2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
35 * context holding the current state of a multi-part conversion
37 struct convert_context
{
38 struct completion restart
;
41 unsigned int offset_in
;
42 unsigned int offset_out
;
50 * per bio private data
53 struct dm_target
*target
;
55 struct work_struct work
;
57 struct convert_context ctx
;
62 struct dm_crypt_io
*base_io
;
65 struct dm_crypt_request
{
66 struct convert_context
*ctx
;
67 struct scatterlist sg_in
;
68 struct scatterlist sg_out
;
74 struct crypt_iv_operations
{
75 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
77 void (*dtr
)(struct crypt_config
*cc
);
78 int (*init
)(struct crypt_config
*cc
);
79 int (*wipe
)(struct crypt_config
*cc
);
80 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
81 struct dm_crypt_request
*dmreq
);
82 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
83 struct dm_crypt_request
*dmreq
);
86 struct iv_essiv_private
{
87 struct crypto_hash
*hash_tfm
;
91 struct iv_benbi_private
{
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private
{
97 struct crypto_shash
*hash_tfm
;
102 * Crypt: maps a linear range of a block device
103 * and encrypts / decrypts at the same time.
105 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
108 * Duplicated per-CPU state for cipher.
111 struct ablkcipher_request
*req
;
112 /* ESSIV: struct crypto_cipher *essiv_tfm */
114 struct crypto_ablkcipher
*tfms
[0];
118 * The fields in here must be read only after initialization,
119 * changing state should be in crypt_cpu.
121 struct crypt_config
{
126 * pool for per bio private data, crypto requests and
127 * encryption requeusts/buffer pages
131 mempool_t
*page_pool
;
134 struct workqueue_struct
*io_queue
;
135 struct workqueue_struct
*crypt_queue
;
140 struct crypt_iv_operations
*iv_gen_ops
;
142 struct iv_essiv_private essiv
;
143 struct iv_benbi_private benbi
;
144 struct iv_lmk_private lmk
;
147 unsigned int iv_size
;
150 * Duplicated per cpu state. Access through
151 * per_cpu_ptr() only.
153 struct crypt_cpu __percpu
*cpu
;
157 * Layout of each crypto request:
159 * struct ablkcipher_request
162 * struct dm_crypt_request
166 * The padding is added so that dm_crypt_request and the IV are
169 unsigned int dmreq_start
;
172 unsigned int key_size
;
173 unsigned int key_parts
;
178 #define MIN_POOL_PAGES 32
180 static struct kmem_cache
*_crypt_io_pool
;
182 static void clone_init(struct dm_crypt_io
*, struct bio
*);
183 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
184 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
186 static struct crypt_cpu
*this_crypt_config(struct crypt_config
*cc
)
188 return this_cpu_ptr(cc
->cpu
);
192 * Use this to access cipher attributes that are the same for each CPU.
194 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
196 return __this_cpu_ptr(cc
->cpu
)->tfms
[0];
200 * Different IV generation algorithms:
202 * plain: the initial vector is the 32-bit little-endian version of the sector
203 * number, padded with zeros if necessary.
205 * plain64: the initial vector is the 64-bit little-endian version of the sector
206 * number, padded with zeros if necessary.
208 * essiv: "encrypted sector|salt initial vector", the sector number is
209 * encrypted with the bulk cipher using a salt as key. The salt
210 * should be derived from the bulk cipher's key via hashing.
212 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
213 * (needed for LRW-32-AES and possible other narrow block modes)
215 * null: the initial vector is always zero. Provides compatibility with
216 * obsolete loop_fish2 devices. Do not use for new devices.
218 * lmk: Compatible implementation of the block chaining mode used
219 * by the Loop-AES block device encryption system
220 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
221 * It operates on full 512 byte sectors and uses CBC
222 * with an IV derived from the sector number, the data and
223 * optionally extra IV seed.
224 * This means that after decryption the first block
225 * of sector must be tweaked according to decrypted data.
