2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
48 /*-------------------------------------------------------------------------*/
51 * USB Host Controller Driver framework
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
81 /*-------------------------------------------------------------------------*/
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded
;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list
);
89 EXPORT_SYMBOL_GPL (usb_bus_list
);
91 /* used when allocating bus numbers */
94 unsigned long busmap
[USB_MAXBUS
/ (8*sizeof (unsigned long))];
96 static struct usb_busmap busmap
;
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
114 static inline int is_root_hub(struct usb_device
*udev
)
116 return (udev
->parent
== NULL
);
119 /*-------------------------------------------------------------------------*/
122 * Sharable chunks of root hub code.
125 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor
[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor
[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor
[18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
196 /*-------------------------------------------------------------------------*/
198 /* Configuration descriptors for our root hubs */
200 static const u8 fs_rh_config_descriptor
[] = {
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
214 0x00, /* __u8 MaxPower; */
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
247 static const u8 hs_rh_config_descriptor
[] = {
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
261 0x00, /* __u8 MaxPower; */
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
296 static const u8 ss_rh_config_descriptor
[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
309 0x00, /* __u8 MaxPower; */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
340 /* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
345 static int authorized_default
= -1;
346 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
347 MODULE_PARM_DESC(authorized_default
,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
351 /*-------------------------------------------------------------------------*/
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
366 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
368 unsigned n
, t
= 2 + 2*strlen(s
);
371 t
= 254; /* Longest possible UTF string descriptor */
375 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
383 t
= (unsigned char)*s
++;
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
401 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
405 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
414 memcpy(data
, langids
, len
);
418 s
= hcd
->self
.bus_name
;
422 s
= hcd
->product_desc
;
426 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
427 init_utsname()->release
, hcd
->driver
->description
);
431 /* Can't happen; caller guarantees it */
435 return ascii2desc(s
, data
, len
);
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
442 struct usb_ctrlrequest
*cmd
;
443 u16 typeReq
, wValue
, wIndex
, wLength
;
444 u8
*ubuf
= urb
->transfer_buffer
;
446 * tbuf should be as big as the BOS descriptor and
447 * the USB hub descriptor.
449 u8 tbuf
[USB_DT_BOS_SIZE
+ USB_DT_USB_SS_CAP_SIZE
]
450 __attribute__((aligned(4)));
451 const u8
*bufp
= tbuf
;
455 u8 patch_protocol
= 0;
459 spin_lock_irq(&hcd_root_hub_lock
);
460 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
461 spin_unlock_irq(&hcd_root_hub_lock
);
464 urb
->hcpriv
= hcd
; /* Indicate it's queued */
466 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
467 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
468 wValue
= le16_to_cpu (cmd
->wValue
);
469 wIndex
= le16_to_cpu (cmd
->wIndex
);
470 wLength
= le16_to_cpu (cmd
->wLength
);
472 if (wLength
> urb
->transfer_buffer_length
)
475 urb
->actual_length
= 0;
478 /* DEVICE REQUESTS */
480 /* The root hub's remote wakeup enable bit is implemented using
481 * driver model wakeup flags. If this system supports wakeup
482 * through USB, userspace may change the default "allow wakeup"
483 * policy through sysfs or these calls.
485 * Most root hubs support wakeup from downstream devices, for
486 * runtime power management (disabling USB clocks and reducing
487 * VBUS power usage). However, not all of them do so; silicon,
488 * board, and BIOS bugs here are not uncommon, so these can't
489 * be treated quite like external hubs.
491 * Likewise, not all root hubs will pass wakeup events upstream,
492 * to wake up the whole system. So don't assume root hub and
493 * controller capabilities are identical.
