i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / md / md.c
blob363aaf40500ef46f4622efdf5014d5ea81f6f65c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
140 static ctl_table raid_root_table[] = {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 struct mddev *mddev, **mddevp;
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
171 struct bio *b;
172 struct mddev **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
191 struct bio *b;
192 struct mddev **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
216 return b;
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
360 finish_wait(&mddev->sb_wait, &__wait);
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
387 void mddev_suspend(struct mddev *mddev)
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
395 del_timer_sync(&mddev->safemode_timer);
397 EXPORT_SYMBOL_GPL(mddev_suspend);
399 void mddev_resume(struct mddev *mddev)
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
405 md_wakeup_thread(mddev->thread);
406 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 EXPORT_SYMBOL_GPL(mddev_resume);
410 int mddev_congested(struct mddev *mddev, int bits)
412 return mddev->suspended;
414 EXPORT_SYMBOL(mddev_congested);
417 * Generic flush handling for md
420 static void md_end_flush(struct bio *bio, int err)
422 struct md_rdev *rdev = bio->bi_private;
423 struct mddev *mddev = rdev->mddev;
425 rdev_dec_pending(rdev, mddev);
427 if (atomic_dec_and_test(&mddev->flush_pending)) {
428 /* The pre-request flush has finished */
429 queue_work(md_wq, &mddev->flush_work);
431 bio_put(bio);
434 static void md_submit_flush_data(struct work_struct *ws);
436 static void submit_flushes(struct work_struct *ws)
438 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
439 struct md_rdev *rdev;
441 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442 atomic_set(&mddev->flush_pending, 1);
443 rcu_read_lock();
444 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
445 if (rdev->raid_disk >= 0 &&
446 !test_bit(Faulty, &rdev->flags)) {
447 /* Take two references, one is dropped
448 * when request finishes, one after
449 * we reclaim rcu_read_lock
451 struct bio *bi;
452 atomic_inc(&rdev->nr_pending);
453 atomic_inc(&rdev->nr_pending);
454 rcu_read_unlock();
455 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
456 bi->bi_end_io = md_end_flush;
457 bi->bi_private = rdev;
458 bi->bi_bdev = rdev->bdev;
459 atomic_inc(&mddev->flush_pending);
460 submit_bio(WRITE_FLUSH, bi);
461 rcu_read_lock();
462 rdev_dec_pending(rdev, mddev);
464 rcu_read_unlock();
465 if (atomic_dec_and_test(&mddev->flush_pending))
466 queue_work(md_wq, &mddev->flush_work);
469 static void md_submit_flush_data(struct work_struct *ws)
471 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
472 struct bio *bio = mddev->flush_bio;
474 if (bio->bi_size == 0)
475 /* an empty barrier - all done */
476 bio_endio(bio, 0);
477 else {
478 bio->bi_rw &= ~REQ_FLUSH;
479 mddev->pers->make_request(mddev, bio);
482 mddev->flush_bio = NULL;
483 wake_up(&mddev->sb_wait);
486 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 spin_lock_irq(&mddev->write_lock);
489 wait_event_lock_irq(mddev->sb_wait,
490 !mddev->flush_bio,
491 mddev->write_lock, /*nothing*/);
492 mddev->flush_bio = bio;
493 spin_unlock_irq(&mddev->write_lock);
495 INIT_WORK(&mddev->flush_work, submit_flushes);
496 queue_work(md_wq, &mddev->flush_work);
498 EXPORT_SYMBOL(md_flush_request);
500 /* Support for plugging.
501 * This mirrors the plugging support in request_queue, but does not
502 * require having a whole queue or request structures.
503 * We allocate an md_plug_cb for each md device and each thread it gets
504 * plugged on. This links tot the private plug_handle structure in the
505 * personality data where we keep a count of the number of outstanding
506 * plugs so other code can see if a plug is active.
508 struct md_plug_cb {
509 struct blk_plug_cb cb;
510 struct mddev *mddev;
513 static void plugger_unplug(struct blk_plug_cb *cb)
515 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517 md_wakeup_thread(mdcb->mddev->thread);
518 kfree(mdcb);
521 /* Check that an unplug wakeup will come shortly.
522 * If not, wakeup the md thread immediately
524 int mddev_check_plugged(struct mddev *mddev)
526 struct blk_plug *plug = current->plug;
527 struct md_plug_cb *mdcb;
529 if (!plug)
530 return 0;
532 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533 if (mdcb->cb.callback == plugger_unplug &&
534 mdcb->mddev == mddev) {
535 /* Already on the list, move to top */
536 if (mdcb != list_first_entry(&plug->cb_list,
537 struct md_plug_cb,
538 cb.list))
539 list_move(&mdcb->cb.list, &plug->cb_list);
540 return 1;
543 /* Not currently on the callback list */
544 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545 if (!mdcb)
546 return 0;
548 mdcb->mddev = mddev;
549 mdcb->cb.callback = plugger_unplug;
550 atomic_inc(&mddev->plug_cnt);
551 list_add(&mdcb->cb.list, &plug->cb_list);
552 return 1;
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556 static inline struct mddev *mddev_get(struct mddev *mddev)
558 atomic_inc(&mddev->active);
559 return mddev;
562 static void mddev_delayed_delete(struct work_struct *ws);
564 static void mddev_put(struct mddev *mddev)
566 struct bio_set *bs = NULL;
568 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 return;
570 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571 mddev->ctime == 0 && !mddev->hold_active) {
572 /* Array is not configured at all, and not held active,
573 * so destroy it */
574 list_del_init(&mddev->all_mddevs);
575 bs = mddev->bio_set;
576 mddev->bio_set = NULL;
577 if (mddev->gendisk) {
578 /* We did a probe so need to clean up. Call
579 * queue_work inside the spinlock so that
580 * flush_workqueue() after mddev_find will
581 * succeed in waiting for the work to be done.
583 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584 queue_work(md_misc_wq, &mddev->del_work);
585 } else
586 kfree(mddev);
588 spin_unlock(&all_mddevs_lock);
589 if (bs)
590 bioset_free(bs);
593 void mddev_init(struct mddev *mddev)
595 mutex_init(&mddev->open_mutex);
596 mutex_init(&mddev->reconfig_mutex);
597 mutex_init(&mddev->bitmap_info.mutex);
598 INIT_LIST_HEAD(&mddev->disks);
599 INIT_LIST_HEAD(&mddev->all_mddevs);
600 init_timer(&mddev->safemode_timer);
601 atomic_set(&mddev->active, 1);
602 atomic_set(&mddev->openers, 0);
603 atomic_set(&mddev->active_io, 0);
604 atomic_set(&mddev->plug_cnt, 0);
605 spin_lock_init(&mddev->write_lock);
606 atomic_set(&mddev->flush_pending, 0);
607 init_waitqueue_head(&mddev->sb_wait);
608 init_waitqueue_head(&mddev->recovery_wait);
609 mddev->reshape_position = MaxSector;
610 mddev->resync_min = 0;
611 mddev->resync_max = MaxSector;
612 mddev->level = LEVEL_NONE;
614 EXPORT_SYMBOL_GPL(mddev_init);
616 static struct mddev * mddev_find(dev_t unit)
618 struct mddev *mddev, *new = NULL;
620 if (unit && MAJOR(unit) != MD_MAJOR)
621 unit &= ~((1<<MdpMinorShift)-1);
623 retry:
624 spin_lock(&all_mddevs_lock);
626 if (unit) {
627 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628 if (mddev->unit == unit) {
629 mddev_get(mddev);
630 spin_unlock(&all_mddevs_lock);
631 kfree(new);
632 return mddev;
635 if (new) {
636 list_add(&new->all_mddevs, &all_mddevs);
637 spin_unlock(&all_mddevs_lock);
638 new->hold_active = UNTIL_IOCTL;
639 return new;
641 } else if (new) {
642 /* find an unused unit number */
643 static int next_minor = 512;
644 int start = next_minor;
645 int is_free = 0;
646 int dev = 0;
647 while (!is_free) {
648 dev = MKDEV(MD_MAJOR, next_minor);
649 next_minor++;
650 if (next_minor > MINORMASK)
651 next_minor = 0;
652 if (next_minor == start) {
653 /* Oh dear, all in use. */
654 spin_unlock(&all_mddevs_lock);
655 kfree(new);
656 return NULL;
659 is_free = 1;
660 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661 if (mddev->unit == dev) {
662 is_free = 0;
663 break;
666 new->unit = dev;
667 new->md_minor = MINOR(dev);
668 new->hold_active = UNTIL_STOP;
669 list_add(&new->all_mddevs, &all_mddevs);
670 spin_unlock(&all_mddevs_lock);
671 return new;
673 spin_unlock(&all_mddevs_lock);
675 new = kzalloc(sizeof(*new), GFP_KERNEL);
676 if (!new)
677 return NULL;
679 new->unit = unit;
680 if (MAJOR(unit) == MD_MAJOR)
681 new->md_minor = MINOR(unit);
682 else
683 new->md_minor = MINOR(unit) >> MdpMinorShift;
685 mddev_init(new);
687 goto retry;
690 static inline int mddev_lock(struct mddev * mddev)
692 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 static inline int mddev_is_locked(struct mddev *mddev)
697 return mutex_is_locked(&mddev->reconfig_mutex);
700 static inline int mddev_trylock(struct mddev * mddev)
702 return mutex_trylock(&mddev->reconfig_mutex);
705 static struct attribute_group md_redundancy_group;
707 static void mddev_unlock(struct mddev * mddev)
709 if (mddev->to_remove) {
710 /* These cannot be removed under reconfig_mutex as
711 * an access to the files will try to take reconfig_mutex
712 * while holding the file unremovable, which leads to
713 * a deadlock.
714 * So hold set sysfs_active while the remove in happeing,
715 * and anything else which might set ->to_remove or my
716 * otherwise change the sysfs namespace will fail with
717 * -EBUSY if sysfs_active is still set.
718 * We set sysfs_active under reconfig_mutex and elsewhere
719 * test it under the same mutex to ensure its correct value
720 * is seen.
722 struct attribute_group *to_remove = mddev->to_remove;
723 mddev->to_remove = NULL;
724 mddev->sysfs_active = 1;
725 mutex_unlock(&mddev->reconfig_mutex);
727 if (mddev->kobj.sd) {
728 if (to_remove != &md_redundancy_group)
729 sysfs_remove_group(&mddev->kobj, to_remove);
730 if (mddev->pers == NULL ||
731 mddev->pers->sync_request == NULL) {
732 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733 if (mddev->sysfs_action)
734 sysfs_put(mddev->sysfs_action);
735 mddev->sysfs_action = NULL;
738 mddev->sysfs_active = 0;
739 } else
740 mutex_unlock(&mddev->reconfig_mutex);
742 /* As we've dropped the mutex we need a spinlock to
743 * make sure the thread doesn't disappear
745 spin_lock(&pers_lock);
746 md_wakeup_thread(mddev->thread);
747 spin_unlock(&pers_lock);
750 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
752 struct md_rdev *rdev;
754 list_for_each_entry(rdev, &mddev->disks, same_set)
755 if (rdev->desc_nr == nr)
756 return rdev;
758 return NULL;
761 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
763 struct md_rdev *rdev;
765 list_for_each_entry(rdev, &mddev->disks, same_set)
766 if (rdev->bdev->bd_dev == dev)
767 return rdev;
769 return NULL;
772 static struct md_personality *find_pers(int level, char *clevel)
774 struct md_personality *pers;
775 list_for_each_entry(pers, &pers_list, list) {
776 if (level != LEVEL_NONE && pers->level == level)
777 return pers;
778 if (strcmp(pers->name, clevel)==0)
779 return pers;
781 return NULL;
784 /* return the offset of the super block in 512byte sectors */
785 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
787 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
788 return MD_NEW_SIZE_SECTORS(num_sectors);
791 static int alloc_disk_sb(struct md_rdev * rdev)
793 if (rdev->sb_page)
794 MD_BUG();
796 rdev->sb_page = alloc_page(GFP_KERNEL);
797 if (!rdev->sb_page) {
798 printk(KERN_ALERT "md: out of memory.\n");
799 return -ENOMEM;
802 return 0;
805 static void free_disk_sb(struct md_rdev * rdev)
807 if (rdev->sb_page) {
808 put_page(rdev->sb_page);
809 rdev->sb_loaded = 0;
810 rdev->sb_page = NULL;
811 rdev->sb_start = 0;
812 rdev->sectors = 0;
814 if (rdev->bb_page) {
815 put_page(rdev->bb_page);
816 rdev->bb_page = NULL;
821 static void super_written(struct bio *bio, int error)
823 struct md_rdev *rdev = bio->bi_private;
824 struct mddev *mddev = rdev->mddev;
826 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
827 printk("md: super_written gets error=%d, uptodate=%d\n",
828 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
829 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
830 md_error(mddev, rdev);
833 if (atomic_dec_and_test(&mddev->pending_writes))
834 wake_up(&mddev->sb_wait);
835 bio_put(bio);
838 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
839 sector_t sector, int size, struct page *page)
841 /* write first size bytes of page to sector of rdev
842 * Increment mddev->pending_writes before returning
843 * and decrement it on completion, waking up sb_wait
844 * if zero is reached.
845 * If an error occurred, call md_error
847 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
849 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
850 bio->bi_sector = sector;
851 bio_add_page(bio, page, size, 0);
852 bio->bi_private = rdev;
853 bio->bi_end_io = super_written;
855 atomic_inc(&mddev->pending_writes);
856 submit_bio(WRITE_FLUSH_FUA, bio);
859 void md_super_wait(struct mddev *mddev)
861 /* wait for all superblock writes that were scheduled to complete */
862 DEFINE_WAIT(wq);
863 for(;;) {
864 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
865 if (atomic_read(&mddev->pending_writes)==0)
866 break;
867 schedule();
869 finish_wait(&mddev->sb_wait, &wq);
872 static void bi_complete(struct bio *bio, int error)
874 complete((struct completion*)bio->bi_private);
877 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
878 struct page *page, int rw, bool metadata_op)
880 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
881 struct completion event;
882 int ret;
884 rw |= REQ_SYNC;
886 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
887 rdev->meta_bdev : rdev->bdev;
888 if (metadata_op)
889 bio->bi_sector = sector + rdev->sb_start;
890 else
891 bio->bi_sector = sector + rdev->data_offset;
892 bio_add_page(bio, page, size, 0);
893 init_completion(&event);
894 bio->bi_private = &event;
895 bio->bi_end_io = bi_complete;
896 submit_bio(rw, bio);
897 wait_for_completion(&event);
899 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
900 bio_put(bio);
901 return ret;
903 EXPORT_SYMBOL_GPL(sync_page_io);
905 static int read_disk_sb(struct md_rdev * rdev, int size)
907 char b[BDEVNAME_SIZE];
908 if (!rdev->sb_page) {
909 MD_BUG();
910 return -EINVAL;
912 if (rdev->sb_loaded)
913 return 0;
916 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
917 goto fail;
918 rdev->sb_loaded = 1;
919 return 0;
921 fail:
922 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
923 bdevname(rdev->bdev,b));
924 return -EINVAL;
927 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
929 return sb1->set_uuid0 == sb2->set_uuid0 &&
930 sb1->set_uuid1 == sb2->set_uuid1 &&
931 sb1->set_uuid2 == sb2->set_uuid2 &&
932 sb1->set_uuid3 == sb2->set_uuid3;
935 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
937 int ret;
938 mdp_super_t *tmp1, *tmp2;
940 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
941 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
943 if (!tmp1 || !tmp2) {
944 ret = 0;
945 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
946 goto abort;
949 *tmp1 = *sb1;
950 *tmp2 = *sb2;
953 * nr_disks is not constant
955 tmp1->nr_disks = 0;
956 tmp2->nr_disks = 0;
958 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
959 abort:
960 kfree(tmp1);
961 kfree(tmp2);
962 return ret;
966 static u32 md_csum_fold(u32 csum)
968 csum = (csum & 0xffff) + (csum >> 16);
969 return (csum & 0xffff) + (csum >> 16);
972 static unsigned int calc_sb_csum(mdp_super_t * sb)
974 u64 newcsum = 0;
975 u32 *sb32 = (u32*)sb;
976 int i;
977 unsigned int disk_csum, csum;
979 disk_csum = sb->sb_csum;
980 sb->sb_csum = 0;
982 for (i = 0; i < MD_SB_BYTES/4 ; i++)
983 newcsum += sb32[i];
984 csum = (newcsum & 0xffffffff) + (newcsum>>32);
987 #ifdef CONFIG_ALPHA
988 /* This used to use csum_partial, which was wrong for several
989 * reasons including that different results are returned on
990 * different architectures. It isn't critical that we get exactly
991 * the same return value as before (we always csum_fold before
992 * testing, and that removes any differences). However as we
993 * know that csum_partial always returned a 16bit value on
994 * alphas, do a fold to maximise conformity to previous behaviour.
996 sb->sb_csum = md_csum_fold(disk_csum);
997 #else
998 sb->sb_csum = disk_csum;
999 #endif
1000 return csum;
1005 * Handle superblock details.
1006 * We want to be able to handle multiple superblock formats
1007 * so we have a common interface to them all, and an array of
1008 * different handlers.
1009 * We rely on user-space to write the initial superblock, and support
1010 * reading and updating of superblocks.
1011 * Interface methods are:
1012 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1013 * loads and validates a superblock on dev.
1014 * if refdev != NULL, compare superblocks on both devices
1015 * Return:
1016 * 0 - dev has a superblock that is compatible with refdev
1017 * 1 - dev has a superblock that is compatible and newer than refdev
1018 * so dev should be used as the refdev in future
1019 * -EINVAL superblock incompatible or invalid
1020 * -othererror e.g. -EIO
1022 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1023 * Verify that dev is acceptable into mddev.
1024 * The first time, mddev->raid_disks will be 0, and data from
1025 * dev should be merged in. Subsequent calls check that dev
1026 * is new enough. Return 0 or -EINVAL
1028 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1029 * Update the superblock for rdev with data in mddev
1030 * This does not write to disc.
1034 struct super_type {
1035 char *name;
1036 struct module *owner;
1037 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1038 int minor_version);
1039 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1041 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1042 sector_t num_sectors);
1046 * Check that the given mddev has no bitmap.
1048 * This function is called from the run method of all personalities that do not
1049 * support bitmaps. It prints an error message and returns non-zero if mddev
1050 * has a bitmap. Otherwise, it returns 0.
1053 int md_check_no_bitmap(struct mddev *mddev)
1055 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1056 return 0;
1057 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1058 mdname(mddev), mddev->pers->name);
1059 return 1;
1061 EXPORT_SYMBOL(md_check_no_bitmap);
1064 * load_super for 0.90.0
1066 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1068 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1069 mdp_super_t *sb;
1070 int ret;
1073 * Calculate the position of the superblock (512byte sectors),
1074 * it's at the end of the disk.
1076 * It also happens to be a multiple of 4Kb.
1078 rdev->sb_start = calc_dev_sboffset(rdev);
1080 ret = read_disk_sb(rdev, MD_SB_BYTES);
1081 if (ret) return ret;
1083 ret = -EINVAL;
1085 bdevname(rdev->bdev, b);
1086 sb = page_address(rdev->sb_page);
1088 if (sb->md_magic != MD_SB_MAGIC) {
1089 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1091 goto abort;
1094 if (sb->major_version != 0 ||
1095 sb->minor_version < 90 ||
1096 sb->minor_version > 91) {
1097 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1098 sb->major_version, sb->minor_version,
1100 goto abort;
1103 if (sb->raid_disks <= 0)
1104 goto abort;
1106 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1107 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1109 goto abort;
1112 rdev->preferred_minor = sb->md_minor;
1113 rdev->data_offset = 0;
1114 rdev->sb_size = MD_SB_BYTES;
1115 rdev->badblocks.shift = -1;
1117 if (sb->level == LEVEL_MULTIPATH)
1118 rdev->desc_nr = -1;
1119 else
1120 rdev->desc_nr = sb->this_disk.number;
1122 if (!refdev) {
1123 ret = 1;
1124 } else {
1125 __u64 ev1, ev2;
1126 mdp_super_t *refsb = page_address(refdev->sb_page);
1127 if (!uuid_equal(refsb, sb)) {
1128 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1129 b, bdevname(refdev->bdev,b2));
1130 goto abort;
1132 if (!sb_equal(refsb, sb)) {
1133 printk(KERN_WARNING "md: %s has same UUID"
1134 " but different superblock to %s\n",
1135 b, bdevname(refdev->bdev, b2));
1136 goto abort;
1138 ev1 = md_event(sb);
1139 ev2 = md_event(refsb);
1140 if (ev1 > ev2)
1141 ret = 1;
1142 else
1143 ret = 0;
1145 rdev->sectors = rdev->sb_start;
1146 /* Limit to 4TB as metadata cannot record more than that */
1147 if (rdev->sectors >= (2ULL << 32))
1148 rdev->sectors = (2ULL << 32) - 2;
1150 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1151 /* "this cannot possibly happen" ... */
1152 ret = -EINVAL;
1154 abort:
1155 return ret;
1159 * validate_super for 0.90.0
1161 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1163 mdp_disk_t *desc;
1164 mdp_super_t *sb = page_address(rdev->sb_page);
1165 __u64 ev1 = md_event(sb);
1167 rdev->raid_disk = -1;
1168 clear_bit(Faulty, &rdev->flags);
1169 clear_bit(In_sync, &rdev->flags);
1170 clear_bit(WriteMostly, &rdev->flags);
1172 if (mddev->raid_disks == 0) {
1173 mddev->major_version = 0;
1174 mddev->minor_version = sb->minor_version;
1175 mddev->patch_version = sb->patch_version;
1176 mddev->external = 0;
1177 mddev->chunk_sectors = sb->chunk_size >> 9;
1178 mddev->ctime = sb->ctime;
1179 mddev->utime = sb->utime;
1180 mddev->level = sb->level;
1181 mddev->clevel[0] = 0;
1182 mddev->layout = sb->layout;
1183 mddev->raid_disks = sb->raid_disks;
1184 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1185 mddev->events = ev1;
1186 mddev->bitmap_info.offset = 0;
1187 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1189 if (mddev->minor_version >= 91) {
1190 mddev->reshape_position = sb->reshape_position;
1191 mddev->delta_disks = sb->delta_disks;
1192 mddev->new_level = sb->new_level;
1193 mddev->new_layout = sb->new_layout;
1194 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1195 } else {
1196 mddev->reshape_position = MaxSector;
1197 mddev->delta_disks = 0;
1198 mddev->new_level = mddev->level;
1199 mddev->new_layout = mddev->layout;
1200 mddev->new_chunk_sectors = mddev->chunk_sectors;
1203 if (sb->state & (1<<MD_SB_CLEAN))
1204 mddev->recovery_cp = MaxSector;
1205 else {
1206 if (sb->events_hi == sb->cp_events_hi &&
1207 sb->events_lo == sb->cp_events_lo) {
1208 mddev->recovery_cp = sb->recovery_cp;
1209 } else
1210 mddev->recovery_cp = 0;
1213 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1214 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1215 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1216 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1218 mddev->max_disks = MD_SB_DISKS;
1220 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1221 mddev->bitmap_info.file == NULL)
1222 mddev->bitmap_info.offset =
1223 mddev->bitmap_info.default_offset;
1225 } else if (mddev->pers == NULL) {
1226 /* Insist on good event counter while assembling, except
1227 * for spares (which don't need an event count) */
1228 ++ev1;
1229 if (sb->disks[rdev->desc_nr].state & (
1230 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1231 if (ev1 < mddev->events)
1232 return -EINVAL;
1233 } else if (mddev->bitmap) {
1234 /* if adding to array with a bitmap, then we can accept an
1235 * older device ... but not too old.
1237 if (ev1 < mddev->bitmap->events_cleared)
1238 return 0;
1239 } else {
1240 if (ev1 < mddev->events)
1241 /* just a hot-add of a new device, leave raid_disk at -1 */
1242 return 0;
1245 if (mddev->level != LEVEL_MULTIPATH) {
1246 desc = sb->disks + rdev->desc_nr;
1248 if (desc->state & (1<<MD_DISK_FAULTY))
1249 set_bit(Faulty, &rdev->flags);
1250 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1251 desc->raid_disk < mddev->raid_disks */) {
1252 set_bit(In_sync, &rdev->flags);
1253 rdev->raid_disk = desc->raid_disk;
1254 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1255 /* active but not in sync implies recovery up to
1256 * reshape position. We don't know exactly where
1257 * that is, so set to zero for now */
1258 if (mddev->minor_version >= 91) {
1259 rdev->recovery_offset = 0;
1260 rdev->raid_disk = desc->raid_disk;
1263 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1264 set_bit(WriteMostly, &rdev->flags);
1265 } else /* MULTIPATH are always insync */
1266 set_bit(In_sync, &rdev->flags);
1267 return 0;
1271 * sync_super for 0.90.0
1273 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1275 mdp_super_t *sb;
1276 struct md_rdev *rdev2;
1277 int next_spare = mddev->raid_disks;
1280 /* make rdev->sb match mddev data..
1282 * 1/ zero out disks
1283 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1284 * 3/ any empty disks < next_spare become removed
1286 * disks[0] gets initialised to REMOVED because
1287 * we cannot be sure from other fields if it has
1288 * been initialised or not.
1290 int i;
1291 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1293 rdev->sb_size = MD_SB_BYTES;
1295 sb = page_address(rdev->sb_page);
1297 memset(sb, 0, sizeof(*sb));
1299 sb->md_magic = MD_SB_MAGIC;
1300 sb->major_version = mddev->major_version;
1301 sb->patch_version = mddev->patch_version;
1302 sb->gvalid_words = 0; /* ignored */
1303 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1304 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1305 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1306 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1308 sb->ctime = mddev->ctime;
1309 sb->level = mddev->level;
1310 sb->size = mddev->dev_sectors / 2;
1311 sb->raid_disks = mddev->raid_disks;
1312 sb->md_minor = mddev->md_minor;
1313 sb->not_persistent = 0;
1314 sb->utime = mddev->utime;
1315 sb->state = 0;
1316 sb->events_hi = (mddev->events>>32);
1317 sb->events_lo = (u32)mddev->events;
1319 if (mddev->reshape_position == MaxSector)
1320 sb->minor_version = 90;
1321 else {
1322 sb->minor_version = 91;
1323 sb->reshape_position = mddev->reshape_position;
1324 sb->new_level = mddev->new_level;
1325 sb->delta_disks = mddev->delta_disks;
1326 sb->new_layout = mddev->new_layout;
1327 sb->new_chunk = mddev->new_chunk_sectors << 9;
1329 mddev->minor_version = sb->minor_version;
1330 if (mddev->in_sync)
1332 sb->recovery_cp = mddev->recovery_cp;
1333 sb->cp_events_hi = (mddev->events>>32);
1334 sb->cp_events_lo = (u32)mddev->events;
1335 if (mddev->recovery_cp == MaxSector)
1336 sb->state = (1<< MD_SB_CLEAN);
1337 } else
1338 sb->recovery_cp = 0;
1340 sb->layout = mddev->layout;
1341 sb->chunk_size = mddev->chunk_sectors << 9;
1343 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1344 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1346 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1347 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1348 mdp_disk_t *d;
1349 int desc_nr;
1350 int is_active = test_bit(In_sync, &rdev2->flags);
1352 if (rdev2->raid_disk >= 0 &&
1353 sb->minor_version >= 91)
1354 /* we have nowhere to store the recovery_offset,
1355 * but if it is not below the reshape_position,
1356 * we can piggy-back on that.