226 * Loop-AES can use three encryption schemes:
227 * version 1: is plain aes-cbc mode
228 * version 2: uses 64 multikey scheme with lmk IV generator
229 * version 3: the same as version 2 with additional IV seed
230 * (it uses 65 keys, last key is used as IV seed)
232 * plumb: unimplemented, see:
233 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
237 struct dm_crypt_request
*dmreq
)
239 memset(iv
, 0, cc
->iv_size
);
240 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
245 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
246 struct dm_crypt_request
*dmreq
)
248 memset(iv
, 0, cc
->iv_size
);
249 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
254 /* Initialise ESSIV - compute salt but no local memory allocations */
255 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
257 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
258 struct hash_desc desc
;
259 struct scatterlist sg
;
260 struct crypto_cipher
*essiv_tfm
;
263 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
264 desc
.tfm
= essiv
->hash_tfm
;
265 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
267 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
271 for_each_possible_cpu(cpu
) {
272 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
,
274 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
275 crypto_hash_digestsize(essiv
->hash_tfm
));
283 /* Wipe salt and reset key derived from volume key */
284 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
286 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
287 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
288 struct crypto_cipher
*essiv_tfm
;
291 memset(essiv
->salt
, 0, salt_size
);
293 for_each_possible_cpu(cpu
) {
294 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
;
295 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
303 /* Set up per cpu cipher state */
304 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
305 struct dm_target
*ti
,
306 u8
*salt
, unsigned saltsize
)
308 struct crypto_cipher
*essiv_tfm
;
311 /* Setup the essiv_tfm with the given salt */
312 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
313 if (IS_ERR(essiv_tfm
)) {
314 ti
->error
= "Error allocating crypto tfm for ESSIV";
318 if (crypto_cipher_blocksize(essiv_tfm
) !=
319 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
320 ti
->error
= "Block size of ESSIV cipher does "
321 "not match IV size of block cipher";
322 crypto_free_cipher(essiv_tfm
);
323 return ERR_PTR(-EINVAL
);
326 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
328 ti
->error
= "Failed to set key for ESSIV cipher";
329 crypto_free_cipher(essiv_tfm
);
336 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
339 struct crypt_cpu
*cpu_cc
;
340 struct crypto_cipher
*essiv_tfm
;
341 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
343 crypto_free_hash(essiv
->hash_tfm
);
344 essiv
->hash_tfm
= NULL
;
349 for_each_possible_cpu(cpu
) {
350 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
351 essiv_tfm
= cpu_cc
->iv_private
;
354 crypto_free_cipher(essiv_tfm
);
356 cpu_cc
->iv_private
= NULL
;
360 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
363 struct crypto_cipher
*essiv_tfm
= NULL
;
364 struct crypto_hash
*hash_tfm
= NULL
;
369 ti
->error
= "Digest algorithm missing for ESSIV mode";
373 /* Allocate hash algorithm */
374 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
375 if (IS_ERR(hash_tfm
)) {
376 ti
->error
= "Error initializing ESSIV hash";
377 err
= PTR_ERR(hash_tfm
);
381 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
383 ti
->error
= "Error kmallocing salt storage in ESSIV";
388 cc
->iv_gen_private
.essiv
.salt
= salt
;
389 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
391 for_each_possible_cpu(cpu
) {
392 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
393 crypto_hash_digestsize(hash_tfm
));
394 if (IS_ERR(essiv_tfm
)) {
395 crypt_iv_essiv_dtr(cc
);
396 return PTR_ERR(essiv_tfm
);
398 per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
= essiv_tfm
;
404 if (hash_tfm
&& !IS_ERR(hash_tfm
))
405 crypto_free_hash(hash_tfm
);
410 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
411 struct dm_crypt_request
*dmreq
)
413 struct crypto_cipher
*essiv_tfm
= this_crypt_config(cc
)->iv_private
;
415 memset(iv
, 0, cc
->iv_size
);
416 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
417 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
422 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
425 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
428 /* we need to calculate how far we must shift the sector count
429 * to get the cipher block count, we use this shift in _gen */
431 if (1 << log
!= bs
) {
432 ti
->error
= "cypher blocksize is not a power of 2";
437 ti
->error
= "cypher blocksize is > 512";
441 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
446 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
450 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
451 struct dm_crypt_request
*dmreq
)
455 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
457 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
458 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
463 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
464 struct dm_crypt_request
*dmreq
)
466 memset(iv
, 0, cc
->iv_size
);
471 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
473 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
475 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
476 crypto_free_shash(lmk
->hash_tfm
);
477 lmk
->hash_tfm
= NULL
;
483 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
486 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
488 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
489 if (IS_ERR(lmk
->hash_tfm
)) {
490 ti
->error
= "Error initializing LMK hash";
491 return PTR_ERR(lmk
->hash_tfm
);
494 /* No seed in LMK version 2 */
495 if (cc
->key_parts
== cc
->tfms_count
) {
500 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
502 crypt_iv_lmk_dtr(cc
);
503 ti
->error
= "Error kmallocing seed storage in LMK";
510 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
512 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
513 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
515 /* LMK seed is on the position of LMK_KEYS + 1 key */
517 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
518 crypto_shash_digestsize(lmk
->hash_tfm
));
523 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
525 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
528 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