496 case DeviceRequest
| USB_REQ_GET_STATUS
:
497 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
498 << USB_DEVICE_REMOTE_WAKEUP
)
499 | (1 << USB_DEVICE_SELF_POWERED
);
503 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
504 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
505 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
509 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
510 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
511 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
512 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
516 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
520 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
522 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
523 switch (wValue
& 0xff00) {
524 case USB_DT_DEVICE
<< 8:
525 switch (hcd
->speed
) {
527 bufp
= usb3_rh_dev_descriptor
;
530 bufp
= usb2_rh_dev_descriptor
;
533 bufp
= usb11_rh_dev_descriptor
;
542 case USB_DT_CONFIG
<< 8:
543 switch (hcd
->speed
) {
545 bufp
= ss_rh_config_descriptor
;
546 len
= sizeof ss_rh_config_descriptor
;
549 bufp
= hs_rh_config_descriptor
;
550 len
= sizeof hs_rh_config_descriptor
;
553 bufp
= fs_rh_config_descriptor
;
554 len
= sizeof fs_rh_config_descriptor
;
559 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
562 case USB_DT_STRING
<< 8:
563 if ((wValue
& 0xff) < 4)
564 urb
->actual_length
= rh_string(wValue
& 0xff,
566 else /* unsupported IDs --> "protocol stall" */
569 case USB_DT_BOS
<< 8:
575 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
579 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
581 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
582 // wValue == urb->dev->devaddr
583 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
587 /* INTERFACE REQUESTS (no defined feature/status flags) */
589 /* ENDPOINT REQUESTS */
591 case EndpointRequest
| USB_REQ_GET_STATUS
:
592 // ENDPOINT_HALT flag
597 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
598 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
599 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
602 /* CLASS REQUESTS (and errors) */
606 /* non-generic request */
612 case GetHubDescriptor
:
613 len
= sizeof (struct usb_hub_descriptor
);
615 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
616 /* len is returned by hub_control */
619 status
= hcd
->driver
->hub_control (hcd
,
620 typeReq
, wValue
, wIndex
,
624 /* "protocol stall" on error */
630 if (status
!= -EPIPE
) {
631 dev_dbg (hcd
->self
.controller
,
632 "CTRL: TypeReq=0x%x val=0x%x "
633 "idx=0x%x len=%d ==> %d\n",
634 typeReq
, wValue
, wIndex
,
637 } else if (status
> 0) {
638 /* hub_control may return the length of data copied. */
643 if (urb
->transfer_buffer_length
< len
)
644 len
= urb
->transfer_buffer_length
;
645 urb
->actual_length
= len
;
646 // always USB_DIR_IN, toward host
647 memcpy (ubuf
, bufp
, len
);
649 /* report whether RH hardware supports remote wakeup */
651 len
> offsetof (struct usb_config_descriptor
,
653 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
654 |= USB_CONFIG_ATT_WAKEUP
;
656 /* report whether RH hardware has an integrated TT */
657 if (patch_protocol
&&
658 len
> offsetof(struct usb_device_descriptor
,
660 ((struct usb_device_descriptor
*) ubuf
)->
661 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
664 /* any errors get returned through the urb completion */
665 spin_lock_irq(&hcd_root_hub_lock
);
666 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
668 /* This peculiar use of spinlocks echoes what real HC drivers do.
669 * Avoiding calls to local_irq_disable/enable makes the code
672 spin_unlock(&hcd_root_hub_lock
);
673 usb_hcd_giveback_urb(hcd
, urb
, status
);
674 spin_lock(&hcd_root_hub_lock
);
676 spin_unlock_irq(&hcd_root_hub_lock
);
680 /*-------------------------------------------------------------------------*/
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
687 * Completions are called in_interrupt(), but they may or may not
690 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
695 char buffer
[6]; /* Any root hubs with > 31 ports? */
697 if (unlikely(!hcd
->rh_pollable
))
699 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
702 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
705 /* try to complete the status urb */
706 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
707 urb
= hcd
->status_urb
;
709 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
710 hcd
->status_urb
= NULL
;
711 urb
->actual_length
= length
;
712 memcpy(urb
->transfer_buffer
, buffer
, length
);
714 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
715 spin_unlock(&hcd_root_hub_lock
);
716 usb_hcd_giveback_urb(hcd
, urb
, 0);
717 spin_lock(&hcd_root_hub_lock
);
720 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
722 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
725 /* The USB 2.0 spec says 256 ms. This is close enough and won't
726 * exceed that limit if HZ is 100. The math is more clunky than
727 * maybe expected, this is to make sure that all timers for USB devices
728 * fire at the same time to give the CPU a break in between */
729 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
730 (length
== 0 && hcd
->status_urb
!= NULL
))
731 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
736 static void rh_timer_func (unsigned long _hcd
)
738 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
741 /*-------------------------------------------------------------------------*/
743 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
747 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
749 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
750 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
751 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
756 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
760 hcd
->status_urb
= urb
;
761 urb
->hcpriv
= hcd
; /* indicate it's queued */
762 if (!hcd
->uses_new_polling
)
763 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
765 /* If a status change has already occurred, report it ASAP */
766 else if (HCD_POLL_PENDING(hcd
