1292 vm_domain_exit(domain);
1293 else
1294 domain_exit(domain);
1296 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1300 if (iommu->gcmd & DMA_GCMD_TE)
1301 iommu_disable_translation(iommu);
1303 if (iommu->irq) {
1304 irq_set_handler_data(iommu->irq, NULL);
1305 /* This will mask the irq */
1306 free_irq(iommu->irq, iommu);
1307 destroy_irq(iommu->irq);
1310 kfree(iommu->domains);
1311 kfree(iommu->domain_ids);
1313 g_iommus[iommu->seq_id] = NULL;
1315 /* if all iommus are freed, free g_iommus */
1316 for (i = 0; i < g_num_of_iommus; i++) {
1317 if (g_iommus[i])
1318 break;
1321 if (i == g_num_of_iommus)
1322 kfree(g_iommus);
1324 /* free context mapping */
1325 free_context_table(iommu);
1328 static struct dmar_domain *alloc_domain(void)
1330 struct dmar_domain *domain;
1332 domain = alloc_domain_mem();
1333 if (!domain)
1334 return NULL;
1336 domain->nid = -1;
1337 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1338 domain->flags = 0;
1340 return domain;
1343 static int iommu_attach_domain(struct dmar_domain *domain,
1344 struct intel_iommu *iommu)
1346 int num;
1347 unsigned long ndomains;
1348 unsigned long flags;
1350 ndomains = cap_ndoms(iommu->cap);
1352 spin_lock_irqsave(&iommu->lock, flags);
1354 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1355 if (num >= ndomains) {
1356 spin_unlock_irqrestore(&iommu->lock, flags);
1357 printk(KERN_ERR "IOMMU: no free domain ids\n");
1358 return -ENOMEM;
1361 domain->id = num;
1362 set_bit(num, iommu->domain_ids);
1363 set_bit(iommu->seq_id, &domain->iommu_bmp);
1364 iommu->domains[num] = domain;
1365 spin_unlock_irqrestore(&iommu->lock, flags);
1367 return 0;
1370 static void iommu_detach_domain(struct dmar_domain *domain,
1371 struct intel_iommu *iommu)
1373 unsigned long flags;
1374 int num, ndomains;
1375 int found = 0;
1377 spin_lock_irqsave(&iommu->lock, flags);
1378 ndomains = cap_ndoms(iommu->cap);
1379 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1380 if (iommu->domains[num] == domain) {
1381 found = 1;
1382 break;
1386 if (found) {
1387 clear_bit(num, iommu->domain_ids);
1388 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1389 iommu->domains[num] = NULL;
1391 spin_unlock_irqrestore(&iommu->lock, flags);
1394 static struct iova_domain reserved_iova_list;
1395 static struct lock_class_key reserved_rbtree_key;
1397 static int dmar_init_reserved_ranges(void)
1399 struct pci_dev *pdev = NULL;
1400 struct iova *iova;
1401 int i;
1403 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1405 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1406 &reserved_rbtree_key);
1408 /* IOAPIC ranges shouldn't be accessed by DMA */
1409 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1410 IOVA_PFN(IOAPIC_RANGE_END));
1411 if (!iova) {
1412 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1413 return -ENODEV;
1416 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1417 for_each_pci_dev(pdev) {
1418 struct resource *r;
1420 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1421 r = &pdev->resource[i];
1422 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1423 continue;
1424 iova = reserve_iova(&reserved_iova_list,
1425 IOVA_PFN(r->start),
1426 IOVA_PFN(r->end));
1427 if (!iova) {
1428 printk(KERN_ERR "Reserve iova failed\n");
1429 return -ENODEV;
1433 return 0;
1436 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1438 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1441 static inline int guestwidth_to_adjustwidth(int gaw)
1443 int agaw;
1444 int r = (gaw - 12) % 9;
1446 if (r == 0)
1447 agaw = gaw;
1448 else
1449 agaw = gaw + 9 - r;
1450 if (agaw > 64)
1451 agaw = 64;
1452 return agaw;
1455 static int domain_init(struct dmar_domain *domain, int guest_width)
1457 struct intel_iommu *iommu;
1458 int adjust_width, agaw;
1459 unsigned long sagaw;
1461 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1462 spin_lock_init(&domain->iommu_lock);
1464 domain_reserve_special_ranges(domain);
1466 /* calculate AGAW */
1467 iommu = domain_get_iommu(domain);
1468 if (guest_width > cap_mgaw(iommu->cap))
1469 guest_width = cap_mgaw(iommu->cap);
1470 domain->gaw = guest_width;
1471 adjust_width = guestwidth_to_adjustwidth(guest_width);
1472 agaw = width_to_agaw(adjust_width);
1473 sagaw = cap_sagaw(iommu->cap);
1474 if (!test_bit(agaw, &sagaw)) {
1475 /* hardware doesn't support it, choose a bigger one */
1476 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1477 agaw = find_next_bit(&sagaw, 5, agaw);
1478 if (agaw >= 5)
1479 return -ENODEV;
1481 domain->agaw = agaw;
1482 INIT_LIST_HEAD(&domain->devices);
1484 if (ecap_coherent(iommu->ecap))
1485 domain->iommu_coherency = 1;
1486 else
1487 domain->iommu_coherency = 0;
1489 if (ecap_sc_support(iommu->ecap))
1490 domain->iommu_snooping = 1;
1491 else
1492 domain->iommu_snooping = 0;
1494 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1495 domain->iommu_count = 1;
1496 domain->nid = iommu->node;
1498 /* always allocate the top pgd */
1499 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1500 if (!domain->pgd)
1501 return -ENOMEM;
1502 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1503 return 0;
1506 static void domain_exit(struct dmar_domain *domain)
1508 struct dmar_drhd_unit *drhd;
1509 struct intel_iommu *iommu;
1511 /* Domain 0 is reserved, so dont process it */
1512 if (!domain)
1513 return;
1515 /* Flush any lazy unmaps that may reference this domain */
1516 if (!intel_iommu_strict)
1517 flush_unmaps_timeout(0);
1519 domain_remove_dev_info(domain);
1520 /* destroy iovas */
1521 put_iova_domain(&domain->iovad);
1523 /* clear ptes */
1524 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1526 /* free page tables */
1527 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1529 for_each_active_iommu(iommu, drhd)
1530 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1531 iommu_detach_domain(domain, iommu);
1533 free_domain_mem(domain);
1536 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1537 u8 bus, u8 devfn, int translation)
1539 struct context_entry *context;
1540 unsigned long flags;
1541 struct intel_iommu *iommu;
1542 struct dma_pte *pgd;
1543 unsigned long num;
1544 unsigned long ndomains;
1545 int id;
1546 int agaw;
1547 struct device_domain_info *info = NULL;
1549 pr_debug("Set context mapping for %02x:%02x.%d\n",
1550 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1552 BUG_ON(!domain->pgd);
1553 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1554 translation != CONTEXT_TT_MULTI_LEVEL);
1556 iommu = device_to_iommu(segment, bus, devfn);
1557 if (!iommu)
1558 return -ENODEV;
1560 context = device_to_context_entry(iommu, bus, devfn);
1561 if (!context)
1562 return -ENOMEM;
1563 spin_lock_irqsave(&iommu->lock, flags);
1564 if (context_present(context)) {
1565 spin_unlock_irqrestore(&iommu->lock, flags);
1566 return 0;
1569 id = domain->id;
1570 pgd = domain->pgd;
1572 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1573 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1574 int found = 0;
1576 /* find an available domain id for this device in iommu */
1577 ndomains = cap_ndoms(iommu->cap);
1578 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1579 if (iommu->domains[num] == domain) {
1580 id = num;
1581 found = 1;
1582 break;
1586 if (found == 0) {
1587 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1588 if (num >= ndomains) {
1589 spin_unlock_irqrestore(&iommu->lock, flags);
1590 printk(KERN_ERR "IOMMU: no free domain ids\n");
1591 return -EFAULT;
1594 set_bit(num, iommu->domain_ids);
1595 iommu->domains[num] = domain;
1596 id = num;
1599 /* Skip top levels of page tables for
1600 * iommu which has less agaw than default.
1601 * Unnecessary for PT mode.
1603 if (translation != CONTEXT_TT_PASS_THROUGH) {
1604 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1605 pgd = phys_to_virt(dma_pte_addr(pgd));
1606 if (!dma_pte_present(pgd)) {
1607 spin_unlock_irqrestore(&iommu->lock, flags);
1608 return -ENOMEM;
1614 context_set_domain_id(context, id);
1616 if (translation != CONTEXT_TT_PASS_THROUGH) {
1617 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1618 translation = info ? CONTEXT_TT_DEV_IOTLB :
1619 CONTEXT_TT_MULTI_LEVEL;
1622 * In pass through mode, AW must be programmed to indicate the largest
1623 * AGAW value supported by hardware. And ASR is ignored by hardware.