533 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
534 struct dm_crypt_request
*dmreq
,
537 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
539 struct shash_desc desc
;
540 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
542 struct md5_state md5state
;
546 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
547 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
549 r
= crypto_shash_init(&sdesc
.desc
);
554 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
564 /* Sector is cropped to 56 bits here */
565 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
566 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
567 buf
[2] = cpu_to_le32(4024);
569 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
573 /* No MD5 padding here */
574 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
578 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
579 __cpu_to_le32s(&md5state
.hash
[i
]);
580 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
585 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
586 struct dm_crypt_request
*dmreq
)
591 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
592 src
= kmap_atomic(sg_page(&dmreq
->sg_in
), KM_USER0
);
593 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
594 kunmap_atomic(src
, KM_USER0
);
596 memset(iv
, 0, cc
->iv_size
);
601 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
602 struct dm_crypt_request
*dmreq
)
607 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
610 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
), KM_USER0
);
611 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
613 /* Tweak the first block of plaintext sector */
615 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
617 kunmap_atomic(dst
, KM_USER0
);
621 static struct crypt_iv_operations crypt_iv_plain_ops
= {
622 .generator
= crypt_iv_plain_gen
625 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
626 .generator
= crypt_iv_plain64_gen
629 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
630 .ctr
= crypt_iv_essiv_ctr
,
631 .dtr
= crypt_iv_essiv_dtr
,
632 .init
= crypt_iv_essiv_init
,
633 .wipe
= crypt_iv_essiv_wipe
,
634 .generator
= crypt_iv_essiv_gen
637 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
638 .ctr
= crypt_iv_benbi_ctr
,
639 .dtr
= crypt_iv_benbi_dtr
,
640 .generator
= crypt_iv_benbi_gen
643 static struct crypt_iv_operations crypt_iv_null_ops
= {
644 .generator
= crypt_iv_null_gen
647 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
648 .ctr
= crypt_iv_lmk_ctr
,
649 .dtr
= crypt_iv_lmk_dtr
,
650 .init
= crypt_iv_lmk_init
,
651 .wipe
= crypt_iv_lmk_wipe
,
652 .generator
= crypt_iv_lmk_gen
,
653 .post
= crypt_iv_lmk_post
656 static void crypt_convert_init(struct crypt_config
*cc
,
657 struct convert_context
*ctx
,
658 struct bio
*bio_out
, struct bio
*bio_in
,
661 ctx
->bio_in
= bio_in
;
662 ctx
->bio_out
= bio_out
;
665 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
666 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
667 ctx
->sector
= sector
+ cc
->iv_offset
;
668 init_completion(&ctx
->restart
);
671 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
672 struct ablkcipher_request
*req
)
674 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
677 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
678 struct dm_crypt_request
*dmreq
)
680 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
683 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
684 struct dm_crypt_request
*dmreq
)
686 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
687 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
690 static int crypt_convert_block(struct crypt_config
*cc
,
691 struct convert_context
*ctx
,
692 struct ablkcipher_request
*req
)
694 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
695 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
696 struct dm_crypt_request
*dmreq
;
700 dmreq
= dmreq_of_req(cc
, req
);
701 iv
= iv_of_dmreq(cc
, dmreq
);
703 dmreq
->iv_sector
= ctx
->sector
;
705 sg_init_table(&dmreq
->sg_in
, 1);
706 sg_set_page(&dmreq
->sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
,
707 bv_in
->bv_offset
+ ctx
->offset_in
);
709 sg_init_table(&dmreq
->sg_out
, 1);
710 sg_set_page(&dmreq
->sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
,
711 bv_out
->bv_offset
+ ctx
->offset_out
);
713 ctx
->offset_in
+= 1 << SECTOR_SHIFT
;
714 if (ctx
->offset_in
>= bv_in
->bv_len
) {
719 ctx
->offset_out
+= 1 << SECTOR_SHIFT
;
720 if (ctx
->offset_out
>= bv_out
->bv_len
) {
725 if (cc
->iv_gen_ops
) {
726 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
731 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
732 1 << SECTOR_SHIFT
, iv
);
734 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
735 r
= crypto_ablkcipher_encrypt(req
);
737 r
= crypto_ablkcipher_decrypt(req
);
739 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
740 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
745 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
748 static void crypt_alloc_req(struct crypt_config
*cc
,
749 struct convert_context
*ctx
)
751 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
752 unsigned key_index
= ctx
->sector
& (cc
->tfms_count
- 1);
755 this_cc
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
757 ablkcipher_request_set_tfm(this_cc
->req
, this_cc
->tfms
[key_index
]);
758 ablkcipher_request_set_callback(this_cc
->req
,
759 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
760 kcryptd_async_done
, dmreq_of_req(cc
, this_cc
->req
));
764 * Encrypt / decrypt data from one bio to another one (can be the same one)
766 static int crypt_convert(struct crypt_config
*cc
,
767 struct convert_context
*ctx
)
769 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
772 atomic_set(&ctx
->pending
, 1);
774 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
775 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
777 crypt_alloc_req(cc
, ctx
);
779 atomic_inc(&ctx
->pending
);
781 r
= crypt_convert_block(cc
, ctx
, this_cc
->req
);
786 wait_for_completion(&ctx
->restart
);
787 INIT_COMPLETION(ctx
->restart
);
796 atomic_dec(&ctx
->pending
);
803 atomic_dec(&ctx
->pending
);
811 static void dm_crypt_bio_destructor(struct bio
*bio
)
813 struct dm_crypt_io
*io
= bio
->bi_private
;
814 struct crypt_config
*cc
= io
->target
->private;
816 bio_free(bio
, cc
->bs
);
820 * Generate a new unfragmented bio with the given size
821 * This should never violate the device limitations
822 * May return a smaller bio when running out of pages, indicated by
823 * *out_of_pages set to 1.