))
767 mod_timer(&hcd
->rh_timer
, jiffies
);
770 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
774 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
776 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
777 return rh_queue_status (hcd
, urb
);
778 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
779 return rh_call_control (hcd
, urb
);
783 /*-------------------------------------------------------------------------*/
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
788 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
793 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
794 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
798 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
801 } else { /* Status URB */
802 if (!hcd
->uses_new_polling
)
803 del_timer (&hcd
->rh_timer
);
804 if (urb
== hcd
->status_urb
) {
805 hcd
->status_urb
= NULL
;
806 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
808 spin_unlock(&hcd_root_hub_lock
);
809 usb_hcd_giveback_urb(hcd
, urb
, status
);
810 spin_lock(&hcd_root_hub_lock
);
814 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
821 * Show & store the current value of authorized_default
823 static ssize_t
usb_host_authorized_default_show(struct device
*dev
,
824 struct device_attribute
*attr
,
827 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
828 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
829 struct usb_hcd
*usb_hcd
;
831 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
833 usb_hcd
= bus_to_hcd(usb_bus
);
834 return snprintf(buf
, PAGE_SIZE
, "%u\n", usb_hcd
->authorized_default
);
837 static ssize_t
usb_host_authorized_default_store(struct device
*dev
,
838 struct device_attribute
*attr
,
839 const char *buf
, size_t size
)
843 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
844 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
845 struct usb_hcd
*usb_hcd
;
847 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
849 usb_hcd
= bus_to_hcd(usb_bus
);
850 result
= sscanf(buf
, "%u\n", &val
);
852 usb_hcd
->authorized_default
= val
? 1 : 0;
860 static DEVICE_ATTR(authorized_default
, 0644,
861 usb_host_authorized_default_show
,
862 usb_host_authorized_default_store
);
865 /* Group all the USB bus attributes */
866 static struct attribute
*usb_bus_attrs
[] = {
867 &dev_attr_authorized_default
.attr
,
871 static struct attribute_group usb_bus_attr_group
= {
872 .name
= NULL
, /* we want them in the same directory */
873 .attrs
= usb_bus_attrs
,
878 /*-------------------------------------------------------------------------*/
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
887 static void usb_bus_init (struct usb_bus
*bus
)
889 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
891 bus
->devnum_next
= 1;
893 bus
->root_hub
= NULL
;
895 bus
->bandwidth_allocated
= 0;
896 bus
->bandwidth_int_reqs
= 0;
897 bus
->bandwidth_isoc_reqs
= 0;
899 INIT_LIST_HEAD (&bus
->bus_list
);
902 /*-------------------------------------------------------------------------*/
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
912 static int usb_register_bus(struct usb_bus
*bus
)
917 mutex_lock(&usb_bus_list_lock
);
918 busnum
= find_next_zero_bit (busmap
.busmap
, USB_MAXBUS
, 1);
919 if (busnum
>= USB_MAXBUS
) {
920 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
921 goto error_find_busnum
;
923 set_bit (busnum
, busmap
.busmap
);
924 bus
->busnum
= busnum
;
926 /* Add it to the local list of buses */
927 list_add (&bus
->bus_list
, &usb_bus_list
);
928 mutex_unlock(&usb_bus_list_lock
);
930 usb_notify_add_bus(bus
);
932 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
933 "number %d\n", bus
->busnum
);
937 mutex_unlock(&usb_bus_list_lock
);
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
949 static void usb_deregister_bus (struct usb_bus
*bus
)
951 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
954 * NOTE: make sure that all the devices are removed by the
955 * controller code, as well as having it call this when cleaning
958 mutex_lock(&usb_bus_list_lock
);
959 list_del (&bus
->bus_list
);
960 mutex_unlock(&usb_bus_list_lock
);
962 usb_notify_remove_bus(bus
);
964 clear_bit (bus
->busnum
, busmap
.busmap
);
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
971 * This function registers the root hub with the USB subsystem. It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device. It also assigns the root hub's USB address
976 static int register_root_hub(struct usb_hcd
*hcd
)
978 struct device
*parent_dev
= hcd
->self
.controller
;
979 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
980 const int devnum
= 1;
983 usb_dev
->devnum
= devnum
;
984 usb_dev
->bus
->devnum_next
= devnum
+ 1;
985 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
986 sizeof usb_dev
->bus
->devmap
.devicemap
);
987 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
988 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
990 mutex_lock(&usb_bus_list_lock
);
992 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
993 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
994 if (retval
!= sizeof usb_dev
->descriptor
) {
995 mutex_unlock(&usb_bus_list_lock
);
996 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
997 dev_name(&usb_dev
->dev
), retval
);
998 return (retval
< 0) ? retval
: -EMSGSIZE
;
1001 retval
= usb_new_device (usb_dev
);
1003 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1004 dev_name(&usb_dev
->dev
), retval
);
1006 mutex_unlock(&usb_bus_list_lock
);
1009 spin_lock_irq (&hcd_root_hub_lock
);
1010 hcd
->rh_registered
= 1;
1011 spin_unlock_irq (&hcd_root_hub_lock
);
1013 /* Did the HC die before the root hub was registered? */
1015 usb_hc_died (hcd
); /* This time clean up */
1022 /*-------------------------------------------------------------------------*/
1025 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1026 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1027 * @is_input: true iff the transaction sends data to the host
1028 * @isoc: true for isochronous transactions, false for interrupt ones
1029 * @bytecount: how many bytes in the transaction.