1625 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1626 context_set_address_width(context, iommu->msagaw);
1627 else {
1628 context_set_address_root(context, virt_to_phys(pgd));
1629 context_set_address_width(context, iommu->agaw);
1632 context_set_translation_type(context, translation);
1633 context_set_fault_enable(context);
1634 context_set_present(context);
1635 domain_flush_cache(domain, context, sizeof(*context));
1638 * It's a non-present to present mapping. If hardware doesn't cache
1639 * non-present entry we only need to flush the write-buffer. If the
1640 * _does_ cache non-present entries, then it does so in the special
1641 * domain #0, which we have to flush:
1643 if (cap_caching_mode(iommu->cap)) {
1644 iommu->flush.flush_context(iommu, 0,
1645 (((u16)bus) << 8) | devfn,
1646 DMA_CCMD_MASK_NOBIT,
1647 DMA_CCMD_DEVICE_INVL);
1648 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1649 } else {
1650 iommu_flush_write_buffer(iommu);
1652 iommu_enable_dev_iotlb(info);
1653 spin_unlock_irqrestore(&iommu->lock, flags);
1655 spin_lock_irqsave(&domain->iommu_lock, flags);
1656 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1657 domain->iommu_count++;
1658 if (domain->iommu_count == 1)
1659 domain->nid = iommu->node;
1660 domain_update_iommu_cap(domain);
1662 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1663 return 0;
1666 static int
1667 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1668 int translation)
1670 int ret;
1671 struct pci_dev *tmp, *parent;
1673 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1674 pdev->bus->number, pdev->devfn,
1675 translation);
1676 if (ret)
1677 return ret;
1679 /* dependent device mapping */
1680 tmp = pci_find_upstream_pcie_bridge(pdev);
1681 if (!tmp)
1682 return 0;
1683 /* Secondary interface's bus number and devfn 0 */
1684 parent = pdev->bus->self;
1685 while (parent != tmp) {
1686 ret = domain_context_mapping_one(domain,
1687 pci_domain_nr(parent->bus),
1688 parent->bus->number,
1689 parent->devfn, translation);
1690 if (ret)
1691 return ret;
1692 parent = parent->bus->self;
1694 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1695 return domain_context_mapping_one(domain,
1696 pci_domain_nr(tmp->subordinate),
1697 tmp->subordinate->number, 0,
1698 translation);
1699 else /* this is a legacy PCI bridge */
1700 return domain_context_mapping_one(domain,
1701 pci_domain_nr(tmp->bus),
1702 tmp->bus->number,
1703 tmp->devfn,
1704 translation);
1707 static int domain_context_mapped(struct pci_dev *pdev)
1709 int ret;
1710 struct pci_dev *tmp, *parent;
1711 struct intel_iommu *iommu;
1713 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1714 pdev->devfn);
1715 if (!iommu)
1716 return -ENODEV;
1718 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1719 if (!ret)
1720 return ret;
1721 /* dependent device mapping */
1722 tmp = pci_find_upstream_pcie_bridge(pdev);
1723 if (!tmp)
1724 return ret;
1725 /* Secondary interface's bus number and devfn 0 */
1726 parent = pdev->bus->self;
1727 while (parent != tmp) {
1728 ret = device_context_mapped(iommu, parent->bus->number,
1729 parent->devfn);
1730 if (!ret)
1731 return ret;
1732 parent = parent->bus->self;
1734 if (pci_is_pcie(tmp))
1735 return device_context_mapped(iommu, tmp->subordinate->number,
1737 else
1738 return device_context_mapped(iommu, tmp->bus->number,
1739 tmp->devfn);
1742 /* Returns a number of VTD pages, but aligned to MM page size */
1743 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1744 size_t size)
1746 host_addr &= ~PAGE_MASK;
1747 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1750 /* Return largest possible superpage level for a given mapping */
1751 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1752 unsigned long iov_pfn,
1753 unsigned long phy_pfn,
1754 unsigned long pages)
1756 int support, level = 1;
1757 unsigned long pfnmerge;
1759 support = domain->iommu_superpage;
1761 /* To use a large page, the virtual *and* physical addresses
1762 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1763 of them will mean we have to use smaller pages. So just
1764 merge them and check both at once. */
1765 pfnmerge = iov_pfn | phy_pfn;
1767 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1768 pages >>= VTD_STRIDE_SHIFT;
1769 if (!pages)
1770 break;
1771 pfnmerge >>= VTD_STRIDE_SHIFT;
1772 level++;
1773 support--;
1775 return level;
1778 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1779 struct scatterlist *sg, unsigned long phys_pfn,
1780 unsigned long nr_pages, int prot)
1782 struct dma_pte *first_pte = NULL, *pte = NULL;
1783 phys_addr_t uninitialized_var(pteval);
1784 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1785 unsigned long sg_res;
1786 unsigned int largepage_lvl = 0;
1787 unsigned long lvl_pages = 0;
1789 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1791 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1792 return -EINVAL;
1794 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1796 if (sg)
1797 sg_res = 0;
1798 else {
1799 sg_res = nr_pages + 1;
1800 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1803 while (nr_pages > 0) {
1804 uint64_t tmp;
1806 if (!sg_res) {
1807 sg_res = aligned_nrpages(sg->offset, sg->length);
1808 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1809 sg->dma_length = sg->length;
1810 pteval = page_to_phys(sg_page(sg)) | prot;
1811 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1814 if (!pte) {
1815 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1817 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1818 if (!pte)
1819 return -ENOMEM;
1820 /* It is large page*/
1821 if (largepage_lvl > 1)
1822 pteval |= DMA_PTE_LARGE_PAGE;
1823 else
1824 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1827 /* We don't need lock here, nobody else
1828 * touches the iova range
1830 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1831 if (tmp) {
1832 static int dumps = 5;
1833 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1834 iov_pfn, tmp, (unsigned long long)pteval);
1835 if (dumps) {
1836 dumps--;
1837 debug_dma_dump_mappings(NULL);
1839 WARN_ON(1);
1842 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1844 BUG_ON(nr_pages < lvl_pages);
1845 BUG_ON(sg_res < lvl_pages);
1847 nr_pages -= lvl_pages;
1848 iov_pfn += lvl_pages;
1849 phys_pfn += lvl_pages;
1850 pteval += lvl_pages * VTD_PAGE_SIZE;
1851 sg_res -= lvl_pages;
1853 /* If the next PTE would be the first in a new page, then we
1854 need to flush the cache on the entries we've just written.
1855 And then we'll need to recalculate 'pte', so clear it and
1856 let it get set again in the if (!pte) block above.
1858 If we're done (!nr_pages) we need to flush the cache too.
1860 Also if we've been setting superpages, we may need to
1861 recalculate 'pte' and switch back to smaller pages for the
1862 end of the mapping, if the trailing size is not enough to
1863 use another superpage (i.e. sg_res < lvl_pages). */
1864 pte++;
1865 if (!nr_pages || first_pte_in_page(pte) ||
1866 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1867 domain_flush_cache(domain, first_pte,
1868 (void *)pte - (void *)first_pte);
1869 pte = NULL;
1872 if (!sg_res && nr_pages)
1873 sg = sg_next(sg);
1875 return 0;
1878 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1879 struct scatterlist *sg, unsigned long nr_pages,
1880 int prot)
1882 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1885 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1886 unsigned long phys_pfn, unsigned long nr_pages,
1887 int prot)
1889 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1892 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1894 if (!iommu)
1895 return;
1897 clear_context_table(iommu, bus, devfn);
1898 iommu->flush.flush_context(iommu, 0, 0, 0,
1899 DMA_CCMD_GLOBAL_INVL);
1900 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1903 static void domain_remove_dev_info(struct dmar_domain *domain)
1905 struct device_domain_info *info;
1906 unsigned long flags;
1907 struct intel_iommu *iommu;
1909 spin_lock_irqsave(&device_domain_lock, flags);
1910 while (!list_empty(&domain->devices)) {
1911 info = list_entry(domain->devices.next,
1912 struct device_domain_info, link);
1913 list_del(&info->link);
1914 list_del(&info->global);
1915 if (info->dev)
1916 info->dev->dev.archdata.iommu = NULL;
1917 spin_unlock_irqrestore(&device_domain_lock, flags);
1919 iommu_disable_dev_iotlb(info);
1920 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1921 iommu_detach_dev(iommu, info->bus, info->devfn);
1922 free_devinfo_mem(info);
1924 spin_lock_irqsave(&device_domain_lock, flags);
1926 spin_unlock_irqrestore(&device_domain_lock, flags);
1930 * find_domain
1931 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1933 static struct dmar_domain *
1934 find_domain(struct pci_dev *pdev)
1936 struct device_domain_info *info;
1938 /* No lock here, assumes no domain exit in normal case */
1939 info = pdev->dev.archdata.iommu;
1940 if (info)
1941 return info->domain;
1942 return NULL;
1945 /* domain is initialized */
1946 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1948 struct dmar_domain *domain, *found = NULL;
1949 struct intel_iommu *iommu;
1950 struct dmar_drhd_unit *drhd;
1951 struct device_domain_info *info, *tmp;
1952 struct pci_dev *dev_tmp;
1953 unsigned long flags;
1954 int bus = 0, devfn = 0;
1955 int segment;
1956 int ret;
1958 domain = find_domain(pdev);
1959 if (domain)
1960 return domain;
1962 segment = pci_domain_nr(pdev->bus);
1964 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1965 if (dev_tmp) {
1966 if (pci_is_pcie(dev_tmp)) {
1967 bus = dev_tmp->subordinate->number;
1968 devfn = 0;
1969 } else {
1970 bus = dev_tmp->bus->number;
1971 devfn = dev_tmp->devfn;
1973 spin_lock_irqsave(&device_domain_lock, flags);
1974 list_for_each_entry(info, &device_domain_list, global) {