1358 is_active = 1;
1359 if (rdev2->raid_disk < 0 ||
1360 test_bit(Faulty, &rdev2->flags))
1361 is_active = 0;
1362 if (is_active)
1363 desc_nr = rdev2->raid_disk;
1364 else
1365 desc_nr = next_spare++;
1366 rdev2->desc_nr = desc_nr;
1367 d = &sb->disks[rdev2->desc_nr];
1368 nr_disks++;
1369 d->number = rdev2->desc_nr;
1370 d->major = MAJOR(rdev2->bdev->bd_dev);
1371 d->minor = MINOR(rdev2->bdev->bd_dev);
1372 if (is_active)
1373 d->raid_disk = rdev2->raid_disk;
1374 else
1375 d->raid_disk = rdev2->desc_nr; /* compatibility */
1376 if (test_bit(Faulty, &rdev2->flags))
1377 d->state = (1<<MD_DISK_FAULTY);
1378 else if (is_active) {
1379 d->state = (1<<MD_DISK_ACTIVE);
1380 if (test_bit(In_sync, &rdev2->flags))
1381 d->state |= (1<<MD_DISK_SYNC);
1382 active++;
1383 working++;
1384 } else {
1385 d->state = 0;
1386 spare++;
1387 working++;
1389 if (test_bit(WriteMostly, &rdev2->flags))
1390 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1392 /* now set the "removed" and "faulty" bits on any missing devices */
1393 for (i=0 ; i < mddev->raid_disks ; i++) {
1394 mdp_disk_t *d = &sb->disks[i];
1395 if (d->state == 0 && d->number == 0) {
1396 d->number = i;
1397 d->raid_disk = i;
1398 d->state = (1<<MD_DISK_REMOVED);
1399 d->state |= (1<<MD_DISK_FAULTY);
1400 failed++;
1403 sb->nr_disks = nr_disks;
1404 sb->active_disks = active;
1405 sb->working_disks = working;
1406 sb->failed_disks = failed;
1407 sb->spare_disks = spare;
1409 sb->this_disk = sb->disks[rdev->desc_nr];
1410 sb->sb_csum = calc_sb_csum(sb);
1414 * rdev_size_change for 0.90.0
1416 static unsigned long long
1417 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1419 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1420 return 0; /* component must fit device */
1421 if (rdev->mddev->bitmap_info.offset)
1422 return 0; /* can't move bitmap */
1423 rdev->sb_start = calc_dev_sboffset(rdev);
1424 if (!num_sectors || num_sectors > rdev->sb_start)
1425 num_sectors = rdev->sb_start;
1426 /* Limit to 4TB as metadata cannot record more than that.
1427 * 4TB == 2^32 KB, or 2*2^32 sectors.
1429 if (num_sectors >= (2ULL << 32))
1430 num_sectors = (2ULL << 32) - 2;
1431 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1432 rdev->sb_page);
1433 md_super_wait(rdev->mddev);
1434 return num_sectors;
1439 * version 1 superblock
1442 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1444 __le32 disk_csum;
1445 u32 csum;
1446 unsigned long long newcsum;
1447 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1448 __le32 *isuper = (__le32*)sb;
1449 int i;
1451 disk_csum = sb->sb_csum;
1452 sb->sb_csum = 0;
1453 newcsum = 0;
1454 for (i=0; size>=4; size -= 4 )
1455 newcsum += le32_to_cpu(*isuper++);
1457 if (size == 2)
1458 newcsum += le16_to_cpu(*(__le16*) isuper);
1460 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1461 sb->sb_csum = disk_csum;
1462 return cpu_to_le32(csum);
1465 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1466 int acknowledged);
1467 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1469 struct mdp_superblock_1 *sb;
1470 int ret;
1471 sector_t sb_start;
1472 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1473 int bmask;
1476 * Calculate the position of the superblock in 512byte sectors.
1477 * It is always aligned to a 4K boundary and
1478 * depeding on minor_version, it can be:
1479 * 0: At least 8K, but less than 12K, from end of device
1480 * 1: At start of device
1481 * 2: 4K from start of device.
1483 switch(minor_version) {
1484 case 0:
1485 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1486 sb_start -= 8*2;
1487 sb_start &= ~(sector_t)(4*2-1);
1488 break;
1489 case 1:
1490 sb_start = 0;
1491 break;
1492 case 2:
1493 sb_start = 8;
1494 break;
1495 default:
1496 return -EINVAL;
1498 rdev->sb_start = sb_start;
1500 /* superblock is rarely larger than 1K, but it can be larger,
1501 * and it is safe to read 4k, so we do that
1503 ret = read_disk_sb(rdev, 4096);
1504 if (ret) return ret;
1507 sb = page_address(rdev->sb_page);
1509 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1510 sb->major_version != cpu_to_le32(1) ||
1511 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1512 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1513 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1514 return -EINVAL;
1516 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1517 printk("md: invalid superblock checksum on %s\n",
1518 bdevname(rdev->bdev,b));
1519 return -EINVAL;
1521 if (le64_to_cpu(sb->data_size) < 10) {
1522 printk("md: data_size too small on %s\n",
1523 bdevname(rdev->bdev,b));
1524 return -EINVAL;
1527 rdev->preferred_minor = 0xffff;
1528 rdev->data_offset = le64_to_cpu(sb->data_offset);
1529 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1531 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1532 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1533 if (rdev->sb_size & bmask)
1534 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1536 if (minor_version
1537 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1538 return -EINVAL;
1540 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1541 rdev->desc_nr = -1;
1542 else
1543 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1545 if (!rdev->bb_page) {
1546 rdev->bb_page = alloc_page(GFP_KERNEL);
1547 if (!rdev->bb_page)
1548 return -ENOMEM;
1550 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1551 rdev->badblocks.count == 0) {
1552 /* need to load the bad block list.
1553 * Currently we limit it to one page.
1555 s32 offset;
1556 sector_t bb_sector;
1557 u64 *bbp;
1558 int i;
1559 int sectors = le16_to_cpu(sb->bblog_size);
1560 if (sectors > (PAGE_SIZE / 512))
1561 return -EINVAL;
1562 offset = le32_to_cpu(sb->bblog_offset);
1563 if (offset == 0)
1564 return -EINVAL;
1565 bb_sector = (long long)offset;
1566 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1567 rdev->bb_page, READ, true))
1568 return -EIO;
1569 bbp = (u64 *)page_address(rdev->bb_page);
1570 rdev->badblocks.shift = sb->bblog_shift;
1571 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1572 u64 bb = le64_to_cpu(*bbp);
1573 int count = bb & (0x3ff);
1574 u64 sector = bb >> 10;
1575 sector <<= sb->bblog_shift;
1576 count <<= sb->bblog_shift;
1577 if (bb + 1 == 0)
1578 break;
1579 if (md_set_badblocks(&rdev->badblocks,
1580 sector, count, 1) == 0)
1581 return -EINVAL;
1583 } else if (sb->bblog_offset == 0)
1584 rdev->badblocks.shift = -1;
1586 if (!refdev) {
1587 ret = 1;
1588 } else {
1589 __u64 ev1, ev2;
1590 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1592 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1593 sb->level != refsb->level ||
1594 sb->layout != refsb->layout ||
1595 sb->chunksize != refsb->chunksize) {
1596 printk(KERN_WARNING "md: %s has strangely different"
1597 " superblock to %s\n",
1598 bdevname(rdev->bdev,b),
1599 bdevname(refdev->bdev,b2));
1600 return -EINVAL;
1602 ev1 = le64_to_cpu(sb->events);
1603 ev2 = le64_to_cpu(refsb->events);
1605 if (ev1 > ev2)
1606 ret = 1;
1607 else
1608 ret = 0;
1610 if (minor_version)
1611 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1612 le64_to_cpu(sb->data_offset);
1613 else
1614 rdev->sectors = rdev->sb_start;
1615 if (rdev->sectors < le64_to_cpu(sb->data_size))
1616 return -EINVAL;
1617 rdev->sectors = le64_to_cpu(sb->data_size);
1618 if (le64_to_cpu(sb->size) > rdev->sectors)
1619 return -EINVAL;
1620 return ret;
1623 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1625 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1626 __u64 ev1 = le64_to_cpu(sb->events);
1628 rdev->raid_disk = -1;
1629 clear_bit(Faulty, &rdev->flags);
1630 clear_bit(In_sync, &rdev->flags);
1631 clear_bit(WriteMostly, &rdev->flags);
1633 if (mddev->raid_disks == 0) {
1634 mddev->major_version = 1;
1635 mddev->patch_version = 0;
1636 mddev->external = 0;
1637 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1638 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1639 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1640 mddev->level = le32_to_cpu(sb->level);
1641 mddev->clevel[0] = 0;
1642 mddev->layout = le32_to_cpu(sb->layout);
1643 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1644 mddev->dev_sectors = le64_to_cpu(sb->size);
1645 mddev->events = ev1;
1646 mddev->bitmap_info.offset = 0;
1647 mddev->bitmap_info.default_offset = 1024 >> 9;
1649 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1650 memcpy(mddev->uuid, sb->set_uuid, 16);
1652 mddev->max_disks = (4096-256)/2;
1654 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1655 mddev->bitmap_info.file == NULL )
1656 mddev->bitmap_info.offset =
1657 (__s32)le32_to_cpu(sb->bitmap_offset);
1659 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1660 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1661 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1662 mddev->new_level = le32_to_cpu(sb->new_level);
1663 mddev->new_layout = le32_to_cpu(sb->new_layout);
1664 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665 } else {
1666 mddev->reshape_position = MaxSector;
1667 mddev->delta_disks = 0;
1668 mddev->new_level = mddev->level;
1669 mddev->new_layout = mddev->layout;
1670 mddev->new_chunk_sectors = mddev->chunk_sectors;
1673 } else if (mddev->pers == NULL) {
1674 /* Insist of good event counter while assembling, except for
1675 * spares (which don't need an event count) */
1676 ++ev1;
1677 if (rdev->desc_nr >= 0 &&
1678 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1679 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1680 if (ev1 < mddev->events)
1681 return -EINVAL;
1682 } else if (mddev->bitmap) {
1683 /* If adding to array with a bitmap, then we can accept an
1684 * older device, but not too old.
1686 if (ev1 < mddev->bitmap->events_cleared)
1687 return 0;
1688 } else {
1689 if (ev1 < mddev->events)
1690 /* just a hot-add of a new device, leave raid_disk at -1 */
1691 return 0;
1693 if (mddev->level != LEVEL_MULTIPATH) {
1694 int role;
1695 if (rdev->desc_nr < 0 ||
1696 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1697 role = 0xffff;
1698 rdev->desc_nr = -1;
1699 } else
1700 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1701 switch(role) {
1702 case 0xffff: /* spare */
1703 break;
1704 case 0xfffe: /* faulty */
1705 set_bit(Faulty, &rdev->flags);
1706 break;
1707 default:
1708 if ((le32_to_cpu(sb->feature_map) &
1709 MD_FEATURE_RECOVERY_OFFSET))
1710 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1711 else
1712 set_bit(In_sync, &rdev->flags);
1713 rdev->raid_disk = role;
1714 break;
1716 if (sb->devflags & WriteMostly1)
1717 set_bit(WriteMostly, &rdev->flags);
1718 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1719 set_bit(Replacement, &rdev->flags);
1720 } else /* MULTIPATH are always insync */
1721 set_bit(In_sync, &rdev->flags);
1723 return 0;
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 struct mdp_superblock_1 *sb;
1729 struct md_rdev *rdev2;
1730 int max_dev, i;
1731 /* make rdev->sb match mddev and rdev data. */
1733 sb = page_address(rdev->sb_page);
1735 sb->feature_map = 0;
1736 sb->pad0 = 0;
1737 sb->recovery_offset = cpu_to_le64(0);
1738 memset(sb->pad1, 0, sizeof(sb->pad1));
1739 memset(sb->pad3, 0, sizeof(sb->pad3));
1741 sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 sb->events = cpu_to_le64(mddev->events);
1743 if (mddev->in_sync)
1744 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 else
1746 sb->resync_offset = cpu_to_le64(0);
1748 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 sb->size = cpu_to_le64(mddev->dev_sectors);
1752 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 sb->level = cpu_to_le32(mddev->level);
1754 sb->layout = cpu_to_le32(mddev->layout);
1756 if (test_bit(WriteMostly, &rdev->flags))
1757 sb->devflags |= WriteMostly1;
1758 else
1759 sb->devflags &= ~WriteMostly1;
1761 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766 if (rdev->raid_disk >= 0 &&
1767 !test_bit(In_sync, &rdev->flags)) {
1768 sb->feature_map |=
1769 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770 sb->recovery_offset =
1771 cpu_to_le64(rdev->recovery_offset);
1773 if (test_bit(Replacement, &rdev->flags))
1774 sb->feature_map |=
1775 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1777 if (mddev->reshape_position != MaxSector) {
1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1779 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1780 sb->new_layout = cpu_to_le32(mddev->new_layout);
1781 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1782 sb->new_level = cpu_to_le32(mddev->new_level);
1783 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1786 if (rdev->badblocks.count == 0)
1787 /* Nothing to do for bad blocks*/ ;
1788 else if (sb->bblog_offset == 0)
1789 /* Cannot record bad blocks on this device */
1790 md_error(mddev, rdev);
1791 else {
1792 struct badblocks *bb = &rdev->badblocks;
1793 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794 u64 *p = bb->page;
1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1796 if (bb->changed) {
1797 unsigned seq;
1799 retry:
1800 seq = read_seqbegin(&bb->lock);
1802 memset(bbp, 0xff, PAGE_SIZE);
1804 for (i = 0 ; i < bb->count ; i++) {
1805 u64 internal_bb = *p++;
1806 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1807 | BB_LEN(internal_bb));
1808 *bbp++ = cpu_to_le64(store_bb);
1810 bb->changed = 0;
1811 if (read_seqretry(&bb->lock, seq))
1812 goto retry;
1814 bb->sector = (rdev->sb_start +
1815 (int)le32_to_cpu(sb->bblog_offset));
1816 bb->size = le16_to_cpu(sb->bblog_size);
1820 max_dev = 0;
1821 list_for_each_entry(rdev2, &mddev->disks, same_set)
1822 if (rdev2->desc_nr+1 > max_dev)
1823 max_dev = rdev2->desc_nr+1;
1825 if (max_dev > le32_to_cpu(sb->max_dev)) {
1826 int bmask;
1827 sb->max_dev = cpu_to_le32(max_dev);
1828 rdev->sb_size = max_dev * 2 + 256;
1829 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1830 if (rdev->sb_size & bmask)
1831 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832 } else
1833 max_dev = le32_to_cpu(sb->max_dev);
1835 for (i=0; i<max_dev;i++)
1836 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1838 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1839 i = rdev2->desc_nr;
1840 if (test_bit(Faulty, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1842 else if (test_bit(In_sync, &rdev2->flags))
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else if (rdev2->raid_disk >= 0)
1845 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846 else
1847 sb->dev_roles[i] = cpu_to_le16(0xffff);
1850 sb->sb_csum = calc_sb_1_csum(sb);
1853 static unsigned long long
1854 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1856 struct mdp_superblock_1 *sb;
1857 sector_t max_sectors;
1858 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1859 return 0; /* component must fit device */
1860 if (rdev->sb_start < rdev->data_offset) {
1861 /* minor versions 1 and 2; superblock before data */
1862 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1863 max_sectors -= rdev->data_offset;
1864 if (!num_sectors || num_sectors > max_sectors)
1865 num_sectors = max_sectors;
1866 } else if (rdev->mddev->bitmap_info.offset) {
1867 /* minor version 0 with bitmap we can't move */
1868 return 0;
1869 } else {
1870 /* minor version 0; superblock after data */
1871 sector_t sb_start;
1872 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1873 sb_start &= ~(sector_t)(4*2 - 1);
1874 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1875 if (!num_sectors || num_sectors > max_sectors)
1876 num_sectors = max_sectors;
1877 rdev->sb_start = sb_start;
1879 sb = page_address(rdev->sb_page);
1880 sb->data_size = cpu_to_le64(num_sectors);
1881 sb->super_offset = rdev->sb_start;
1882 sb->sb_csum = calc_sb_1_csum(sb);
1883 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884 rdev->sb_page);
1885 md_super_wait(rdev->mddev);
1886 return num_sectors;
1889 static struct super_type super_types[] = {
1890 [0] = {
1891 .name = "0.90.0",
1892 .owner = THIS_MODULE,
1893 .load_super = super_90_load,
1894 .validate_super = super_90_validate,
1895 .sync_super = super_90_sync,
1896 .rdev_size_change = super_90_rdev_size_change,
1898 [1] = {
1899 .name = "md-1",
1900 .owner = THIS_MODULE,
1901 .load_super = super_1_load,
1902 .validate_super = super_1_validate,
1903 .sync_super = super_1_sync,
1904 .rdev_size_change = super_1_rdev_size_change,
1908 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1910 if (mddev->sync_super) {
1911 mddev->sync_super(mddev, rdev);
1912 return;
1915 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1917 super_types[mddev->major_version].sync_super(mddev, rdev);
1920 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1922 struct md_rdev *rdev, *rdev2;
1924 rcu_read_lock();
1925 rdev_for_each_rcu(rdev, mddev1)
1926 rdev_for_each_rcu(rdev2, mddev2)
1927 if (rdev->bdev->bd_contains ==
1928 rdev2->bdev->bd_contains) {
1929 rcu_read_unlock();
1930 return 1;
1932 rcu_read_unlock();
1933 return 0;
1936 static LIST_HEAD(pending_raid_disks);
1939 * Try to register data integrity profile for an mddev
1941 * This is called when an array is started and after a disk has been kicked
1942 * from the array. It only succeeds if all working and active component devices
1943 * are integrity capable with matching profiles.
1945 int md_integrity_register(struct mddev *mddev)
1947 struct md_rdev *rdev, *reference = NULL;
1949 if (list_empty(&mddev->disks))
1950 return 0; /* nothing to do */
1951 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1952 return 0; /* shouldn't register, or already is */
1953 list_for_each_entry(rdev, &mddev->disks, same_set) {
1954 /* skip spares and non-functional disks */
1955 if (test_bit(Faulty, &rdev->flags))
1956 continue;
1957 if (rdev->raid_disk < 0)
1958 continue;
1959 if (!reference) {
1960 /* Use the first rdev as the reference */
1961 reference = rdev;
1962 continue;
1964 /* does this rdev's profile match the reference profile? */
1965 if (blk_integrity_compare(reference->bdev->bd_disk,
1966 rdev->bdev->bd_disk) < 0)
1967 return -EINVAL;
1969 if (!reference || !bdev_get_integrity(reference->bdev))
1970 return 0;
1972 * All component devices are integrity capable and have matching
1973 * profiles, register the common profile for the md device.
1975 if (blk_integrity_register(mddev->gendisk,
1976 bdev_get_integrity(reference->bdev)) != 0) {
1977 printk(KERN_ERR "md: failed to register integrity for %s\n",
1978 mdname(mddev));
1979 return -EINVAL;
1981 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1982 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1983 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1984 mdname(mddev));
1985 return -EINVAL;
1987 return 0;
1989 EXPORT_SYMBOL(md_integrity_register);
1991 /* Disable data integrity if non-capable/non-matching disk is being added */
1992 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1994 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1995 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1997 if (!bi_mddev) /* nothing to do */
1998 return;
1999 if (rdev->raid_disk < 0) /* skip spares */
2000 return;
2001 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2002 rdev->bdev->bd_disk) >= 0)
2003 return;
2004 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2005 blk_integrity_unregister(mddev->gendisk);
2007 EXPORT_SYMBOL(md_integrity_add_rdev);
2009 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2011 char b[BDEVNAME_SIZE];
2012 struct kobject *ko;
2013 char *s;
2014 int err;
2016 if (rdev->mddev) {
2017 MD_BUG();
2018 return -EINVAL;
2021 /* prevent duplicates */
2022 if (find_rdev(mddev, rdev->bdev->bd_dev))
2023 return -EEXIST;
2025 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2026 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2027 rdev->sectors < mddev->dev_sectors)) {
2028 if (mddev->pers) {
2029 /* Cannot change size, so fail
2030 * If mddev->level <= 0, then we don't care
2031 * about aligning sizes (e.g. linear)
2033 if (mddev->level > 0)
2034 return -ENOSPC;
2035 } else
2036 mddev->dev_sectors = rdev->sectors;
2039 /* Verify rdev->desc_nr is unique.
2040 * If it is -1, assign a free number, else
2041 * check number is not in use
2043 if (rdev->desc_nr < 0) {
2044 int choice = 0;
2045 if (mddev->pers) choice = mddev->raid_disks;
2046 while (find_rdev_nr(mddev, choice))
2047 choice++;
2048 rdev->desc_nr = choice;
2049 } else {
2050 if (find_rdev_nr(mddev, rdev->desc_nr))
2051 return -EBUSY;
2053 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2054 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2055 mdname(mddev), mddev->max_disks);
2056 return -EBUSY;
2058 bdevname(rdev->bdev,b);
2059 while ( (s=strchr(b, '/')) != NULL)
2060 *s = '!';
2062 rdev->mddev = mddev;
2063 printk(KERN_INFO "md: bind<%s>\n", b);
2065 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066 goto fail;
2068 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2069 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2070 /* failure here is OK */;
2071 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2073 list_add_rcu(&rdev->same_set, &mddev->disks);
2074 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2076 /* May as well allow recovery to be retried once */
2077 mddev->recovery_disabled++;
2079 return 0;
2081 fail:
2082 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2083 b, mdname(mddev));
2084 return err;
2087 static void md_delayed_delete(struct work_struct *ws)
2089 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2090 kobject_del(&rdev->kobj);
2091 kobject_put(&rdev->kobj);
2094 static void unbind_rdev_from_array(struct md_rdev * rdev)
2096 char b[BDEVNAME_SIZE];
2097 if (!rdev->mddev) {
2098 MD_BUG();
2099 return;
2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 list_del_rcu(&rdev->same_set);
2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 rdev->mddev = NULL;
2105 sysfs_remove_link(&rdev->kobj, "block");
2106 sysfs_put(rdev->sysfs_state);
2107 rdev->sysfs_state = NULL;
2108 kfree(rdev->badblocks.page);
2109 rdev->badblocks.count = 0;
2110 rdev->badblocks.page = NULL;
2111 /* We need to delay this, otherwise we can deadlock when
2112 * writing to 'remove' to "dev/state". We also need
2113 * to delay it due to rcu usage.
2115 synchronize_rcu();
2116 INIT_WORK(&rdev->del_work, md_delayed_delete);
2117 kobject_get(&rdev->kobj);
2118 queue_work(md_misc_wq, &rdev->del_work);
2122 * prevent the device from being mounted, repartitioned or
2123 * otherwise reused by a RAID array (or any other kernel
2124 * subsystem), by bd_claiming the device.
2126 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2128 int err = 0;
2129 struct block_device *bdev;
2130 char b[BDEVNAME_SIZE];
2132 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2133 shared ? (struct md_rdev *)lock_rdev : rdev);
2134 if (IS_ERR(bdev)) {
2135 printk(KERN_ERR "md: could not open %s.\n",
2136 __bdevname(dev, b));
2137 return PTR_ERR(bdev);
2139 rdev->bdev = bdev;
2140 return err;
2143 static void unlock_rdev(struct md_rdev *rdev)
2145 struct block_device *bdev = rdev->bdev;
2146 rdev->bdev = NULL;
2147 if (!bdev)
2148 MD_BUG();
2149 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2152 void md_autodetect_dev(dev_t dev);
2154 static void export_rdev(struct md_rdev * rdev)
2156 char b[BDEVNAME_SIZE];
2157 printk(KERN_INFO "md: export_rdev(%s)\n",
2158 bdevname(rdev->bdev,b));
2159 if (rdev->mddev)
2160 MD_BUG();
2161 free_disk_sb(rdev);
2162 #ifndef MODULE
2163 if (test_bit(AutoDetected, &rdev->flags))
2164 md_autodetect_dev(rdev->bdev->bd_dev);
2165 #endif
2166 unlock_rdev(rdev);
2167 kobject_put(&rdev->kobj);
2170 static void kick_rdev_from_array(struct md_rdev * rdev)
2172 unbind_rdev_from_array(rdev);
2173 export_rdev(rdev);
2176 static void export_array(struct mddev *mddev)
2178 struct md_rdev *rdev, *tmp;
2180 rdev_for_each(rdev, tmp, mddev) {
2181 if (!rdev->mddev) {
2182 MD_BUG();
2183 continue;
2185 kick_rdev_from_array(rdev);
2187 if (!list_empty(&mddev->disks))
2188 MD_BUG();
2189 mddev->raid_disks = 0;
2190 mddev->major_version = 0;
2193 static void print_desc(mdp_disk_t *desc)
2195 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196 desc->major,desc->minor,desc->raid_disk,desc->state);
2199 static void print_sb_90(mdp_super_t *sb)
2201 int i;
2203 printk(KERN_INFO
2204 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205 sb->major_version, sb->minor_version, sb->patch_version,
2206 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 sb->ctime);
2208 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210 sb->md_minor, sb->layout, sb->chunk_size);
2211 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2212 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214 sb->failed_disks, sb->spare_disks,
2215 sb->sb_csum, (unsigned long)sb->events_lo);
2217 printk(KERN_INFO);
2218 for (i = 0; i < MD_SB_DISKS; i++) {
2219 mdp_disk_t *desc;
2221 desc = sb->disks + i;
2222 if (desc->number || desc->major || desc->minor ||
2223 desc->raid_disk || (desc->state && (desc->state != 4))) {
2224 printk(" D %2d: ", i);
2225 print_desc(desc);
2228 printk(KERN_INFO "md: THIS: ");
2229 print_desc(&sb->this_disk);
2232 static void print_sb_1(struct mdp_superblock_1 *sb)
2234 __u8 *uuid;
2236 uuid = sb->set_uuid;
2237 printk(KERN_INFO
2238 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239 "md: Name: \"%s\" CT:%llu\n",
2240 le32_to_cpu(sb->major_version),
2241 le32_to_cpu(sb->feature_map),
2242 uuid,
2243 sb->set_name,
2244 (unsigned long long)le64_to_cpu(sb->ctime)
2245 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2247 uuid = sb->device_uuid;
2248 printk(KERN_INFO
2249 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 " RO:%llu\n"
2251 "md: Dev:%08x UUID: %pU\n"
2252 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253 "md: (MaxDev:%u) \n",
2254 le32_to_cpu(sb->level),
2255 (unsigned long long)le64_to_cpu(sb->size),
2256 le32_to_cpu(sb->raid_disks),
2257 le32_to_cpu(sb->layout),
2258 le32_to_cpu(sb->chunksize),
2259 (unsigned long long)le64_to_cpu(sb->data_offset),
2260 (unsigned long long)le64_to_cpu(sb->data_size),
2261 (unsigned long long)le64_to_cpu(sb->super_offset),
2262 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263 le32_to_cpu(sb->dev_number),
2264 uuid,
2265 sb->devflags,
2266 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267 (unsigned long long)le64_to_cpu(sb->events),
2268 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269 le32_to_cpu(sb->sb_csum),
2270 le32_to_cpu(sb->max_dev)
2274 static void print_rdev(struct md_rdev *rdev, int major_version)
2276 char b[BDEVNAME_SIZE];
2277 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 rdev->desc_nr);
2281 if (rdev->sb_loaded) {
2282 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283 switch (major_version) {
2284 case 0:
2285 print_sb_90(page_address(rdev->sb_page));
2286 break;
2287 case 1:
2288 print_sb_1(page_address(rdev->sb_page));
2289 break;
2291 } else
2292 printk(KERN_INFO "md: no rdev superblock!\n");
2295 static void md_print_devices(void)
2297 struct list_head *tmp;
2298 struct md_rdev *rdev;
2299 struct mddev *mddev;
2300 char b[BDEVNAME_SIZE];
2302 printk("\n");
2303 printk("md: **********************************\n");
2304 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2305 printk("md: **********************************\n");
2306 for_each_mddev(mddev, tmp) {
2308 if (mddev->bitmap)
2309 bitmap_print_sb(mddev->bitmap);
2310 else
2311 printk("%s: ", mdname(mddev));
2312 list_for_each_entry(rdev, &mddev->disks, same_set)
2313 printk("<%s>", bdevname(rdev->bdev,b));
2314 printk("\n");
2316 list_for_each_entry(rdev, &mddev->disks, same_set)
2317 print_rdev(rdev, mddev->major_version);
2319 printk("md: **********************************\n");
2320 printk("\n");
2324 static void sync_sbs(struct mddev * mddev, int nospares)
2326 /* Update each superblock (in-memory image), but
2327 * if we are allowed to, skip spares which already
2328 * have the right event counter, or have one earlier
2329 * (which would mean they aren't being marked as dirty
2330 * with the rest of the array)
2332 struct md_rdev *rdev;
2333 list_for_each_entry(rdev, &mddev->disks, same_set) {
2334 if (rdev->sb_events == mddev->events ||
2335 (nospares &&
2336 rdev->raid_disk < 0 &&
2337 rdev->sb_events+1 == mddev->events)) {
2338 /* Don't update this superblock */
2339 rdev->sb_loaded = 2;
2340 } else {
2341 sync_super(mddev, rdev);
2342 rdev->sb_loaded = 1;
2347 static void md_update_sb(struct mddev * mddev, int force_change)
2349 struct md_rdev *rdev;
2350 int sync_req;
2351 int nospares = 0;
2352 int any_badblocks_changed = 0;
2354 repeat:
2355 /* First make sure individual recovery_offsets are correct */
2356 list_for_each_entry(rdev, &mddev->disks, same_set) {
2357 if (rdev->raid_disk >= 0 &&
2358 mddev->delta_disks >= 0 &&
2359 !test_bit(In_sync, &rdev->flags) &&
2360 mddev->curr_resync_completed > rdev->recovery_offset)
2361 rdev->recovery_offset = mddev->curr_resync_completed;
2364 if (!mddev->persistent) {
2365 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2366 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2367 if (!mddev->external) {
2368 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2369 list_for_each_entry(rdev, &mddev->disks, same_set) {
2370 if (rdev->badblocks.changed) {
2371 rdev->badblocks.changed = 0;
2372 md_ack_all_badblocks(&rdev->badblocks);
2373 md_error(mddev, rdev);
2375 clear_bit(Blocked, &rdev->flags);
2376 clear_bit(BlockedBadBlocks, &rdev->flags);
2377 wake_up(&rdev->blocked_wait);
2380 wake_up(&mddev->sb_wait);
2381 return;
2384 spin_lock_irq(&mddev->write_lock);
2386 mddev->utime = get_seconds();
2388 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2389 force_change = 1;
2390 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2391 /* just a clean<-> dirty transition, possibly leave spares alone,
2392 * though if events isn't the right even/odd, we will have to do
2393 * spares after all
2395 nospares = 1;
2396 if (force_change)
2397 nospares = 0;
2398 if (mddev->degraded)
2399 /* If the array is degraded, then skipping spares is both
2400 * dangerous and fairly pointless.