825 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
826 unsigned *out_of_pages
)
828 struct crypt_config
*cc
= io
->target
->private;
830 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
831 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
835 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
839 clone_init(io
, clone
);
842 for (i
= 0; i
< nr_iovecs
; i
++) {
843 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
850 * If additional pages cannot be allocated without waiting,
851 * return a partially-allocated bio. The caller will then try
852 * to allocate more bios while submitting this partial bio.
854 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
856 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
858 if (!bio_add_page(clone
, page
, len
, 0)) {
859 mempool_free(page
, cc
->page_pool
);
866 if (!clone
->bi_size
) {
874 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
879 for (i
= 0; i
< clone
->bi_vcnt
; i
++) {
880 bv
= bio_iovec_idx(clone
, i
);
881 BUG_ON(!bv
->bv_page
);
882 mempool_free(bv
->bv_page
, cc
->page_pool
);
887 static struct dm_crypt_io
*crypt_io_alloc(struct dm_target
*ti
,
888 struct bio
*bio
, sector_t sector
)
890 struct crypt_config
*cc
= ti
->private;
891 struct dm_crypt_io
*io
;
893 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
899 atomic_set(&io
->pending
, 0);
904 static void crypt_inc_pending(struct dm_crypt_io
*io
)
906 atomic_inc(&io
->pending
);
910 * One of the bios was finished. Check for completion of
911 * the whole request and correctly clean up the buffer.
912 * If base_io is set, wait for the last fragment to complete.
914 static void crypt_dec_pending(struct dm_crypt_io
*io
)
916 struct crypt_config
*cc
= io
->target
->private;
917 struct bio
*base_bio
= io
->base_bio
;
918 struct dm_crypt_io
*base_io
= io
->base_io
;
919 int error
= io
->error
;
921 if (!atomic_dec_and_test(&io
->pending
))
924 mempool_free(io
, cc
->io_pool
);
926 if (likely(!base_io
))
927 bio_endio(base_bio
, error
);
929 if (error
&& !base_io
->error
)
930 base_io
->error
= error
;
931 crypt_dec_pending(base_io
);
936 * kcryptd/kcryptd_io:
938 * Needed because it would be very unwise to do decryption in an
941 * kcryptd performs the actual encryption or decryption.
943 * kcryptd_io performs the IO submission.
945 * They must be separated as otherwise the final stages could be
946 * starved by new requests which can block in the first stages due
947 * to memory allocation.
949 * The work is done per CPU global for all dm-crypt instances.
950 * They should not depend on each other and do not block.
952 static void crypt_endio(struct bio
*clone
, int error
)
954 struct dm_crypt_io
*io
= clone
->bi_private
;
955 struct crypt_config
*cc
= io
->target
->private;
956 unsigned rw
= bio_data_dir(clone
);
958 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
962 * free the processed pages
965 crypt_free_buffer_pages(cc
, clone
);
969 if (rw
== READ
&& !error
) {
970 kcryptd_queue_crypt(io
);
977 crypt_dec_pending(io
);
980 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
982 struct crypt_config
*cc
= io
->target
->private;
984 clone
->bi_private
= io
;
985 clone
->bi_end_io
= crypt_endio
;
986 clone
->bi_bdev
= cc
->dev
->bdev
;
987 clone
->bi_rw
= io
->base_bio
->bi_rw
;
988 clone
->bi_destructor
= dm_crypt_bio_destructor
;
991 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
993 struct crypt_config
*cc
= io
->target
->private;
994 struct bio
*base_bio
= io
->base_bio
;
998 * The block layer might modify the bvec array, so always
999 * copy the required bvecs because we need the original
1000 * one in order to decrypt the whole bio data *afterwards*.