1031 * Returns approximate bus time in nanoseconds for a periodic transaction.
1032 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1033 * scheduled in software, this function is only used for such scheduling.
1035 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1040 case USB_SPEED_LOW
: /* INTR only */
1042 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1043 return (64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1045 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1046 return (64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1048 case USB_SPEED_FULL
: /* ISOC or INTR */
1050 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1051 return (((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
);
1053 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1054 return (9107L + BW_HOST_DELAY
+ tmp
);
1056 case USB_SPEED_HIGH
: /* ISOC or INTR */
1057 // FIXME adjust for input vs output
1059 tmp
= HS_NSECS_ISO (bytecount
);
1061 tmp
= HS_NSECS (bytecount
);
1064 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1068 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1071 /*-------------------------------------------------------------------------*/
1074 * Generic HC operations.
1077 /*-------------------------------------------------------------------------*/
1080 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1081 * @hcd: host controller to which @urb was submitted
1082 * @urb: URB being submitted
1084 * Host controller drivers should call this routine in their enqueue()
1085 * method. The HCD's private spinlock must be held and interrupts must
1086 * be disabled. The actions carried out here are required for URB
1087 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1089 * Returns 0 for no error, otherwise a negative error code (in which case
1090 * the enqueue() method must fail). If no error occurs but enqueue() fails
1091 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1092 * the private spinlock and returning.
1094 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1098 spin_lock(&hcd_urb_list_lock
);
1100 /* Check that the URB isn't being killed */
1101 if (unlikely(atomic_read(&urb
->reject
))) {
1106 if (unlikely(!urb
->ep
->enabled
)) {
1111 if (unlikely(!urb
->dev
->can_submit
)) {
1117 * Check the host controller's state and add the URB to the
1120 if (HCD_RH_RUNNING(hcd
)) {
1122 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1128 spin_unlock(&hcd_urb_list_lock
);
1131 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1134 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1135 * @hcd: host controller to which @urb was submitted
1136 * @urb: URB being checked for unlinkability
1137 * @status: error code to store in @urb if the unlink succeeds
1139 * Host controller drivers should call this routine in their dequeue()
1140 * method. The HCD's private spinlock must be held and interrupts must
1141 * be disabled. The actions carried out here are required for making
1142 * sure than an unlink is valid.
1144 * Returns 0 for no error, otherwise a negative error code (in which case
1145 * the dequeue() method must fail). The possible error codes are:
1147 * -EIDRM: @urb was not submitted or has already completed.
1148 * The completion function may not have been called yet.
1150 * -EBUSY: @urb has already been unlinked.
1152 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1155 struct list_head
*tmp
;
1157 /* insist the urb is still queued */
1158 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1159 if (tmp
== &urb
->urb_list
)
1162 if (tmp
!= &urb
->urb_list
)
1165 /* Any status except -EINPROGRESS means something already started to
1166 * unlink this URB from the hardware. So there's no more work to do.
1170 urb
->unlinked
= status
;
1173 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177 * @hcd: host controller to which @urb was submitted
1178 * @urb: URB being unlinked
1180 * Host controller drivers should call this routine before calling
1181 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1182 * interrupts must be disabled. The actions carried out here are required
1183 * for URB completion.
1185 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1187 /* clear all state linking urb to this dev (and hcd) */
1188 spin_lock(&hcd_urb_list_lock
);
1189 list_del_init(&urb
->urb_list
);
1190 spin_unlock(&hcd_urb_list_lock
);
1192 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1195 * Some usb host controllers can only perform dma using a small SRAM area.
1196 * The usb core itself is however optimized for host controllers that can dma
1197 * using regular system memory - like pci devices doing bus mastering.
1199 * To support host controllers with limited dma capabilites we provide dma
1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201 * For this to work properly the host controller code must first use the
1202 * function dma_declare_coherent_memory() to point out which memory area
1203 * that should be used for dma allocations.