1975 if (info->segment == segment &&
1976 info->bus == bus && info->devfn == devfn) {
1977 found = info->domain;
1978 break;
1981 spin_unlock_irqrestore(&device_domain_lock, flags);
1982 /* pcie-pci bridge already has a domain, uses it */
1983 if (found) {
1984 domain = found;
1985 goto found_domain;
1989 domain = alloc_domain();
1990 if (!domain)
1991 goto error;
1993 /* Allocate new domain for the device */
1994 drhd = dmar_find_matched_drhd_unit(pdev);
1995 if (!drhd) {
1996 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1997 pci_name(pdev));
1998 return NULL;
2000 iommu = drhd->iommu;
2002 ret = iommu_attach_domain(domain, iommu);
2003 if (ret) {
2004 free_domain_mem(domain);
2005 goto error;
2008 if (domain_init(domain, gaw)) {
2009 domain_exit(domain);
2010 goto error;
2013 /* register pcie-to-pci device */
2014 if (dev_tmp) {
2015 info = alloc_devinfo_mem();
2016 if (!info) {
2017 domain_exit(domain);
2018 goto error;
2020 info->segment = segment;
2021 info->bus = bus;
2022 info->devfn = devfn;
2023 info->dev = NULL;
2024 info->domain = domain;
2025 /* This domain is shared by devices under p2p bridge */
2026 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2028 /* pcie-to-pci bridge already has a domain, uses it */
2029 found = NULL;
2030 spin_lock_irqsave(&device_domain_lock, flags);
2031 list_for_each_entry(tmp, &device_domain_list, global) {
2032 if (tmp->segment == segment &&
2033 tmp->bus == bus && tmp->devfn == devfn) {
2034 found = tmp->domain;
2035 break;
2038 if (found) {
2039 spin_unlock_irqrestore(&device_domain_lock, flags);
2040 free_devinfo_mem(info);
2041 domain_exit(domain);
2042 domain = found;
2043 } else {
2044 list_add(&info->link, &domain->devices);
2045 list_add(&info->global, &device_domain_list);
2046 spin_unlock_irqrestore(&device_domain_lock, flags);
2050 found_domain:
2051 info = alloc_devinfo_mem();
2052 if (!info)
2053 goto error;
2054 info->segment = segment;
2055 info->bus = pdev->bus->number;
2056 info->devfn = pdev->devfn;
2057 info->dev = pdev;
2058 info->domain = domain;
2059 spin_lock_irqsave(&device_domain_lock, flags);
2060 /* somebody is fast */
2061 found = find_domain(pdev);
2062 if (found != NULL) {
2063 spin_unlock_irqrestore(&device_domain_lock, flags);
2064 if (found != domain) {
2065 domain_exit(domain);
2066 domain = found;
2068 free_devinfo_mem(info);
2069 return domain;
2071 list_add(&info->link, &domain->devices);
2072 list_add(&info->global, &device_domain_list);
2073 pdev->dev.archdata.iommu = info;
2074 spin_unlock_irqrestore(&device_domain_lock, flags);
2075 return domain;
2076 error:
2077 /* recheck it here, maybe others set it */
2078 return find_domain(pdev);
2081 static int iommu_identity_mapping;
2082 #define IDENTMAP_ALL 1
2083 #define IDENTMAP_GFX 2
2084 #define IDENTMAP_AZALIA 4
2086 static int iommu_domain_identity_map(struct dmar_domain *domain,
2087 unsigned long long start,
2088 unsigned long long end)
2090 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2091 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2093 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2094 dma_to_mm_pfn(last_vpfn))) {
2095 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2096 return -ENOMEM;
2099 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2100 start, end, domain->id);
2102 * RMRR range might have overlap with physical memory range,
2103 * clear it first
2105 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2107 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2108 last_vpfn - first_vpfn + 1,
2109 DMA_PTE_READ|DMA_PTE_WRITE);
2112 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2113 unsigned long long start,
2114 unsigned long long end)
2116 struct dmar_domain *domain;
2117 int ret;
2119 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2120 if (!domain)
2121 return -ENOMEM;
2123 /* For _hardware_ passthrough, don't bother. But for software
2124 passthrough, we do it anyway -- it may indicate a memory
2125 range which is reserved in E820, so which didn't get set
2126 up to start with in si_domain */
2127 if (domain == si_domain && hw_pass_through) {
2128 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2129 pci_name(pdev), start, end);
2130 return 0;
2133 printk(KERN_INFO
2134 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2135 pci_name(pdev), start, end);
2137 if (end < start) {
2138 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2139 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2140 dmi_get_system_info(DMI_BIOS_VENDOR),
2141 dmi_get_system_info(DMI_BIOS_VERSION),
2142 dmi_get_system_info(DMI_PRODUCT_VERSION));
2143 ret = -EIO;
2144 goto error;
2147 if (end >> agaw_to_width(domain->agaw)) {
2148 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2149 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2150 agaw_to_width(domain->agaw),
2151 dmi_get_system_info(DMI_BIOS_VENDOR),
2152 dmi_get_system_info(DMI_BIOS_VERSION),
2153 dmi_get_system_info(DMI_PRODUCT_VERSION));
2154 ret = -EIO;
2155 goto error;
2158 ret = iommu_domain_identity_map(domain, start, end);
2159 if (ret)
2160 goto error;
2162 /* context entry init */
2163 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2164 if (ret)
2165 goto error;
2167 return 0;
2169 error:
2170 domain_exit(domain);
2171 return ret;
2174 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2175 struct pci_dev *pdev)
2177 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2178 return 0;
2179 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2180 rmrr->end_address);
2183 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2184 static inline void iommu_prepare_isa(void)
2186 struct pci_dev *pdev;
2187 int ret;
2189 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2190 if (!pdev)
2191 return;
2193 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2194 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2196 if (ret)
2197 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2198 "floppy might not work\n");
2201 #else
2202 static inline void iommu_prepare_isa(void)
2204 return;
2206 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2208 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2210 static int __init si_domain_init(int hw)
2212 struct dmar_drhd_unit *drhd;
2213 struct intel_iommu *iommu;
2214 int nid, ret = 0;
2216 si_domain = alloc_domain();
2217 if (!si_domain)
2218 return -EFAULT;
2220 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2222 for_each_active_iommu(iommu, drhd) {
2223 ret = iommu_attach_domain(si_domain, iommu);
2224 if (ret) {
2225 domain_exit(si_domain);
2226 return -EFAULT;
2230 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2231 domain_exit(si_domain);
2232 return -EFAULT;
2235 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2237 if (hw)
2238 return 0;
2240 for_each_online_node(nid) {
2241 unsigned long start_pfn, end_pfn;
2242 int i;
2244 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2245 ret = iommu_domain_identity_map(si_domain,
2246 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2247 if (ret)
2248 return ret;
2252 return 0;
2255 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2256 struct pci_dev *pdev);
2257 static int identity_mapping(struct pci_dev *pdev)
2259 struct device_domain_info *info;
2261 if (likely(!iommu_identity_mapping))
2262 return 0;
2264 info = pdev->dev.archdata.iommu;
2265 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2266 return (info->domain == si_domain);
2268 return 0;
2271 static int domain_add_dev_info(struct dmar_domain *domain,
2272 struct pci_dev *pdev,
2273 int translation)
2275 struct device_domain_info *info;
2276 unsigned long flags;
2277 int ret;
2279 info = alloc_devinfo_mem();
2280 if (!info)
2281 return -ENOMEM;
2283 ret = domain_context_mapping(domain, pdev, translation);
2284 if (ret) {
2285 free_devinfo_mem(info);
2286 return ret;
2289 info->segment = pci_domain_nr(pdev->bus);
2290 info->bus = pdev->bus->number;
2291 info->devfn = pdev->devfn;
2292 info->dev = pdev;
2293 info->domain = domain;
2295 spin_lock_irqsave(&device_domain_lock, flags);
2296 list_add(&info->link, &domain->devices);
2297 list_add(&info->global, &device_domain_list);
2298 pdev->dev.archdata.iommu = info;
2299 spin_unlock_irqrestore(&device_domain_lock, flags);
2301 return 0;
2304 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2306 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2307 return 1;
2309 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2310 return 1;
2312 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2313 return 0;
2316 * We want to start off with all devices in the 1:1 domain, and
2317 * take them out later if we find they can't access all of memory.
2319 * However, we can't do this for PCI devices behind bridges,
2320 * because all PCI devices behind the same bridge will end up
2321 * with the same source-id on their transactions.
2323 * Practically speaking, we can't change things around for these
2324 * devices at run-time, because we can't be sure there'll be no
2325 * DMA transactions in flight for any of their siblings.
2327 * So PCI devices (unless they're on the root bus) as well as
2328 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2329 * the 1:1 domain, just in _case_ one of their siblings turns out
2330 * not to be able to map all of memory.
2332 if (!pci_is_pcie(pdev)) {
2333 if (!pci_is_root_bus(pdev->bus))
2334 return 0;
2335 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2336 return 0;
2337 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2338 return 0;
2341 * At boot time, we don't yet know if devices will be 64-bit capable.
2342 * Assume that they will -- if they turn out not to be, then we can
2343 * take them out of the 1:1 domain later.
2345 if (!startup) {
2347 * If the device's dma_mask is less than the system's memory
2348 * size then this is not a candidate for identity mapping.