1002 clone
= bio_alloc_bioset(gfp
, bio_segments(base_bio
), cc
->bs
);
1006 crypt_inc_pending(io
);
1008 clone_init(io
, clone
);
1010 clone
->bi_vcnt
= bio_segments(base_bio
);
1011 clone
->bi_size
= base_bio
->bi_size
;
1012 clone
->bi_sector
= cc
->start
+ io
->sector
;
1013 memcpy(clone
->bi_io_vec
, bio_iovec(base_bio
),
1014 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
1016 generic_make_request(clone
);
1020 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1022 struct bio
*clone
= io
->ctx
.bio_out
;
1023 generic_make_request(clone
);
1026 static void kcryptd_io(struct work_struct
*work
)
1028 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1030 if (bio_data_dir(io
->base_bio
) == READ
) {
1031 crypt_inc_pending(io
);
1032 if (kcryptd_io_read(io
, GFP_NOIO
))
1033 io
->error
= -ENOMEM
;
1034 crypt_dec_pending(io
);
1036 kcryptd_io_write(io
);
1039 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
1041 struct crypt_config
*cc
= io
->target
->private;
1043 INIT_WORK(&io
->work
, kcryptd_io
);
1044 queue_work(cc
->io_queue
, &io
->work
);
1047 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1049 struct bio
*clone
= io
->ctx
.bio_out
;
1050 struct crypt_config
*cc
= io
->target
->private;
1052 if (unlikely(io
->error
< 0)) {
1053 crypt_free_buffer_pages(cc
, clone
);
1055 crypt_dec_pending(io
);
1059 /* crypt_convert should have filled the clone bio */
1060 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
1062 clone
->bi_sector
= cc
->start
+ io
->sector
;
1065 kcryptd_queue_io(io
);
1067 generic_make_request(clone
);
1070 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1072 struct crypt_config
*cc
= io
->target
->private;
1074 struct dm_crypt_io
*new_io
;
1076 unsigned out_of_pages
= 0;
1077 unsigned remaining
= io
->base_bio
->bi_size
;
1078 sector_t sector
= io
->sector
;
1082 * Prevent io from disappearing until this function completes.
1084 crypt_inc_pending(io
);
1085 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1088 * The allocated buffers can be smaller than the whole bio,
1089 * so repeat the whole process until all the data can be handled.
1092 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1093 if (unlikely(!clone
)) {
1094 io
->error
= -ENOMEM
;
1098 io
->ctx
.bio_out
= clone
;
1099 io
->ctx
.idx_out
= 0;
1101 remaining
-= clone
->bi_size
;
1102 sector
+= bio_sectors(clone
);
1104 crypt_inc_pending(io
);
1106 r
= crypt_convert(cc
, &io
->ctx
);
1110 crypt_finished
= atomic_dec_and_test(&io
->ctx
.pending
);
1112 /* Encryption was already finished, submit io now */
1113 if (crypt_finished
) {
1114 kcryptd_crypt_write_io_submit(io
, 0);
1117 * If there was an error, do not try next fragments.
1118 * For async, error is processed in async handler.
1120 if (unlikely(r
< 0))
1123 io
->sector
= sector
;
1127 * Out of memory -> run queues
1128 * But don't wait if split was due to the io size restriction
1130 if (unlikely(out_of_pages
))
1131 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1134 * With async crypto it is unsafe to share the crypto context
1135 * between fragments, so switch to a new dm_crypt_io structure.
1137 if (unlikely(!crypt_finished
&& remaining
)) {
1138 new_io
= crypt_io_alloc(io
->target
, io
->base_bio
,
1140 crypt_inc_pending(new_io
);
1141 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1142 io
->base_bio
, sector
);
1143 new_io
->ctx
.idx_in
= io
->ctx
.idx_in
;
1144 new_io
->ctx
.offset_in
= io
->ctx
.offset_in
;
1147 * Fragments after the first use the base_io
1151 new_io
->base_io
= io
;
1153 new_io
->base_io
= io
->base_io
;
1154 crypt_inc_pending(io
->base_io
);
1155 crypt_dec_pending(io
);
1162 crypt_dec_pending(io
);
1165 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1167 crypt_dec_pending(io
);
1170 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1172 struct crypt_config
*cc
= io
->target
->private;
1175 crypt_inc_pending(io
);
1177 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1180 r
= crypt_convert(cc
, &io
->ctx
);
1184 if (atomic_dec_and_test(&io
->ctx
.pending
))
1185 kcryptd_crypt_read_done(io
);
1187 crypt_dec_pending(io
);
1190 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1193 struct dm_crypt_request
*dmreq
= async_req
->data
;
1194 struct convert_context
*ctx
= dmreq
->ctx
;
1195 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1196 struct crypt_config
*cc
= io
->target
->private;
1198 if (error
== -EINPROGRESS
) {
1199 complete(&ctx
->restart
);
1203 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1204 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1209 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1211 if (!atomic_dec_and_test(&ctx
->pending
))
1214 if (bio_data_dir(io
->base_bio
) == READ
)
1215 kcryptd_crypt_read_done(io
);
1217 kcryptd_crypt_write_io_submit(io
, 1);
1220 static void kcryptd_crypt(struct work_struct