1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206 * dma using dma_alloc_coherent() which in turn allocates from the memory
1207 * area pointed out with dma_declare_coherent_memory().
1209 * So, to summarize...
1211 * - We need "local" memory, canonical example being
1212 * a small SRAM on a discrete controller being the
1213 * only memory that the controller can read ...
1214 * (a) "normal" kernel memory is no good, and
1215 * (b) there's not enough to share
1217 * - The only *portable* hook for such stuff in the
1218 * DMA framework is dma_declare_coherent_memory()
1220 * - So we use that, even though the primary requirement
1221 * is that the memory be "local" (hence addressible
1222 * by that device), not "coherent".
1226 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1227 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1228 void **vaddr_handle
, size_t size
,
1229 enum dma_data_direction dir
)
1231 unsigned char *vaddr
;
1233 if (*vaddr_handle
== NULL
) {
1238 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1239 mem_flags
, dma_handle
);
1244 * Store the virtual address of the buffer at the end
1245 * of the allocated dma buffer. The size of the buffer
1246 * may be uneven so use unaligned functions instead
1247 * of just rounding up. It makes sense to optimize for
1248 * memory footprint over access speed since the amount
1249 * of memory available for dma may be limited.
1251 put_unaligned((unsigned long)*vaddr_handle
,
1252 (unsigned long *)(vaddr
+ size
));
1254 if (dir
== DMA_TO_DEVICE
)
1255 memcpy(vaddr
, *vaddr_handle
, size
);
1257 *vaddr_handle
= vaddr
;
1261 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1262 void **vaddr_handle
, size_t size
,
1263 enum dma_data_direction dir
)
1265 unsigned char *vaddr
= *vaddr_handle
;
1267 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1269 if (dir
== DMA_FROM_DEVICE
)
1270 memcpy(vaddr
, *vaddr_handle
, size
);
1272 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1274 *vaddr_handle
= vaddr
;
1278 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1280 if (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
)
1281 dma_unmap_single(hcd
->self
.controller
,
1283 sizeof(struct usb_ctrlrequest
),
1285 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1286 hcd_free_coherent(urb
->dev
->bus
,
1288 (void **) &urb
->setup_packet
,
1289 sizeof(struct usb_ctrlrequest
),
1292 /* Make it safe to call this routine more than once */
1293 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1295 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1297 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1299 if (hcd
->driver
->unmap_urb_for_dma
)
1300 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1302 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1305 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1307 enum dma_data_direction dir
;
1309 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1311 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1312 if (urb
->transfer_flags
& URB_DMA_MAP_SG
)
1313 dma_unmap_sg(hcd
->self
.controller
,
1317 else if (urb
->transfer_flags
& URB_DMA_MAP_PAGE
)
1318 dma_unmap_page(hcd
->self
.controller
,
1320 urb
->transfer_buffer_length
,
1322 else if (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
)
1323 dma_unmap_single(hcd
->self
.controller
,
1325 urb
->transfer_buffer_length
,
1327 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1328 hcd_free_coherent(urb
->dev
->bus
,
1330 &urb
->transfer_buffer
,
1331 urb
->transfer_buffer_length
,
1334 /* Make it safe to call this routine more than once */
1335 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1336 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1338 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1340 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1343 if (hcd
->driver
->map_urb_for_dma
)
1344 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1346 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1349 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1352 enum dma_data_direction dir
;
1355 /* Map the URB's buffers for DMA access.
1356 * Lower level HCD code should use *_dma exclusively,
1357 * unless it uses pio or talks to another transport,
1358 * or uses the provided scatter gather list for bulk.