2401 * Dangerous because a device that was removed from the array
2402 * might have a event_count that still looks up-to-date,
2403 * so it can be re-added without a resync.
2404 * Pointless because if there are any spares to skip,
2405 * then a recovery will happen and soon that array won't
2406 * be degraded any more and the spare can go back to sleep then.
2408 nospares = 0;
2410 sync_req = mddev->in_sync;
2412 /* If this is just a dirty<->clean transition, and the array is clean
2413 * and 'events' is odd, we can roll back to the previous clean state */
2414 if (nospares
2415 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2416 && mddev->can_decrease_events
2417 && mddev->events != 1) {
2418 mddev->events--;
2419 mddev->can_decrease_events = 0;
2420 } else {
2421 /* otherwise we have to go forward and ... */
2422 mddev->events ++;
2423 mddev->can_decrease_events = nospares;
2426 if (!mddev->events) {
2428 * oops, this 64-bit counter should never wrap.
2429 * Either we are in around ~1 trillion A.C., assuming
2430 * 1 reboot per second, or we have a bug:
2432 MD_BUG();
2433 mddev->events --;
2436 list_for_each_entry(rdev, &mddev->disks, same_set) {
2437 if (rdev->badblocks.changed)
2438 any_badblocks_changed++;
2439 if (test_bit(Faulty, &rdev->flags))
2440 set_bit(FaultRecorded, &rdev->flags);
2443 sync_sbs(mddev, nospares);
2444 spin_unlock_irq(&mddev->write_lock);
2446 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2447 mdname(mddev), mddev->in_sync);
2449 bitmap_update_sb(mddev->bitmap);
2450 list_for_each_entry(rdev, &mddev->disks, same_set) {
2451 char b[BDEVNAME_SIZE];
2453 if (rdev->sb_loaded != 1)
2454 continue; /* no noise on spare devices */
2456 if (!test_bit(Faulty, &rdev->flags) &&
2457 rdev->saved_raid_disk == -1) {
2458 md_super_write(mddev,rdev,
2459 rdev->sb_start, rdev->sb_size,
2460 rdev->sb_page);
2461 pr_debug("md: (write) %s's sb offset: %llu\n",
2462 bdevname(rdev->bdev, b),
2463 (unsigned long long)rdev->sb_start);
2464 rdev->sb_events = mddev->events;
2465 if (rdev->badblocks.size) {
2466 md_super_write(mddev, rdev,
2467 rdev->badblocks.sector,
2468 rdev->badblocks.size << 9,
2469 rdev->bb_page);
2470 rdev->badblocks.size = 0;
2473 } else if (test_bit(Faulty, &rdev->flags))
2474 pr_debug("md: %s (skipping faulty)\n",
2475 bdevname(rdev->bdev, b));
2476 else
2477 pr_debug("(skipping incremental s/r ");
2479 if (mddev->level == LEVEL_MULTIPATH)
2480 /* only need to write one superblock... */
2481 break;
2483 md_super_wait(mddev);
2484 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2486 spin_lock_irq(&mddev->write_lock);
2487 if (mddev->in_sync != sync_req ||
2488 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2489 /* have to write it out again */
2490 spin_unlock_irq(&mddev->write_lock);
2491 goto repeat;
2493 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2494 spin_unlock_irq(&mddev->write_lock);
2495 wake_up(&mddev->sb_wait);
2496 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2497 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2499 list_for_each_entry(rdev, &mddev->disks, same_set) {
2500 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2501 clear_bit(Blocked, &rdev->flags);
2503 if (any_badblocks_changed)
2504 md_ack_all_badblocks(&rdev->badblocks);
2505 clear_bit(BlockedBadBlocks, &rdev->flags);
2506 wake_up(&rdev->blocked_wait);
2510 /* words written to sysfs files may, or may not, be \n terminated.
2511 * We want to accept with case. For this we use cmd_match.
2513 static int cmd_match(const char *cmd, const char *str)
2515 /* See if cmd, written into a sysfs file, matches
2516 * str. They must either be the same, or cmd can
2517 * have a trailing newline
2519 while (*cmd && *str && *cmd == *str) {
2520 cmd++;
2521 str++;
2523 if (*cmd == '\n')
2524 cmd++;
2525 if (*str || *cmd)
2526 return 0;
2527 return 1;
2530 struct rdev_sysfs_entry {
2531 struct attribute attr;
2532 ssize_t (*show)(struct md_rdev *, char *);
2533 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2536 static ssize_t
2537 state_show(struct md_rdev *rdev, char *page)
2539 char *sep = "";
2540 size_t len = 0;
2542 if (test_bit(Faulty, &rdev->flags) ||
2543 rdev->badblocks.unacked_exist) {
2544 len+= sprintf(page+len, "%sfaulty",sep);
2545 sep = ",";
2547 if (test_bit(In_sync, &rdev->flags)) {
2548 len += sprintf(page+len, "%sin_sync",sep);
2549 sep = ",";
2551 if (test_bit(WriteMostly, &rdev->flags)) {
2552 len += sprintf(page+len, "%swrite_mostly",sep);
2553 sep = ",";
2555 if (test_bit(Blocked, &rdev->flags) ||
2556 (rdev->badblocks.unacked_exist
2557 && !test_bit(Faulty, &rdev->flags))) {
2558 len += sprintf(page+len, "%sblocked", sep);
2559 sep = ",";
2561 if (!test_bit(Faulty, &rdev->flags) &&
2562 !test_bit(In_sync, &rdev->flags)) {
2563 len += sprintf(page+len, "%sspare", sep);
2564 sep = ",";
2566 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2567 len += sprintf(page+len, "%swrite_error", sep);
2568 sep = ",";
2570 if (test_bit(WantReplacement, &rdev->flags)) {
2571 len += sprintf(page+len, "%swant_replacement", sep);
2572 sep = ",";
2574 if (test_bit(Replacement, &rdev->flags)) {
2575 len += sprintf(page+len, "%sreplacement", sep);
2576 sep = ",";
2579 return len+sprintf(page+len, "\n");
2582 static ssize_t
2583 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2585 /* can write
2586 * faulty - simulates an error
2587 * remove - disconnects the device
2588 * writemostly - sets write_mostly
2589 * -writemostly - clears write_mostly
2590 * blocked - sets the Blocked flags
2591 * -blocked - clears the Blocked and possibly simulates an error
2592 * insync - sets Insync providing device isn't active
2593 * write_error - sets WriteErrorSeen
2594 * -write_error - clears WriteErrorSeen
2596 int err = -EINVAL;
2597 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2598 md_error(rdev->mddev, rdev);
2599 if (test_bit(Faulty, &rdev->flags))
2600 err = 0;
2601 else
2602 err = -EBUSY;
2603 } else if (cmd_match(buf, "remove")) {
2604 if (rdev->raid_disk >= 0)
2605 err = -EBUSY;
2606 else {
2607 struct mddev *mddev = rdev->mddev;
2608 kick_rdev_from_array(rdev);
2609 if (mddev->pers)
2610 md_update_sb(mddev, 1);
2611 md_new_event(mddev);
2612 err = 0;
2614 } else if (cmd_match(buf, "writemostly")) {
2615 set_bit(WriteMostly, &rdev->flags);
2616 err = 0;
2617 } else if (cmd_match(buf, "-writemostly")) {
2618 clear_bit(WriteMostly, &rdev->flags);
2619 err = 0;
2620 } else if (cmd_match(buf, "blocked")) {
2621 set_bit(Blocked, &rdev->flags);
2622 err = 0;
2623 } else if (cmd_match(buf, "-blocked")) {
2624 if (!test_bit(Faulty, &rdev->flags) &&
2625 rdev->badblocks.unacked_exist) {
2626 /* metadata handler doesn't understand badblocks,
2627 * so we need to fail the device
2629 md_error(rdev->mddev, rdev);
2631 clear_bit(Blocked, &rdev->flags);
2632 clear_bit(BlockedBadBlocks, &rdev->flags);
2633 wake_up(&rdev->blocked_wait);
2634 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635 md_wakeup_thread(rdev->mddev->thread);
2637 err = 0;
2638 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2639 set_bit(In_sync, &rdev->flags);
2640 err = 0;
2641 } else if (cmd_match(buf, "write_error")) {
2642 set_bit(WriteErrorSeen, &rdev->flags);
2643 err = 0;
2644 } else if (cmd_match(buf, "-write_error")) {
2645 clear_bit(WriteErrorSeen, &rdev->flags);
2646 err = 0;
2647 } else if (cmd_match(buf, "want_replacement")) {
2648 /* Any non-spare device that is not a replacement can
2649 * become want_replacement at any time, but we then need to
2650 * check if recovery is needed.
2652 if (rdev->raid_disk >= 0 &&
2653 !test_bit(Replacement, &rdev->flags))
2654 set_bit(WantReplacement, &rdev->flags);
2655 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656 md_wakeup_thread(rdev->mddev->thread);
2657 err = 0;
2658 } else if (cmd_match(buf, "-want_replacement")) {
2659 /* Clearing 'want_replacement' is always allowed.
2660 * Once replacements starts it is too late though.
2662 err = 0;
2663 clear_bit(WantReplacement, &rdev->flags);
2664 } else if (cmd_match(buf, "replacement")) {
2665 /* Can only set a device as a replacement when array has not
2666 * yet been started. Once running, replacement is automatic
2667 * from spares, or by assigning 'slot'.
2669 if (rdev->mddev->pers)
2670 err = -EBUSY;
2671 else {
2672 set_bit(Replacement, &rdev->flags);
2673 err = 0;
2675 } else if (cmd_match(buf, "-replacement")) {
2676 /* Similarly, can only clear Replacement before start */
2677 if (rdev->mddev->pers)
2678 err = -EBUSY;
2679 else {
2680 clear_bit(Replacement, &rdev->flags);
2681 err = 0;
2684 if (!err)
2685 sysfs_notify_dirent_safe(rdev->sysfs_state);
2686 return err ? err : len;
2688 static struct rdev_sysfs_entry rdev_state =
2689 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2691 static ssize_t
2692 errors_show(struct md_rdev *rdev, char *page)
2694 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2697 static ssize_t
2698 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2700 char *e;
2701 unsigned long n = simple_strtoul(buf, &e, 10);
2702 if (*buf && (*e == 0 || *e == '\n')) {
2703 atomic_set(&rdev->corrected_errors, n);
2704 return len;
2706 return -EINVAL;
2708 static struct rdev_sysfs_entry rdev_errors =
2709 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2711 static ssize_t
2712 slot_show(struct md_rdev *rdev, char *page)
2714 if (rdev->raid_disk < 0)
2715 return sprintf(page, "none\n");
2716 else
2717 return sprintf(page, "%d\n", rdev->raid_disk);
2720 static ssize_t
2721 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 char *e;
2724 int err;
2725 int slot = simple_strtoul(buf, &e, 10);
2726 if (strncmp(buf, "none", 4)==0)
2727 slot = -1;
2728 else if (e==buf || (*e && *e!= '\n'))
2729 return -EINVAL;
2730 if (rdev->mddev->pers && slot == -1) {
2731 /* Setting 'slot' on an active array requires also
2732 * updating the 'rd%d' link, and communicating
2733 * with the personality with ->hot_*_disk.
2734 * For now we only support removing
2735 * failed/spare devices. This normally happens automatically,
2736 * but not when the metadata is externally managed.
2738 if (rdev->raid_disk == -1)
2739 return -EEXIST;
2740 /* personality does all needed checks */
2741 if (rdev->mddev->pers->hot_remove_disk == NULL)
2742 return -EINVAL;
2743 err = rdev->mddev->pers->
2744 hot_remove_disk(rdev->mddev, rdev);
2745 if (err)
2746 return err;
2747 sysfs_unlink_rdev(rdev->mddev, rdev);
2748 rdev->raid_disk = -1;
2749 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2750 md_wakeup_thread(rdev->mddev->thread);
2751 } else if (rdev->mddev->pers) {
2752 /* Activating a spare .. or possibly reactivating
2753 * if we ever get bitmaps working here.
2756 if (rdev->raid_disk != -1)
2757 return -EBUSY;
2759 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2760 return -EBUSY;
2762 if (rdev->mddev->pers->hot_add_disk == NULL)
2763 return -EINVAL;
2765 if (slot >= rdev->mddev->raid_disks &&
2766 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2767 return -ENOSPC;
2769 rdev->raid_disk = slot;
2770 if (test_bit(In_sync, &rdev->flags))
2771 rdev->saved_raid_disk = slot;
2772 else
2773 rdev->saved_raid_disk = -1;
2774 clear_bit(In_sync, &rdev->flags);
2775 err = rdev->mddev->pers->
2776 hot_add_disk(rdev->mddev, rdev);
2777 if (err) {
2778 rdev->raid_disk = -1;
2779 return err;
2780 } else
2781 sysfs_notify_dirent_safe(rdev->sysfs_state);
2782 if (sysfs_link_rdev(rdev->mddev, rdev))
2783 /* failure here is OK */;
2784 /* don't wakeup anyone, leave that to userspace. */
2785 } else {
2786 if (slot >= rdev->mddev->raid_disks &&
2787 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788 return -ENOSPC;
2789 rdev->raid_disk = slot;
2790 /* assume it is working */
2791 clear_bit(Faulty, &rdev->flags);
2792 clear_bit(WriteMostly, &rdev->flags);
2793 set_bit(In_sync, &rdev->flags);
2794 sysfs_notify_dirent_safe(rdev->sysfs_state);
2796 return len;
2800 static struct rdev_sysfs_entry rdev_slot =
2801 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2803 static ssize_t
2804 offset_show(struct md_rdev *rdev, char *page)
2806 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2809 static ssize_t
2810 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2812 char *e;
2813 unsigned long long offset = simple_strtoull(buf, &e, 10);
2814 if (e==buf || (*e && *e != '\n'))
2815 return -EINVAL;
2816 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2817 return -EBUSY;
2818 if (rdev->sectors && rdev->mddev->external)
2819 /* Must set offset before size, so overlap checks
2820 * can be sane */
2821 return -EBUSY;
2822 rdev->data_offset = offset;
2823 return len;
2826 static struct rdev_sysfs_entry rdev_offset =
2827 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2829 static ssize_t
2830 rdev_size_show(struct md_rdev *rdev, char *page)
2832 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2835 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2837 /* check if two start/length pairs overlap */
2838 if (s1+l1 <= s2)
2839 return 0;
2840 if (s2+l2 <= s1)
2841 return 0;
2842 return 1;
2845 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2847 unsigned long long blocks;
2848 sector_t new;
2850 if (strict_strtoull(buf, 10, &blocks) < 0)
2851 return -EINVAL;
2853 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2854 return -EINVAL; /* sector conversion overflow */
2856 new = blocks * 2;
2857 if (new != blocks * 2)
2858 return -EINVAL; /* unsigned long long to sector_t overflow */
2860 *sectors = new;
2861 return 0;
2864 static ssize_t
2865 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2867 struct mddev *my_mddev = rdev->mddev;
2868 sector_t oldsectors = rdev->sectors;
2869 sector_t sectors;
2871 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2872 return -EINVAL;
2873 if (my_mddev->pers && rdev->raid_disk >= 0) {
2874 if (my_mddev->persistent) {
2875 sectors = super_types[my_mddev->major_version].
2876 rdev_size_change(rdev, sectors);
2877 if (!sectors)
2878 return -EBUSY;
2879 } else if (!sectors)
2880 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2881 rdev->data_offset;
2883 if (sectors < my_mddev->dev_sectors)
2884 return -EINVAL; /* component must fit device */
2886 rdev->sectors = sectors;
2887 if (sectors > oldsectors && my_mddev->external) {
2888 /* need to check that all other rdevs with the same ->bdev
2889 * do not overlap. We need to unlock the mddev to avoid
2890 * a deadlock. We have already changed rdev->sectors, and if
2891 * we have to change it back, we will have the lock again.
2893 struct mddev *mddev;
2894 int overlap = 0;
2895 struct list_head *tmp;
2897 mddev_unlock(my_mddev);
2898 for_each_mddev(mddev, tmp) {
2899 struct md_rdev *rdev2;
2901 mddev_lock(mddev);
2902 list_for_each_entry(rdev2, &mddev->disks, same_set)
2903 if (rdev->bdev == rdev2->bdev &&
2904 rdev != rdev2 &&
2905 overlaps(rdev->data_offset, rdev->sectors,
2906 rdev2->data_offset,
2907 rdev2->sectors)) {
2908 overlap = 1;
2909 break;
2911 mddev_unlock(mddev);
2912 if (overlap) {
2913 mddev_put(mddev);
2914 break;
2917 mddev_lock(my_mddev);
2918 if (overlap) {
2919 /* Someone else could have slipped in a size
2920 * change here, but doing so is just silly.
2921 * We put oldsectors back because we *know* it is
2922 * safe, and trust userspace not to race with
2923 * itself
2925 rdev->sectors = oldsectors;
2926 return -EBUSY;
2929 return len;
2932 static struct rdev_sysfs_entry rdev_size =
2933 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2936 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2938 unsigned long long recovery_start = rdev->recovery_offset;
2940 if (test_bit(In_sync, &rdev->flags) ||
2941 recovery_start == MaxSector)
2942 return sprintf(page, "none\n");
2944 return sprintf(page, "%llu\n", recovery_start);
2947 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2949 unsigned long long recovery_start;
2951 if (cmd_match(buf, "none"))
2952 recovery_start = MaxSector;
2953 else if (strict_strtoull(buf, 10, &recovery_start))
2954 return -EINVAL;
2956 if (rdev->mddev->pers &&
2957 rdev->raid_disk >= 0)
2958 return -EBUSY;
2960 rdev->recovery_offset = recovery_start;
2961 if (recovery_start == MaxSector)
2962 set_bit(In_sync, &rdev->flags);
2963 else
2964 clear_bit(In_sync, &rdev->flags);
2965 return len;
2968 static struct rdev_sysfs_entry rdev_recovery_start =
2969 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2972 static ssize_t
2973 badblocks_show(struct badblocks *bb, char *page, int unack);
2974 static ssize_t
2975 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2977 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2979 return badblocks_show(&rdev->badblocks, page, 0);
2981 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2983 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2984 /* Maybe that ack was all we needed */
2985 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2986 wake_up(&rdev->blocked_wait);
2987 return rv;
2989 static struct rdev_sysfs_entry rdev_bad_blocks =
2990 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2993 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2995 return badblocks_show(&rdev->badblocks, page, 1);
2997 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2999 return badblocks_store(&rdev->badblocks, page, len, 1);
3001 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3002 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3004 static struct attribute *rdev_default_attrs[] = {
3005 &rdev_state.attr,
3006 &rdev_errors.attr,
3007 &rdev_slot.attr,
3008 &rdev_offset.attr,
3009 &rdev_size.attr,
3010 &rdev_recovery_start.attr,
3011 &rdev_bad_blocks.attr,
3012 &rdev_unack_bad_blocks.attr,
3013 NULL,
3015 static ssize_t
3016 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3018 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3019 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3020 struct mddev *mddev = rdev->mddev;
3021 ssize_t rv;
3023 if (!entry->show)
3024 return -EIO;
3026 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3027 if (!rv) {
3028 if (rdev->mddev == NULL)
3029 rv = -EBUSY;
3030 else
3031 rv = entry->show(rdev, page);
3032 mddev_unlock(mddev);
3034 return rv;
3037 static ssize_t
3038 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3039 const char *page, size_t length)
3041 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3042 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3043 ssize_t rv;
3044 struct mddev *mddev = rdev->mddev;
3046 if (!entry->store)
3047 return -EIO;
3048 if (!capable(CAP_SYS_ADMIN))
3049 return -EACCES;
3050 rv = mddev ? mddev_lock(mddev): -EBUSY;
3051 if (!rv) {
3052 if (rdev->mddev == NULL)
3053 rv = -EBUSY;
3054 else
3055 rv = entry->store(rdev, page, length);
3056 mddev_unlock(mddev);
3058 return rv;
3061 static void rdev_free(struct kobject *ko)
3063 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3064 kfree(rdev);
3066 static const struct sysfs_ops rdev_sysfs_ops = {
3067 .show = rdev_attr_show,
3068 .store = rdev_attr_store,
3070 static struct kobj_type rdev_ktype = {
3071 .release = rdev_free,
3072 .sysfs_ops = &rdev_sysfs_ops,
3073 .default_attrs = rdev_default_attrs,
3076 int md_rdev_init(struct md_rdev *rdev)
3078 rdev->desc_nr = -1;
3079 rdev->saved_raid_disk = -1;
3080 rdev->raid_disk = -1;
3081 rdev->flags = 0;
3082 rdev->data_offset = 0;
3083 rdev->sb_events = 0;
3084 rdev->last_read_error.tv_sec = 0;
3085 rdev->last_read_error.tv_nsec = 0;
3086 rdev->sb_loaded = 0;
3087 rdev->bb_page = NULL;
3088 atomic_set(&rdev->nr_pending, 0);
3089 atomic_set(&rdev->read_errors, 0);
3090 atomic_set(&rdev->corrected_errors, 0);
3092 INIT_LIST_HEAD(&rdev->same_set);
3093 init_waitqueue_head(&rdev->blocked_wait);
3095 /* Add space to store bad block list.
3096 * This reserves the space even on arrays where it cannot
3097 * be used - I wonder if that matters
3099 rdev->badblocks.count = 0;
3100 rdev->badblocks.shift = 0;
3101 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3102 seqlock_init(&rdev->badblocks.lock);
3103 if (rdev->badblocks.page == NULL)
3104 return -ENOMEM;
3106 return 0;
3108 EXPORT_SYMBOL_GPL(md_rdev_init);
3110 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3112 * mark the device faulty if:
3114 * - the device is nonexistent (zero size)
3115 * - the device has no valid superblock
3117 * a faulty rdev _never_ has rdev->sb set.
3119 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3121 char b[BDEVNAME_SIZE];
3122 int err;
3123 struct md_rdev *rdev;
3124 sector_t size;
3126 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3127 if (!rdev) {
3128 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3129 return ERR_PTR(-ENOMEM);
3132 err = md_rdev_init(rdev);
3133 if (err)
3134 goto abort_free;
3135 err = alloc_disk_sb(rdev);
3136 if (err)
3137 goto abort_free;
3139 err = lock_rdev(rdev, newdev, super_format == -2);
3140 if (err)
3141 goto abort_free;
3143 kobject_init(&rdev->kobj, &rdev_ktype);
3145 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3146 if (!size) {
3147 printk(KERN_WARNING
3148 "md: %s has zero or unknown size, marking faulty!\n",
3149 bdevname(rdev->bdev,b));
3150 err = -EINVAL;
3151 goto abort_free;
3154 if (super_format >= 0) {
3155 err = super_types[super_format].
3156 load_super(rdev, NULL, super_minor);
3157 if (err == -EINVAL) {
3158 printk(KERN_WARNING
3159 "md: %s does not have a valid v%d.%d "
3160 "superblock, not importing!\n",
3161 bdevname(rdev->bdev,b),
3162 super_format, super_minor);
3163 goto abort_free;
3165 if (err < 0) {
3166 printk(KERN_WARNING
3167 "md: could not read %s's sb, not importing!\n",
3168 bdevname(rdev->bdev,b));
3169 goto abort_free;
3172 if (super_format == -1)
3173 /* hot-add for 0.90, or non-persistent: so no badblocks */
3174 rdev->badblocks.shift = -1;
3176 return rdev;
3178 abort_free:
3179 if (rdev->bdev)
3180 unlock_rdev(rdev);
3181 free_disk_sb(rdev);
3182 kfree(rdev->badblocks.page);
3183 kfree(rdev);
3184 return ERR_PTR(err);
3188 * Check a full RAID array for plausibility
3192 static void analyze_sbs(struct mddev * mddev)
3194 int i;
3195 struct md_rdev *rdev, *freshest, *tmp;
3196 char b[BDEVNAME_SIZE];
3198 freshest = NULL;
3199 rdev_for_each(rdev, tmp, mddev)
3200 switch (super_types[mddev->major_version].
3201 load_super(rdev, freshest, mddev->minor_version)) {
3202 case 1:
3203 freshest = rdev;
3204 break;
3205 case 0:
3206 break;
3207 default:
3208 printk( KERN_ERR \
3209 "md: fatal superblock inconsistency in %s"
3210 " -- removing from array\n",
3211 bdevname(rdev->bdev,b));
3212 kick_rdev_from_array(rdev);
3216 super_types[mddev->major_version].
3217 validate_super(mddev, freshest);
3219 i = 0;
3220 rdev_for_each(rdev, tmp, mddev) {
3221 if (mddev->max_disks &&
3222 (rdev->desc_nr >= mddev->max_disks ||
3223 i > mddev->max_disks)) {
3224 printk(KERN_WARNING
3225 "md: %s: %s: only %d devices permitted\n",
3226 mdname(mddev), bdevname(rdev->bdev, b),
3227 mddev->max_disks);
3228 kick_rdev_from_array(rdev);
3229 continue;
3231 if (rdev != freshest)
3232 if (super_types[mddev->major_version].
3233 validate_super(mddev, rdev)) {
3234 printk(KERN_WARNING "md: kicking non-fresh %s"
3235 " from array!\n",
3236 bdevname(rdev->bdev,b));
3237 kick_rdev_from_array(rdev);
3238 continue;
3240 if (mddev->level == LEVEL_MULTIPATH) {
3241 rdev->desc_nr = i++;
3242 rdev->raid_disk = rdev->desc_nr;
3243 set_bit(In_sync, &rdev->flags);
3244 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3245 rdev->raid_disk = -1;
3246 clear_bit(In_sync, &rdev->flags);
3251 /* Read a fixed-point number.
3252 * Numbers in sysfs attributes should be in "standard" units where
3253 * possible, so time should be in seconds.
3254 * However we internally use a a much smaller unit such as
3255 * milliseconds or jiffies.
3256 * This function takes a decimal number with a possible fractional
3257 * component, and produces an integer which is the result of
3258 * multiplying that number by 10^'scale'.
3259 * all without any floating-point arithmetic.
3261 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3263 unsigned long result = 0;
3264 long decimals = -1;
3265 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3266 if (*cp == '.')
3267 decimals = 0;
3268 else if (decimals < scale) {
3269 unsigned int value;
3270 value = *cp - '0';
3271 result = result * 10 + value;
3272 if (decimals >= 0)
3273 decimals++;
3275 cp++;
3277 if (*cp == '\n')
3278 cp++;
3279 if (*cp)
3280 return -EINVAL;
3281 if (decimals < 0)
3282 decimals = 0;
3283 while (decimals < scale) {
3284 result *= 10;
3285 decimals ++;
3287 *res = result;
3288 return 0;
3292 static void md_safemode_timeout(unsigned long data);
3294 static ssize_t
3295 safe_delay_show(struct mddev *mddev, char *page)
3297 int msec = (mddev->safemode_delay*1000)/HZ;
3298 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3300 static ssize_t
3301 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3303 unsigned long msec;
3305 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3306 return -EINVAL;
3307 if (msec == 0)
3308 mddev->safemode_delay = 0;
3309 else {
3310 unsigned long old_delay = mddev->safemode_delay;
3311 mddev->safemode_delay = (msec*HZ)/1000;
3312 if (mddev->safemode_delay == 0)
3313 mddev->safemode_delay = 1;
3314 if (mddev->safemode_delay < old_delay)
3315 md_safemode_timeout((unsigned long)mddev);
3317 return len;
3319 static struct md_sysfs_entry md_safe_delay =
3320 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3322 static ssize_t
3323 level_show(struct mddev *mddev, char *page)
3325 struct md_personality *p = mddev->pers;
3326 if (p)
3327 return sprintf(page, "%s\n", p->name);
3328 else if (mddev->clevel[0])
3329 return sprintf(page, "%s\n", mddev->clevel);
3330 else if (mddev->level != LEVEL_NONE)
3331 return sprintf(page, "%d\n", mddev->level);
3332 else
3333 return 0;
3336 static ssize_t
3337 level_store(struct mddev *mddev, const char *buf, size_t len)
3339 char clevel[16];
3340 ssize_t rv = len;
3341 struct md_personality *pers;
3342 long level;
3343 void *priv;
3344 struct md_rdev *rdev;
3346 if (mddev->pers == NULL) {
3347 if (len == 0)
3348 return 0;
3349 if (len >= sizeof(mddev->clevel))
3350 return -ENOSPC;
3351 strncpy(mddev->clevel, buf, len);
3352 if (mddev->clevel[len-1] == '\n')
3353 len--;
3354 mddev->clevel[len] = 0;
3355 mddev->level = LEVEL_NONE;
3356 return rv;
3359 /* request to change the personality. Need to ensure:
3360 * - array is not engaged in resync/recovery/reshape
3361 * - old personality can be suspended
3362 * - new personality will access other array.