*work
)
1222 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1224 if (bio_data_dir(io
->base_bio
) == READ
)
1225 kcryptd_crypt_read_convert(io
);
1227 kcryptd_crypt_write_convert(io
);
1230 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1232 struct crypt_config
*cc
= io
->target
->private;
1234 INIT_WORK(&io
->work
, kcryptd_crypt
);
1235 queue_work(cc
->crypt_queue
, &io
->work
);
1239 * Decode key from its hex representation
1241 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1249 for (i
= 0; i
< size
; i
++) {
1253 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
1255 if (endp
!= &buffer
[2])
1266 * Encode key into its hex representation
1268 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
1272 for (i
= 0; i
< size
; i
++) {
1273 sprintf(hex
, "%02x", *key
);
1279 static void crypt_free_tfms(struct crypt_config
*cc
, int cpu
)
1281 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1284 for (i
= 0; i
< cc
->tfms_count
; i
++)
1285 if (cpu_cc
->tfms
[i
] && !IS_ERR(cpu_cc
->tfms
[i
])) {
1286 crypto_free_ablkcipher(cpu_cc
->tfms
[i
]);
1287 cpu_cc
->tfms
[i
] = NULL
;
1291 static int crypt_alloc_tfms(struct crypt_config
*cc
, int cpu
, char *ciphermode
)
1293 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1297 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1298 cpu_cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1299 if (IS_ERR(cpu_cc
->tfms
[i
])) {
1300 err
= PTR_ERR(cpu_cc
->tfms
[i
]);
1301 crypt_free_tfms(cc
, cpu
);
1309 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1311 unsigned subkey_size
= cc
->key_size
>> ilog2(cc
->tfms_count
);
1312 int cpu
, err
= 0, i
, r
;
1314 for_each_possible_cpu(cpu
) {
1315 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1316 r
= crypto_ablkcipher_setkey(per_cpu_ptr(cc
->cpu
, cpu
)->tfms
[i
],
1317 cc
->key
+ (i
* subkey_size
), subkey_size
);
1326 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1329 int key_string_len
= strlen(key
);
1331 /* The key size may not be changed. */
1332 if (cc
->key_size
!= (key_string_len
>> 1))
1335 /* Hyphen (which gives a key_size of zero) means there is no key. */
1336 if (!cc
->key_size
&& strcmp(key
, "-"))
1339 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1342 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1344 r
= crypt_setkey_allcpus(cc
);
1347 /* Hex key string not needed after here, so wipe it. */
1348 memset(key
, '0', key_string_len
);
1353 static int crypt_wipe_key(struct crypt_config
*cc
)
1355 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1356 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1358 return crypt_setkey_allcpus(cc
);
1361 static void crypt_dtr(struct dm_target
*ti
)
1363 struct crypt_config
*cc
= ti
->private;
1364 struct crypt_cpu
*cpu_cc
;
1373 destroy_workqueue(cc
->io_queue
);
1374 if (cc
->crypt_queue
)
1375 destroy_workqueue(cc
->crypt_queue
);
1378 for_each_possible_cpu(cpu
) {
1379 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1381 mempool_free(cpu_cc
->req
, cc
->req_pool
);
1382 crypt_free_tfms(cc
, cpu
);
1386 bioset_free(cc
->bs
);
1389 mempool_destroy(cc
->page_pool
);
1391 mempool_destroy(cc
->req_pool
);
1393 mempool_destroy(cc
->io_pool
);
1395 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1396 cc
->iv_gen_ops
->dtr(cc
);
1399 dm_put_device(ti
, cc
->dev
);
1402 free_percpu(cc
->cpu
);
1405 kzfree(cc
->cipher_string
);
1407 /* Must zero key material before freeing */
1411 static int crypt_ctr_cipher(struct dm_target
*ti
,
1412 char *cipher_in
, char *key
)
1414 struct crypt_config
*cc
= ti
->private;
1415 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1416 char *cipher_api
= NULL
;
1417 int cpu
, ret
= -EINVAL
;
1419 /* Convert to crypto api definition? */
1420 if (strchr(cipher_in
, '(')) {
1421 ti
->error
= "Bad cipher specification";
1425 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1426 if (!cc
->cipher_string
)
1430 * Legacy dm-crypt cipher specification
1431 * cipher[:keycount]-mode-iv:ivopts
1434 keycount
= strsep(&tmp
, "-");
1435 cipher
= strsep(&keycount
, ":");
1439 else if (sscanf(keycount
, "%u", &cc
->tfms_count
) != 1 ||
1440 !is_power_of_2(cc
->tfms_count
)) {
1441 ti
->error
= "Bad cipher key count specification";
1444 cc
->key_parts
= cc
->tfms_count
;
1446 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1450 chainmode
= strsep(&tmp
, "-");
1451 ivopts
= strsep(&tmp
, "-");
1452 ivmode
= strsep(&ivopts
, ":");
1455 DMWARN("Ignoring unexpected additional cipher options");
1457 cc
->cpu
= __alloc_percpu(sizeof(*(cc
->cpu
)) +
1458 cc
->tfms_count
* sizeof(*(cc
->cpu
->tfms
)),
1459 __alignof__(struct crypt_cpu
));
1461 ti
->error
= "Cannot allocate per cpu state";
1466 * For compatibility with the original dm-crypt mapping format, if
1467 * only the cipher name is supplied, use cbc-plain.