2350 u64 dma_mask = pdev->dma_mask;
2352 if (pdev->dev.coherent_dma_mask &&
2353 pdev->dev.coherent_dma_mask < dma_mask)
2354 dma_mask = pdev->dev.coherent_dma_mask;
2356 return dma_mask >= dma_get_required_mask(&pdev->dev);
2359 return 1;
2362 static int __init iommu_prepare_static_identity_mapping(int hw)
2364 struct pci_dev *pdev = NULL;
2365 int ret;
2367 ret = si_domain_init(hw);
2368 if (ret)
2369 return -EFAULT;
2371 for_each_pci_dev(pdev) {
2372 /* Skip Host/PCI Bridge devices */
2373 if (IS_BRIDGE_HOST_DEVICE(pdev))
2374 continue;
2375 if (iommu_should_identity_map(pdev, 1)) {
2376 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2377 hw ? "hardware" : "software", pci_name(pdev));
2379 ret = domain_add_dev_info(si_domain, pdev,
2380 hw ? CONTEXT_TT_PASS_THROUGH :
2381 CONTEXT_TT_MULTI_LEVEL);
2382 if (ret)
2383 return ret;
2387 return 0;
2390 static int __init init_dmars(void)
2392 struct dmar_drhd_unit *drhd;
2393 struct dmar_rmrr_unit *rmrr;
2394 struct pci_dev *pdev;
2395 struct intel_iommu *iommu;
2396 int i, ret;
2399 * for each drhd
2400 * allocate root
2401 * initialize and program root entry to not present
2402 * endfor
2404 for_each_drhd_unit(drhd) {
2405 g_num_of_iommus++;
2407 * lock not needed as this is only incremented in the single
2408 * threaded kernel __init code path all other access are read
2409 * only
2413 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2414 GFP_KERNEL);
2415 if (!g_iommus) {
2416 printk(KERN_ERR "Allocating global iommu array failed\n");
2417 ret = -ENOMEM;
2418 goto error;
2421 deferred_flush = kzalloc(g_num_of_iommus *
2422 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2423 if (!deferred_flush) {
2424 ret = -ENOMEM;
2425 goto error;
2428 for_each_drhd_unit(drhd) {
2429 if (drhd->ignored)
2430 continue;
2432 iommu = drhd->iommu;
2433 g_iommus[iommu->seq_id] = iommu;
2435 ret = iommu_init_domains(iommu);
2436 if (ret)
2437 goto error;
2440 * TBD:
2441 * we could share the same root & context tables
2442 * among all IOMMU's. Need to Split it later.
2444 ret = iommu_alloc_root_entry(iommu);
2445 if (ret) {
2446 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2447 goto error;
2449 if (!ecap_pass_through(iommu->ecap))
2450 hw_pass_through = 0;
2454 * Start from the sane iommu hardware state.
2456 for_each_drhd_unit(drhd) {
2457 if (drhd->ignored)
2458 continue;
2460 iommu = drhd->iommu;
2463 * If the queued invalidation is already initialized by us
2464 * (for example, while enabling interrupt-remapping) then
2465 * we got the things already rolling from a sane state.
2467 if (iommu->qi)
2468 continue;
2471 * Clear any previous faults.
2473 dmar_fault(-1, iommu);
2475 * Disable queued invalidation if supported and already enabled
2476 * before OS handover.
2478 dmar_disable_qi(iommu);
2481 for_each_drhd_unit(drhd) {
2482 if (drhd->ignored)
2483 continue;
2485 iommu = drhd->iommu;
2487 if (dmar_enable_qi(iommu)) {
2489 * Queued Invalidate not enabled, use Register Based
2490 * Invalidate
2492 iommu->flush.flush_context = __iommu_flush_context;
2493 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2494 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2495 "invalidation\n",
2496 iommu->seq_id,
2497 (unsigned long long)drhd->reg_base_addr);
2498 } else {
2499 iommu->flush.flush_context = qi_flush_context;
2500 iommu->flush.flush_iotlb = qi_flush_iotlb;
2501 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2502 "invalidation\n",
2503 iommu->seq_id,
2504 (unsigned long long)drhd->reg_base_addr);
2508 if (iommu_pass_through)
2509 iommu_identity_mapping |= IDENTMAP_ALL;
2511 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2512 iommu_identity_mapping |= IDENTMAP_GFX;
2513 #endif
2515 check_tylersburg_isoch();
2518 * If pass through is not set or not enabled, setup context entries for
2519 * identity mappings for rmrr, gfx, and isa and may fall back to static
2520 * identity mapping if iommu_identity_mapping is set.
2522 if (iommu_identity_mapping) {
2523 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2524 if (ret) {
2525 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2526 goto error;
2530 * For each rmrr
2531 * for each dev attached to rmrr
2532 * do
2533 * locate drhd for dev, alloc domain for dev
2534 * allocate free domain
2535 * allocate page table entries for rmrr
2536 * if context not allocated for bus
2537 * allocate and init context
2538 * set present in root table for this bus
2539 * init context with domain, translation etc
2540 * endfor
2541 * endfor
2543 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2544 for_each_rmrr_units(rmrr) {
2545 for (i = 0; i < rmrr->devices_cnt; i++) {
2546 pdev = rmrr->devices[i];
2548 * some BIOS lists non-exist devices in DMAR
2549 * table.
2551 if (!pdev)
2552 continue;
2553 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2554 if (ret)
2555 printk(KERN_ERR
2556 "IOMMU: mapping reserved region failed\n");
2560 iommu_prepare_isa();
2563 * for each drhd
2564 * enable fault log
2565 * global invalidate context cache
2566 * global invalidate iotlb
2567 * enable translation
2569 for_each_drhd_unit(drhd) {
2570 if (drhd->ignored) {
2572 * we always have to disable PMRs or DMA may fail on
2573 * this device
2575 if (force_on)
2576 iommu_disable_protect_mem_regions(drhd->iommu);
2577 continue;
2579 iommu = drhd->iommu;
2581 iommu_flush_write_buffer(iommu);
2583 ret = dmar_set_interrupt(iommu);
2584 if (ret)
2585 goto error;
2587 iommu_set_root_entry(iommu);
2589 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2590 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2592 ret = iommu_enable_translation(iommu);
2593 if (ret)
2594 goto error;
2596 iommu_disable_protect_mem_regions(iommu);
2599 return 0;
2600 error:
2601 for_each_drhd_unit(drhd) {
2602 if (drhd->ignored)
2603 continue;
2604 iommu = drhd->iommu;
2605 free_iommu(iommu);
2607 kfree(g_iommus);
2608 return ret;
2611 /* This takes a number of _MM_ pages, not VTD pages */
2612 static struct iova *intel_alloc_iova(struct device *dev,
2613 struct dmar_domain *domain,
2614 unsigned long nrpages, uint64_t dma_mask)
2616 struct pci_dev *pdev = to_pci_dev(dev);
2617 struct iova *iova = NULL;
2619 /* Restrict dma_mask to the width that the iommu can handle */
2620 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2622 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2624 * First try to allocate an io virtual address in
2625 * DMA_BIT_MASK(32) and if that fails then try allocating
2626 * from higher range
2628 iova = alloc_iova(&domain->iovad, nrpages,
2629 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2630 if (iova)
2631 return iova;
2633 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2634 if (unlikely(!iova)) {
2635 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2636 nrpages, pci_name(pdev));
2637 return NULL;
2640 return iova;
2643 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2645 struct dmar_domain *domain;
2646 int ret;
2648 domain = get_domain_for_dev(pdev,
2649 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2650 if (!domain) {
2651 printk(KERN_ERR
2652 "Allocating domain for %s failed", pci_name(pdev));
2653 return NULL;
2656 /* make sure context mapping is ok */
2657 if (unlikely(!domain_context_mapped(pdev))) {
2658 ret = domain_context_mapping(domain, pdev,
2659 CONTEXT_TT_MULTI_LEVEL);
2660 if (ret) {
2661 printk(KERN_ERR
2662 "Domain context map for %s failed",
2663 pci_name(pdev));
2664 return NULL;
2668 return domain;
2671 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2673 struct device_domain_info *info;
2675 /* No lock here, assumes no domain exit in normal case */
2676 info = dev->dev.archdata.iommu;
2677 if (likely(info))
2678 return info->domain;
2680 return __get_valid_domain_for_dev(dev);
2683 static int iommu_dummy(struct pci_dev *pdev)
2685 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2688 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2689 static int iommu_no_mapping(struct device *dev)
2691 struct pci_dev *pdev;
2692 int found;
2694 if (unlikely(dev->bus != &pci_bus_type))
2695 return 1;
2697 pdev = to_pci_dev(dev);
2698 if (iommu_dummy(pdev))
2699 return 1;
2701 if (!iommu_identity_mapping)
2702 return 0;
2704 found = identity_mapping(pdev);
2705 if (found) {
2706 if (iommu_should_identity_map(pdev, 0))
2707 return 1;
2708 else {
2710 * 32 bit DMA is removed from si_domain and fall back
2711 * to non-identity mapping.
2713 domain_remove_one_dev_info(si_domain, pdev);
2714 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2715 pci_name(pdev));
2716 return 0;
2718 } else {
2720 * In case of a detached 64 bit DMA device from vm, the device
2721 * is put into si_domain for identity mapping.
2723 if (iommu_should_identity_map(pdev, 0)) {
2724 int ret;
2725 ret = domain_add_dev_info(si_domain, pdev,
2726 hw_pass_through ?
2727 CONTEXT_TT_PASS_THROUGH :
2728 CONTEXT_TT_MULTI_LEVEL);
2729 if (!ret) {
2730 printk(KERN_INFO "64bit %s uses identity mapping\n",
2731 pci_name(pdev));
2732 return 1;
2737 return 0;
2740 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2741 size_t size, int dir, u64 dma_mask)
2743 struct pci_dev *pdev = to_pci_dev(hwdev);
2744 struct dmar_domain *domain;
2745 phys_addr_t start_paddr;
2746 struct iova *iova;
2747 int prot = 0;
2748 int ret;
2749 struct intel_iommu *iommu;
2750 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2752 BUG_ON(dir == DMA_NONE);
2754 if (iommu_no_mapping(hwdev))
2755 return paddr;
2757 domain = get_valid_domain_for_dev(pdev);
2758 if (!domain)
2759 return 0;
2761 iommu = domain_get_iommu(domain);
2762 size = aligned_nrpages(paddr, size);
2764 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2765 if (!iova)
2766 goto error;
2769 * Check if DMAR supports zero-length reads on write only
2770 * mappings..