3365 if (mddev->sync_thread ||
3366 mddev->reshape_position != MaxSector ||
3367 mddev->sysfs_active)
3368 return -EBUSY;
3370 if (!mddev->pers->quiesce) {
3371 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3372 mdname(mddev), mddev->pers->name);
3373 return -EINVAL;
3376 /* Now find the new personality */
3377 if (len == 0 || len >= sizeof(clevel))
3378 return -EINVAL;
3379 strncpy(clevel, buf, len);
3380 if (clevel[len-1] == '\n')
3381 len--;
3382 clevel[len] = 0;
3383 if (strict_strtol(clevel, 10, &level))
3384 level = LEVEL_NONE;
3386 if (request_module("md-%s", clevel) != 0)
3387 request_module("md-level-%s", clevel);
3388 spin_lock(&pers_lock);
3389 pers = find_pers(level, clevel);
3390 if (!pers || !try_module_get(pers->owner)) {
3391 spin_unlock(&pers_lock);
3392 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3393 return -EINVAL;
3395 spin_unlock(&pers_lock);
3397 if (pers == mddev->pers) {
3398 /* Nothing to do! */
3399 module_put(pers->owner);
3400 return rv;
3402 if (!pers->takeover) {
3403 module_put(pers->owner);
3404 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3405 mdname(mddev), clevel);
3406 return -EINVAL;
3409 list_for_each_entry(rdev, &mddev->disks, same_set)
3410 rdev->new_raid_disk = rdev->raid_disk;
3412 /* ->takeover must set new_* and/or delta_disks
3413 * if it succeeds, and may set them when it fails.
3415 priv = pers->takeover(mddev);
3416 if (IS_ERR(priv)) {
3417 mddev->new_level = mddev->level;
3418 mddev->new_layout = mddev->layout;
3419 mddev->new_chunk_sectors = mddev->chunk_sectors;
3420 mddev->raid_disks -= mddev->delta_disks;
3421 mddev->delta_disks = 0;
3422 module_put(pers->owner);
3423 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3424 mdname(mddev), clevel);
3425 return PTR_ERR(priv);
3428 /* Looks like we have a winner */
3429 mddev_suspend(mddev);
3430 mddev->pers->stop(mddev);
3432 if (mddev->pers->sync_request == NULL &&
3433 pers->sync_request != NULL) {
3434 /* need to add the md_redundancy_group */
3435 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3436 printk(KERN_WARNING
3437 "md: cannot register extra attributes for %s\n",
3438 mdname(mddev));
3439 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3441 if (mddev->pers->sync_request != NULL &&
3442 pers->sync_request == NULL) {
3443 /* need to remove the md_redundancy_group */
3444 if (mddev->to_remove == NULL)
3445 mddev->to_remove = &md_redundancy_group;
3448 if (mddev->pers->sync_request == NULL &&
3449 mddev->external) {
3450 /* We are converting from a no-redundancy array
3451 * to a redundancy array and metadata is managed
3452 * externally so we need to be sure that writes
3453 * won't block due to a need to transition
3454 * clean->dirty
3455 * until external management is started.
3457 mddev->in_sync = 0;
3458 mddev->safemode_delay = 0;
3459 mddev->safemode = 0;
3462 list_for_each_entry(rdev, &mddev->disks, same_set) {
3463 if (rdev->raid_disk < 0)
3464 continue;
3465 if (rdev->new_raid_disk >= mddev->raid_disks)
3466 rdev->new_raid_disk = -1;
3467 if (rdev->new_raid_disk == rdev->raid_disk)
3468 continue;
3469 sysfs_unlink_rdev(mddev, rdev);
3471 list_for_each_entry(rdev, &mddev->disks, same_set) {
3472 if (rdev->raid_disk < 0)
3473 continue;
3474 if (rdev->new_raid_disk == rdev->raid_disk)
3475 continue;
3476 rdev->raid_disk = rdev->new_raid_disk;
3477 if (rdev->raid_disk < 0)
3478 clear_bit(In_sync, &rdev->flags);
3479 else {
3480 if (sysfs_link_rdev(mddev, rdev))
3481 printk(KERN_WARNING "md: cannot register rd%d"
3482 " for %s after level change\n",
3483 rdev->raid_disk, mdname(mddev));
3487 module_put(mddev->pers->owner);
3488 mddev->pers = pers;
3489 mddev->private = priv;
3490 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3491 mddev->level = mddev->new_level;
3492 mddev->layout = mddev->new_layout;
3493 mddev->chunk_sectors = mddev->new_chunk_sectors;
3494 mddev->delta_disks = 0;
3495 mddev->degraded = 0;
3496 if (mddev->pers->sync_request == NULL) {
3497 /* this is now an array without redundancy, so
3498 * it must always be in_sync
3500 mddev->in_sync = 1;
3501 del_timer_sync(&mddev->safemode_timer);
3503 pers->run(mddev);
3504 mddev_resume(mddev);
3505 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3506 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3507 md_wakeup_thread(mddev->thread);
3508 sysfs_notify(&mddev->kobj, NULL, "level");
3509 md_new_event(mddev);
3510 return rv;
3513 static struct md_sysfs_entry md_level =
3514 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3517 static ssize_t
3518 layout_show(struct mddev *mddev, char *page)
3520 /* just a number, not meaningful for all levels */
3521 if (mddev->reshape_position != MaxSector &&
3522 mddev->layout != mddev->new_layout)
3523 return sprintf(page, "%d (%d)\n",
3524 mddev->new_layout, mddev->layout);
3525 return sprintf(page, "%d\n", mddev->layout);
3528 static ssize_t
3529 layout_store(struct mddev *mddev, const char *buf, size_t len)
3531 char *e;
3532 unsigned long n = simple_strtoul(buf, &e, 10);
3534 if (!*buf || (*e && *e != '\n'))
3535 return -EINVAL;
3537 if (mddev->pers) {
3538 int err;
3539 if (mddev->pers->check_reshape == NULL)
3540 return -EBUSY;
3541 mddev->new_layout = n;
3542 err = mddev->pers->check_reshape(mddev);
3543 if (err) {
3544 mddev->new_layout = mddev->layout;
3545 return err;
3547 } else {
3548 mddev->new_layout = n;
3549 if (mddev->reshape_position == MaxSector)
3550 mddev->layout = n;
3552 return len;
3554 static struct md_sysfs_entry md_layout =
3555 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3558 static ssize_t
3559 raid_disks_show(struct mddev *mddev, char *page)
3561 if (mddev->raid_disks == 0)
3562 return 0;
3563 if (mddev->reshape_position != MaxSector &&
3564 mddev->delta_disks != 0)
3565 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3566 mddev->raid_disks - mddev->delta_disks);
3567 return sprintf(page, "%d\n", mddev->raid_disks);
3570 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3572 static ssize_t
3573 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3575 char *e;
3576 int rv = 0;
3577 unsigned long n = simple_strtoul(buf, &e, 10);
3579 if (!*buf || (*e && *e != '\n'))
3580 return -EINVAL;
3582 if (mddev->pers)
3583 rv = update_raid_disks(mddev, n);
3584 else if (mddev->reshape_position != MaxSector) {
3585 int olddisks = mddev->raid_disks - mddev->delta_disks;
3586 mddev->delta_disks = n - olddisks;
3587 mddev->raid_disks = n;
3588 } else
3589 mddev->raid_disks = n;
3590 return rv ? rv : len;
3592 static struct md_sysfs_entry md_raid_disks =
3593 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3595 static ssize_t
3596 chunk_size_show(struct mddev *mddev, char *page)
3598 if (mddev->reshape_position != MaxSector &&
3599 mddev->chunk_sectors != mddev->new_chunk_sectors)
3600 return sprintf(page, "%d (%d)\n",
3601 mddev->new_chunk_sectors << 9,
3602 mddev->chunk_sectors << 9);
3603 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3606 static ssize_t
3607 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3609 char *e;
3610 unsigned long n = simple_strtoul(buf, &e, 10);
3612 if (!*buf || (*e && *e != '\n'))
3613 return -EINVAL;
3615 if (mddev->pers) {
3616 int err;
3617 if (mddev->pers->check_reshape == NULL)
3618 return -EBUSY;
3619 mddev->new_chunk_sectors = n >> 9;
3620 err = mddev->pers->check_reshape(mddev);
3621 if (err) {
3622 mddev->new_chunk_sectors = mddev->chunk_sectors;
3623 return err;
3625 } else {
3626 mddev->new_chunk_sectors = n >> 9;
3627 if (mddev->reshape_position == MaxSector)
3628 mddev->chunk_sectors = n >> 9;
3630 return len;
3632 static struct md_sysfs_entry md_chunk_size =
3633 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3635 static ssize_t
3636 resync_start_show(struct mddev *mddev, char *page)
3638 if (mddev->recovery_cp == MaxSector)
3639 return sprintf(page, "none\n");
3640 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3643 static ssize_t
3644 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3646 char *e;
3647 unsigned long long n = simple_strtoull(buf, &e, 10);
3649 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3650 return -EBUSY;
3651 if (cmd_match(buf, "none"))
3652 n = MaxSector;
3653 else if (!*buf || (*e && *e != '\n'))
3654 return -EINVAL;
3656 mddev->recovery_cp = n;
3657 return len;
3659 static struct md_sysfs_entry md_resync_start =
3660 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3663 * The array state can be:
3665 * clear
3666 * No devices, no size, no level
3667 * Equivalent to STOP_ARRAY ioctl
3668 * inactive
3669 * May have some settings, but array is not active
3670 * all IO results in error
3671 * When written, doesn't tear down array, but just stops it
3672 * suspended (not supported yet)
3673 * All IO requests will block. The array can be reconfigured.
3674 * Writing this, if accepted, will block until array is quiescent
3675 * readonly
3676 * no resync can happen. no superblocks get written.
3677 * write requests fail
3678 * read-auto
3679 * like readonly, but behaves like 'clean' on a write request.
3681 * clean - no pending writes, but otherwise active.
3682 * When written to inactive array, starts without resync
3683 * If a write request arrives then
3684 * if metadata is known, mark 'dirty' and switch to 'active'.
3685 * if not known, block and switch to write-pending
3686 * If written to an active array that has pending writes, then fails.
3687 * active
3688 * fully active: IO and resync can be happening.
3689 * When written to inactive array, starts with resync
3691 * write-pending
3692 * clean, but writes are blocked waiting for 'active' to be written.
3694 * active-idle
3695 * like active, but no writes have been seen for a while (100msec).
3698 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3699 write_pending, active_idle, bad_word};
3700 static char *array_states[] = {
3701 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3702 "write-pending", "active-idle", NULL };
3704 static int match_word(const char *word, char **list)
3706 int n;
3707 for (n=0; list[n]; n++)
3708 if (cmd_match(word, list[n]))
3709 break;
3710 return n;
3713 static ssize_t
3714 array_state_show(struct mddev *mddev, char *page)
3716 enum array_state st = inactive;
3718 if (mddev->pers)
3719 switch(mddev->ro) {
3720 case 1:
3721 st = readonly;
3722 break;
3723 case 2:
3724 st = read_auto;
3725 break;
3726 case 0:
3727 if (mddev->in_sync)
3728 st = clean;
3729 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3730 st = write_pending;
3731 else if (mddev->safemode)
3732 st = active_idle;
3733 else
3734 st = active;
3736 else {
3737 if (list_empty(&mddev->disks) &&
3738 mddev->raid_disks == 0 &&
3739 mddev->dev_sectors == 0)
3740 st = clear;
3741 else
3742 st = inactive;
3744 return sprintf(page, "%s\n", array_states[st]);
3747 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3748 static int md_set_readonly(struct mddev * mddev, int is_open);
3749 static int do_md_run(struct mddev * mddev);
3750 static int restart_array(struct mddev *mddev);
3752 static ssize_t
3753 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3755 int err = -EINVAL;
3756 enum array_state st = match_word(buf, array_states);
3757 switch(st) {
3758 case bad_word:
3759 break;
3760 case clear:
3761 /* stopping an active array */
3762 if (atomic_read(&mddev->openers) > 0)
3763 return -EBUSY;
3764 err = do_md_stop(mddev, 0, 0);
3765 break;
3766 case inactive:
3767 /* stopping an active array */
3768 if (mddev->pers) {
3769 if (atomic_read(&mddev->openers) > 0)
3770 return -EBUSY;
3771 err = do_md_stop(mddev, 2, 0);
3772 } else
3773 err = 0; /* already inactive */
3774 break;
3775 case suspended:
3776 break; /* not supported yet */
3777 case readonly:
3778 if (mddev->pers)
3779 err = md_set_readonly(mddev, 0);
3780 else {
3781 mddev->ro = 1;
3782 set_disk_ro(mddev->gendisk, 1);
3783 err = do_md_run(mddev);
3785 break;
3786 case read_auto:
3787 if (mddev->pers) {
3788 if (mddev->ro == 0)
3789 err = md_set_readonly(mddev, 0);
3790 else if (mddev->ro == 1)
3791 err = restart_array(mddev);
3792 if (err == 0) {
3793 mddev->ro = 2;
3794 set_disk_ro(mddev->gendisk, 0);
3796 } else {
3797 mddev->ro = 2;
3798 err = do_md_run(mddev);
3800 break;
3801 case clean:
3802 if (mddev->pers) {
3803 restart_array(mddev);
3804 spin_lock_irq(&mddev->write_lock);
3805 if (atomic_read(&mddev->writes_pending) == 0) {
3806 if (mddev->in_sync == 0) {
3807 mddev->in_sync = 1;
3808 if (mddev->safemode == 1)
3809 mddev->safemode = 0;
3810 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3812 err = 0;
3813 } else
3814 err = -EBUSY;
3815 spin_unlock_irq(&mddev->write_lock);
3816 } else
3817 err = -EINVAL;
3818 break;
3819 case active:
3820 if (mddev->pers) {
3821 restart_array(mddev);
3822 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3823 wake_up(&mddev->sb_wait);
3824 err = 0;
3825 } else {
3826 mddev->ro = 0;
3827 set_disk_ro(mddev->gendisk, 0);
3828 err = do_md_run(mddev);
3830 break;
3831 case write_pending:
3832 case active_idle:
3833 /* these cannot be set */
3834 break;
3836 if (err)
3837 return err;
3838 else {
3839 if (mddev->hold_active == UNTIL_IOCTL)
3840 mddev->hold_active = 0;
3841 sysfs_notify_dirent_safe(mddev->sysfs_state);
3842 return len;
3845 static struct md_sysfs_entry md_array_state =
3846 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3848 static ssize_t
3849 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3850 return sprintf(page, "%d\n",
3851 atomic_read(&mddev->max_corr_read_errors));
3854 static ssize_t
3855 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3857 char *e;
3858 unsigned long n = simple_strtoul(buf, &e, 10);
3860 if (*buf && (*e == 0 || *e == '\n')) {
3861 atomic_set(&mddev->max_corr_read_errors, n);
3862 return len;
3864 return -EINVAL;
3867 static struct md_sysfs_entry max_corr_read_errors =
3868 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3869 max_corrected_read_errors_store);
3871 static ssize_t
3872 null_show(struct mddev *mddev, char *page)
3874 return -EINVAL;
3877 static ssize_t
3878 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3880 /* buf must be %d:%d\n? giving major and minor numbers */
3881 /* The new device is added to the array.
3882 * If the array has a persistent superblock, we read the
3883 * superblock to initialise info and check validity.
3884 * Otherwise, only checking done is that in bind_rdev_to_array,
3885 * which mainly checks size.
3887 char *e;
3888 int major = simple_strtoul(buf, &e, 10);
3889 int minor;
3890 dev_t dev;
3891 struct md_rdev *rdev;
3892 int err;
3894 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3895 return -EINVAL;
3896 minor = simple_strtoul(e+1, &e, 10);
3897 if (*e && *e != '\n')
3898 return -EINVAL;
3899 dev = MKDEV(major, minor);
3900 if (major != MAJOR(dev) ||
3901 minor != MINOR(dev))
3902 return -EOVERFLOW;
3905 if (mddev->persistent) {
3906 rdev = md_import_device(dev, mddev->major_version,
3907 mddev->minor_version);
3908 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3909 struct md_rdev *rdev0
3910 = list_entry(mddev->disks.next,
3911 struct md_rdev, same_set);
3912 err = super_types[mddev->major_version]
3913 .load_super(rdev, rdev0, mddev->minor_version);
3914 if (err < 0)
3915 goto out;
3917 } else if (mddev->external)
3918 rdev = md_import_device(dev, -2, -1);
3919 else
3920 rdev = md_import_device(dev, -1, -1);
3922 if (IS_ERR(rdev))
3923 return PTR_ERR(rdev);
3924 err = bind_rdev_to_array(rdev, mddev);
3925 out:
3926 if (err)
3927 export_rdev(rdev);
3928 return err ? err : len;
3931 static struct md_sysfs_entry md_new_device =
3932 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3934 static ssize_t
3935 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3937 char *end;
3938 unsigned long chunk, end_chunk;
3940 if (!mddev->bitmap)
3941 goto out;
3942 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3943 while (*buf) {
3944 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3945 if (buf == end) break;
3946 if (*end == '-') { /* range */
3947 buf = end + 1;
3948 end_chunk = simple_strtoul(buf, &end, 0);
3949 if (buf == end) break;
3951 if (*end && !isspace(*end)) break;
3952 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3953 buf = skip_spaces(end);
3955 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3956 out:
3957 return len;
3960 static struct md_sysfs_entry md_bitmap =
3961 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3963 static ssize_t
3964 size_show(struct mddev *mddev, char *page)
3966 return sprintf(page, "%llu\n",
3967 (unsigned long long)mddev->dev_sectors / 2);
3970 static int update_size(struct mddev *mddev, sector_t num_sectors);
3972 static ssize_t
3973 size_store(struct mddev *mddev, const char *buf, size_t len)
3975 /* If array is inactive, we can reduce the component size, but
3976 * not increase it (except from 0).
3977 * If array is active, we can try an on-line resize
3979 sector_t sectors;
3980 int err = strict_blocks_to_sectors(buf, &sectors);
3982 if (err < 0)
3983 return err;
3984 if (mddev->pers) {
3985 err = update_size(mddev, sectors);
3986 md_update_sb(mddev, 1);
3987 } else {
3988 if (mddev->dev_sectors == 0 ||
3989 mddev->dev_sectors > sectors)
3990 mddev->dev_sectors = sectors;
3991 else
3992 err = -ENOSPC;
3994 return err ? err : len;
3997 static struct md_sysfs_entry md_size =
3998 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4001 /* Metdata version.
4002 * This is one of
4003 * 'none' for arrays with no metadata (good luck...)
4004 * 'external' for arrays with externally managed metadata,
4005 * or N.M for internally known formats
4007 static ssize_t
4008 metadata_show(struct mddev *mddev, char *page)
4010 if (mddev->persistent)
4011 return sprintf(page, "%d.%d\n",
4012 mddev->major_version, mddev->minor_version);
4013 else if (mddev->external)
4014 return sprintf(page, "external:%s\n", mddev->metadata_type);
4015 else
4016 return sprintf(page, "none\n");
4019 static ssize_t
4020 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4022 int major, minor;
4023 char *e;
4024 /* Changing the details of 'external' metadata is
4025 * always permitted. Otherwise there must be
4026 * no devices attached to the array.
4028 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4030 else if (!list_empty(&mddev->disks))
4031 return -EBUSY;
4033 if (cmd_match(buf, "none")) {
4034 mddev->persistent = 0;
4035 mddev->external = 0;
4036 mddev->major_version = 0;
4037 mddev->minor_version = 90;
4038 return len;
4040 if (strncmp(buf, "external:", 9) == 0) {
4041 size_t namelen = len-9;
4042 if (namelen >= sizeof(mddev->metadata_type))
4043 namelen = sizeof(mddev->metadata_type)-1;
4044 strncpy(mddev->metadata_type, buf+9, namelen);
4045 mddev->metadata_type[namelen] = 0;
4046 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4047 mddev->metadata_type[--namelen] = 0;
4048 mddev->persistent = 0;
4049 mddev->external = 1;
4050 mddev->major_version = 0;
4051 mddev->minor_version = 90;
4052 return len;
4054 major = simple_strtoul(buf, &e, 10);
4055 if (e==buf || *e != '.')
4056 return -EINVAL;
4057 buf = e+1;
4058 minor = simple_strtoul(buf, &e, 10);
4059 if (e==buf || (*e && *e != '\n') )
4060 return -EINVAL;
4061 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4062 return -ENOENT;
4063 mddev->major_version = major;
4064 mddev->minor_version = minor;
4065 mddev->persistent = 1;
4066 mddev->external = 0;
4067 return len;
4070 static struct md_sysfs_entry md_metadata =
4071 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4073 static ssize_t
4074 action_show(struct mddev *mddev, char *page)
4076 char *type = "idle";
4077 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4078 type = "frozen";
4079 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4080 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4081 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4082 type = "reshape";
4083 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4084 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4085 type = "resync";
4086 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4087 type = "check";
4088 else
4089 type = "repair";
4090 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4091 type = "recover";
4093 return sprintf(page, "%s\n", type);
4096 static void reap_sync_thread(struct mddev *mddev);
4098 static ssize_t
4099 action_store(struct mddev *mddev, const char *page, size_t len)
4101 if (!mddev->pers || !mddev->pers->sync_request)
4102 return -EINVAL;
4104 if (cmd_match(page, "frozen"))
4105 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106 else
4107 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4109 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4110 if (mddev->sync_thread) {
4111 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4112 reap_sync_thread(mddev);
4114 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4115 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4116 return -EBUSY;
4117 else if (cmd_match(page, "resync"))
4118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119 else if (cmd_match(page, "recover")) {
4120 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4122 } else if (cmd_match(page, "reshape")) {
4123 int err;
4124 if (mddev->pers->start_reshape == NULL)
4125 return -EINVAL;
4126 err = mddev->pers->start_reshape(mddev);
4127 if (err)
4128 return err;
4129 sysfs_notify(&mddev->kobj, NULL, "degraded");
4130 } else {
4131 if (cmd_match(page, "check"))
4132 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133 else if (!cmd_match(page, "repair"))
4134 return -EINVAL;
4135 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4136 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4138 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4139 md_wakeup_thread(mddev->thread);
4140 sysfs_notify_dirent_safe(mddev->sysfs_action);
4141 return len;
4144 static ssize_t
4145 mismatch_cnt_show(struct mddev *mddev, char *page)
4147 return sprintf(page, "%llu\n",
4148 (unsigned long long) mddev->resync_mismatches);
4151 static struct md_sysfs_entry md_scan_mode =
4152 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4155 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4157 static ssize_t
4158 sync_min_show(struct mddev *mddev, char *page)
4160 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4161 mddev->sync_speed_min ? "local": "system");
4164 static ssize_t
4165 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4167 int min;
4168 char *e;
4169 if (strncmp(buf, "system", 6)==0) {
4170 mddev->sync_speed_min = 0;
4171 return len;
4173 min = simple_strtoul(buf, &e, 10);
4174 if (buf == e || (*e && *e != '\n') || min <= 0)
4175 return -EINVAL;
4176 mddev->sync_speed_min = min;
4177 return len;
4180 static struct md_sysfs_entry md_sync_min =
4181 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4183 static ssize_t
4184 sync_max_show(struct mddev *mddev, char *page)
4186 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4187 mddev->sync_speed_max ? "local": "system");
4190 static ssize_t
4191 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4193 int max;
4194 char *e;
4195 if (strncmp(buf, "system", 6)==0) {
4196 mddev->sync_speed_max = 0;
4197 return len;
4199 max = simple_strtoul(buf, &e, 10);
4200 if (buf == e || (*e && *e != '\n') || max <= 0)
4201 return -EINVAL;
4202 mddev->sync_speed_max = max;
4203 return len;
4206 static struct md_sysfs_entry md_sync_max =
4207 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4209 static ssize_t
4210 degraded_show(struct mddev *mddev, char *page)
4212 return sprintf(page, "%d\n", mddev->degraded);
4214 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4216 static ssize_t
4217 sync_force_parallel_show(struct mddev *mddev, char *page)
4219 return sprintf(page, "%d\n", mddev->parallel_resync);
4222 static ssize_t
4223 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4225 long n;
4227 if (strict_strtol(buf, 10, &n))
4228 return -EINVAL;
4230 if (n != 0 && n != 1)
4231 return -EINVAL;
4233 mddev->parallel_resync = n;
4235 if (mddev->sync_thread)
4236 wake_up(&resync_wait);
4238 return len;
4241 /* force parallel resync, even with shared block devices */
4242 static struct md_sysfs_entry md_sync_force_parallel =
4243 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4244 sync_force_parallel_show, sync_force_parallel_store);
4246 static ssize_t
4247 sync_speed_show(struct mddev *mddev, char *page)
4249 unsigned long resync, dt, db;
4250 if (mddev->curr_resync == 0)
4251 return sprintf(page, "none\n");
4252 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4253 dt = (jiffies - mddev->resync_mark) / HZ;
4254 if (!dt) dt++;
4255 db = resync - mddev->resync_mark_cnt;
4256 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4259 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4261 static ssize_t
4262 sync_completed_show(struct mddev *mddev, char *page)
4264 unsigned long long max_sectors, resync;
4266 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4267 return sprintf(page, "none\n");
4269 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4270 max_sectors = mddev->resync_max_sectors;
4271 else
4272 max_sectors = mddev->dev_sectors;
4274 resync = mddev->curr_resync_completed;
4275 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4278 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4280 static ssize_t
4281 min_sync_show(struct mddev *mddev, char *page)
4283 return sprintf(page, "%llu\n",
4284 (unsigned long long)mddev->resync_min);
4286 static ssize_t
4287 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4289 unsigned long long min;
4290 if (strict_strtoull(buf, 10, &min))
4291 return -EINVAL;
4292 if (min > mddev->resync_max)
4293 return -EINVAL;
4294 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4295 return -EBUSY;
4297 /* Must be a multiple of chunk_size */
4298 if (mddev->chunk_sectors) {
4299 sector_t temp = min;
4300 if (sector_div(temp, mddev->chunk_sectors))
4301 return -EINVAL;
4303 mddev->resync_min = min;
4305 return len;
4308 static struct md_sysfs_entry md_min_sync =
4309 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4311 static ssize_t
4312 max_sync_show(struct mddev *mddev, char *page)
4314 if (mddev->resync_max == MaxSector)
4315 return sprintf(page, "max\n");
4316 else
4317 return sprintf(page, "%llu\n",
4318 (unsigned long long)mddev->resync_max);
4320 static ssize_t
4321 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4323 if (strncmp(buf, "max", 3) == 0)
4324 mddev->resync_max = MaxSector;
4325 else {
4326 unsigned long long max;
4327 if (strict_strtoull(buf, 10, &max))
4328 return -EINVAL;
4329 if (max < mddev->resync_min)
4330 return -EINVAL;
4331 if (max < mddev->resync_max &&
4332 mddev->ro == 0 &&
4333 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334 return -EBUSY;
4336 /* Must be a multiple of chunk_size */
4337 if (mddev->chunk_sectors) {
4338 sector_t temp = max;
4339 if (sector_div(temp, mddev->chunk_sectors))
4340 return -EINVAL;
4342 mddev->resync_max = max;
4344 wake_up(&mddev->recovery_wait);
4345 return len;
4348 static struct md_sysfs_entry md_max_sync =
4349 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4351 static ssize_t
4352 suspend_lo_show(struct mddev *mddev, char *page)
4354 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4357 static ssize_t
4358 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4360 char *e;
4361 unsigned long long new = simple_strtoull(buf, &e, 10);
4362 unsigned long long old = mddev->suspend_lo;
4364 if (mddev->pers == NULL ||
4365 mddev->pers->quiesce == NULL)
4366 return -EINVAL;
4367 if (buf == e || (*e && *e != '\n'))
4368 return -EINVAL;
4370 mddev->suspend_lo = new;
4371 if (new >= old)
4372 /* Shrinking suspended region */
4373 mddev->pers->quiesce(mddev, 2);
4374 else {
4375 /* Expanding suspended region - need to wait */
4376 mddev->pers->quiesce(mddev, 1);
4377 mddev->pers->quiesce(mddev, 0);
4379 return len;
4381 static struct md_sysfs_entry md_suspend_lo =
4382 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4385 static ssize_t
4386 suspend_hi_show(struct mddev *mddev, char *page)
4388 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4391 static ssize_t
4392 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4394 char *e;
4395 unsigned long long new = simple_strtoull(buf, &e, 10);
4396 unsigned long long old = mddev->suspend_hi;
4398 if (mddev->pers == NULL ||
4399 mddev->pers->quiesce == NULL)
4400 return -EINVAL;
4401 if (buf == e || (*e && *e != '\n'))
4402 return -EINVAL;
4404 mddev->suspend_hi = new;
4405 if (new <= old)
4406 /* Shrinking suspended region */
4407 mddev->pers->quiesce(mddev, 2);
4408 else {
4409 /* Expanding suspended region - need to wait */
4410 mddev->pers->quiesce(mddev, 1);
4411 mddev->pers->quiesce(mddev, 0);
4413 return len;
4415 static struct md_sysfs_entry md_suspend_hi =
4416 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4418 static ssize_t
4419 reshape_position_show(struct mddev *mddev, char *page)
4421 if (mddev->reshape_position != MaxSector)
4422 return sprintf(page, "%llu\n",
4423 (unsigned long long)mddev->reshape_position);
4424 strcpy(page, "none\n");
4425 return 5;
4428 static ssize_t
4429 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4431 char *e;
4432 unsigned long long new = simple_strtoull(buf, &e, 10);
4433 if (mddev->pers)
4434 return -EBUSY;
4435 if (buf == e || (*e && *e != '\n'))
4436 return -EINVAL;
4437 mddev->reshape_position = new;
4438 mddev->delta_disks = 0;
4439 mddev->new_level = mddev->level;
4440 mddev->new_layout = mddev->layout;
4441 mddev->new_chunk_sectors = mddev->chunk_sectors;
4442 return len;
4445 static struct md_sysfs_entry md_reshape_position =
4446 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4447 reshape_position_store);
4449 static ssize_t
4450 array_size_show(struct mddev *mddev, char *page)
4452 if (mddev->external_size)
4453 return sprintf(page, "%llu\n",
4454 (unsigned long long)mddev->array_sectors/2);
4455 else
4456 return sprintf(page, "default\n");
4459 static ssize_t
4460 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4462 sector_t sectors;
4464 if (strncmp(buf, "default", 7) == 0) {
4465 if (mddev->pers)
4466 sectors = mddev->pers->size(mddev, 0, 0);
4467 else
4468 sectors = mddev->array_sectors;
4470 mddev->external_size = 0;
4471 } else {
4472 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4473 return -EINVAL;
4474 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4475 return -E2BIG;
4477 mddev->external_size = 1;
4480 mddev->array_sectors = sectors;
4481 if (mddev->pers) {
4482 set_capacity(mddev->gendisk, mddev->array_sectors);
4483 revalidate_disk(mddev->gendisk);
4485 return len;
4488 static struct md_sysfs_entry md_array_size =
4489 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4490 array_size_store);
4492 static struct attribute *md_default_attrs[] = {
4493 &md_level.attr,
4494 &md_layout.attr,
4495 &md_raid_disks.attr,
4496 &md_chunk_size.attr,
4497 &md_size.attr,
4498 &md_resync_start.attr,
4499 &md_metadata.attr,
4500 &md_new_device.attr,
4501 &md_safe_delay.attr,
4502 &md_array_state.attr,
4503 &md_reshape_position.attr,
4504 &md_array_size.attr,
4505 &max_corr_read_errors.attr,
4506 NULL,
4509 static struct attribute *md_redundancy_attrs[] = {
4510 &md_scan_mode.attr,
4511 &md_mismatches.attr,
4512 &md_sync_min.attr,
4513 &md_sync_max.attr,
4514 &md_sync_speed.attr,
4515 &md_sync_force_parallel.attr,
4516 &md_sync_completed.attr,
4517 &md_min_sync.attr,
4518 &md_max_sync.attr,
4519 &md_suspend_lo.attr,
4520 &md_suspend_hi.attr,
4521 &md_bitmap.attr,
4522 &md_degraded.attr,
4523 NULL,
4525 static struct attribute_group md_redundancy_group = {
4526 .name = NULL,
4527 .attrs = md_redundancy_attrs,
4531 static ssize_t
4532 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4534 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4535 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4536 ssize_t rv;
4538 if (!entry->show)
4539 return -EIO;
4540 spin_lock(&all_mddevs_lock);
4541 if (list_empty(&mddev->all_mddevs)) {
4542 spin_unlock(&all_mddevs_lock);
4543 return -EBUSY;
4545 mddev_get(mddev);
4546 spin_unlock(&all_mddevs_lock);
4548 rv = mddev_lock(mddev);
4549 if (!rv) {
4550 rv = entry->show(mddev, page);
4551 mddev_unlock(mddev);
4553 mddev_put(mddev);
4554 return rv;
4557 static ssize_t
4558 md_attr_store(struct kobject *kobj, struct attribute *attr,
4559 const char *page, size_t length)
4561 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4562 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4563 ssize_t rv;
4565 if (!entry->store)
4566 return -EIO;
4567 if (!capable(CAP_SYS_ADMIN))
4568 return -EACCES;
4569 spin_lock(&all_mddevs_lock);
4570 if (list_empty(&mddev->all_mddevs)) {
4571 spin_unlock(&all_mddevs_lock);
4572 return -EBUSY;
4574 mddev_get(mddev);
4575 spin_unlock(&all_mddevs_lock);
4576 rv = mddev_lock(mddev);
4577 if (!rv) {
4578 rv = entry->store(mddev, page, length);
4579 mddev_unlock(mddev);
4581 mddev_put(mddev);
4582 return rv;
4585 static void md_free(struct kobject *ko)
4587 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4589 if (mddev->sysfs_state)
4590 sysfs_put(mddev->sysfs_state);
4592 if (mddev->gendisk) {
4593 del_gendisk(mddev->gendisk);
4594 put_disk(mddev->gendisk);
4596 if (mddev->queue)
4597 blk_cleanup_queue(mddev->queue);
4599 kfree(mddev);
4602 static const struct sysfs_ops md_sysfs_ops = {
4603 .show = md_attr_show,
4604 .store = md_attr_store,
4606 static struct kobj_type md_ktype = {
4607 .release = md_free,
4608 .sysfs_ops = &md_sysfs_ops,
4609 .default_attrs = md_default_attrs,
4612 int mdp_major = 0;
4614 static void mddev_delayed_delete(struct work_struct *ws)
4616 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4618 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4619 kobject_del(&mddev->kobj);
4620 kobject_put(&mddev->kobj);
4623 static int md_alloc(dev_t dev, char *name)
4625 static DEFINE_MUTEX(disks_mutex);
4626 struct mddev *mddev = mddev_find(dev);
4627 struct gendisk *disk;
4628 int partitioned;
4629 int shift;
4630 int unit;
4631 int error;
4633 if (!mddev)
4634 return -ENODEV;
4636 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4637 shift = partitioned ? MdpMinorShift : 0;
4638 unit = MINOR(mddev->unit) >> shift;
4640 /* wait for any previous instance of this device to be
4641 * completely removed (mddev_delayed_delete).