1361 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1362 if (hcd
->self
.uses_pio_for_control
)
1364 if (hcd
->self
.uses_dma
) {
1365 urb
->setup_dma
= dma_map_single(
1366 hcd
->self
.controller
,
1368 sizeof(struct usb_ctrlrequest
),
1370 if (dma_mapping_error(hcd
->self
.controller
,
1373 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1374 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1375 ret
= hcd_alloc_coherent(
1376 urb
->dev
->bus
, mem_flags
,
1378 (void **)&urb
->setup_packet
,
1379 sizeof(struct usb_ctrlrequest
),
1383 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1387 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1388 if (urb
->transfer_buffer_length
!= 0
1389 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1390 if (hcd
->self
.uses_dma
) {
1393 hcd
->self
.controller
,
1400 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1401 urb
->num_mapped_sgs
= n
;
1402 if (n
!= urb
->num_sgs
)
1403 urb
->transfer_flags
|=
1404 URB_DMA_SG_COMBINED
;
1405 } else if (urb
->sg
) {
1406 struct scatterlist
*sg
= urb
->sg
;
1407 urb
->transfer_dma
= dma_map_page(
1408 hcd
->self
.controller
,
1411 urb
->transfer_buffer_length
,
1413 if (dma_mapping_error(hcd
->self
.controller
,
1417 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1419 urb
->transfer_dma
= dma_map_single(
1420 hcd
->self
.controller
,
1421 urb
->transfer_buffer
,
1422 urb
->transfer_buffer_length
,
1424 if (dma_mapping_error(hcd
->self
.controller
,
1428 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1430 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1431 ret
= hcd_alloc_coherent(
1432 urb
->dev
->bus
, mem_flags
,
1434 &urb
->transfer_buffer
,
1435 urb
->transfer_buffer_length
,
1438 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1440 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1441 URB_SETUP_MAP_LOCAL
)))
1442 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1446 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1448 /*-------------------------------------------------------------------------*/
1450 /* may be called in any context with a valid urb->dev usecount
1451 * caller surrenders "ownership" of urb
1452 * expects usb_submit_urb() to have sanity checked and conditioned all
1455 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1458 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1460 /* increment urb's reference count as part of giving it to the HCD
1461 * (which will control it). HCD guarantees that it either returns
1462 * an error or calls giveback(), but not both.
1465 atomic_inc(&urb
->use_count
);
1466 atomic_inc(&urb
->dev
->urbnum
);
1467 usbmon_urb_submit(&hcd
->self
, urb
);
1469 /* NOTE requirements on root-hub callers (usbfs and the hub
1470 * driver, for now): URBs' urb->transfer_buffer must be
1471 * valid and usb_buffer_{sync,unmap}() not be needed, since
1472 * they could clobber root hub response data. Also, control
1473 * URBs must be submitted in process context with interrupts
1477 if (is_root_hub(urb
->dev
)) {
1478 status
= rh_urb_enqueue(hcd
, urb
);
1480 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1481 if (likely(status
== 0)) {
1482 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1483 if (unlikely(status
))
1484 unmap_urb_for_dma(hcd
, urb
);
1488 if (unlikely(status
)) {
1489 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1491 INIT_LIST_HEAD(&urb
->urb_list
);
1492 atomic_dec(&urb
->use_count
);
1493 atomic_dec(&urb
->dev
->urbnum
);
1494 if (atomic_read(&urb
->reject
))
1495 wake_up(&usb_kill_urb_queue
);
1501 /*-------------------------------------------------------------------------*/
1503 /* this makes the hcd giveback() the urb more quickly, by kicking it
1504 * off hardware queues (which may take a while) and returning it as
1505 * soon as practical. we've already set up the urb's return status,
1506 * but we can't know if the callback completed already.
1508 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1512 if (is_root_hub(urb
->dev
))
1513 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1516 /* The only reason an HCD might fail this call is if
1517 * it has not yet fully queued the urb to begin with.
1518 * Such failures should be harmless. */
1519 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1525 * called in any context
1527 * caller guarantees urb won't be recycled till both unlink()
1528 * and the urb's completion function return
1530 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1532 struct usb_hcd
*hcd
;
1533 int retval
= -EIDRM
;
1534 unsigned long flags
;
1536 /* Prevent the device and bus from going away while
1537 * the unlink is carried out. If they are already gone
1538 * then urb->use_count must be 0, since disconnected
1539 * devices can't have any active URBs.
1541 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1542 if (atomic_read(&urb
->use_count
) > 0) {
1544 usb_get_dev(urb
->dev
);
1546 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1548 hcd
= bus_to_hcd(urb
->dev
->bus
);
1549 retval
= unlink1(hcd
, urb
, status
);
1550 usb_put_dev(urb
->dev
);
1554 retval
= -EINPROGRESS
;
1555 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1556 dev_dbg(&urb
->dev
->dev
, "hcd_unlink_urb %p fail %d\n",
1561 /*-------------------------------------------------------------------------*/
1564 * usb_hcd_giveback_urb - return URB from HCD to device driver
1565 * @hcd: host controller returning the URB
1566 * @urb: urb being returned to the USB device driver.
1567 * @status: completion status code for the URB.
1568 * Context: in_interrupt()
1570 * This hands the URB from HCD to its USB device driver, using its
1571 * completion function. The HCD has freed all per-urb resources
1572 * (and is done using urb->hcpriv). It also released all HCD locks;
1573 * the device driver won't cause problems if it frees, modifies,
1574 * or resubmits this URB.
1576 * If @urb was unlinked, the value of @status will be overridden by
1577 * @urb->unlinked. Erroneous short transfers are detected in case
1578 * the HCD hasn't checked for them.