2772 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2773 !cap_zlr(iommu->cap))
2774 prot |= DMA_PTE_READ;
2775 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2776 prot |= DMA_PTE_WRITE;
2778 * paddr - (paddr + size) might be partial page, we should map the whole
2779 * page. Note: if two part of one page are separately mapped, we
2780 * might have two guest_addr mapping to the same host paddr, but this
2781 * is not a big problem
2783 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2784 mm_to_dma_pfn(paddr_pfn), size, prot);
2785 if (ret)
2786 goto error;
2788 /* it's a non-present to present mapping. Only flush if caching mode */
2789 if (cap_caching_mode(iommu->cap))
2790 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2791 else
2792 iommu_flush_write_buffer(iommu);
2794 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2795 start_paddr += paddr & ~PAGE_MASK;
2796 return start_paddr;
2798 error:
2799 if (iova)
2800 __free_iova(&domain->iovad, iova);
2801 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2802 pci_name(pdev), size, (unsigned long long)paddr, dir);
2803 return 0;
2806 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2807 unsigned long offset, size_t size,
2808 enum dma_data_direction dir,
2809 struct dma_attrs *attrs)
2811 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2812 dir, to_pci_dev(dev)->dma_mask);
2815 static void flush_unmaps(void)
2817 int i, j;
2819 timer_on = 0;
2821 /* just flush them all */
2822 for (i = 0; i < g_num_of_iommus; i++) {
2823 struct intel_iommu *iommu = g_iommus[i];
2824 if (!iommu)
2825 continue;
2827 if (!deferred_flush[i].next)
2828 continue;
2830 /* In caching mode, global flushes turn emulation expensive */
2831 if (!cap_caching_mode(iommu->cap))
2832 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2833 DMA_TLB_GLOBAL_FLUSH);
2834 for (j = 0; j < deferred_flush[i].next; j++) {
2835 unsigned long mask;
2836 struct iova *iova = deferred_flush[i].iova[j];
2837 struct dmar_domain *domain = deferred_flush[i].domain[j];
2839 /* On real hardware multiple invalidations are expensive */
2840 if (cap_caching_mode(iommu->cap))
2841 iommu_flush_iotlb_psi(iommu, domain->id,
2842 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2843 else {
2844 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2845 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2846 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2848 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2850 deferred_flush[i].next = 0;
2853 list_size = 0;
2856 static void flush_unmaps_timeout(unsigned long data)
2858 unsigned long flags;
2860 spin_lock_irqsave(&async_umap_flush_lock, flags);
2861 flush_unmaps();
2862 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2865 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2867 unsigned long flags;
2868 int next, iommu_id;
2869 struct intel_iommu *iommu;
2871 spin_lock_irqsave(&async_umap_flush_lock, flags);
2872 if (list_size == HIGH_WATER_MARK)
2873 flush_unmaps();
2875 iommu = domain_get_iommu(dom);
2876 iommu_id = iommu->seq_id;
2878 next = deferred_flush[iommu_id].next;
2879 deferred_flush[iommu_id].domain[next] = dom;
2880 deferred_flush[iommu_id].iova[next] = iova;
2881 deferred_flush[iommu_id].next++;
2883 if (!timer_on) {
2884 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2885 timer_on = 1;
2887 list_size++;
2888 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2891 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2892 size_t size, enum dma_data_direction dir,
2893 struct dma_attrs *attrs)
2895 struct pci_dev *pdev = to_pci_dev(dev);
2896 struct dmar_domain *domain;
2897 unsigned long start_pfn, last_pfn;
2898 struct iova *iova;
2899 struct intel_iommu *iommu;
2901 if (iommu_no_mapping(dev))
2902 return;
2904 domain = find_domain(pdev);
2905 BUG_ON(!domain);
2907 iommu = domain_get_iommu(domain);
2909 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2910 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2911 (unsigned long long)dev_addr))
2912 return;
2914 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2915 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2917 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2918 pci_name(pdev), start_pfn, last_pfn);
2920 /* clear the whole page */
2921 dma_pte_clear_range(domain, start_pfn, last_pfn);
2923 /* free page tables */
2924 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2926 if (intel_iommu_strict) {
2927 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2928 last_pfn - start_pfn + 1, 0);
2929 /* free iova */
2930 __free_iova(&domain->iovad, iova);
2931 } else {
2932 add_unmap(domain, iova);
2934 * queue up the release of the unmap to save the 1/6th of the
2935 * cpu used up by the iotlb flush operation...
2940 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2941 dma_addr_t *dma_handle, gfp_t flags)
2943 void *vaddr;
2944 int order;
2946 size = PAGE_ALIGN(size);
2947 order = get_order(size);
2949 if (!iommu_no_mapping(hwdev))
2950 flags &= ~(GFP_DMA | GFP_DMA32);
2951 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2952 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2953 flags |= GFP_DMA;
2954 else
2955 flags |= GFP_DMA32;
2958 vaddr = (void *)__get_free_pages(flags, order);
2959 if (!vaddr)
2960 return NULL;
2961 memset(vaddr, 0, size);
2963 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2964 DMA_BIDIRECTIONAL,
2965 hwdev->coherent_dma_mask);
2966 if (*dma_handle)
2967 return vaddr;
2968 free_pages((unsigned long)vaddr, order);
2969 return NULL;
2972 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2973 dma_addr_t dma_handle)
2975 int order;
2977 size = PAGE_ALIGN(size);
2978 order = get_order(size);
2980 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2981 free_pages((unsigned long)vaddr, order);
2984 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2985 int nelems, enum dma_data_direction dir,
2986 struct dma_attrs *attrs)
2988 struct pci_dev *pdev = to_pci_dev(hwdev);
2989 struct dmar_domain *domain;
2990 unsigned long start_pfn, last_pfn;
2991 struct iova *iova;
2992 struct intel_iommu *iommu;
2994 if (iommu_no_mapping(hwdev))
2995 return;
2997 domain = find_domain(pdev);
2998 BUG_ON(!domain);
3000 iommu = domain_get_iommu(domain);
3002 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3003 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3004 (unsigned long long)sglist[0].dma_address))
3005 return;
3007 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3008 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3010 /* clear the whole page */
3011 dma_pte_clear_range(domain, start_pfn, last_pfn);
3013 /* free page tables */
3014 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3016 if (intel_iommu_strict) {
3017 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3018 last_pfn - start_pfn + 1, 0);
3019 /* free iova */
3020 __free_iova(&domain->iovad, iova);
3021 } else {
3022 add_unmap(domain, iova);
3024 * queue up the release of the unmap to save the 1/6th of the
3025 * cpu used up by the iotlb flush operation...
3030 static int intel_nontranslate_map_sg(struct device *hddev,
3031 struct scatterlist *sglist, int nelems, int dir)
3033 int i;
3034 struct scatterlist *sg;
3036 for_each_sg(sglist, sg, nelems, i) {
3037 BUG_ON(!sg_page(sg));
3038 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3039 sg->dma_length = sg->length;
3041 return nelems;
3044 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3045 enum dma_data_direction dir, struct dma_attrs *attrs)
3047 int i;
3048 struct pci_dev *pdev = to_pci_dev(hwdev);
3049 struct dmar_domain *domain;
3050 size_t size = 0;
3051 int prot = 0;
3052 struct iova *iova = NULL;
3053 int ret;
3054 struct scatterlist *sg;
3055 unsigned long start_vpfn;
3056 struct intel_iommu *iommu;
3058 BUG_ON(dir == DMA_NONE);
3059 if (iommu_no_mapping(hwdev))
3060 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3062 domain = get_valid_domain_for_dev(pdev);
3063 if (!domain)
3064 return 0;
3066 iommu = domain_get_iommu(domain);
3068 for_each_sg(sglist, sg, nelems, i)
3069 size += aligned_nrpages(sg->offset, sg->length);
3071 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3072 pdev->dma_mask);
3073 if (!iova) {
3074 sglist->dma_length = 0;
3075 return 0;
3079 * Check if DMAR supports zero-length reads on write only
3080 * mappings..
3082 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3083 !cap_zlr(iommu->cap))
3084 prot |= DMA_PTE_READ;
3085 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3086 prot |= DMA_PTE_WRITE;
3088 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3090 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3091 if (unlikely(ret)) {
3092 /* clear the page */
3093 dma_pte_clear_range(domain, start_vpfn,
3094 start_vpfn + size - 1);
3095 /* free page tables */
3096 dma_pte_free_pagetable(domain, start_vpfn,
3097 start_vpfn + size - 1);
3098 /* free iova */
3099 __free_iova(&domain->iovad, iova);
3100 return 0;
3103 /* it's a non-present to present mapping. Only flush if caching mode */
3104 if (cap_caching_mode(iommu->cap))
3105 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3106 else
3107 iommu_flush_write_buffer(iommu);
3109 return nelems;
3112 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3114 return !dma_addr;
3117 struct dma_map_ops intel_dma_ops = {
3118 .alloc_coherent = intel_alloc_coherent,
3119 .free_coherent = intel_free_coherent,
3120 .map_sg = intel_map_sg,
3121 .unmap_sg = intel_unmap_sg,
3122 .map_page = intel_map_page,
3123 .unmap_page = intel_unmap_page,
3124 .mapping_error = intel_mapping_error,
3127 static inline int iommu_domain_cache_init(void)
3129 int ret = 0;
3131 iommu_domain_cache = kmem_cache_create("iommu_domain",
3132 sizeof(struct dmar_domain),
3134 SLAB_HWCACHE_ALIGN,
3136 NULL);
3137 if (!iommu_domain_cache) {
3138 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3139 ret = -ENOMEM;
3142 return ret;
3145 static inline int iommu_devinfo_cache_init(void)
3147 int ret = 0;
3149 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3150 sizeof(struct device_domain_info),
3152 SLAB_HWCACHE_ALIGN,
3153 NULL);
3154 if (!iommu_devinfo_cache) {
3155 printk(KERN_ERR "Couldn't create devinfo cache\n");
3156 ret = -ENOMEM;
3159 return ret;
3162 static inline int iommu_iova_cache_init(void)
3164 int ret = 0;
3166 iommu_iova_cache = kmem_cache_create("iommu_iova",
3167 sizeof(struct iova),
3169 SLAB_HWCACHE_ALIGN,
3170 NULL);
3171 if (!iommu_iova_cache) {
3172 printk(KERN_ERR "Couldn't create iova cache\n");
3173 ret = -ENOMEM;
3176 return ret;
3179 static int __init iommu_init_mempool(void)
3181 int ret;
3182 ret = iommu_iova_cache_init();
3183 if (ret)
3184 return ret;
3186 ret = iommu_domain_cache_init();
3187 if (ret)
3188 goto domain_error;
3190 ret = iommu_devinfo_cache_init();
3191 if (!ret)
3192 return ret;
3194 kmem_cache_destroy(iommu_domain_cache);
3195 domain_error:
3196 kmem_cache_destroy(iommu_iova_cache);
3198 return -ENOMEM;
3201 static void __init iommu_exit_mempool(void)
3203 kmem_cache_destroy(iommu_devinfo_cache);
3204 kmem_cache_destroy(iommu_domain_cache);
3205 kmem_cache_destroy(iommu_iova_cache);
3209 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3211 struct dmar_drhd_unit *drhd;
3212 u32 vtbar;
3213 int rc;
3215 /* We know that this device on this chipset has its own IOMMU.