4643 flush_workqueue(md_misc_wq);
4645 mutex_lock(&disks_mutex);
4646 error = -EEXIST;
4647 if (mddev->gendisk)
4648 goto abort;
4650 if (name) {
4651 /* Need to ensure that 'name' is not a duplicate.
4653 struct mddev *mddev2;
4654 spin_lock(&all_mddevs_lock);
4656 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4657 if (mddev2->gendisk &&
4658 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4659 spin_unlock(&all_mddevs_lock);
4660 goto abort;
4662 spin_unlock(&all_mddevs_lock);
4665 error = -ENOMEM;
4666 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4667 if (!mddev->queue)
4668 goto abort;
4669 mddev->queue->queuedata = mddev;
4671 blk_queue_make_request(mddev->queue, md_make_request);
4672 blk_set_stacking_limits(&mddev->queue->limits);
4674 disk = alloc_disk(1 << shift);
4675 if (!disk) {
4676 blk_cleanup_queue(mddev->queue);
4677 mddev->queue = NULL;
4678 goto abort;
4680 disk->major = MAJOR(mddev->unit);
4681 disk->first_minor = unit << shift;
4682 if (name)
4683 strcpy(disk->disk_name, name);
4684 else if (partitioned)
4685 sprintf(disk->disk_name, "md_d%d", unit);
4686 else
4687 sprintf(disk->disk_name, "md%d", unit);
4688 disk->fops = &md_fops;
4689 disk->private_data = mddev;
4690 disk->queue = mddev->queue;
4691 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4692 /* Allow extended partitions. This makes the
4693 * 'mdp' device redundant, but we can't really
4694 * remove it now.
4696 disk->flags |= GENHD_FL_EXT_DEVT;
4697 mddev->gendisk = disk;
4698 /* As soon as we call add_disk(), another thread could get
4699 * through to md_open, so make sure it doesn't get too far
4701 mutex_lock(&mddev->open_mutex);
4702 add_disk(disk);
4704 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4705 &disk_to_dev(disk)->kobj, "%s", "md");
4706 if (error) {
4707 /* This isn't possible, but as kobject_init_and_add is marked
4708 * __must_check, we must do something with the result
4710 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4711 disk->disk_name);
4712 error = 0;
4714 if (mddev->kobj.sd &&
4715 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4716 printk(KERN_DEBUG "pointless warning\n");
4717 mutex_unlock(&mddev->open_mutex);
4718 abort:
4719 mutex_unlock(&disks_mutex);
4720 if (!error && mddev->kobj.sd) {
4721 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4722 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4724 mddev_put(mddev);
4725 return error;
4728 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4730 md_alloc(dev, NULL);
4731 return NULL;
4734 static int add_named_array(const char *val, struct kernel_param *kp)
4736 /* val must be "md_*" where * is not all digits.
4737 * We allocate an array with a large free minor number, and
4738 * set the name to val. val must not already be an active name.
4740 int len = strlen(val);
4741 char buf[DISK_NAME_LEN];
4743 while (len && val[len-1] == '\n')
4744 len--;
4745 if (len >= DISK_NAME_LEN)
4746 return -E2BIG;
4747 strlcpy(buf, val, len+1);
4748 if (strncmp(buf, "md_", 3) != 0)
4749 return -EINVAL;
4750 return md_alloc(0, buf);
4753 static void md_safemode_timeout(unsigned long data)
4755 struct mddev *mddev = (struct mddev *) data;
4757 if (!atomic_read(&mddev->writes_pending)) {
4758 mddev->safemode = 1;
4759 if (mddev->external)
4760 sysfs_notify_dirent_safe(mddev->sysfs_state);
4762 md_wakeup_thread(mddev->thread);
4765 static int start_dirty_degraded;
4767 int md_run(struct mddev *mddev)
4769 int err;
4770 struct md_rdev *rdev;
4771 struct md_personality *pers;
4773 if (list_empty(&mddev->disks))
4774 /* cannot run an array with no devices.. */
4775 return -EINVAL;
4777 if (mddev->pers)
4778 return -EBUSY;
4779 /* Cannot run until previous stop completes properly */
4780 if (mddev->sysfs_active)
4781 return -EBUSY;
4784 * Analyze all RAID superblock(s)
4786 if (!mddev->raid_disks) {
4787 if (!mddev->persistent)
4788 return -EINVAL;
4789 analyze_sbs(mddev);
4792 if (mddev->level != LEVEL_NONE)
4793 request_module("md-level-%d", mddev->level);
4794 else if (mddev->clevel[0])
4795 request_module("md-%s", mddev->clevel);
4798 * Drop all container device buffers, from now on
4799 * the only valid external interface is through the md
4800 * device.
4802 list_for_each_entry(rdev, &mddev->disks, same_set) {
4803 if (test_bit(Faulty, &rdev->flags))
4804 continue;
4805 sync_blockdev(rdev->bdev);
4806 invalidate_bdev(rdev->bdev);
4808 /* perform some consistency tests on the device.
4809 * We don't want the data to overlap the metadata,
4810 * Internal Bitmap issues have been handled elsewhere.
4812 if (rdev->meta_bdev) {
4813 /* Nothing to check */;
4814 } else if (rdev->data_offset < rdev->sb_start) {
4815 if (mddev->dev_sectors &&
4816 rdev->data_offset + mddev->dev_sectors
4817 > rdev->sb_start) {
4818 printk("md: %s: data overlaps metadata\n",
4819 mdname(mddev));
4820 return -EINVAL;
4822 } else {
4823 if (rdev->sb_start + rdev->sb_size/512
4824 > rdev->data_offset) {
4825 printk("md: %s: metadata overlaps data\n",
4826 mdname(mddev));
4827 return -EINVAL;
4830 sysfs_notify_dirent_safe(rdev->sysfs_state);
4833 if (mddev->bio_set == NULL)
4834 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4835 sizeof(struct mddev *));
4837 spin_lock(&pers_lock);
4838 pers = find_pers(mddev->level, mddev->clevel);
4839 if (!pers || !try_module_get(pers->owner)) {
4840 spin_unlock(&pers_lock);
4841 if (mddev->level != LEVEL_NONE)
4842 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4843 mddev->level);
4844 else
4845 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4846 mddev->clevel);
4847 return -EINVAL;
4849 mddev->pers = pers;
4850 spin_unlock(&pers_lock);
4851 if (mddev->level != pers->level) {
4852 mddev->level = pers->level;
4853 mddev->new_level = pers->level;
4855 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4857 if (mddev->reshape_position != MaxSector &&
4858 pers->start_reshape == NULL) {
4859 /* This personality cannot handle reshaping... */
4860 mddev->pers = NULL;
4861 module_put(pers->owner);
4862 return -EINVAL;
4865 if (pers->sync_request) {
4866 /* Warn if this is a potentially silly
4867 * configuration.
4869 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4870 struct md_rdev *rdev2;
4871 int warned = 0;
4873 list_for_each_entry(rdev, &mddev->disks, same_set)
4874 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4875 if (rdev < rdev2 &&
4876 rdev->bdev->bd_contains ==
4877 rdev2->bdev->bd_contains) {
4878 printk(KERN_WARNING
4879 "%s: WARNING: %s appears to be"
4880 " on the same physical disk as"
4881 " %s.\n",
4882 mdname(mddev),
4883 bdevname(rdev->bdev,b),
4884 bdevname(rdev2->bdev,b2));
4885 warned = 1;
4889 if (warned)
4890 printk(KERN_WARNING
4891 "True protection against single-disk"
4892 " failure might be compromised.\n");
4895 mddev->recovery = 0;
4896 /* may be over-ridden by personality */
4897 mddev->resync_max_sectors = mddev->dev_sectors;
4899 mddev->ok_start_degraded = start_dirty_degraded;
4901 if (start_readonly && mddev->ro == 0)
4902 mddev->ro = 2; /* read-only, but switch on first write */
4904 err = mddev->pers->run(mddev);
4905 if (err)
4906 printk(KERN_ERR "md: pers->run() failed ...\n");
4907 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4908 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4909 " but 'external_size' not in effect?\n", __func__);
4910 printk(KERN_ERR
4911 "md: invalid array_size %llu > default size %llu\n",
4912 (unsigned long long)mddev->array_sectors / 2,
4913 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4914 err = -EINVAL;
4915 mddev->pers->stop(mddev);
4917 if (err == 0 && mddev->pers->sync_request) {
4918 err = bitmap_create(mddev);
4919 if (err) {
4920 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4921 mdname(mddev), err);
4922 mddev->pers->stop(mddev);
4925 if (err) {
4926 module_put(mddev->pers->owner);
4927 mddev->pers = NULL;
4928 bitmap_destroy(mddev);
4929 return err;
4931 if (mddev->pers->sync_request) {
4932 if (mddev->kobj.sd &&
4933 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4934 printk(KERN_WARNING
4935 "md: cannot register extra attributes for %s\n",
4936 mdname(mddev));
4937 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4938 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4939 mddev->ro = 0;
4941 atomic_set(&mddev->writes_pending,0);
4942 atomic_set(&mddev->max_corr_read_errors,
4943 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4944 mddev->safemode = 0;
4945 mddev->safemode_timer.function = md_safemode_timeout;
4946 mddev->safemode_timer.data = (unsigned long) mddev;
4947 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4948 mddev->in_sync = 1;
4949 smp_wmb();
4950 mddev->ready = 1;
4951 list_for_each_entry(rdev, &mddev->disks, same_set)
4952 if (rdev->raid_disk >= 0)
4953 if (sysfs_link_rdev(mddev, rdev))
4954 /* failure here is OK */;
4956 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4958 if (mddev->flags)
4959 md_update_sb(mddev, 0);
4961 md_new_event(mddev);
4962 sysfs_notify_dirent_safe(mddev->sysfs_state);
4963 sysfs_notify_dirent_safe(mddev->sysfs_action);
4964 sysfs_notify(&mddev->kobj, NULL, "degraded");
4965 return 0;
4967 EXPORT_SYMBOL_GPL(md_run);
4969 static int do_md_run(struct mddev *mddev)
4971 int err;
4973 err = md_run(mddev);
4974 if (err)
4975 goto out;
4976 err = bitmap_load(mddev);
4977 if (err) {
4978 bitmap_destroy(mddev);
4979 goto out;
4982 md_wakeup_thread(mddev->thread);
4983 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4985 set_capacity(mddev->gendisk, mddev->array_sectors);
4986 revalidate_disk(mddev->gendisk);
4987 mddev->changed = 1;
4988 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4989 out:
4990 return err;
4993 static int restart_array(struct mddev *mddev)
4995 struct gendisk *disk = mddev->gendisk;
4997 /* Complain if it has no devices */
4998 if (list_empty(&mddev->disks))
4999 return -ENXIO;
5000 if (!mddev->pers)
5001 return -EINVAL;
5002 if (!mddev->ro)
5003 return -EBUSY;
5004 mddev->safemode = 0;
5005 mddev->ro = 0;
5006 set_disk_ro(disk, 0);
5007 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5008 mdname(mddev));
5009 /* Kick recovery or resync if necessary */
5010 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5011 md_wakeup_thread(mddev->thread);
5012 md_wakeup_thread(mddev->sync_thread);
5013 sysfs_notify_dirent_safe(mddev->sysfs_state);
5014 return 0;
5017 /* similar to deny_write_access, but accounts for our holding a reference
5018 * to the file ourselves */
5019 static int deny_bitmap_write_access(struct file * file)
5021 struct inode *inode = file->f_mapping->host;
5023 spin_lock(&inode->i_lock);
5024 if (atomic_read(&inode->i_writecount) > 1) {
5025 spin_unlock(&inode->i_lock);
5026 return -ETXTBSY;
5028 atomic_set(&inode->i_writecount, -1);
5029 spin_unlock(&inode->i_lock);
5031 return 0;
5034 void restore_bitmap_write_access(struct file *file)
5036 struct inode *inode = file->f_mapping->host;
5038 spin_lock(&inode->i_lock);
5039 atomic_set(&inode->i_writecount, 1);
5040 spin_unlock(&inode->i_lock);
5043 static void md_clean(struct mddev *mddev)
5045 mddev->array_sectors = 0;
5046 mddev->external_size = 0;
5047 mddev->dev_sectors = 0;
5048 mddev->raid_disks = 0;
5049 mddev->recovery_cp = 0;
5050 mddev->resync_min = 0;
5051 mddev->resync_max = MaxSector;
5052 mddev->reshape_position = MaxSector;
5053 mddev->external = 0;
5054 mddev->persistent = 0;
5055 mddev->level = LEVEL_NONE;
5056 mddev->clevel[0] = 0;
5057 mddev->flags = 0;
5058 mddev->ro = 0;
5059 mddev->metadata_type[0] = 0;
5060 mddev->chunk_sectors = 0;
5061 mddev->ctime = mddev->utime = 0;
5062 mddev->layout = 0;
5063 mddev->max_disks = 0;
5064 mddev->events = 0;
5065 mddev->can_decrease_events = 0;
5066 mddev->delta_disks = 0;
5067 mddev->new_level = LEVEL_NONE;
5068 mddev->new_layout = 0;
5069 mddev->new_chunk_sectors = 0;
5070 mddev->curr_resync = 0;
5071 mddev->resync_mismatches = 0;
5072 mddev->suspend_lo = mddev->suspend_hi = 0;
5073 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5074 mddev->recovery = 0;
5075 mddev->in_sync = 0;
5076 mddev->changed = 0;
5077 mddev->degraded = 0;
5078 mddev->safemode = 0;
5079 mddev->bitmap_info.offset = 0;
5080 mddev->bitmap_info.default_offset = 0;
5081 mddev->bitmap_info.chunksize = 0;
5082 mddev->bitmap_info.daemon_sleep = 0;
5083 mddev->bitmap_info.max_write_behind = 0;
5086 static void __md_stop_writes(struct mddev *mddev)
5088 if (mddev->sync_thread) {
5089 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5090 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5091 reap_sync_thread(mddev);
5094 del_timer_sync(&mddev->safemode_timer);
5096 bitmap_flush(mddev);
5097 md_super_wait(mddev);
5099 if (!mddev->in_sync || mddev->flags) {
5100 /* mark array as shutdown cleanly */
5101 mddev->in_sync = 1;
5102 md_update_sb(mddev, 1);
5106 void md_stop_writes(struct mddev *mddev)
5108 mddev_lock(mddev);
5109 __md_stop_writes(mddev);
5110 mddev_unlock(mddev);
5112 EXPORT_SYMBOL_GPL(md_stop_writes);
5114 void md_stop(struct mddev *mddev)
5116 mddev->ready = 0;
5117 mddev->pers->stop(mddev);
5118 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5119 mddev->to_remove = &md_redundancy_group;
5120 module_put(mddev->pers->owner);
5121 mddev->pers = NULL;
5122 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 EXPORT_SYMBOL_GPL(md_stop);
5126 static int md_set_readonly(struct mddev *mddev, int is_open)
5128 int err = 0;
5129 mutex_lock(&mddev->open_mutex);
5130 if (atomic_read(&mddev->openers) > is_open) {
5131 printk("md: %s still in use.\n",mdname(mddev));
5132 err = -EBUSY;
5133 goto out;
5135 if (mddev->pers) {
5136 __md_stop_writes(mddev);
5138 err = -ENXIO;
5139 if (mddev->ro==1)
5140 goto out;
5141 mddev->ro = 1;
5142 set_disk_ro(mddev->gendisk, 1);
5143 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5144 sysfs_notify_dirent_safe(mddev->sysfs_state);
5145 err = 0;
5147 out:
5148 mutex_unlock(&mddev->open_mutex);
5149 return err;
5152 /* mode:
5153 * 0 - completely stop and dis-assemble array
5154 * 2 - stop but do not disassemble array
5156 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5158 struct gendisk *disk = mddev->gendisk;
5159 struct md_rdev *rdev;
5161 mutex_lock(&mddev->open_mutex);
5162 if (atomic_read(&mddev->openers) > is_open ||
5163 mddev->sysfs_active) {
5164 printk("md: %s still in use.\n",mdname(mddev));
5165 mutex_unlock(&mddev->open_mutex);
5166 return -EBUSY;
5169 if (mddev->pers) {
5170 if (mddev->ro)
5171 set_disk_ro(disk, 0);
5173 __md_stop_writes(mddev);
5174 md_stop(mddev);
5175 mddev->queue->merge_bvec_fn = NULL;
5176 mddev->queue->backing_dev_info.congested_fn = NULL;
5178 /* tell userspace to handle 'inactive' */
5179 sysfs_notify_dirent_safe(mddev->sysfs_state);
5181 list_for_each_entry(rdev, &mddev->disks, same_set)
5182 if (rdev->raid_disk >= 0)
5183 sysfs_unlink_rdev(mddev, rdev);
5185 set_capacity(disk, 0);
5186 mutex_unlock(&mddev->open_mutex);
5187 mddev->changed = 1;
5188 revalidate_disk(disk);
5190 if (mddev->ro)
5191 mddev->ro = 0;
5192 } else
5193 mutex_unlock(&mddev->open_mutex);
5195 * Free resources if final stop
5197 if (mode == 0) {
5198 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5200 bitmap_destroy(mddev);
5201 if (mddev->bitmap_info.file) {
5202 restore_bitmap_write_access(mddev->bitmap_info.file);
5203 fput(mddev->bitmap_info.file);
5204 mddev->bitmap_info.file = NULL;
5206 mddev->bitmap_info.offset = 0;
5208 export_array(mddev);
5210 md_clean(mddev);
5211 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5212 if (mddev->hold_active == UNTIL_STOP)
5213 mddev->hold_active = 0;
5215 blk_integrity_unregister(disk);
5216 md_new_event(mddev);
5217 sysfs_notify_dirent_safe(mddev->sysfs_state);
5218 return 0;
5221 #ifndef MODULE
5222 static void autorun_array(struct mddev *mddev)
5224 struct md_rdev *rdev;
5225 int err;
5227 if (list_empty(&mddev->disks))
5228 return;
5230 printk(KERN_INFO "md: running: ");
5232 list_for_each_entry(rdev, &mddev->disks, same_set) {
5233 char b[BDEVNAME_SIZE];
5234 printk("<%s>", bdevname(rdev->bdev,b));
5236 printk("\n");
5238 err = do_md_run(mddev);
5239 if (err) {
5240 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5241 do_md_stop(mddev, 0, 0);
5246 * lets try to run arrays based on all disks that have arrived
5247 * until now. (those are in pending_raid_disks)
5249 * the method: pick the first pending disk, collect all disks with
5250 * the same UUID, remove all from the pending list and put them into
5251 * the 'same_array' list. Then order this list based on superblock
5252 * update time (freshest comes first), kick out 'old' disks and
5253 * compare superblocks. If everything's fine then run it.
5255 * If "unit" is allocated, then bump its reference count
5257 static void autorun_devices(int part)
5259 struct md_rdev *rdev0, *rdev, *tmp;
5260 struct mddev *mddev;
5261 char b[BDEVNAME_SIZE];
5263 printk(KERN_INFO "md: autorun ...\n");
5264 while (!list_empty(&pending_raid_disks)) {
5265 int unit;
5266 dev_t dev;
5267 LIST_HEAD(candidates);
5268 rdev0 = list_entry(pending_raid_disks.next,
5269 struct md_rdev, same_set);
5271 printk(KERN_INFO "md: considering %s ...\n",
5272 bdevname(rdev0->bdev,b));
5273 INIT_LIST_HEAD(&candidates);
5274 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5275 if (super_90_load(rdev, rdev0, 0) >= 0) {
5276 printk(KERN_INFO "md: adding %s ...\n",
5277 bdevname(rdev->bdev,b));
5278 list_move(&rdev->same_set, &candidates);
5281 * now we have a set of devices, with all of them having
5282 * mostly sane superblocks. It's time to allocate the
5283 * mddev.
5285 if (part) {
5286 dev = MKDEV(mdp_major,
5287 rdev0->preferred_minor << MdpMinorShift);
5288 unit = MINOR(dev) >> MdpMinorShift;
5289 } else {
5290 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5291 unit = MINOR(dev);
5293 if (rdev0->preferred_minor != unit) {
5294 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5295 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5296 break;
5299 md_probe(dev, NULL, NULL);
5300 mddev = mddev_find(dev);
5301 if (!mddev || !mddev->gendisk) {
5302 if (mddev)
5303 mddev_put(mddev);
5304 printk(KERN_ERR
5305 "md: cannot allocate memory for md drive.\n");
5306 break;
5308 if (mddev_lock(mddev))
5309 printk(KERN_WARNING "md: %s locked, cannot run\n",
5310 mdname(mddev));
5311 else if (mddev->raid_disks || mddev->major_version
5312 || !list_empty(&mddev->disks)) {
5313 printk(KERN_WARNING
5314 "md: %s already running, cannot run %s\n",
5315 mdname(mddev), bdevname(rdev0->bdev,b));
5316 mddev_unlock(mddev);
5317 } else {
5318 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5319 mddev->persistent = 1;
5320 rdev_for_each_list(rdev, tmp, &candidates) {
5321 list_del_init(&rdev->same_set);
5322 if (bind_rdev_to_array(rdev, mddev))
5323 export_rdev(rdev);
5325 autorun_array(mddev);
5326 mddev_unlock(mddev);
5328 /* on success, candidates will be empty, on error
5329 * it won't...