1469 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1474 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1475 ti
->error
= "IV mechanism required";
1479 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1483 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1484 "%s(%s)", chainmode
, cipher
);
1490 /* Allocate cipher */
1491 for_each_possible_cpu(cpu
) {
1492 ret
= crypt_alloc_tfms(cc
, cpu
, cipher_api
);
1494 ti
->error
= "Error allocating crypto tfm";
1499 /* Initialize and set key */
1500 ret
= crypt_set_key(cc
, key
);
1502 ti
->error
= "Error decoding and setting key";
1507 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1509 /* at least a 64 bit sector number should fit in our buffer */
1510 cc
->iv_size
= max(cc
->iv_size
,
1511 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1513 DMWARN("Selected cipher does not support IVs");
1517 /* Choose ivmode, see comments at iv code. */
1519 cc
->iv_gen_ops
= NULL
;
1520 else if (strcmp(ivmode
, "plain") == 0)
1521 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1522 else if (strcmp(ivmode
, "plain64") == 0)
1523 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1524 else if (strcmp(ivmode
, "essiv") == 0)
1525 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1526 else if (strcmp(ivmode
, "benbi") == 0)
1527 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1528 else if (strcmp(ivmode
, "null") == 0)
1529 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1530 else if (strcmp(ivmode
, "lmk") == 0) {
1531 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1532 /* Version 2 and 3 is recognised according
1533 * to length of provided multi-key string.
1534 * If present (version 3), last key is used as IV seed.
1536 if (cc
->key_size
% cc
->key_parts
)
1540 ti
->error
= "Invalid IV mode";
1545 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1546 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1548 ti
->error
= "Error creating IV";
1553 /* Initialize IV (set keys for ESSIV etc) */
1554 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1555 ret
= cc
->iv_gen_ops
->init(cc
);
1557 ti
->error
= "Error initialising IV";
1568 ti
->error
= "Cannot allocate cipher strings";
1573 * Construct an encryption mapping:
1574 * <cipher> <key> <iv_offset> <dev_path> <start>
1576 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1578 struct crypt_config
*cc
;
1579 unsigned int key_size
, opt_params
;
1580 unsigned long long tmpll
;
1582 struct dm_arg_set as
;
1583 const char *opt_string
;
1585 static struct dm_arg _args
[] = {
1586 {0, 1, "Invalid number of feature args"},
1590 ti
->error
= "Not enough arguments";
1594 key_size
= strlen(argv
[1]) >> 1;
1596 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1598 ti
->error
= "Cannot allocate encryption context";
1601 cc
->key_size
= key_size
;
1604 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1609 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1611 ti
->error
= "Cannot allocate crypt io mempool";
1615 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1616 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1617 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, crypto_tfm_ctx_alignment());
1618 cc
->dmreq_start
+= crypto_ablkcipher_alignmask(any_tfm(cc
)) &
1619 ~(crypto_tfm_ctx_alignment() - 1);
1621 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1622 sizeof(struct dm_crypt_request
) + cc
->iv_size
);
1623 if (!cc
->req_pool
) {
1624 ti
->error
= "Cannot allocate crypt request mempool";
1628 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1629 if (!cc
->page_pool
) {
1630 ti
->error
= "Cannot allocate page mempool";
1634 cc
->bs
= bioset_create(MIN_IOS
, 0);
1636 ti
->error
= "Cannot allocate crypt bioset";
1641 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
1642 ti
->error
= "Invalid iv_offset sector";
1645 cc
->iv_offset
= tmpll
;
1647 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1648 ti
->error
= "Device lookup failed";
1652 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
1653 ti
->error
= "Invalid device sector";
1661 /* Optional parameters */
1666 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1670 opt_string
= dm_shift_arg(&as
);
1672 if (opt_params
== 1 && opt_string
&&
1673 !strcasecmp(opt_string
, "allow_discards"))
1674 ti
->num_discard_requests
= 1;
1675 else if (opt_params
) {
1677 ti
->error
= "Invalid feature arguments";
1683 cc
->io_queue
= alloc_workqueue("kcryptd_io",
1687 if (!cc
->io_queue
) {
1688 ti
->error
= "Couldn't create kcryptd io queue";