3216 * If we find it under a different IOMMU, then the BIOS is lying
3217 * to us. Hope that the IOMMU for this device is actually
3218 * disabled, and it needs no translation...
3220 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3221 if (rc) {
3222 /* "can't" happen */
3223 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3224 return;
3226 vtbar &= 0xffff0000;
3228 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3229 drhd = dmar_find_matched_drhd_unit(pdev);
3230 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3231 TAINT_FIRMWARE_WORKAROUND,
3232 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3233 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3235 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3237 static void __init init_no_remapping_devices(void)
3239 struct dmar_drhd_unit *drhd;
3241 for_each_drhd_unit(drhd) {
3242 if (!drhd->include_all) {
3243 int i;
3244 for (i = 0; i < drhd->devices_cnt; i++)
3245 if (drhd->devices[i] != NULL)
3246 break;
3247 /* ignore DMAR unit if no pci devices exist */
3248 if (i == drhd->devices_cnt)
3249 drhd->ignored = 1;
3253 for_each_drhd_unit(drhd) {
3254 int i;
3255 if (drhd->ignored || drhd->include_all)
3256 continue;
3258 for (i = 0; i < drhd->devices_cnt; i++)
3259 if (drhd->devices[i] &&
3260 !IS_GFX_DEVICE(drhd->devices[i]))
3261 break;
3263 if (i < drhd->devices_cnt)
3264 continue;
3266 /* This IOMMU has *only* gfx devices. Either bypass it or
3267 set the gfx_mapped flag, as appropriate */
3268 if (dmar_map_gfx) {
3269 intel_iommu_gfx_mapped = 1;
3270 } else {
3271 drhd->ignored = 1;
3272 for (i = 0; i < drhd->devices_cnt; i++) {
3273 if (!drhd->devices[i])
3274 continue;
3275 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3281 #ifdef CONFIG_SUSPEND
3282 static int init_iommu_hw(void)
3284 struct dmar_drhd_unit *drhd;
3285 struct intel_iommu *iommu = NULL;
3287 for_each_active_iommu(iommu, drhd)
3288 if (iommu->qi)
3289 dmar_reenable_qi(iommu);
3291 for_each_iommu(iommu, drhd) {
3292 if (drhd->ignored) {
3294 * we always have to disable PMRs or DMA may fail on
3295 * this device
3297 if (force_on)
3298 iommu_disable_protect_mem_regions(iommu);
3299 continue;
3302 iommu_flush_write_buffer(iommu);
3304 iommu_set_root_entry(iommu);
3306 iommu->flush.flush_context(iommu, 0, 0, 0,
3307 DMA_CCMD_GLOBAL_INVL);
3308 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3309 DMA_TLB_GLOBAL_FLUSH);
3310 if (iommu_enable_translation(iommu))
3311 return 1;
3312 iommu_disable_protect_mem_regions(iommu);
3315 return 0;
3318 static void iommu_flush_all(void)
3320 struct dmar_drhd_unit *drhd;
3321 struct intel_iommu *iommu;
3323 for_each_active_iommu(iommu, drhd) {
3324 iommu->flush.flush_context(iommu, 0, 0, 0,
3325 DMA_CCMD_GLOBAL_INVL);
3326 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3327 DMA_TLB_GLOBAL_FLUSH);
3331 static int iommu_suspend(void)
3333 struct dmar_drhd_unit *drhd;
3334 struct intel_iommu *iommu = NULL;
3335 unsigned long flag;
3337 for_each_active_iommu(iommu, drhd) {
3338 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3339 GFP_ATOMIC);
3340 if (!iommu->iommu_state)
3341 goto nomem;
3344 iommu_flush_all();
3346 for_each_active_iommu(iommu, drhd) {
3347 iommu_disable_translation(iommu);
3349 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3351 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3352 readl(iommu->reg + DMAR_FECTL_REG);
3353 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3354 readl(iommu->reg + DMAR_FEDATA_REG);
3355 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3356 readl(iommu->reg + DMAR_FEADDR_REG);
3357 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3358 readl(iommu->reg + DMAR_FEUADDR_REG);
3360 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3362 return 0;
3364 nomem:
3365 for_each_active_iommu(iommu, drhd)
3366 kfree(iommu->iommu_state);
3368 return -ENOMEM;
3371 static void iommu_resume(void)
3373 struct dmar_drhd_unit *drhd;
3374 struct intel_iommu *iommu = NULL;
3375 unsigned long flag;
3377 if (init_iommu_hw()) {
3378 if (force_on)
3379 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3380 else
3381 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3382 return;
3385 for_each_active_iommu(iommu, drhd) {
3387 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3389 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3390 iommu->reg + DMAR_FECTL_REG);
3391 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3392 iommu->reg + DMAR_FEDATA_REG);
3393 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3394 iommu->reg + DMAR_FEADDR_REG);
3395 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3396 iommu->reg + DMAR_FEUADDR_REG);
3398 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3401 for_each_active_iommu(iommu, drhd)
3402 kfree(iommu->iommu_state);
3405 static struct syscore_ops iommu_syscore_ops = {
3406 .resume = iommu_resume,
3407 .suspend = iommu_suspend,
3410 static void __init init_iommu_pm_ops(void)
3412 register_syscore_ops(&iommu_syscore_ops);
3415 #else
3416 static inline void init_iommu_pm_ops(void) {}
3417 #endif /* CONFIG_PM */
3419 LIST_HEAD(dmar_rmrr_units);
3421 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3423 list_add(&rmrr->list, &dmar_rmrr_units);
3427 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3429 struct acpi_dmar_reserved_memory *rmrr;
3430 struct dmar_rmrr_unit *rmrru;
3432 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3433 if (!rmrru)
3434 return -ENOMEM;
3436 rmrru->hdr = header;
3437 rmrr = (struct acpi_dmar_reserved_memory *)header;
3438 rmrru->base_address = rmrr->base_address;
3439 rmrru->end_address = rmrr->end_address;
3441 dmar_register_rmrr_unit(rmrru);
3442 return 0;
3445 static int __init
3446 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3448 struct acpi_dmar_reserved_memory *rmrr;
3449 int ret;
3451 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3452 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3453 ((void *)rmrr) + rmrr->header.length,
3454 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3456 if (ret || (rmrru->devices_cnt == 0)) {
3457 list_del(&rmrru->list);
3458 kfree(rmrru);
3460 return ret;
3463 static LIST_HEAD(dmar_atsr_units);
3465 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3467 struct acpi_dmar_atsr *atsr;
3468 struct dmar_atsr_unit *atsru;
3470 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3471 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3472 if (!atsru)
3473 return -ENOMEM;
3475 atsru->hdr = hdr;
3476 atsru->include_all = atsr->flags & 0x1;
3478 list_add(&atsru->list, &dmar_atsr_units);
3480 return 0;
3483 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3485 int rc;
3486 struct acpi_dmar_atsr *atsr;
3488 if (atsru->include_all)
3489 return 0;
3491 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3492 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3493 (void *)atsr + atsr->header.length,
3494 &atsru->devices_cnt, &atsru->devices,
3495 atsr->segment);
3496 if (rc || !atsru->devices_cnt) {
3497 list_del(&atsru->list);
3498 kfree(atsru);
3501 return rc;
3504 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3506 int i;
3507 struct pci_bus *bus;
3508 struct acpi_dmar_atsr *atsr;
3509 struct dmar_atsr_unit *atsru;
3511 dev = pci_physfn(dev);
3513 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3514 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3515 if (atsr->segment == pci_domain_nr(dev->bus))
3516 goto found;
3519 return 0;
3521 found:
3522 for (bus = dev->bus; bus; bus = bus->parent) {
3523 struct pci_dev *bridge = bus->self;
3525 if (!bridge || !pci_is_pcie(bridge) ||
3526 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3527 return 0;
3529 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3530 for (i = 0; i < atsru->devices_cnt; i++)
3531 if (atsru->devices[i] == bridge)
3532 return 1;
3533 break;
3537 if (atsru->include_all)
3538 return 1;
3540 return 0;
3543 int __init dmar_parse_rmrr_atsr_dev(void)
3545 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3546 struct dmar_atsr_unit *atsr, *atsr_n;
3547 int ret = 0;
3549 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3550 ret = rmrr_parse_dev(rmrr);
3551 if (ret)
3552 return ret;
3555 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3556 ret = atsr_parse_dev(atsr);
3557 if (ret)
3558 return ret;
3561 return ret;
3565 * Here we only respond to action of unbound device from driver.