5331 rdev_for_each_list(rdev, tmp, &candidates) {
5332 list_del_init(&rdev->same_set);
5333 export_rdev(rdev);
5335 mddev_put(mddev);
5337 printk(KERN_INFO "md: ... autorun DONE.\n");
5339 #endif /* !MODULE */
5341 static int get_version(void __user * arg)
5343 mdu_version_t ver;
5345 ver.major = MD_MAJOR_VERSION;
5346 ver.minor = MD_MINOR_VERSION;
5347 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5349 if (copy_to_user(arg, &ver, sizeof(ver)))
5350 return -EFAULT;
5352 return 0;
5355 static int get_array_info(struct mddev * mddev, void __user * arg)
5357 mdu_array_info_t info;
5358 int nr,working,insync,failed,spare;
5359 struct md_rdev *rdev;
5361 nr=working=insync=failed=spare=0;
5362 list_for_each_entry(rdev, &mddev->disks, same_set) {
5363 nr++;
5364 if (test_bit(Faulty, &rdev->flags))
5365 failed++;
5366 else {
5367 working++;
5368 if (test_bit(In_sync, &rdev->flags))
5369 insync++;
5370 else
5371 spare++;
5375 info.major_version = mddev->major_version;
5376 info.minor_version = mddev->minor_version;
5377 info.patch_version = MD_PATCHLEVEL_VERSION;
5378 info.ctime = mddev->ctime;
5379 info.level = mddev->level;
5380 info.size = mddev->dev_sectors / 2;
5381 if (info.size != mddev->dev_sectors / 2) /* overflow */
5382 info.size = -1;
5383 info.nr_disks = nr;
5384 info.raid_disks = mddev->raid_disks;
5385 info.md_minor = mddev->md_minor;
5386 info.not_persistent= !mddev->persistent;
5388 info.utime = mddev->utime;
5389 info.state = 0;
5390 if (mddev->in_sync)
5391 info.state = (1<<MD_SB_CLEAN);
5392 if (mddev->bitmap && mddev->bitmap_info.offset)
5393 info.state = (1<<MD_SB_BITMAP_PRESENT);
5394 info.active_disks = insync;
5395 info.working_disks = working;
5396 info.failed_disks = failed;
5397 info.spare_disks = spare;
5399 info.layout = mddev->layout;
5400 info.chunk_size = mddev->chunk_sectors << 9;
5402 if (copy_to_user(arg, &info, sizeof(info)))
5403 return -EFAULT;
5405 return 0;
5408 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5410 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5411 char *ptr, *buf = NULL;
5412 int err = -ENOMEM;
5414 if (md_allow_write(mddev))
5415 file = kmalloc(sizeof(*file), GFP_NOIO);
5416 else
5417 file = kmalloc(sizeof(*file), GFP_KERNEL);
5419 if (!file)
5420 goto out;
5422 /* bitmap disabled, zero the first byte and copy out */
5423 if (!mddev->bitmap || !mddev->bitmap->file) {
5424 file->pathname[0] = '\0';
5425 goto copy_out;
5428 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5429 if (!buf)
5430 goto out;
5432 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5433 if (IS_ERR(ptr))
5434 goto out;
5436 strcpy(file->pathname, ptr);
5438 copy_out:
5439 err = 0;
5440 if (copy_to_user(arg, file, sizeof(*file)))
5441 err = -EFAULT;
5442 out:
5443 kfree(buf);
5444 kfree(file);
5445 return err;
5448 static int get_disk_info(struct mddev * mddev, void __user * arg)
5450 mdu_disk_info_t info;
5451 struct md_rdev *rdev;
5453 if (copy_from_user(&info, arg, sizeof(info)))
5454 return -EFAULT;
5456 rdev = find_rdev_nr(mddev, info.number);
5457 if (rdev) {
5458 info.major = MAJOR(rdev->bdev->bd_dev);
5459 info.minor = MINOR(rdev->bdev->bd_dev);
5460 info.raid_disk = rdev->raid_disk;
5461 info.state = 0;
5462 if (test_bit(Faulty, &rdev->flags))
5463 info.state |= (1<<MD_DISK_FAULTY);
5464 else if (test_bit(In_sync, &rdev->flags)) {
5465 info.state |= (1<<MD_DISK_ACTIVE);
5466 info.state |= (1<<MD_DISK_SYNC);
5468 if (test_bit(WriteMostly, &rdev->flags))
5469 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5470 } else {
5471 info.major = info.minor = 0;
5472 info.raid_disk = -1;
5473 info.state = (1<<MD_DISK_REMOVED);
5476 if (copy_to_user(arg, &info, sizeof(info)))
5477 return -EFAULT;
5479 return 0;
5482 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5484 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5485 struct md_rdev *rdev;
5486 dev_t dev = MKDEV(info->major,info->minor);
5488 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5489 return -EOVERFLOW;
5491 if (!mddev->raid_disks) {
5492 int err;
5493 /* expecting a device which has a superblock */
5494 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5495 if (IS_ERR(rdev)) {
5496 printk(KERN_WARNING
5497 "md: md_import_device returned %ld\n",
5498 PTR_ERR(rdev));
5499 return PTR_ERR(rdev);
5501 if (!list_empty(&mddev->disks)) {
5502 struct md_rdev *rdev0
5503 = list_entry(mddev->disks.next,
5504 struct md_rdev, same_set);
5505 err = super_types[mddev->major_version]
5506 .load_super(rdev, rdev0, mddev->minor_version);
5507 if (err < 0) {
5508 printk(KERN_WARNING
5509 "md: %s has different UUID to %s\n",
5510 bdevname(rdev->bdev,b),
5511 bdevname(rdev0->bdev,b2));
5512 export_rdev(rdev);
5513 return -EINVAL;
5516 err = bind_rdev_to_array(rdev, mddev);
5517 if (err)
5518 export_rdev(rdev);
5519 return err;
5523 * add_new_disk can be used once the array is assembled
5524 * to add "hot spares". They must already have a superblock
5525 * written
5527 if (mddev->pers) {
5528 int err;
5529 if (!mddev->pers->hot_add_disk) {
5530 printk(KERN_WARNING
5531 "%s: personality does not support diskops!\n",
5532 mdname(mddev));
5533 return -EINVAL;
5535 if (mddev->persistent)
5536 rdev = md_import_device(dev, mddev->major_version,
5537 mddev->minor_version);
5538 else
5539 rdev = md_import_device(dev, -1, -1);
5540 if (IS_ERR(rdev)) {
5541 printk(KERN_WARNING
5542 "md: md_import_device returned %ld\n",
5543 PTR_ERR(rdev));
5544 return PTR_ERR(rdev);
5546 /* set saved_raid_disk if appropriate */
5547 if (!mddev->persistent) {
5548 if (info->state & (1<<MD_DISK_SYNC) &&
5549 info->raid_disk < mddev->raid_disks) {
5550 rdev->raid_disk = info->raid_disk;
5551 set_bit(In_sync, &rdev->flags);
5552 } else
5553 rdev->raid_disk = -1;
5554 } else
5555 super_types[mddev->major_version].
5556 validate_super(mddev, rdev);
5557 if ((info->state & (1<<MD_DISK_SYNC)) &&
5558 (!test_bit(In_sync, &rdev->flags) ||
5559 rdev->raid_disk != info->raid_disk)) {
5560 /* This was a hot-add request, but events doesn't
5561 * match, so reject it.
5563 export_rdev(rdev);
5564 return -EINVAL;
5567 if (test_bit(In_sync, &rdev->flags))
5568 rdev->saved_raid_disk = rdev->raid_disk;
5569 else
5570 rdev->saved_raid_disk = -1;
5572 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5573 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5574 set_bit(WriteMostly, &rdev->flags);
5575 else
5576 clear_bit(WriteMostly, &rdev->flags);
5578 rdev->raid_disk = -1;
5579 err = bind_rdev_to_array(rdev, mddev);
5580 if (!err && !mddev->pers->hot_remove_disk) {
5581 /* If there is hot_add_disk but no hot_remove_disk
5582 * then added disks for geometry changes,
5583 * and should be added immediately.
5585 super_types[mddev->major_version].
5586 validate_super(mddev, rdev);
5587 err = mddev->pers->hot_add_disk(mddev, rdev);
5588 if (err)
5589 unbind_rdev_from_array(rdev);
5591 if (err)
5592 export_rdev(rdev);
5593 else
5594 sysfs_notify_dirent_safe(rdev->sysfs_state);
5596 md_update_sb(mddev, 1);
5597 if (mddev->degraded)
5598 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5600 if (!err)
5601 md_new_event(mddev);
5602 md_wakeup_thread(mddev->thread);
5603 return err;
5606 /* otherwise, add_new_disk is only allowed
5607 * for major_version==0 superblocks
5609 if (mddev->major_version != 0) {
5610 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5611 mdname(mddev));
5612 return -EINVAL;
5615 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5616 int err;
5617 rdev = md_import_device(dev, -1, 0);
5618 if (IS_ERR(rdev)) {
5619 printk(KERN_WARNING
5620 "md: error, md_import_device() returned %ld\n",
5621 PTR_ERR(rdev));
5622 return PTR_ERR(rdev);
5624 rdev->desc_nr = info->number;
5625 if (info->raid_disk < mddev->raid_disks)
5626 rdev->raid_disk = info->raid_disk;
5627 else
5628 rdev->raid_disk = -1;
5630 if (rdev->raid_disk < mddev->raid_disks)
5631 if (info->state & (1<<MD_DISK_SYNC))
5632 set_bit(In_sync, &rdev->flags);
5634 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5635 set_bit(WriteMostly, &rdev->flags);
5637 if (!mddev->persistent) {
5638 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5639 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5640 } else
5641 rdev->sb_start = calc_dev_sboffset(rdev);
5642 rdev->sectors = rdev->sb_start;
5644 err = bind_rdev_to_array(rdev, mddev);
5645 if (err) {
5646 export_rdev(rdev);
5647 return err;
5651 return 0;
5654 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5656 char b[BDEVNAME_SIZE];
5657 struct md_rdev *rdev;
5659 rdev = find_rdev(mddev, dev);
5660 if (!rdev)
5661 return -ENXIO;
5663 if (rdev->raid_disk >= 0)
5664 goto busy;
5666 kick_rdev_from_array(rdev);
5667 md_update_sb(mddev, 1);
5668 md_new_event(mddev);
5670 return 0;
5671 busy:
5672 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5673 bdevname(rdev->bdev,b), mdname(mddev));
5674 return -EBUSY;
5677 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5679 char b[BDEVNAME_SIZE];
5680 int err;
5681 struct md_rdev *rdev;
5683 if (!mddev->pers)
5684 return -ENODEV;
5686 if (mddev->major_version != 0) {
5687 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5688 " version-0 superblocks.\n",
5689 mdname(mddev));
5690 return -EINVAL;
5692 if (!mddev->pers->hot_add_disk) {
5693 printk(KERN_WARNING
5694 "%s: personality does not support diskops!\n",
5695 mdname(mddev));
5696 return -EINVAL;
5699 rdev = md_import_device(dev, -1, 0);
5700 if (IS_ERR(rdev)) {
5701 printk(KERN_WARNING
5702 "md: error, md_import_device() returned %ld\n",
5703 PTR_ERR(rdev));
5704 return -EINVAL;
5707 if (mddev->persistent)
5708 rdev->sb_start = calc_dev_sboffset(rdev);
5709 else
5710 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5712 rdev->sectors = rdev->sb_start;
5714 if (test_bit(Faulty, &rdev->flags)) {
5715 printk(KERN_WARNING
5716 "md: can not hot-add faulty %s disk to %s!\n",
5717 bdevname(rdev->bdev,b), mdname(mddev));
5718 err = -EINVAL;
5719 goto abort_export;
5721 clear_bit(In_sync, &rdev->flags);
5722 rdev->desc_nr = -1;
5723 rdev->saved_raid_disk = -1;
5724 err = bind_rdev_to_array(rdev, mddev);
5725 if (err)
5726 goto abort_export;
5729 * The rest should better be atomic, we can have disk failures
5730 * noticed in interrupt contexts ...
5733 rdev->raid_disk = -1;
5735 md_update_sb(mddev, 1);
5738 * Kick recovery, maybe this spare has to be added to the
5739 * array immediately.
5741 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5742 md_wakeup_thread(mddev->thread);
5743 md_new_event(mddev);
5744 return 0;
5746 abort_export:
5747 export_rdev(rdev);
5748 return err;
5751 static int set_bitmap_file(struct mddev *mddev, int fd)
5753 int err;
5755 if (mddev->pers) {
5756 if (!mddev->pers->quiesce)
5757 return -EBUSY;
5758 if (mddev->recovery || mddev->sync_thread)
5759 return -EBUSY;
5760 /* we should be able to change the bitmap.. */
5764 if (fd >= 0) {
5765 if (mddev->bitmap)
5766 return -EEXIST; /* cannot add when bitmap is present */
5767 mddev->bitmap_info.file = fget(fd);
5769 if (mddev->bitmap_info.file == NULL) {
5770 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5771 mdname(mddev));
5772 return -EBADF;
5775 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5776 if (err) {
5777 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5778 mdname(mddev));
5779 fput(mddev->bitmap_info.file);
5780 mddev->bitmap_info.file = NULL;
5781 return err;
5783 mddev->bitmap_info.offset = 0; /* file overrides offset */
5784 } else if (mddev->bitmap == NULL)
5785 return -ENOENT; /* cannot remove what isn't there */
5786 err = 0;
5787 if (mddev->pers) {
5788 mddev->pers->quiesce(mddev, 1);
5789 if (fd >= 0) {
5790 err = bitmap_create(mddev);
5791 if (!err)
5792 err = bitmap_load(mddev);
5794 if (fd < 0 || err) {
5795 bitmap_destroy(mddev);
5796 fd = -1; /* make sure to put the file */
5798 mddev->pers->quiesce(mddev, 0);
5800 if (fd < 0) {
5801 if (mddev->bitmap_info.file) {
5802 restore_bitmap_write_access(mddev->bitmap_info.file);
5803 fput(mddev->bitmap_info.file);
5805 mddev->bitmap_info.file = NULL;
5808 return err;
5812 * set_array_info is used two different ways
5813 * The original usage is when creating a new array.
5814 * In this usage, raid_disks is > 0 and it together with
5815 * level, size, not_persistent,layout,chunksize determine the
5816 * shape of the array.
5817 * This will always create an array with a type-0.90.0 superblock.
5818 * The newer usage is when assembling an array.
5819 * In this case raid_disks will be 0, and the major_version field is
5820 * use to determine which style super-blocks are to be found on the devices.
5821 * The minor and patch _version numbers are also kept incase the
5822 * super_block handler wishes to interpret them.
5824 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5827 if (info->raid_disks == 0) {
5828 /* just setting version number for superblock loading */
5829 if (info->major_version < 0 ||
5830 info->major_version >= ARRAY_SIZE(super_types) ||
5831 super_types[info->major_version].name == NULL) {
5832 /* maybe try to auto-load a module? */
5833 printk(KERN_INFO
5834 "md: superblock version %d not known\n",
5835 info->major_version);
5836 return -EINVAL;
5838 mddev->major_version = info->major_version;
5839 mddev->minor_version = info->minor_version;
5840 mddev->patch_version = info->patch_version;
5841 mddev->persistent = !info->not_persistent;
5842 /* ensure mddev_put doesn't delete this now that there
5843 * is some minimal configuration.
5845 mddev->ctime = get_seconds();
5846 return 0;
5848 mddev->major_version = MD_MAJOR_VERSION;
5849 mddev->minor_version = MD_MINOR_VERSION;
5850 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5851 mddev->ctime = get_seconds();
5853 mddev->level = info->level;
5854 mddev->clevel[0] = 0;
5855 mddev->dev_sectors = 2 * (sector_t)info->size;
5856 mddev->raid_disks = info->raid_disks;
5857 /* don't set md_minor, it is determined by which /dev/md* was
5858 * openned
5860 if (info->state & (1<<MD_SB_CLEAN))
5861 mddev->recovery_cp = MaxSector;
5862 else
5863 mddev->recovery_cp = 0;
5864 mddev->persistent = ! info->not_persistent;
5865 mddev->external = 0;
5867 mddev->layout = info->layout;
5868 mddev->chunk_sectors = info->chunk_size >> 9;
5870 mddev->max_disks = MD_SB_DISKS;
5872 if (mddev->persistent)
5873 mddev->flags = 0;
5874 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5876 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5877 mddev->bitmap_info.offset = 0;
5879 mddev->reshape_position = MaxSector;
5882 * Generate a 128 bit UUID
5884 get_random_bytes(mddev->uuid, 16);
5886 mddev->new_level = mddev->level;
5887 mddev->new_chunk_sectors = mddev->chunk_sectors;
5888 mddev->new_layout = mddev->layout;
5889 mddev->delta_disks = 0;
5891 return 0;
5894 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5896 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5898 if (mddev->external_size)
5899 return;
5901 mddev->array_sectors = array_sectors;
5903 EXPORT_SYMBOL(md_set_array_sectors);
5905 static int update_size(struct mddev *mddev, sector_t num_sectors)
5907 struct md_rdev *rdev;
5908 int rv;
5909 int fit = (num_sectors == 0);
5911 if (mddev->pers->resize == NULL)
5912 return -EINVAL;
5913 /* The "num_sectors" is the number of sectors of each device that
5914 * is used. This can only make sense for arrays with redundancy.
5915 * linear and raid0 always use whatever space is available. We can only
5916 * consider changing this number if no resync or reconstruction is
5917 * happening, and if the new size is acceptable. It must fit before the
5918 * sb_start or, if that is <data_offset, it must fit before the size
5919 * of each device. If num_sectors is zero, we find the largest size
5920 * that fits.
5922 if (mddev->sync_thread)
5923 return -EBUSY;
5924 if (mddev->bitmap)
5925 /* Sorry, cannot grow a bitmap yet, just remove it,
5926 * grow, and re-add.
5928 return -EBUSY;
5929 list_for_each_entry(rdev, &mddev->disks, same_set) {
5930 sector_t avail = rdev->sectors;
5932 if (fit && (num_sectors == 0 || num_sectors > avail))
5933 num_sectors = avail;
5934 if (avail < num_sectors)
5935 return -ENOSPC;
5937 rv = mddev->pers->resize(mddev, num_sectors);
5938 if (!rv)
5939 revalidate_disk(mddev->gendisk);
5940 return rv;
5943 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5945 int rv;
5946 /* change the number of raid disks */
5947 if (mddev->pers->check_reshape == NULL)
5948 return -EINVAL;
5949 if (raid_disks <= 0 ||
5950 (mddev->max_disks && raid_disks >= mddev->max_disks))
5951 return -EINVAL;
5952 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5953 return -EBUSY;
5954 mddev->delta_disks = raid_disks - mddev->raid_disks;
5956 rv = mddev->pers->check_reshape(mddev);
5957 if (rv < 0)
5958 mddev->delta_disks = 0;
5959 return rv;
5964 * update_array_info is used to change the configuration of an
5965 * on-line array.
5966 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5967 * fields in the info are checked against the array.
5968 * Any differences that cannot be handled will cause an error.
5969 * Normally, only one change can be managed at a time.
5971 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5973 int rv = 0;
5974 int cnt = 0;
5975 int state = 0;
5977 /* calculate expected state,ignoring low bits */
5978 if (mddev->bitmap && mddev->bitmap_info.offset)
5979 state |= (1 << MD_SB_BITMAP_PRESENT);
5981 if (mddev->major_version != info->major_version ||
5982 mddev->minor_version != info->minor_version ||
5983 /* mddev->patch_version != info->patch_version || */
5984 mddev->ctime != info->ctime ||
5985 mddev->level != info->level ||
5986 /* mddev->layout != info->layout || */
5987 !mddev->persistent != info->not_persistent||
5988 mddev->chunk_sectors != info->chunk_size >> 9 ||
5989 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5990 ((state^info->state) & 0xfffffe00)
5992 return -EINVAL;
5993 /* Check there is only one change */
5994 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5995 cnt++;
5996 if (mddev->raid_disks != info->raid_disks)
5997 cnt++;
5998 if (mddev->layout != info->layout)
5999 cnt++;
6000 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6001 cnt++;
6002 if (cnt == 0)
6003 return 0;
6004 if (cnt > 1)
6005 return -EINVAL;
6007 if (mddev->layout != info->layout) {
6008 /* Change layout
6009 * we don't need to do anything at the md level, the
6010 * personality will take care of it all.
6012 if (mddev->pers->check_reshape == NULL)
6013 return -EINVAL;
6014 else {
6015 mddev->new_layout = info->layout;
6016 rv = mddev->pers->check_reshape(mddev);
6017 if (rv)
6018 mddev->new_layout = mddev->layout;
6019 return rv;
6022 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6023 rv = update_size(mddev, (sector_t)info->size * 2);
6025 if (mddev->raid_disks != info->raid_disks)
6026 rv = update_raid_disks(mddev, info->raid_disks);
6028 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6029 if (mddev->pers->quiesce == NULL)
6030 return -EINVAL;
6031 if (mddev->recovery || mddev->sync_thread)
6032 return -EBUSY;
6033 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6034 /* add the bitmap */
6035 if (mddev->bitmap)
6036 return -EEXIST;
6037 if (mddev->bitmap_info.default_offset == 0)
6038 return -EINVAL;
6039 mddev->bitmap_info.offset =
6040 mddev->bitmap_info.default_offset;
6041 mddev->pers->quiesce(mddev, 1);
6042 rv = bitmap_create(mddev);
6043 if (!rv)
6044 rv = bitmap_load(mddev);
6045 if (rv)
6046 bitmap_destroy(mddev);
6047 mddev->pers->quiesce(mddev, 0);
6048 } else {
6049 /* remove the bitmap */
6050 if (!mddev->bitmap)
6051 return -ENOENT;
6052 if (mddev->bitmap->file)
6053 return -EINVAL;
6054 mddev->pers->quiesce(mddev, 1);
6055 bitmap_destroy(mddev);
6056 mddev->pers->quiesce(mddev, 0);
6057 mddev->bitmap_info.offset = 0;
6060 md_update_sb(mddev, 1);
6061 return rv;
6064 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6066 struct md_rdev *rdev;
6068 if (mddev->pers == NULL)
6069 return -ENODEV;
6071 rdev = find_rdev(mddev, dev);
6072 if (!rdev)
6073 return -ENODEV;
6075 md_error(mddev, rdev);
6076 if (!test_bit(Faulty, &rdev->flags))
6077 return -EBUSY;
6078 return 0;
6082 * We have a problem here : there is no easy way to give a CHS
6083 * virtual geometry. We currently pretend that we have a 2 heads
6084 * 4 sectors (with a BIG number of cylinders...). This drives
6085 * dosfs just mad... ;-)
6087 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6089 struct mddev *mddev = bdev->bd_disk->private_data;
6091 geo->heads = 2;
6092 geo->sectors = 4;
6093 geo->cylinders = mddev->array_sectors / 8;
6094 return 0;
6097 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6098 unsigned int cmd, unsigned long arg)
6100 int err = 0;
6101 void __user *argp = (void __user *)arg;
6102 struct mddev *mddev = NULL;
6103 int ro;
6105 switch (cmd) {
6106 case RAID_VERSION:
6107 case GET_ARRAY_INFO:
6108 case GET_DISK_INFO:
6109 break;
6110 default:
6111 if (!capable(CAP_SYS_ADMIN))
6112 return -EACCES;
6116 * Commands dealing with the RAID driver but not any
6117 * particular array:
6119 switch (cmd)
6121 case RAID_VERSION:
6122 err = get_version(argp);
6123 goto done;
6125 case PRINT_RAID_DEBUG:
6126 err = 0;
6127 md_print_devices();
6128 goto done;
6130 #ifndef MODULE
6131 case RAID_AUTORUN:
6132 err = 0;
6133 autostart_arrays(arg);
6134 goto done;
6135 #endif
6136 default:;
6140 * Commands creating/starting a new array:
6143 mddev = bdev->bd_disk->private_data;
6145 if (!mddev) {
6146 BUG();
6147 goto abort;
6150 err = mddev_lock(mddev);
6151 if (err) {
6152 printk(KERN_INFO
6153 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6154 err, cmd);
6155 goto abort;
6158 switch (cmd)
6160 case SET_ARRAY_INFO:
6162 mdu_array_info_t info;
6163 if (!arg)
6164 memset(&info, 0, sizeof(info));
6165 else if (copy_from_user(&info, argp, sizeof(info))) {
6166 err = -EFAULT;
6167 goto abort_unlock;
6169 if (mddev->pers) {
6170 err = update_array_info(mddev, &info);
6171 if (err) {
6172 printk(KERN_WARNING "md: couldn't update"
6173 " array info. %d\n", err);
6174 goto abort_unlock;
6176 goto done_unlock;
6178 if (!list_empty(&mddev->disks)) {
6179 printk(KERN_WARNING
6180 "md: array %s already has disks!\n",
6181 mdname(mddev));
6182 err = -EBUSY;
6183 goto abort_unlock;
6185 if (mddev->raid_disks) {
6186 printk(KERN_WARNING
6187 "md: array %s already initialised!\n",
6188 mdname(mddev));
6189 err = -EBUSY;
6190 goto abort_unlock;
6192 err = set_array_info(mddev, &info);
6193 if (err) {
6194 printk(KERN_WARNING "md: couldn't set"
6195 " array info. %d\n", err);
6196 goto abort_unlock;
6199 goto done_unlock;
6201 default:;
6205 * Commands querying/configuring an existing array:
6207 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6208 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6209 if ((!mddev->raid_disks && !mddev->external)
6210 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6211 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6212 && cmd != GET_BITMAP_FILE) {
6213 err = -ENODEV;
6214 goto abort_unlock;
6218 * Commands even a read-only array can execute:
6220 switch (cmd)
6222 case GET_ARRAY_INFO:
6223 err = get_array_info(mddev, argp);
6224 goto done_unlock;
6226 case GET_BITMAP_FILE:
6227 err = get_bitmap_file(mddev, argp);
6228 goto done_unlock;
6230 case GET_DISK_INFO:
6231 err = get_disk_info(mddev, argp);
6232 goto done_unlock;
6234 case RESTART_ARRAY_RW:
6235 err = restart_array(mddev);
6236 goto done_unlock;
6238 case STOP_ARRAY:
6239 err = do_md_stop(mddev, 0, 1);
6240 goto done_unlock;
6242 case STOP_ARRAY_RO:
6243 err = md_set_readonly(mddev, 1);
6244 goto done_unlock;
6246 case BLKROSET:
6247 if (get_user(ro, (int __user *)(arg))) {
6248 err = -EFAULT;
6249 goto done_unlock;
6251 err = -EINVAL;
6253 /* if the bdev is going readonly the value of mddev->ro
6254 * does not matter, no writes are coming
6256 if (ro)
6257 goto done_unlock;
6259 /* are we are already prepared for writes? */
6260 if (mddev->ro != 1)
6261 goto done_unlock;
6263 /* transitioning to readauto need only happen for
6264 * arrays that call md_write_start
6266 if (mddev->pers) {
6267 err = restart_array(mddev);
6268 if (err == 0) {
6269 mddev->ro = 2;
6270 set_disk_ro(mddev->gendisk, 0);
6273 goto done_unlock;
6277 * The remaining ioctls are changing the state of the
6278 * superblock, so we do not allow them on read-only arrays.
6279 * However non-MD ioctls (e.g. get-size) will still come through
6280 * here and hit the 'default' below, so only disallow
6281 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6283 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6284 if (mddev->ro == 2) {
6285 mddev->ro = 0;
6286 sysfs_notify_dirent_safe(mddev->sysfs_state);
6287 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6288 md_wakeup_thread(mddev->thread);
6289 } else {
6290 err = -EROFS;
6291 goto abort_unlock;
6295 switch (cmd)
6297 case ADD_NEW_DISK:
6299 mdu_disk_info_t info;
6300 if (copy_from_user(&info, argp, sizeof(info)))
6301 err = -EFAULT;
6302 else
6303 err = add_new_disk(mddev, &info);
6304 goto done_unlock;
6307 case HOT_REMOVE_DISK:
6308 err = hot_remove_disk(mddev, new_decode_dev(arg));
6309 goto done_unlock;
6311 case HOT_ADD_DISK:
6312 err = hot_add_disk(mddev, new_decode_dev(arg));
6313 goto done_unlock;
6315 case SET_DISK_FAULTY:
6316 err = set_disk_faulty(mddev, new_decode_dev(arg));
6317 goto done_unlock;
6319 case RUN_ARRAY:
6320 err = do_md_run(mddev);
6321 goto done_unlock;
6323 case SET_BITMAP_FILE:
6324 err = set_bitmap_file(mddev, (int)arg);
6325 goto done_unlock;
6327 default:
6328 err = -EINVAL;
6329 goto abort_unlock;
6332 done_unlock:
6333 abort_unlock:
6334 if (mddev->hold_active == UNTIL_IOCTL &&
6335 err != -EINVAL)
6336 mddev->hold_active = 0;
6337 mddev_unlock(mddev);
6339 return err;
6340 done:
6341 if (err)
6342 MD_BUG();
6343 abort:
6344 return err;
6346 #ifdef CONFIG_COMPAT
6347 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6348 unsigned int cmd, unsigned long arg)
6350 switch (cmd) {
6351 case HOT_REMOVE_DISK:
6352 case HOT_ADD_DISK:
6353 case SET_DISK_FAULTY:
6354 case SET_BITMAP_FILE:
6355 /* These take in integer arg, do not convert */
6356 break;
6357 default:
6358 arg = (unsigned long)compat_ptr(arg);
6359 break;
6362 return md_ioctl(bdev, mode, cmd, arg);
6364 #endif /* CONFIG_COMPAT */
6366 static int md_open(struct block_device *bdev, fmode_t mode)
6369 * Succeed if we can lock the mddev, which confirms that
6370 * it isn't being stopped right now.