1580 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1583 if (unlikely(urb
->unlinked
))
1584 status
= urb
->unlinked
;
1585 else if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1586 urb
->actual_length
< urb
->transfer_buffer_length
&&
1588 status
= -EREMOTEIO
;
1590 unmap_urb_for_dma(hcd
, urb
);
1591 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1592 usb_unanchor_urb(urb
);
1594 /* pass ownership to the completion handler */
1595 urb
->status
= status
;
1596 urb
->complete (urb
);
1597 atomic_dec (&urb
->use_count
);
1598 if (unlikely(atomic_read(&urb
->reject
)))
1599 wake_up (&usb_kill_urb_queue
);
1602 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1604 /*-------------------------------------------------------------------------*/
1606 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1607 * queue to drain completely. The caller must first insure that no more
1608 * URBs can be submitted for this endpoint.
1610 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1611 struct usb_host_endpoint
*ep
)
1613 struct usb_hcd
*hcd
;
1619 hcd
= bus_to_hcd(udev
->bus
);
1621 /* No more submits can occur */
1622 spin_lock_irq(&hcd_urb_list_lock
);
1624 list_for_each_entry (urb
, &ep
->urb_list
, urb_list
) {
1630 is_in
= usb_urb_dir_in(urb
);
1631 spin_unlock(&hcd_urb_list_lock
);
1634 unlink1(hcd
, urb
, -ESHUTDOWN
);
1635 dev_dbg (hcd
->self
.controller
,
1636 "shutdown urb %p ep%d%s%s\n",
1637 urb
, usb_endpoint_num(&ep
->desc
),
1638 is_in
? "in" : "out",
1641 switch (usb_endpoint_type(&ep
->desc
)) {
1642 case USB_ENDPOINT_XFER_CONTROL
:
1644 case USB_ENDPOINT_XFER_BULK
:
1646 case USB_ENDPOINT_XFER_INT
:
1655 /* list contents may have changed */
1656 spin_lock(&hcd_urb_list_lock
);
1659 spin_unlock_irq(&hcd_urb_list_lock
);
1661 /* Wait until the endpoint queue is completely empty */
1662 while (!list_empty (&ep
->urb_list
)) {
1663 spin_lock_irq(&hcd_urb_list_lock
);
1665 /* The list may have changed while we acquired the spinlock */
1667 if (!list_empty (&ep
->urb_list
)) {
1668 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1672 spin_unlock_irq(&hcd_urb_list_lock
);
1682 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684 * @udev: target &usb_device
1685 * @new_config: new configuration to install
1686 * @cur_alt: the current alternate interface setting
1687 * @new_alt: alternate interface setting that is being installed
1689 * To change configurations, pass in the new configuration in new_config,
1690 * and pass NULL for cur_alt and new_alt.
1692 * To reset a device's configuration (put the device in the ADDRESSED state),
1693 * pass in NULL for new_config, cur_alt, and new_alt.
1695 * To change alternate interface settings, pass in NULL for new_config,
1696 * pass in the current alternate interface setting in cur_alt,
1697 * and pass in the new alternate interface setting in new_alt.
1699 * Returns an error if the requested bandwidth change exceeds the
1700 * bus bandwidth or host controller internal resources.
1702 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1703 struct usb_host_config
*new_config
,
1704 struct usb_host_interface
*cur_alt
,
1705 struct usb_host_interface
*new_alt
)
1707 int num_intfs
, i
, j
;
1708 struct usb_host_interface
*alt
= NULL
;
1710 struct usb_hcd
*hcd
;
1711 struct usb_host_endpoint
*ep
;
1713 hcd
= bus_to_hcd(udev
->bus
);
1714 if (!hcd
->driver
->check_bandwidth
)
1717 /* Configuration is being removed - set configuration 0 */
1718 if (!new_config
&& !cur_alt
) {
1719 for (i
= 1; i
< 16; ++i
) {
1720 ep
= udev
->ep_out
[i
];
1722 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1723 ep
= udev
->ep_in
[i
];
1725 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1727 hcd
->driver
->check_bandwidth(hcd
, udev
);
1730 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1731 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1732 * of the bus. There will always be bandwidth for endpoint 0, so it's
1736 num_intfs
= new_config
->desc
.bNumInterfaces
;
1737 /* Remove endpoints (except endpoint 0, which is always on the
1738 * schedule) from the old config from the schedule
1740 for (i
= 1; i
< 16; ++i
) {
1741 ep
= udev
->ep_out
[i
];
1743 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1747 ep
= udev
->ep_in
[i
];
1749 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1754 for (i
= 0; i
< num_intfs
; ++i
) {
1755 struct usb_host_interface
*first_alt
;
1758 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1759 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1760 /* Set up endpoints for alternate interface setting 0 */
1761 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1763 /* No alt setting 0? Pick the first setting. */
1766 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1767 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
1773 if (cur_alt
&& new_alt
) {
1774 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
1775 cur_alt
->desc
.bInterfaceNumber
);
1779 if (iface
->resetting_device
) {
1781 * The USB core just reset the device, so the xHCI host
1782 * and the device will think alt setting 0 is installed.