3567 * Added device is not attached to its DMAR domain here yet. That will happen
3568 * when mapping the device to iova.
3570 static int device_notifier(struct notifier_block *nb,
3571 unsigned long action, void *data)
3573 struct device *dev = data;
3574 struct pci_dev *pdev = to_pci_dev(dev);
3575 struct dmar_domain *domain;
3577 if (iommu_no_mapping(dev))
3578 return 0;
3580 domain = find_domain(pdev);
3581 if (!domain)
3582 return 0;
3584 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3585 domain_remove_one_dev_info(domain, pdev);
3587 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3588 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3589 list_empty(&domain->devices))
3590 domain_exit(domain);
3593 return 0;
3596 static struct notifier_block device_nb = {
3597 .notifier_call = device_notifier,
3600 int __init intel_iommu_init(void)
3602 int ret = 0;
3604 /* VT-d is required for a TXT/tboot launch, so enforce that */
3605 force_on = tboot_force_iommu();
3607 if (dmar_table_init()) {
3608 if (force_on)
3609 panic("tboot: Failed to initialize DMAR table\n");
3610 return -ENODEV;
3613 if (dmar_dev_scope_init() < 0) {
3614 if (force_on)
3615 panic("tboot: Failed to initialize DMAR device scope\n");
3616 return -ENODEV;
3619 if (no_iommu || dmar_disabled)
3620 return -ENODEV;
3622 if (iommu_init_mempool()) {
3623 if (force_on)
3624 panic("tboot: Failed to initialize iommu memory\n");
3625 return -ENODEV;
3628 if (list_empty(&dmar_rmrr_units))
3629 printk(KERN_INFO "DMAR: No RMRR found\n");
3631 if (list_empty(&dmar_atsr_units))
3632 printk(KERN_INFO "DMAR: No ATSR found\n");
3634 if (dmar_init_reserved_ranges()) {
3635 if (force_on)
3636 panic("tboot: Failed to reserve iommu ranges\n");
3637 return -ENODEV;
3640 init_no_remapping_devices();
3642 ret = init_dmars();
3643 if (ret) {
3644 if (force_on)
3645 panic("tboot: Failed to initialize DMARs\n");
3646 printk(KERN_ERR "IOMMU: dmar init failed\n");
3647 put_iova_domain(&reserved_iova_list);
3648 iommu_exit_mempool();
3649 return ret;
3651 printk(KERN_INFO
3652 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3654 init_timer(&unmap_timer);
3655 #ifdef CONFIG_SWIOTLB
3656 swiotlb = 0;
3657 #endif
3658 dma_ops = &intel_dma_ops;
3660 init_iommu_pm_ops();
3662 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3664 bus_register_notifier(&pci_bus_type, &device_nb);
3666 intel_iommu_enabled = 1;
3668 return 0;
3671 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3672 struct pci_dev *pdev)
3674 struct pci_dev *tmp, *parent;
3676 if (!iommu || !pdev)
3677 return;
3679 /* dependent device detach */
3680 tmp = pci_find_upstream_pcie_bridge(pdev);
3681 /* Secondary interface's bus number and devfn 0 */
3682 if (tmp) {
3683 parent = pdev->bus->self;
3684 while (parent != tmp) {
3685 iommu_detach_dev(iommu, parent->bus->number,
3686 parent->devfn);
3687 parent = parent->bus->self;
3689 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3690 iommu_detach_dev(iommu,
3691 tmp->subordinate->number, 0);
3692 else /* this is a legacy PCI bridge */
3693 iommu_detach_dev(iommu, tmp->bus->number,
3694 tmp->devfn);
3698 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3699 struct pci_dev *pdev)
3701 struct device_domain_info *info;
3702 struct intel_iommu *iommu;
3703 unsigned long flags;
3704 int found = 0;
3705 struct list_head *entry, *tmp;
3707 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3708 pdev->devfn);
3709 if (!iommu)
3710 return;
3712 spin_lock_irqsave(&device_domain_lock, flags);
3713 list_for_each_safe(entry, tmp, &domain->devices) {
3714 info = list_entry(entry, struct device_domain_info, link);
3715 if (info->segment == pci_domain_nr(pdev->bus) &&
3716 info->bus == pdev->bus->number &&
3717 info->devfn == pdev->devfn) {
3718 list_del(&info->link);
3719 list_del(&info->global);
3720 if (info->dev)
3721 info->dev->dev.archdata.iommu = NULL;
3722 spin_unlock_irqrestore(&device_domain_lock, flags);
3724 iommu_disable_dev_iotlb(info);
3725 iommu_detach_dev(iommu, info->bus, info->devfn);
3726 iommu_detach_dependent_devices(iommu, pdev);
3727 free_devinfo_mem(info);
3729 spin_lock_irqsave(&device_domain_lock, flags);
3731 if (found)
3732 break;
3733 else
3734 continue;
3737 /* if there is no other devices under the same iommu
3738 * owned by this domain, clear this iommu in iommu_bmp
3739 * update iommu count and coherency
3741 if (iommu == device_to_iommu(info->segment, info->bus,
3742 info->devfn))
3743 found = 1;
3746 spin_unlock_irqrestore(&device_domain_lock, flags);
3748 if (found == 0) {
3749 unsigned long tmp_flags;
3750 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3751 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3752 domain->iommu_count--;
3753 domain_update_iommu_cap(domain);
3754 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3756 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3757 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3758 spin_lock_irqsave(&iommu->lock, tmp_flags);
3759 clear_bit(domain->id, iommu->domain_ids);
3760 iommu->domains[domain->id] = NULL;
3761 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3766 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3768 struct device_domain_info *info;
3769 struct intel_iommu *iommu;
3770 unsigned long flags1, flags2;
3772 spin_lock_irqsave(&device_domain_lock, flags1);
3773 while (!list_empty(&domain->devices)) {
3774 info = list_entry(domain->devices.next,
3775 struct device_domain_info, link);
3776 list_del(&info->link);
3777 list_del(&info->global);
3778 if (info->dev)
3779 info->dev->dev.archdata.iommu = NULL;
3781 spin_unlock_irqrestore(&device_domain_lock, flags1);
3783 iommu_disable_dev_iotlb(info);
3784 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3785 iommu_detach_dev(iommu, info->bus, info->devfn);
3786 iommu_detach_dependent_devices(iommu, info->dev);
3788 /* clear this iommu in iommu_bmp, update iommu count
3789 * and capabilities
3791 spin_lock_irqsave(&domain->iommu_lock, flags2);
3792 if (test_and_clear_bit(iommu->seq_id,
3793 &domain->iommu_bmp)) {
3794 domain->iommu_count--;
3795 domain_update_iommu_cap(domain);
3797 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3799 free_devinfo_mem(info);
3800 spin_lock_irqsave(&device_domain_lock, flags1);
3802 spin_unlock_irqrestore(&device_domain_lock, flags1);
3805 /* domain id for virtual machine, it won't be set in context */
3806 static unsigned long vm_domid;
3808 static struct dmar_domain *iommu_alloc_vm_domain(void)
3810 struct dmar_domain *domain;
3812 domain = alloc_domain_mem();
3813 if (!domain)
3814 return NULL;
3816 domain->id = vm_domid++;
3817 domain->nid = -1;
3818 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3819 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3821 return domain;
3824 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3826 int adjust_width;
3828 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3829 spin_lock_init(&domain->iommu_lock);
3831 domain_reserve_special_ranges(domain);
3833 /* calculate AGAW */
3834 domain->gaw = guest_width;
3835 adjust_width = guestwidth_to_adjustwidth(guest_width);
3836 domain->agaw = width_to_agaw(adjust_width);
3838 INIT_LIST_HEAD(&domain->devices);
3840 domain->iommu_count = 0;
3841 domain->iommu_coherency = 0;
3842 domain->iommu_snooping = 0;
3843 domain->iommu_superpage = 0;
3844 domain->max_addr = 0;
3845 domain->nid = -1;
3847 /* always allocate the top pgd */
3848 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3849 if (!domain->pgd)
3850 return -ENOMEM;
3851 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3852 return 0;
3855 static void iommu_free_vm_domain(struct dmar_domain *domain)
3857 unsigned long flags;
3858 struct dmar_drhd_unit *drhd;
3859 struct intel_iommu *iommu;
3860 unsigned long i;
3861 unsigned long ndomains;
3863 for_each_drhd_unit(drhd) {
3864 if (drhd->ignored)
3865 continue;
3866 iommu = drhd->iommu;
3868 ndomains = cap_ndoms(iommu->cap);
3869 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3870 if (iommu->domains[i] == domain) {
3871 spin_lock_irqsave(&iommu->lock, flags);
3872 clear_bit(i, iommu->domain_ids);
3873 iommu->domains[i] = NULL;
3874 spin_unlock_irqrestore(&iommu->lock, flags);
3875 break;
3881 static void vm_domain_exit(struct dmar_domain *domain)
3883 /* Domain 0 is reserved, so dont process it */
3884 if (!domain)
3885 return;
3887 vm_domain_remove_all_dev_info(domain);
3888 /* destroy iovas */
3889 put_iova_domain(&domain->iovad);
3891 /* clear ptes */
3892 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3894 /* free page tables */
3895 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3897 iommu_free_vm_domain(domain);
3898 free_domain_mem(domain);
3901 static int intel_iommu_domain_init(struct iommu_domain *domain)
3903 struct dmar_domain *dmar_domain;
3905 dmar_domain = iommu_alloc_vm_domain();
3906 if (!dmar_domain) {
3907 printk(KERN_ERR
3908 "intel_iommu_domain_init: dmar_domain == NULL\n");
3909 return -ENOMEM;
3911 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3912 printk(KERN_ERR
3913 "intel_iommu_domain_init() failed\n");
3914 vm_domain_exit(dmar_domain);
3915 return -ENOMEM;
3917 domain_update_iommu_cap(dmar_domain);
3918 domain->priv = dmar_domain;
3920 return 0;
3923 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3925 struct dmar_domain *dmar_domain = domain->priv;