6372 struct mddev *mddev = mddev_find(bdev->bd_dev);
6373 int err;
6375 if (mddev->gendisk != bdev->bd_disk) {
6376 /* we are racing with mddev_put which is discarding this
6377 * bd_disk.
6379 mddev_put(mddev);
6380 /* Wait until bdev->bd_disk is definitely gone */
6381 flush_workqueue(md_misc_wq);
6382 /* Then retry the open from the top */
6383 return -ERESTARTSYS;
6385 BUG_ON(mddev != bdev->bd_disk->private_data);
6387 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6388 goto out;
6390 err = 0;
6391 atomic_inc(&mddev->openers);
6392 mutex_unlock(&mddev->open_mutex);
6394 check_disk_change(bdev);
6395 out:
6396 return err;
6399 static int md_release(struct gendisk *disk, fmode_t mode)
6401 struct mddev *mddev = disk->private_data;
6403 BUG_ON(!mddev);
6404 atomic_dec(&mddev->openers);
6405 mddev_put(mddev);
6407 return 0;
6410 static int md_media_changed(struct gendisk *disk)
6412 struct mddev *mddev = disk->private_data;
6414 return mddev->changed;
6417 static int md_revalidate(struct gendisk *disk)
6419 struct mddev *mddev = disk->private_data;
6421 mddev->changed = 0;
6422 return 0;
6424 static const struct block_device_operations md_fops =
6426 .owner = THIS_MODULE,
6427 .open = md_open,
6428 .release = md_release,
6429 .ioctl = md_ioctl,
6430 #ifdef CONFIG_COMPAT
6431 .compat_ioctl = md_compat_ioctl,
6432 #endif
6433 .getgeo = md_getgeo,
6434 .media_changed = md_media_changed,
6435 .revalidate_disk= md_revalidate,
6438 static int md_thread(void * arg)
6440 struct md_thread *thread = arg;
6443 * md_thread is a 'system-thread', it's priority should be very
6444 * high. We avoid resource deadlocks individually in each
6445 * raid personality. (RAID5 does preallocation) We also use RR and
6446 * the very same RT priority as kswapd, thus we will never get
6447 * into a priority inversion deadlock.
6449 * we definitely have to have equal or higher priority than
6450 * bdflush, otherwise bdflush will deadlock if there are too
6451 * many dirty RAID5 blocks.
6454 allow_signal(SIGKILL);
6455 while (!kthread_should_stop()) {
6457 /* We need to wait INTERRUPTIBLE so that
6458 * we don't add to the load-average.
6459 * That means we need to be sure no signals are
6460 * pending
6462 if (signal_pending(current))
6463 flush_signals(current);
6465 wait_event_interruptible_timeout
6466 (thread->wqueue,
6467 test_bit(THREAD_WAKEUP, &thread->flags)
6468 || kthread_should_stop(),
6469 thread->timeout);
6471 clear_bit(THREAD_WAKEUP, &thread->flags);
6472 if (!kthread_should_stop())
6473 thread->run(thread->mddev);
6476 return 0;
6479 void md_wakeup_thread(struct md_thread *thread)
6481 if (thread) {
6482 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6483 set_bit(THREAD_WAKEUP, &thread->flags);
6484 wake_up(&thread->wqueue);
6488 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6489 const char *name)
6491 struct md_thread *thread;
6493 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6494 if (!thread)
6495 return NULL;
6497 init_waitqueue_head(&thread->wqueue);
6499 thread->run = run;
6500 thread->mddev = mddev;
6501 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6502 thread->tsk = kthread_run(md_thread, thread,
6503 "%s_%s",
6504 mdname(thread->mddev),
6505 name ?: mddev->pers->name);
6506 if (IS_ERR(thread->tsk)) {
6507 kfree(thread);
6508 return NULL;
6510 return thread;
6513 void md_unregister_thread(struct md_thread **threadp)
6515 struct md_thread *thread = *threadp;
6516 if (!thread)
6517 return;
6518 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6519 /* Locking ensures that mddev_unlock does not wake_up a
6520 * non-existent thread
6522 spin_lock(&pers_lock);
6523 *threadp = NULL;
6524 spin_unlock(&pers_lock);
6526 kthread_stop(thread->tsk);
6527 kfree(thread);
6530 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6532 if (!mddev) {
6533 MD_BUG();
6534 return;
6537 if (!rdev || test_bit(Faulty, &rdev->flags))
6538 return;
6540 if (!mddev->pers || !mddev->pers->error_handler)
6541 return;
6542 mddev->pers->error_handler(mddev,rdev);
6543 if (mddev->degraded)
6544 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6545 sysfs_notify_dirent_safe(rdev->sysfs_state);
6546 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6548 md_wakeup_thread(mddev->thread);
6549 if (mddev->event_work.func)
6550 queue_work(md_misc_wq, &mddev->event_work);
6551 md_new_event_inintr(mddev);
6554 /* seq_file implementation /proc/mdstat */
6556 static void status_unused(struct seq_file *seq)
6558 int i = 0;
6559 struct md_rdev *rdev;
6561 seq_printf(seq, "unused devices: ");
6563 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6564 char b[BDEVNAME_SIZE];
6565 i++;
6566 seq_printf(seq, "%s ",
6567 bdevname(rdev->bdev,b));
6569 if (!i)
6570 seq_printf(seq, "<none>");
6572 seq_printf(seq, "\n");
6576 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6578 sector_t max_sectors, resync, res;
6579 unsigned long dt, db;
6580 sector_t rt;
6581 int scale;
6582 unsigned int per_milli;
6584 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6586 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6587 max_sectors = mddev->resync_max_sectors;
6588 else
6589 max_sectors = mddev->dev_sectors;
6592 * Should not happen.
6594 if (!max_sectors) {
6595 MD_BUG();
6596 return;
6598 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6599 * in a sector_t, and (max_sectors>>scale) will fit in a
6600 * u32, as those are the requirements for sector_div.
6601 * Thus 'scale' must be at least 10
6603 scale = 10;
6604 if (sizeof(sector_t) > sizeof(unsigned long)) {
6605 while ( max_sectors/2 > (1ULL<<(scale+32)))
6606 scale++;
6608 res = (resync>>scale)*1000;
6609 sector_div(res, (u32)((max_sectors>>scale)+1));
6611 per_milli = res;
6613 int i, x = per_milli/50, y = 20-x;
6614 seq_printf(seq, "[");
6615 for (i = 0; i < x; i++)
6616 seq_printf(seq, "=");
6617 seq_printf(seq, ">");
6618 for (i = 0; i < y; i++)
6619 seq_printf(seq, ".");
6620 seq_printf(seq, "] ");
6622 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6623 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6624 "reshape" :
6625 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6626 "check" :
6627 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6628 "resync" : "recovery"))),
6629 per_milli/10, per_milli % 10,
6630 (unsigned long long) resync/2,
6631 (unsigned long long) max_sectors/2);
6634 * dt: time from mark until now
6635 * db: blocks written from mark until now
6636 * rt: remaining time
6638 * rt is a sector_t, so could be 32bit or 64bit.
6639 * So we divide before multiply in case it is 32bit and close
6640 * to the limit.
6641 * We scale the divisor (db) by 32 to avoid losing precision
6642 * near the end of resync when the number of remaining sectors
6643 * is close to 'db'.
6644 * We then divide rt by 32 after multiplying by db to compensate.
6645 * The '+1' avoids division by zero if db is very small.
6647 dt = ((jiffies - mddev->resync_mark) / HZ);
6648 if (!dt) dt++;
6649 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6650 - mddev->resync_mark_cnt;
6652 rt = max_sectors - resync; /* number of remaining sectors */
6653 sector_div(rt, db/32+1);
6654 rt *= dt;
6655 rt >>= 5;
6657 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6658 ((unsigned long)rt % 60)/6);
6660 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6663 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6665 struct list_head *tmp;
6666 loff_t l = *pos;
6667 struct mddev *mddev;
6669 if (l >= 0x10000)
6670 return NULL;
6671 if (!l--)
6672 /* header */
6673 return (void*)1;
6675 spin_lock(&all_mddevs_lock);
6676 list_for_each(tmp,&all_mddevs)
6677 if (!l--) {
6678 mddev = list_entry(tmp, struct mddev, all_mddevs);
6679 mddev_get(mddev);
6680 spin_unlock(&all_mddevs_lock);
6681 return mddev;
6683 spin_unlock(&all_mddevs_lock);
6684 if (!l--)
6685 return (void*)2;/* tail */
6686 return NULL;
6689 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6691 struct list_head *tmp;
6692 struct mddev *next_mddev, *mddev = v;
6694 ++*pos;
6695 if (v == (void*)2)
6696 return NULL;
6698 spin_lock(&all_mddevs_lock);
6699 if (v == (void*)1)
6700 tmp = all_mddevs.next;
6701 else
6702 tmp = mddev->all_mddevs.next;
6703 if (tmp != &all_mddevs)
6704 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6705 else {
6706 next_mddev = (void*)2;
6707 *pos = 0x10000;
6709 spin_unlock(&all_mddevs_lock);
6711 if (v != (void*)1)
6712 mddev_put(mddev);
6713 return next_mddev;
6717 static void md_seq_stop(struct seq_file *seq, void *v)
6719 struct mddev *mddev = v;
6721 if (mddev && v != (void*)1 && v != (void*)2)
6722 mddev_put(mddev);
6725 static int md_seq_show(struct seq_file *seq, void *v)
6727 struct mddev *mddev = v;
6728 sector_t sectors;
6729 struct md_rdev *rdev;
6730 struct bitmap *bitmap;
6732 if (v == (void*)1) {
6733 struct md_personality *pers;
6734 seq_printf(seq, "Personalities : ");
6735 spin_lock(&pers_lock);
6736 list_for_each_entry(pers, &pers_list, list)
6737 seq_printf(seq, "[%s] ", pers->name);
6739 spin_unlock(&pers_lock);
6740 seq_printf(seq, "\n");
6741 seq->poll_event = atomic_read(&md_event_count);
6742 return 0;
6744 if (v == (void*)2) {
6745 status_unused(seq);
6746 return 0;
6749 if (mddev_lock(mddev) < 0)
6750 return -EINTR;
6752 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6753 seq_printf(seq, "%s : %sactive", mdname(mddev),
6754 mddev->pers ? "" : "in");
6755 if (mddev->pers) {
6756 if (mddev->ro==1)
6757 seq_printf(seq, " (read-only)");
6758 if (mddev->ro==2)
6759 seq_printf(seq, " (auto-read-only)");
6760 seq_printf(seq, " %s", mddev->pers->name);
6763 sectors = 0;
6764 list_for_each_entry(rdev, &mddev->disks, same_set) {
6765 char b[BDEVNAME_SIZE];
6766 seq_printf(seq, " %s[%d]",
6767 bdevname(rdev->bdev,b), rdev->desc_nr);
6768 if (test_bit(WriteMostly, &rdev->flags))
6769 seq_printf(seq, "(W)");
6770 if (test_bit(Faulty, &rdev->flags)) {
6771 seq_printf(seq, "(F)");
6772 continue;
6774 if (rdev->raid_disk < 0)
6775 seq_printf(seq, "(S)"); /* spare */
6776 if (test_bit(Replacement, &rdev->flags))
6777 seq_printf(seq, "(R)");
6778 sectors += rdev->sectors;
6781 if (!list_empty(&mddev->disks)) {
6782 if (mddev->pers)
6783 seq_printf(seq, "\n %llu blocks",
6784 (unsigned long long)
6785 mddev->array_sectors / 2);
6786 else
6787 seq_printf(seq, "\n %llu blocks",
6788 (unsigned long long)sectors / 2);
6790 if (mddev->persistent) {
6791 if (mddev->major_version != 0 ||
6792 mddev->minor_version != 90) {
6793 seq_printf(seq," super %d.%d",
6794 mddev->major_version,
6795 mddev->minor_version);
6797 } else if (mddev->external)
6798 seq_printf(seq, " super external:%s",
6799 mddev->metadata_type);
6800 else
6801 seq_printf(seq, " super non-persistent");
6803 if (mddev->pers) {
6804 mddev->pers->status(seq, mddev);
6805 seq_printf(seq, "\n ");
6806 if (mddev->pers->sync_request) {
6807 if (mddev->curr_resync > 2) {
6808 status_resync(seq, mddev);
6809 seq_printf(seq, "\n ");
6810 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6811 seq_printf(seq, "\tresync=DELAYED\n ");
6812 else if (mddev->recovery_cp < MaxSector)
6813 seq_printf(seq, "\tresync=PENDING\n ");
6815 } else
6816 seq_printf(seq, "\n ");
6818 if ((bitmap = mddev->bitmap)) {
6819 unsigned long chunk_kb;
6820 unsigned long flags;
6821 spin_lock_irqsave(&bitmap->lock, flags);
6822 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6823 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6824 "%lu%s chunk",
6825 bitmap->pages - bitmap->missing_pages,
6826 bitmap->pages,
6827 (bitmap->pages - bitmap->missing_pages)
6828 << (PAGE_SHIFT - 10),
6829 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6830 chunk_kb ? "KB" : "B");
6831 if (bitmap->file) {
6832 seq_printf(seq, ", file: ");
6833 seq_path(seq, &bitmap->file->f_path, " \t\n");
6836 seq_printf(seq, "\n");
6837 spin_unlock_irqrestore(&bitmap->lock, flags);
6840 seq_printf(seq, "\n");
6842 mddev_unlock(mddev);
6844 return 0;
6847 static const struct seq_operations md_seq_ops = {
6848 .start = md_seq_start,
6849 .next = md_seq_next,
6850 .stop = md_seq_stop,
6851 .show = md_seq_show,
6854 static int md_seq_open(struct inode *inode, struct file *file)
6856 struct seq_file *seq;
6857 int error;
6859 error = seq_open(file, &md_seq_ops);
6860 if (error)
6861 return error;
6863 seq = file->private_data;
6864 seq->poll_event = atomic_read(&md_event_count);
6865 return error;
6868 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6870 struct seq_file *seq = filp->private_data;
6871 int mask;
6873 poll_wait(filp, &md_event_waiters, wait);
6875 /* always allow read */
6876 mask = POLLIN | POLLRDNORM;
6878 if (seq->poll_event != atomic_read(&md_event_count))
6879 mask |= POLLERR | POLLPRI;
6880 return mask;
6883 static const struct file_operations md_seq_fops = {
6884 .owner = THIS_MODULE,
6885 .open = md_seq_open,
6886 .read = seq_read,
6887 .llseek = seq_lseek,
6888 .release = seq_release_private,
6889 .poll = mdstat_poll,
6892 int register_md_personality(struct md_personality *p)
6894 spin_lock(&pers_lock);
6895 list_add_tail(&p->list, &pers_list);
6896 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6897 spin_unlock(&pers_lock);
6898 return 0;
6901 int unregister_md_personality(struct md_personality *p)
6903 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6904 spin_lock(&pers_lock);
6905 list_del_init(&p->list);
6906 spin_unlock(&pers_lock);
6907 return 0;
6910 static int is_mddev_idle(struct mddev *mddev, int init)
6912 struct md_rdev * rdev;
6913 int idle;
6914 int curr_events;
6916 idle = 1;
6917 rcu_read_lock();
6918 rdev_for_each_rcu(rdev, mddev) {
6919 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6920 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6921 (int)part_stat_read(&disk->part0, sectors[1]) -
6922 atomic_read(&disk->sync_io);
6923 /* sync IO will cause sync_io to increase before the disk_stats
6924 * as sync_io is counted when a request starts, and
6925 * disk_stats is counted when it completes.
6926 * So resync activity will cause curr_events to be smaller than
6927 * when there was no such activity.
6928 * non-sync IO will cause disk_stat to increase without
6929 * increasing sync_io so curr_events will (eventually)
6930 * be larger than it was before. Once it becomes
6931 * substantially larger, the test below will cause
6932 * the array to appear non-idle, and resync will slow
6933 * down.
6934 * If there is a lot of outstanding resync activity when
6935 * we set last_event to curr_events, then all that activity
6936 * completing might cause the array to appear non-idle
6937 * and resync will be slowed down even though there might
6938 * not have been non-resync activity. This will only
6939 * happen once though. 'last_events' will soon reflect
6940 * the state where there is little or no outstanding
6941 * resync requests, and further resync activity will
6942 * always make curr_events less than last_events.
6945 if (init || curr_events - rdev->last_events > 64) {
6946 rdev->last_events = curr_events;
6947 idle = 0;
6950 rcu_read_unlock();
6951 return idle;
6954 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6956 /* another "blocks" (512byte) blocks have been synced */
6957 atomic_sub(blocks, &mddev->recovery_active);
6958 wake_up(&mddev->recovery_wait);
6959 if (!ok) {
6960 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6961 md_wakeup_thread(mddev->thread);
6962 // stop recovery, signal do_sync ....
6967 /* md_write_start(mddev, bi)
6968 * If we need to update some array metadata (e.g. 'active' flag
6969 * in superblock) before writing, schedule a superblock update
6970 * and wait for it to complete.
6972 void md_write_start(struct mddev *mddev, struct bio *bi)
6974 int did_change = 0;
6975 if (bio_data_dir(bi) != WRITE)
6976 return;
6978 BUG_ON(mddev->ro == 1);
6979 if (mddev->ro == 2) {
6980 /* need to switch to read/write */
6981 mddev->ro = 0;
6982 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6983 md_wakeup_thread(mddev->thread);
6984 md_wakeup_thread(mddev->sync_thread);
6985 did_change = 1;
6987 atomic_inc(&mddev->writes_pending);
6988 if (mddev->safemode == 1)
6989 mddev->safemode = 0;
6990 if (mddev->in_sync) {
6991 spin_lock_irq(&mddev->write_lock);
6992 if (mddev->in_sync) {
6993 mddev->in_sync = 0;
6994 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6995 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6996 md_wakeup_thread(mddev->thread);
6997 did_change = 1;
6999 spin_unlock_irq(&mddev->write_lock);
7001 if (did_change)
7002 sysfs_notify_dirent_safe(mddev->sysfs_state);
7003 wait_event(mddev->sb_wait,
7004 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7007 void md_write_end(struct mddev *mddev)
7009 if (atomic_dec_and_test(&mddev->writes_pending)) {
7010 if (mddev->safemode == 2)
7011 md_wakeup_thread(mddev->thread);
7012 else if (mddev->safemode_delay)
7013 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7017 /* md_allow_write(mddev)
7018 * Calling this ensures that the array is marked 'active' so that writes
7019 * may proceed without blocking. It is important to call this before
7020 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7021 * Must be called with mddev_lock held.
7023 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7024 * is dropped, so return -EAGAIN after notifying userspace.
7026 int md_allow_write(struct mddev *mddev)
7028 if (!mddev->pers)
7029 return 0;
7030 if (mddev->ro)
7031 return 0;
7032 if (!mddev->pers->sync_request)
7033 return 0;
7035 spin_lock_irq(&mddev->write_lock);
7036 if (mddev->in_sync) {
7037 mddev->in_sync = 0;
7038 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7039 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7040 if (mddev->safemode_delay &&
7041 mddev->safemode == 0)
7042 mddev->safemode = 1;
7043 spin_unlock_irq(&mddev->write_lock);
7044 md_update_sb(mddev, 0);
7045 sysfs_notify_dirent_safe(mddev->sysfs_state);
7046 } else
7047 spin_unlock_irq(&mddev->write_lock);
7049 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7050 return -EAGAIN;
7051 else
7052 return 0;
7054 EXPORT_SYMBOL_GPL(md_allow_write);
7056 #define SYNC_MARKS 10
7057 #define SYNC_MARK_STEP (3*HZ)
7058 void md_do_sync(struct mddev *mddev)
7060 struct mddev *mddev2;
7061 unsigned int currspeed = 0,
7062 window;
7063 sector_t max_sectors,j, io_sectors;
7064 unsigned long mark[SYNC_MARKS];
7065 sector_t mark_cnt[SYNC_MARKS];
7066 int last_mark,m;
7067 struct list_head *tmp;
7068 sector_t last_check;
7069 int skipped = 0;
7070 struct md_rdev *rdev;
7071 char *desc;
7073 /* just incase thread restarts... */
7074 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7075 return;
7076 if (mddev->ro) /* never try to sync a read-only array */
7077 return;
7079 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7080 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7081 desc = "data-check";
7082 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7083 desc = "requested-resync";
7084 else
7085 desc = "resync";
7086 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7087 desc = "reshape";
7088 else
7089 desc = "recovery";
7091 /* we overload curr_resync somewhat here.
7092 * 0 == not engaged in resync at all
7093 * 2 == checking that there is no conflict with another sync
7094 * 1 == like 2, but have yielded to allow conflicting resync to
7095 * commense
7096 * other == active in resync - this many blocks
7098 * Before starting a resync we must have set curr_resync to
7099 * 2, and then checked that every "conflicting" array has curr_resync
7100 * less than ours. When we find one that is the same or higher
7101 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7102 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7103 * This will mean we have to start checking from the beginning again.
7107 do {
7108 mddev->curr_resync = 2;
7110 try_again:
7111 if (kthread_should_stop())
7112 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7114 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7115 goto skip;
7116 for_each_mddev(mddev2, tmp) {
7117 if (mddev2 == mddev)
7118 continue;
7119 if (!mddev->parallel_resync
7120 && mddev2->curr_resync
7121 && match_mddev_units(mddev, mddev2)) {
7122 DEFINE_WAIT(wq);
7123 if (mddev < mddev2 && mddev->curr_resync == 2) {
7124 /* arbitrarily yield */
7125 mddev->curr_resync = 1;
7126 wake_up(&resync_wait);
7128 if (mddev > mddev2 && mddev->curr_resync == 1)
7129 /* no need to wait here, we can wait the next
7130 * time 'round when curr_resync == 2
7132 continue;
7133 /* We need to wait 'interruptible' so as not to
7134 * contribute to the load average, and not to
7135 * be caught by 'softlockup'
7137 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7138 if (!kthread_should_stop() &&
7139 mddev2->curr_resync >= mddev->curr_resync) {
7140 printk(KERN_INFO "md: delaying %s of %s"
7141 " until %s has finished (they"
7142 " share one or more physical units)\n",
7143 desc, mdname(mddev), mdname(mddev2));
7144 mddev_put(mddev2);
7145 if (signal_pending(current))
7146 flush_signals(current);
7147 schedule();
7148 finish_wait(&resync_wait, &wq);
7149 goto try_again;
7151 finish_wait(&resync_wait, &wq);
7154 } while (mddev->curr_resync < 2);
7156 j = 0;
7157 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7158 /* resync follows the size requested by the personality,
7159 * which defaults to physical size, but can be virtual size
7161 max_sectors = mddev->resync_max_sectors;
7162 mddev->resync_mismatches = 0;
7163 /* we don't use the checkpoint if there's a bitmap */
7164 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7165 j = mddev->resync_min;
7166 else if (!mddev->bitmap)
7167 j = mddev->recovery_cp;
7169 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7170 max_sectors = mddev->dev_sectors;
7171 else {
7172 /* recovery follows the physical size of devices */
7173 max_sectors = mddev->dev_sectors;
7174 j = MaxSector;
7175 rcu_read_lock();
7176 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7177 if (rdev->raid_disk >= 0 &&
7178 !test_bit(Faulty, &rdev->flags) &&
7179 !test_bit(In_sync, &rdev->flags) &&
7180 rdev->recovery_offset < j)
7181 j = rdev->recovery_offset;
7182 rcu_read_unlock();
7185 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7186 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7187 " %d KB/sec/disk.\n", speed_min(mddev));
7188 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7189 "(but not more than %d KB/sec) for %s.\n",
7190 speed_max(mddev), desc);
7192 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7194 io_sectors = 0;
7195 for (m = 0; m < SYNC_MARKS; m++) {
7196 mark[m] = jiffies;
7197 mark_cnt[m] = io_sectors;
7199 last_mark = 0;
7200 mddev->resync_mark = mark[last_mark];
7201 mddev->resync_mark_cnt = mark_cnt[last_mark];
7204 * Tune reconstruction:
7206 window = 32*(PAGE_SIZE/512);
7207 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7208 window/2, (unsigned long long)max_sectors/2);
7210 atomic_set(&mddev->recovery_active, 0);
7211 last_check = 0;
7213 if (j>2) {
7214 printk(KERN_INFO
7215 "md: resuming %s of %s from checkpoint.\n",
7216 desc, mdname(mddev));
7217 mddev->curr_resync = j;
7219 mddev->curr_resync_completed = j;
7221 while (j < max_sectors) {
7222 sector_t sectors;
7224 skipped = 0;
7226 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7227 ((mddev->curr_resync > mddev->curr_resync_completed &&
7228 (mddev->curr_resync - mddev->curr_resync_completed)
7229 > (max_sectors >> 4)) ||
7230 (j - mddev->curr_resync_completed)*2
7231 >= mddev->resync_max - mddev->curr_resync_completed
7232 )) {
7233 /* time to update curr_resync_completed */
7234 wait_event(mddev->recovery_wait,
7235 atomic_read(&mddev->recovery_active) == 0);
7236 mddev->curr_resync_completed = j;
7237 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7238 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7241 while (j >= mddev->resync_max && !kthread_should_stop()) {
7242 /* As this condition is controlled by user-space,
7243 * we can block indefinitely, so use '_interruptible'
7244 * to avoid triggering warnings.
7246 flush_signals(current); /* just in case */
7247 wait_event_interruptible(mddev->recovery_wait,
7248 mddev->resync_max > j
7249 || kthread_should_stop());
7252 if (kthread_should_stop())
7253 goto interrupted;
7255 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7256 currspeed < speed_min(mddev));
7257 if (sectors == 0) {
7258 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7259 goto out;
7262 if (!skipped) { /* actual IO requested */
7263 io_sectors += sectors;
7264 atomic_add(sectors, &mddev->recovery_active);
7267 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7268 break;
7270 j += sectors;
7271 if (j>1) mddev->curr_resync = j;
7272 mddev->curr_mark_cnt = io_sectors;
7273 if (last_check == 0)
7274 /* this is the earliest that rebuild will be
7275 * visible in /proc/mdstat
7277 md_new_event(mddev);
7279 if (last_check + window > io_sectors || j == max_sectors)
7280 continue;
7282 last_check = io_sectors;
7283 repeat:
7284 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7285 /* step marks */
7286 int next = (last_mark+1) % SYNC_MARKS;
7288 mddev->resync_mark = mark[next];
7289 mddev->resync_mark_cnt = mark_cnt[next];
7290 mark[next] = jiffies;
7291 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7292 last_mark = next;
7296 if (kthread_should_stop())
7297 goto interrupted;
7301 * this loop exits only if either when we are slower than
7302 * the 'hard' speed limit, or the system was IO-idle for
7303 * a jiffy.
7304 * the system might be non-idle CPU-wise, but we only care
7305 * about not overloading the IO subsystem. (things like an
7306 * e2fsck being done on the RAID array should execute fast)
7308 cond_resched();
7310 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7311 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7313 if (currspeed > speed_min(mddev)) {
7314 if ((currspeed > speed_max(mddev)) ||
7315 !is_mddev_idle(mddev, 0)) {
7316 msleep(500);
7317 goto repeat;
7321 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7323 * this also signals 'finished resyncing' to md_stop
7325 out:
7326 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7328 /* tell personality that we are finished */
7329 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7331 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7332 mddev->curr_resync > 2) {
7333 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7334 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7335 if (mddev->curr_resync >= mddev->recovery_cp) {
7336 printk(KERN_INFO
7337 "md: checkpointing %s of %s.\n",
7338 desc, mdname(mddev));
7339 mddev->recovery_cp =
7340 mddev->curr_resync_completed;
7342 } else
7343 mddev->recovery_cp = MaxSector;
7344 } else {
7345 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7346 mddev->curr_resync = MaxSector;
7347 rcu_read_lock();
7348 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7349 if (rdev->raid_disk >= 0 &&
7350 mddev->delta_disks >= 0 &&
7351 !test_bit(Faulty, &rdev->flags) &&
7352 !test_bit(In_sync, &rdev->flags) &&
7353 rdev->recovery_offset < mddev->curr_resync)
7354 rdev->recovery_offset = mddev->curr_resync;
7355 rcu_read_unlock();
7358 skip:
7359 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7361 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7362 /* We completed so min/max setting can be forgotten if used. */
7363 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7364 mddev->resync_min = 0;
7365 mddev->resync_max = MaxSector;
7366 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7367 mddev->resync_min = mddev->curr_resync_completed;
7368 mddev->curr_resync = 0;
7369 wake_up(&resync_wait);
7370 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7371 md_wakeup_thread(mddev->thread);
7372 return;
7374 interrupted:
7376 * got a signal, exit.