1692 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1697 if (!cc
->crypt_queue
) {
1698 ti
->error
= "Couldn't create kcryptd queue";
1702 ti
->num_flush_requests
= 1;
1703 ti
->discard_zeroes_data_unsupported
= 1;
1712 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
1713 union map_info
*map_context
)
1715 struct dm_crypt_io
*io
;
1716 struct crypt_config
*cc
;
1719 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1720 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1721 * - for REQ_DISCARD caller must use flush if IO ordering matters
1723 if (unlikely(bio
->bi_rw
& (REQ_FLUSH
| REQ_DISCARD
))) {
1725 bio
->bi_bdev
= cc
->dev
->bdev
;
1726 if (bio_sectors(bio
))
1727 bio
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bio
->bi_sector
);
1728 return DM_MAPIO_REMAPPED
;
1731 io
= crypt_io_alloc(ti
, bio
, dm_target_offset(ti
, bio
->bi_sector
));
1733 if (bio_data_dir(io
->base_bio
) == READ
) {
1734 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1735 kcryptd_queue_io(io
);
1737 kcryptd_queue_crypt(io
);
1739 return DM_MAPIO_SUBMITTED
;
1742 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
1743 char *result
, unsigned int maxlen
)
1745 struct crypt_config
*cc
= ti
->private;
1746 unsigned int sz
= 0;
1749 case STATUSTYPE_INFO
:
1753 case STATUSTYPE_TABLE
:
1754 DMEMIT("%s ", cc
->cipher_string
);
1756 if (cc
->key_size
> 0) {
1757 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
1760 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
1761 sz
+= cc
->key_size
<< 1;
1768 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1769 cc
->dev
->name
, (unsigned long long)cc
->start
);
1771 if (ti
->num_discard_requests
)
1772 DMEMIT(" 1 allow_discards");
1779 static void crypt_postsuspend(struct dm_target
*ti
)
1781 struct crypt_config
*cc
= ti
->private;
1783 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1786 static int crypt_preresume(struct dm_target
*ti
)
1788 struct crypt_config
*cc
= ti
->private;
1790 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1791 DMERR("aborting resume - crypt key is not set.");
1798 static void crypt_resume(struct dm_target
*ti
)
1800 struct crypt_config
*cc
= ti
->private;
1802 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1805 /* Message interface
1809 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1811 struct crypt_config
*cc
= ti
->private;
1817 if (!strcasecmp(argv
[0], "key")) {
1818 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1819 DMWARN("not suspended during key manipulation.");
1822 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
1823 ret
= crypt_set_key(cc
, argv
[2]);
1826 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1827 ret
= cc
->iv_gen_ops
->init(cc
);
1830 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
1831 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1832 ret
= cc
->iv_gen_ops
->wipe(cc
);
1836 return crypt_wipe_key(cc
);
1841 DMWARN("unrecognised message received.");
1845 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1846 struct bio_vec
*biovec
, int max_size
)
1848 struct crypt_config
*cc
= ti
->private;
1849 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1851 if (!q
->merge_bvec_fn
)
1854 bvm
->bi_bdev
= cc
->dev
->bdev
;
1855 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1857 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1860 static int crypt_iterate_devices(struct dm_target
*ti
,
1861 iterate_devices_callout_fn fn
, void *data
)
1863 struct crypt_config
*cc
= ti
->private;
1865 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1868 static struct target_type crypt_target
= {
1870 .version
= {1, 11, 0},
1871 .module
= THIS_MODULE
,
1875 .status
= crypt_status
,
1876 .postsuspend
= crypt_postsuspend
,
1877 .preresume
= crypt_preresume
,
1878 .resume
= crypt_resume
,
1879 .message
= crypt_message
,
1880 .merge
= crypt_merge
,
1881 .iterate_devices
= crypt_iterate_devices
,
1884 static int __init
dm_crypt_init(void)
1888 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1889 if (!_crypt_io_pool
)
1892 r
= dm_register_target(&crypt_target
);
1894 DMERR("register failed %d", r
);
1895 kmem_cache_destroy(_crypt_io_pool
);
1901 static void __exit
dm_crypt_exit(void)
1903 dm_unregister_target(&crypt_target
);
1904 kmem_cache_destroy(_crypt_io_pool
);
1907 module_init(dm_crypt_init
);
1908 module_exit(dm_crypt_exit
);
1910 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1911 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1912 MODULE_LICENSE("GPL");