3927 domain->priv = NULL;
3928 vm_domain_exit(dmar_domain);
3931 static int intel_iommu_attach_device(struct iommu_domain *domain,
3932 struct device *dev)
3934 struct dmar_domain *dmar_domain = domain->priv;
3935 struct pci_dev *pdev = to_pci_dev(dev);
3936 struct intel_iommu *iommu;
3937 int addr_width;
3939 /* normally pdev is not mapped */
3940 if (unlikely(domain_context_mapped(pdev))) {
3941 struct dmar_domain *old_domain;
3943 old_domain = find_domain(pdev);
3944 if (old_domain) {
3945 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3946 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3947 domain_remove_one_dev_info(old_domain, pdev);
3948 else
3949 domain_remove_dev_info(old_domain);
3953 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3954 pdev->devfn);
3955 if (!iommu)
3956 return -ENODEV;
3958 /* check if this iommu agaw is sufficient for max mapped address */
3959 addr_width = agaw_to_width(iommu->agaw);
3960 if (addr_width > cap_mgaw(iommu->cap))
3961 addr_width = cap_mgaw(iommu->cap);
3963 if (dmar_domain->max_addr > (1LL << addr_width)) {
3964 printk(KERN_ERR "%s: iommu width (%d) is not "
3965 "sufficient for the mapped address (%llx)\n",
3966 __func__, addr_width, dmar_domain->max_addr);
3967 return -EFAULT;
3969 dmar_domain->gaw = addr_width;
3972 * Knock out extra levels of page tables if necessary
3974 while (iommu->agaw < dmar_domain->agaw) {
3975 struct dma_pte *pte;
3977 pte = dmar_domain->pgd;
3978 if (dma_pte_present(pte)) {
3979 dmar_domain->pgd = (struct dma_pte *)
3980 phys_to_virt(dma_pte_addr(pte));
3981 free_pgtable_page(pte);
3983 dmar_domain->agaw--;
3986 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3989 static void intel_iommu_detach_device(struct iommu_domain *domain,
3990 struct device *dev)
3992 struct dmar_domain *dmar_domain = domain->priv;
3993 struct pci_dev *pdev = to_pci_dev(dev);
3995 domain_remove_one_dev_info(dmar_domain, pdev);
3998 static int intel_iommu_map(struct iommu_domain *domain,
3999 unsigned long iova, phys_addr_t hpa,
4000 size_t size, int iommu_prot)
4002 struct dmar_domain *dmar_domain = domain->priv;
4003 u64 max_addr;
4004 int prot = 0;
4005 int ret;
4007 if (iommu_prot & IOMMU_READ)
4008 prot |= DMA_PTE_READ;
4009 if (iommu_prot & IOMMU_WRITE)
4010 prot |= DMA_PTE_WRITE;
4011 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4012 prot |= DMA_PTE_SNP;
4014 max_addr = iova + size;
4015 if (dmar_domain->max_addr < max_addr) {
4016 u64 end;
4018 /* check if minimum agaw is sufficient for mapped address */
4019 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4020 if (end < max_addr) {
4021 printk(KERN_ERR "%s: iommu width (%d) is not "
4022 "sufficient for the mapped address (%llx)\n",
4023 __func__, dmar_domain->gaw, max_addr);
4024 return -EFAULT;
4026 dmar_domain->max_addr = max_addr;
4028 /* Round up size to next multiple of PAGE_SIZE, if it and
4029 the low bits of hpa would take us onto the next page */
4030 size = aligned_nrpages(hpa, size);
4031 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4032 hpa >> VTD_PAGE_SHIFT, size, prot);
4033 return ret;
4036 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4037 unsigned long iova, size_t size)
4039 struct dmar_domain *dmar_domain = domain->priv;
4040 int order;
4042 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4043 (iova + size - 1) >> VTD_PAGE_SHIFT);
4045 if (dmar_domain->max_addr == iova + size)
4046 dmar_domain->max_addr = iova;
4048 return PAGE_SIZE << order;
4051 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4052 unsigned long iova)
4054 struct dmar_domain *dmar_domain = domain->priv;
4055 struct dma_pte *pte;
4056 u64 phys = 0;
4058 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4059 if (pte)
4060 phys = dma_pte_addr(pte);
4062 return phys;
4065 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4066 unsigned long cap)
4068 struct dmar_domain *dmar_domain = domain->priv;
4070 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4071 return dmar_domain->iommu_snooping;
4072 if (cap == IOMMU_CAP_INTR_REMAP)
4073 return intr_remapping_enabled;
4075 return 0;
4079 * Group numbers are arbitrary. Device with the same group number
4080 * indicate the iommu cannot differentiate between them. To avoid
4081 * tracking used groups we just use the seg|bus|devfn of the lowest
4082 * level we're able to differentiate devices
4084 static int intel_iommu_device_group(struct device *dev, unsigned int *groupid)
4086 struct pci_dev *pdev = to_pci_dev(dev);
4087 struct pci_dev *bridge;
4088 union {
4089 struct {
4090 u8 devfn;
4091 u8 bus;
4092 u16 segment;
4093 } pci;
4094 u32 group;
4095 } id;
4097 if (iommu_no_mapping(dev))
4098 return -ENODEV;
4100 id.pci.segment = pci_domain_nr(pdev->bus);
4101 id.pci.bus = pdev->bus->number;
4102 id.pci.devfn = pdev->devfn;
4104 if (!device_to_iommu(id.pci.segment, id.pci.bus, id.pci.devfn))
4105 return -ENODEV;
4107 bridge = pci_find_upstream_pcie_bridge(pdev);
4108 if (bridge) {
4109 if (pci_is_pcie(bridge)) {
4110 id.pci.bus = bridge->subordinate->number;
4111 id.pci.devfn = 0;
4112 } else {
4113 id.pci.bus = bridge->bus->number;
4114 id.pci.devfn = bridge->devfn;
4118 if (!pdev->is_virtfn && iommu_group_mf)
4119 id.pci.devfn = PCI_DEVFN(PCI_SLOT(id.pci.devfn), 0);
4121 *groupid = id.group;
4123 return 0;
4126 static struct iommu_ops intel_iommu_ops = {
4127 .domain_init = intel_iommu_domain_init,
4128 .domain_destroy = intel_iommu_domain_destroy,
4129 .attach_dev = intel_iommu_attach_device,
4130 .detach_dev = intel_iommu_detach_device,
4131 .map = intel_iommu_map,
4132 .unmap = intel_iommu_unmap,
4133 .iova_to_phys = intel_iommu_iova_to_phys,
4134 .domain_has_cap = intel_iommu_domain_has_cap,
4135 .device_group = intel_iommu_device_group,
4136 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4139 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4142 * Mobile 4 Series Chipset neglects to set RWBF capability,
4143 * but needs it:
4145 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4146 rwbf_quirk = 1;
4148 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4149 if (dev->revision == 0x07) {
4150 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4151 dmar_map_gfx = 0;
4155 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4157 #define GGC 0x52
4158 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4159 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4160 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4161 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4162 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4163 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4164 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4165 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4167 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4169 unsigned short ggc;
4171 if (pci_read_config_word(dev, GGC, &ggc))
4172 return;
4174 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4175 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4176 dmar_map_gfx = 0;
4177 } else if (dmar_map_gfx) {
4178 /* we have to ensure the gfx device is idle before we flush */
4179 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4180 intel_iommu_strict = 1;
4183 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4184 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4185 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4186 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4188 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4189 ISOCH DMAR unit for the Azalia sound device, but not give it any
4190 TLB entries, which causes it to deadlock. Check for that. We do
4191 this in a function called from init_dmars(), instead of in a PCI
4192 quirk, because we don't want to print the obnoxious "BIOS broken"
4193 message if VT-d is actually disabled.
4195 static void __init check_tylersburg_isoch(void)
4197 struct pci_dev *pdev;
4198 uint32_t vtisochctrl;
4200 /* If there's no Azalia in the system anyway, forget it. */
4201 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4202 if (!pdev)
4203 return;
4204 pci_dev_put(pdev);
4206 /* System Management Registers. Might be hidden, in which case
4207 we can't do the sanity check. But that's OK, because the
4208 known-broken BIOSes _don't_ actually hide it, so far. */
4209 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4210 if (!pdev)
4211 return;
4213 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4214 pci_dev_put(pdev);
4215 return;
4218 pci_dev_put(pdev);
4220 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4221 if (vtisochctrl & 1)
4222 return;
4224 /* Drop all bits other than the number of TLB entries */
4225 vtisochctrl &= 0x1c;
4227 /* If we have the recommended number of TLB entries (16), fine. */
4228 if (vtisochctrl == 0x10)
4229 return;
4231 /* Zero TLB entries? You get to ride the short bus to school. */
4232 if (!vtisochctrl) {
4233 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4234 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4235 dmi_get_system_info(DMI_BIOS_VENDOR),
4236 dmi_get_system_info(DMI_BIOS_VERSION),
4237 dmi_get_system_info(DMI_PRODUCT_VERSION));
4238 iommu_identity_mapping |= IDENTMAP_AZALIA;
4239 return;
4242 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4243 vtisochctrl);