7378 printk(KERN_INFO
7379 "md: md_do_sync() got signal ... exiting\n");
7380 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7381 goto out;
7384 EXPORT_SYMBOL_GPL(md_do_sync);
7386 static int remove_and_add_spares(struct mddev *mddev)
7388 struct md_rdev *rdev;
7389 int spares = 0;
7390 int removed = 0;
7392 mddev->curr_resync_completed = 0;
7394 list_for_each_entry(rdev, &mddev->disks, same_set)
7395 if (rdev->raid_disk >= 0 &&
7396 !test_bit(Blocked, &rdev->flags) &&
7397 (test_bit(Faulty, &rdev->flags) ||
7398 ! test_bit(In_sync, &rdev->flags)) &&
7399 atomic_read(&rdev->nr_pending)==0) {
7400 if (mddev->pers->hot_remove_disk(
7401 mddev, rdev) == 0) {
7402 sysfs_unlink_rdev(mddev, rdev);
7403 rdev->raid_disk = -1;
7404 removed++;
7407 if (removed)
7408 sysfs_notify(&mddev->kobj, NULL,
7409 "degraded");
7412 list_for_each_entry(rdev, &mddev->disks, same_set) {
7413 if (rdev->raid_disk >= 0 &&
7414 !test_bit(In_sync, &rdev->flags) &&
7415 !test_bit(Faulty, &rdev->flags))
7416 spares++;
7417 if (rdev->raid_disk < 0
7418 && !test_bit(Faulty, &rdev->flags)) {
7419 rdev->recovery_offset = 0;
7420 if (mddev->pers->
7421 hot_add_disk(mddev, rdev) == 0) {
7422 if (sysfs_link_rdev(mddev, rdev))
7423 /* failure here is OK */;
7424 spares++;
7425 md_new_event(mddev);
7426 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7430 return spares;
7433 static void reap_sync_thread(struct mddev *mddev)
7435 struct md_rdev *rdev;
7437 /* resync has finished, collect result */
7438 md_unregister_thread(&mddev->sync_thread);
7439 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7440 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7441 /* success...*/
7442 /* activate any spares */
7443 if (mddev->pers->spare_active(mddev))
7444 sysfs_notify(&mddev->kobj, NULL,
7445 "degraded");
7447 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7448 mddev->pers->finish_reshape)
7449 mddev->pers->finish_reshape(mddev);
7451 /* If array is no-longer degraded, then any saved_raid_disk
7452 * information must be scrapped. Also if any device is now
7453 * In_sync we must scrape the saved_raid_disk for that device
7454 * do the superblock for an incrementally recovered device
7455 * written out.
7457 list_for_each_entry(rdev, &mddev->disks, same_set)
7458 if (!mddev->degraded ||
7459 test_bit(In_sync, &rdev->flags))
7460 rdev->saved_raid_disk = -1;
7462 md_update_sb(mddev, 1);
7463 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7464 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7465 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7466 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7467 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7468 /* flag recovery needed just to double check */
7469 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7470 sysfs_notify_dirent_safe(mddev->sysfs_action);
7471 md_new_event(mddev);
7472 if (mddev->event_work.func)
7473 queue_work(md_misc_wq, &mddev->event_work);
7477 * This routine is regularly called by all per-raid-array threads to
7478 * deal with generic issues like resync and super-block update.
7479 * Raid personalities that don't have a thread (linear/raid0) do not
7480 * need this as they never do any recovery or update the superblock.
7482 * It does not do any resync itself, but rather "forks" off other threads
7483 * to do that as needed.
7484 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7485 * "->recovery" and create a thread at ->sync_thread.
7486 * When the thread finishes it sets MD_RECOVERY_DONE
7487 * and wakeups up this thread which will reap the thread and finish up.
7488 * This thread also removes any faulty devices (with nr_pending == 0).
7490 * The overall approach is:
7491 * 1/ if the superblock needs updating, update it.
7492 * 2/ If a recovery thread is running, don't do anything else.
7493 * 3/ If recovery has finished, clean up, possibly marking spares active.
7494 * 4/ If there are any faulty devices, remove them.
7495 * 5/ If array is degraded, try to add spares devices
7496 * 6/ If array has spares or is not in-sync, start a resync thread.
7498 void md_check_recovery(struct mddev *mddev)
7500 if (mddev->suspended)
7501 return;
7503 if (mddev->bitmap)
7504 bitmap_daemon_work(mddev);
7506 if (signal_pending(current)) {
7507 if (mddev->pers->sync_request && !mddev->external) {
7508 printk(KERN_INFO "md: %s in immediate safe mode\n",
7509 mdname(mddev));
7510 mddev->safemode = 2;
7512 flush_signals(current);
7515 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7516 return;
7517 if ( ! (
7518 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7519 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7520 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7521 (mddev->external == 0 && mddev->safemode == 1) ||
7522 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7523 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7525 return;
7527 if (mddev_trylock(mddev)) {
7528 int spares = 0;
7530 if (mddev->ro) {
7531 /* Only thing we do on a ro array is remove
7532 * failed devices.
7534 struct md_rdev *rdev;
7535 list_for_each_entry(rdev, &mddev->disks, same_set)
7536 if (rdev->raid_disk >= 0 &&
7537 !test_bit(Blocked, &rdev->flags) &&
7538 test_bit(Faulty, &rdev->flags) &&
7539 atomic_read(&rdev->nr_pending)==0) {
7540 if (mddev->pers->hot_remove_disk(
7541 mddev, rdev) == 0) {
7542 sysfs_unlink_rdev(mddev, rdev);
7543 rdev->raid_disk = -1;
7546 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7547 goto unlock;
7550 if (!mddev->external) {
7551 int did_change = 0;
7552 spin_lock_irq(&mddev->write_lock);
7553 if (mddev->safemode &&
7554 !atomic_read(&mddev->writes_pending) &&
7555 !mddev->in_sync &&
7556 mddev->recovery_cp == MaxSector) {
7557 mddev->in_sync = 1;
7558 did_change = 1;
7559 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7561 if (mddev->safemode == 1)
7562 mddev->safemode = 0;
7563 spin_unlock_irq(&mddev->write_lock);
7564 if (did_change)
7565 sysfs_notify_dirent_safe(mddev->sysfs_state);
7568 if (mddev->flags)
7569 md_update_sb(mddev, 0);
7571 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7572 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7573 /* resync/recovery still happening */
7574 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7575 goto unlock;
7577 if (mddev->sync_thread) {
7578 reap_sync_thread(mddev);
7579 goto unlock;
7581 /* Set RUNNING before clearing NEEDED to avoid
7582 * any transients in the value of "sync_action".
7584 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7585 /* Clear some bits that don't mean anything, but
7586 * might be left set
7588 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7589 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7591 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7592 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7593 goto unlock;
7594 /* no recovery is running.
7595 * remove any failed drives, then
7596 * add spares if possible.
7597 * Spare are also removed and re-added, to allow
7598 * the personality to fail the re-add.
7601 if (mddev->reshape_position != MaxSector) {
7602 if (mddev->pers->check_reshape == NULL ||
7603 mddev->pers->check_reshape(mddev) != 0)
7604 /* Cannot proceed */
7605 goto unlock;
7606 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7607 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7608 } else if ((spares = remove_and_add_spares(mddev))) {
7609 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7610 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7611 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7612 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7613 } else if (mddev->recovery_cp < MaxSector) {
7614 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7615 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7616 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7617 /* nothing to be done ... */
7618 goto unlock;
7620 if (mddev->pers->sync_request) {
7621 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7622 /* We are adding a device or devices to an array
7623 * which has the bitmap stored on all devices.
7624 * So make sure all bitmap pages get written
7626 bitmap_write_all(mddev->bitmap);
7628 mddev->sync_thread = md_register_thread(md_do_sync,
7629 mddev,
7630 "resync");
7631 if (!mddev->sync_thread) {
7632 printk(KERN_ERR "%s: could not start resync"
7633 " thread...\n",
7634 mdname(mddev));
7635 /* leave the spares where they are, it shouldn't hurt */
7636 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7637 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7638 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7639 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7640 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7641 } else
7642 md_wakeup_thread(mddev->sync_thread);
7643 sysfs_notify_dirent_safe(mddev->sysfs_action);
7644 md_new_event(mddev);
7646 unlock:
7647 if (!mddev->sync_thread) {
7648 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7649 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7650 &mddev->recovery))
7651 if (mddev->sysfs_action)
7652 sysfs_notify_dirent_safe(mddev->sysfs_action);
7654 mddev_unlock(mddev);
7658 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7660 sysfs_notify_dirent_safe(rdev->sysfs_state);
7661 wait_event_timeout(rdev->blocked_wait,
7662 !test_bit(Blocked, &rdev->flags) &&
7663 !test_bit(BlockedBadBlocks, &rdev->flags),
7664 msecs_to_jiffies(5000));
7665 rdev_dec_pending(rdev, mddev);
7667 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7670 /* Bad block management.
7671 * We can record which blocks on each device are 'bad' and so just
7672 * fail those blocks, or that stripe, rather than the whole device.
7673 * Entries in the bad-block table are 64bits wide. This comprises:
7674 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7675 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7676 * A 'shift' can be set so that larger blocks are tracked and
7677 * consequently larger devices can be covered.
7678 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7680 * Locking of the bad-block table uses a seqlock so md_is_badblock
7681 * might need to retry if it is very unlucky.
7682 * We will sometimes want to check for bad blocks in a bi_end_io function,
7683 * so we use the write_seqlock_irq variant.
7685 * When looking for a bad block we specify a range and want to
7686 * know if any block in the range is bad. So we binary-search
7687 * to the last range that starts at-or-before the given endpoint,
7688 * (or "before the sector after the target range")
7689 * then see if it ends after the given start.
7690 * We return
7691 * 0 if there are no known bad blocks in the range
7692 * 1 if there are known bad block which are all acknowledged
7693 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7694 * plus the start/length of the first bad section we overlap.
7696 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7697 sector_t *first_bad, int *bad_sectors)
7699 int hi;
7700 int lo = 0;
7701 u64 *p = bb->page;
7702 int rv = 0;
7703 sector_t target = s + sectors;
7704 unsigned seq;
7706 if (bb->shift > 0) {
7707 /* round the start down, and the end up */
7708 s >>= bb->shift;
7709 target += (1<<bb->shift) - 1;
7710 target >>= bb->shift;
7711 sectors = target - s;
7713 /* 'target' is now the first block after the bad range */
7715 retry:
7716 seq = read_seqbegin(&bb->lock);
7718 hi = bb->count;
7720 /* Binary search between lo and hi for 'target'
7721 * i.e. for the last range that starts before 'target'
7723 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7724 * are known not to be the last range before target.
7725 * VARIANT: hi-lo is the number of possible
7726 * ranges, and decreases until it reaches 1
7728 while (hi - lo > 1) {
7729 int mid = (lo + hi) / 2;
7730 sector_t a = BB_OFFSET(p[mid]);
7731 if (a < target)
7732 /* This could still be the one, earlier ranges
7733 * could not. */
7734 lo = mid;
7735 else
7736 /* This and later ranges are definitely out. */
7737 hi = mid;
7739 /* 'lo' might be the last that started before target, but 'hi' isn't */
7740 if (hi > lo) {
7741 /* need to check all range that end after 's' to see if
7742 * any are unacknowledged.
7744 while (lo >= 0 &&
7745 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7746 if (BB_OFFSET(p[lo]) < target) {
7747 /* starts before the end, and finishes after
7748 * the start, so they must overlap
7750 if (rv != -1 && BB_ACK(p[lo]))
7751 rv = 1;
7752 else
7753 rv = -1;
7754 *first_bad = BB_OFFSET(p[lo]);
7755 *bad_sectors = BB_LEN(p[lo]);
7757 lo--;
7761 if (read_seqretry(&bb->lock, seq))
7762 goto retry;
7764 return rv;
7766 EXPORT_SYMBOL_GPL(md_is_badblock);
7769 * Add a range of bad blocks to the table.
7770 * This might extend the table, or might contract it
7771 * if two adjacent ranges can be merged.
7772 * We binary-search to find the 'insertion' point, then
7773 * decide how best to handle it.
7775 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7776 int acknowledged)
7778 u64 *p;
7779 int lo, hi;
7780 int rv = 1;
7782 if (bb->shift < 0)
7783 /* badblocks are disabled */
7784 return 0;
7786 if (bb->shift) {
7787 /* round the start down, and the end up */
7788 sector_t next = s + sectors;
7789 s >>= bb->shift;
7790 next += (1<<bb->shift) - 1;
7791 next >>= bb->shift;
7792 sectors = next - s;
7795 write_seqlock_irq(&bb->lock);
7797 p = bb->page;
7798 lo = 0;
7799 hi = bb->count;
7800 /* Find the last range that starts at-or-before 's' */
7801 while (hi - lo > 1) {
7802 int mid = (lo + hi) / 2;
7803 sector_t a = BB_OFFSET(p[mid]);
7804 if (a <= s)
7805 lo = mid;
7806 else
7807 hi = mid;
7809 if (hi > lo && BB_OFFSET(p[lo]) > s)
7810 hi = lo;
7812 if (hi > lo) {
7813 /* we found a range that might merge with the start
7814 * of our new range
7816 sector_t a = BB_OFFSET(p[lo]);
7817 sector_t e = a + BB_LEN(p[lo]);
7818 int ack = BB_ACK(p[lo]);
7819 if (e >= s) {
7820 /* Yes, we can merge with a previous range */
7821 if (s == a && s + sectors >= e)
7822 /* new range covers old */
7823 ack = acknowledged;
7824 else
7825 ack = ack && acknowledged;
7827 if (e < s + sectors)
7828 e = s + sectors;
7829 if (e - a <= BB_MAX_LEN) {
7830 p[lo] = BB_MAKE(a, e-a, ack);
7831 s = e;
7832 } else {
7833 /* does not all fit in one range,
7834 * make p[lo] maximal
7836 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7837 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7838 s = a + BB_MAX_LEN;
7840 sectors = e - s;
7843 if (sectors && hi < bb->count) {
7844 /* 'hi' points to the first range that starts after 's'.
7845 * Maybe we can merge with the start of that range */
7846 sector_t a = BB_OFFSET(p[hi]);
7847 sector_t e = a + BB_LEN(p[hi]);
7848 int ack = BB_ACK(p[hi]);
7849 if (a <= s + sectors) {
7850 /* merging is possible */
7851 if (e <= s + sectors) {
7852 /* full overlap */
7853 e = s + sectors;
7854 ack = acknowledged;
7855 } else
7856 ack = ack && acknowledged;
7858 a = s;
7859 if (e - a <= BB_MAX_LEN) {
7860 p[hi] = BB_MAKE(a, e-a, ack);
7861 s = e;
7862 } else {
7863 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7864 s = a + BB_MAX_LEN;
7866 sectors = e - s;
7867 lo = hi;
7868 hi++;
7871 if (sectors == 0 && hi < bb->count) {
7872 /* we might be able to combine lo and hi */
7873 /* Note: 's' is at the end of 'lo' */
7874 sector_t a = BB_OFFSET(p[hi]);
7875 int lolen = BB_LEN(p[lo]);
7876 int hilen = BB_LEN(p[hi]);
7877 int newlen = lolen + hilen - (s - a);
7878 if (s >= a && newlen < BB_MAX_LEN) {
7879 /* yes, we can combine them */
7880 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7881 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7882 memmove(p + hi, p + hi + 1,
7883 (bb->count - hi - 1) * 8);
7884 bb->count--;
7887 while (sectors) {
7888 /* didn't merge (it all).
7889 * Need to add a range just before 'hi' */
7890 if (bb->count >= MD_MAX_BADBLOCKS) {
7891 /* No room for more */
7892 rv = 0;
7893 break;
7894 } else {
7895 int this_sectors = sectors;
7896 memmove(p + hi + 1, p + hi,
7897 (bb->count - hi) * 8);
7898 bb->count++;
7900 if (this_sectors > BB_MAX_LEN)
7901 this_sectors = BB_MAX_LEN;
7902 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7903 sectors -= this_sectors;
7904 s += this_sectors;
7908 bb->changed = 1;
7909 if (!acknowledged)
7910 bb->unacked_exist = 1;
7911 write_sequnlock_irq(&bb->lock);
7913 return rv;
7916 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7917 int acknowledged)
7919 int rv = md_set_badblocks(&rdev->badblocks,
7920 s + rdev->data_offset, sectors, acknowledged);
7921 if (rv) {
7922 /* Make sure they get written out promptly */
7923 sysfs_notify_dirent_safe(rdev->sysfs_state);
7924 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7925 md_wakeup_thread(rdev->mddev->thread);
7927 return rv;
7929 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7932 * Remove a range of bad blocks from the table.
7933 * This may involve extending the table if we spilt a region,
7934 * but it must not fail. So if the table becomes full, we just
7935 * drop the remove request.
7937 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7939 u64 *p;
7940 int lo, hi;
7941 sector_t target = s + sectors;
7942 int rv = 0;
7944 if (bb->shift > 0) {
7945 /* When clearing we round the start up and the end down.
7946 * This should not matter as the shift should align with
7947 * the block size and no rounding should ever be needed.
7948 * However it is better the think a block is bad when it
7949 * isn't than to think a block is not bad when it is.
7951 s += (1<<bb->shift) - 1;
7952 s >>= bb->shift;
7953 target >>= bb->shift;
7954 sectors = target - s;
7957 write_seqlock_irq(&bb->lock);
7959 p = bb->page;
7960 lo = 0;
7961 hi = bb->count;
7962 /* Find the last range that starts before 'target' */
7963 while (hi - lo > 1) {
7964 int mid = (lo + hi) / 2;
7965 sector_t a = BB_OFFSET(p[mid]);
7966 if (a < target)
7967 lo = mid;
7968 else
7969 hi = mid;
7971 if (hi > lo) {
7972 /* p[lo] is the last range that could overlap the
7973 * current range. Earlier ranges could also overlap,
7974 * but only this one can overlap the end of the range.
7976 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7977 /* Partial overlap, leave the tail of this range */
7978 int ack = BB_ACK(p[lo]);
7979 sector_t a = BB_OFFSET(p[lo]);
7980 sector_t end = a + BB_LEN(p[lo]);
7982 if (a < s) {
7983 /* we need to split this range */
7984 if (bb->count >= MD_MAX_BADBLOCKS) {
7985 rv = 0;
7986 goto out;
7988 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7989 bb->count++;
7990 p[lo] = BB_MAKE(a, s-a, ack);
7991 lo++;
7993 p[lo] = BB_MAKE(target, end - target, ack);
7994 /* there is no longer an overlap */
7995 hi = lo;
7996 lo--;
7998 while (lo >= 0 &&
7999 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8000 /* This range does overlap */
8001 if (BB_OFFSET(p[lo]) < s) {
8002 /* Keep the early parts of this range. */
8003 int ack = BB_ACK(p[lo]);
8004 sector_t start = BB_OFFSET(p[lo]);
8005 p[lo] = BB_MAKE(start, s - start, ack);
8006 /* now low doesn't overlap, so.. */
8007 break;
8009 lo--;
8011 /* 'lo' is strictly before, 'hi' is strictly after,
8012 * anything between needs to be discarded
8014 if (hi - lo > 1) {
8015 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8016 bb->count -= (hi - lo - 1);
8020 bb->changed = 1;
8021 out:
8022 write_sequnlock_irq(&bb->lock);
8023 return rv;
8026 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8028 return md_clear_badblocks(&rdev->badblocks,
8029 s + rdev->data_offset,
8030 sectors);
8032 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8035 * Acknowledge all bad blocks in a list.
8036 * This only succeeds if ->changed is clear. It is used by
8037 * in-kernel metadata updates
8039 void md_ack_all_badblocks(struct badblocks *bb)
8041 if (bb->page == NULL || bb->changed)
8042 /* no point even trying */
8043 return;
8044 write_seqlock_irq(&bb->lock);
8046 if (bb->changed == 0) {
8047 u64 *p = bb->page;
8048 int i;
8049 for (i = 0; i < bb->count ; i++) {
8050 if (!BB_ACK(p[i])) {
8051 sector_t start = BB_OFFSET(p[i]);
8052 int len = BB_LEN(p[i]);
8053 p[i] = BB_MAKE(start, len, 1);
8056 bb->unacked_exist = 0;
8058 write_sequnlock_irq(&bb->lock);
8060 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8062 /* sysfs access to bad-blocks list.
8063 * We present two files.
8064 * 'bad-blocks' lists sector numbers and lengths of ranges that
8065 * are recorded as bad. The list is truncated to fit within
8066 * the one-page limit of sysfs.
8067 * Writing "sector length" to this file adds an acknowledged
8068 * bad block list.
8069 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8070 * been acknowledged. Writing to this file adds bad blocks
8071 * without acknowledging them. This is largely for testing.
8074 static ssize_t
8075 badblocks_show(struct badblocks *bb, char *page, int unack)
8077 size_t len;
8078 int i;
8079 u64 *p = bb->page;
8080 unsigned seq;
8082 if (bb->shift < 0)
8083 return 0;
8085 retry:
8086 seq = read_seqbegin(&bb->lock);
8088 len = 0;
8089 i = 0;
8091 while (len < PAGE_SIZE && i < bb->count) {
8092 sector_t s = BB_OFFSET(p[i]);
8093 unsigned int length = BB_LEN(p[i]);
8094 int ack = BB_ACK(p[i]);
8095 i++;
8097 if (unack && ack)
8098 continue;
8100 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8101 (unsigned long long)s << bb->shift,
8102 length << bb->shift);
8104 if (unack && len == 0)
8105 bb->unacked_exist = 0;
8107 if (read_seqretry(&bb->lock, seq))
8108 goto retry;
8110 return len;
8113 #define DO_DEBUG 1
8115 static ssize_t
8116 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8118 unsigned long long sector;
8119 int length;
8120 char newline;
8121 #ifdef DO_DEBUG
8122 /* Allow clearing via sysfs *only* for testing/debugging.
8123 * Normally only a successful write may clear a badblock
8125 int clear = 0;
8126 if (page[0] == '-') {
8127 clear = 1;
8128 page++;
8130 #endif /* DO_DEBUG */
8132 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8133 case 3:
8134 if (newline != '\n')
8135 return -EINVAL;
8136 case 2:
8137 if (length <= 0)
8138 return -EINVAL;
8139 break;
8140 default:
8141 return -EINVAL;
8144 #ifdef DO_DEBUG
8145 if (clear) {
8146 md_clear_badblocks(bb, sector, length);
8147 return len;
8149 #endif /* DO_DEBUG */
8150 if (md_set_badblocks(bb, sector, length, !unack))
8151 return len;
8152 else
8153 return -ENOSPC;
8156 static int md_notify_reboot(struct notifier_block *this,
8157 unsigned long code, void *x)
8159 struct list_head *tmp;
8160 struct mddev *mddev;
8161 int need_delay = 0;
8163 for_each_mddev(mddev, tmp) {
8164 if (mddev_trylock(mddev)) {
8165 if (mddev->pers)
8166 __md_stop_writes(mddev);
8167 mddev->safemode = 2;
8168 mddev_unlock(mddev);
8170 need_delay = 1;
8173 * certain more exotic SCSI devices are known to be
8174 * volatile wrt too early system reboots. While the
8175 * right place to handle this issue is the given
8176 * driver, we do want to have a safe RAID driver ...
8178 if (need_delay)
8179 mdelay(1000*1);
8181 return NOTIFY_DONE;
8184 static struct notifier_block md_notifier = {
8185 .notifier_call = md_notify_reboot,
8186 .next = NULL,
8187 .priority = INT_MAX, /* before any real devices */
8190 static void md_geninit(void)
8192 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8194 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8197 static int __init md_init(void)
8199 int ret = -ENOMEM;
8201 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8202 if (!md_wq)
8203 goto err_wq;
8205 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8206 if (!md_misc_wq)
8207 goto err_misc_wq;
8209 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8210 goto err_md;
8212 if ((ret = register_blkdev(0, "mdp")) < 0)
8213 goto err_mdp;
8214 mdp_major = ret;
8216 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8217 md_probe, NULL, NULL);
8218 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8219 md_probe, NULL, NULL);
8221 register_reboot_notifier(&md_notifier);
8222 raid_table_header = register_sysctl_table(raid_root_table);
8224 md_geninit();
8225 return 0;
8227 err_mdp:
8228 unregister_blkdev(MD_MAJOR, "md");
8229 err_md:
8230 destroy_workqueue(md_misc_wq);
8231 err_misc_wq:
8232 destroy_workqueue(md_wq);
8233 err_wq:
8234 return ret;
8237 #ifndef MODULE
8240 * Searches all registered partitions for autorun RAID arrays
8241 * at boot time.
8244 static LIST_HEAD(all_detected_devices);
8245 struct detected_devices_node {
8246 struct list_head list;
8247 dev_t dev;
8250 void md_autodetect_dev(dev_t dev)
8252 struct detected_devices_node *node_detected_dev;
8254 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8255 if (node_detected_dev) {
8256 node_detected_dev->dev = dev;
8257 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8258 } else {
8259 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8260 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8265 static void autostart_arrays(int part)
8267 struct md_rdev *rdev;
8268 struct detected_devices_node *node_detected_dev;
8269 dev_t dev;
8270 int i_scanned, i_passed;
8272 i_scanned = 0;
8273 i_passed = 0;
8275 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8277 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8278 i_scanned++;
8279 node_detected_dev = list_entry(all_detected_devices.next,
8280 struct detected_devices_node, list);
8281 list_del(&node_detected_dev->list);
8282 dev = node_detected_dev->dev;
8283 kfree(node_detected_dev);
8284 rdev = md_import_device(dev,0, 90);
8285 if (IS_ERR(rdev))
8286 continue;
8288 if (test_bit(Faulty, &rdev->flags)) {
8289 MD_BUG();
8290 continue;
8292 set_bit(AutoDetected, &rdev->flags);
8293 list_add(&rdev->same_set, &pending_raid_disks);
8294 i_passed++;
8297 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8298 i_scanned, i_passed);
8300 autorun_devices(part);
8303 #endif /* !MODULE */
8305 static __exit void md_exit(void)
8307 struct mddev *mddev;
8308 struct list_head *tmp;
8310 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8311 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8313 unregister_blkdev(MD_MAJOR,"md");
8314 unregister_blkdev(mdp_major, "mdp");
8315 unregister_reboot_notifier(&md_notifier);
8316 unregister_sysctl_table(raid_table_header);
8317 remove_proc_entry("mdstat", NULL);
8318 for_each_mddev(mddev, tmp) {
8319 export_array(mddev);
8320 mddev->hold_active = 0;
8322 destroy_workqueue(md_misc_wq);
8323 destroy_workqueue(md_wq);
8326 subsys_initcall(md_init);
8327 module_exit(md_exit)
8329 static int get_ro(char *buffer, struct kernel_param *kp)
8331 return sprintf(buffer, "%d", start_readonly);
8333 static int set_ro(const char *val, struct kernel_param *kp)
8335 char *e;
8336 int num = simple_strtoul(val, &e, 10);
8337 if (*val && (*e == '\0' || *e == '\n')) {
8338 start_readonly = num;
8339 return 0;
8341 return -EINVAL;
8344 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8345 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8347 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8349 EXPORT_SYMBOL(register_md_personality);
8350 EXPORT_SYMBOL(unregister_md_personality);
8351 EXPORT_SYMBOL(md_error);
8352 EXPORT_SYMBOL(md_done_sync);
8353 EXPORT_SYMBOL(md_write_start);
8354 EXPORT_SYMBOL(md_write_end);
8355 EXPORT_SYMBOL(md_register_thread);
8356 EXPORT_SYMBOL(md_unregister_thread);
8357 EXPORT_SYMBOL(md_wakeup_thread);
8358 EXPORT_SYMBOL(md_check_recovery);
8359 MODULE_LICENSE("GPL");
8360 MODULE_DESCRIPTION("MD RAID framework");
8361 MODULE_ALIAS("md");
8362 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);