1783 * However, the USB core will pass in the alternate
1784 * setting installed before the reset as cur_alt. Dig
1785 * out the alternate setting 0 structure, or the first
1786 * alternate setting if a broken device doesn't have alt
1789 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
1791 cur_alt
= &iface
->altsetting
[0];
1794 /* Drop all the endpoints in the current alt setting */
1795 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
1796 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
1797 &cur_alt
->endpoint
[i
]);
1801 /* Add all the endpoints in the new alt setting */
1802 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
1803 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
1804 &new_alt
->endpoint
[i
]);
1809 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
1812 hcd
->driver
->reset_bandwidth(hcd
, udev
);
1816 /* Disables the endpoint: synchronizes with the hcd to make sure all
1817 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1818 * have been called previously. Use for set_configuration, set_interface,
1819 * driver removal, physical disconnect.
1821 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1822 * type, maxpacket size, toggle, halt status, and scheduling.
1824 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1825 struct usb_host_endpoint
*ep
)
1827 struct usb_hcd
*hcd
;
1830 hcd
= bus_to_hcd(udev
->bus
);
1831 if (hcd
->driver
->endpoint_disable
)
1832 hcd
->driver
->endpoint_disable(hcd
, ep
);
1836 * usb_hcd_reset_endpoint - reset host endpoint state
1837 * @udev: USB device.
1838 * @ep: the endpoint to reset.
1840 * Resets any host endpoint state such as the toggle bit, sequence
1841 * number and current window.
1843 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
1844 struct usb_host_endpoint
*ep
)
1846 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1848 if (hcd
->driver
->endpoint_reset
)
1849 hcd
->driver
->endpoint_reset(hcd
, ep
);
1851 int epnum
= usb_endpoint_num(&ep
->desc
);
1852 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
1853 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
1855 usb_settoggle(udev
, epnum
, is_out
, 0);
1857 usb_settoggle(udev
, epnum
, !is_out
, 0);
1862 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1863 * @interface: alternate setting that includes all endpoints.
1864 * @eps: array of endpoints that need streams.
1865 * @num_eps: number of endpoints in the array.
1866 * @num_streams: number of streams to allocate.
1867 * @mem_flags: flags hcd should use to allocate memory.
1869 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1870 * Drivers may queue multiple transfers to different stream IDs, which may
1871 * complete in a different order than they were queued.
1873 int usb_alloc_streams(struct usb_interface
*interface
,
1874 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
1875 unsigned int num_streams
, gfp_t mem_flags
)
1877 struct usb_hcd
*hcd
;
1878 struct usb_device
*dev
;
1881 dev
= interface_to_usbdev(interface
);
1882 hcd
= bus_to_hcd(dev
->bus
);
1883 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
1885 if (dev
->speed
!= USB_SPEED_SUPER
)
1888 /* Streams only apply to bulk endpoints. */
1889 for (i
= 0; i
< num_eps
; i
++)
1890 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
1893 return hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
1894 num_streams
, mem_flags
);
1896 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
1899 * usb_free_streams - free bulk endpoint stream IDs.
1900 * @interface: alternate setting that includes all endpoints.
1901 * @eps: array of endpoints to remove streams from.
1902 * @num_eps: number of endpoints in the array.
1903 * @mem_flags: flags hcd should use to allocate memory.
1905 * Reverts a group of bulk endpoints back to not using stream IDs.
1906 * Can fail if we are given bad arguments, or HCD is broken.
1908 void usb_free_streams(struct usb_interface
*interface
,
1909 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
1912 struct usb_hcd
*hcd
;
1913 struct usb_device
*dev
;
1916 dev
= interface_to_usbdev(interface
);
1917 hcd
= bus_to_hcd(dev
->bus
);
1918 if (dev
->speed
!= USB_SPEED_SUPER
)
1921 /* Streams only apply to bulk endpoints. */
1922 for (i
= 0; i
< num_eps
; i
++)
1923 if (!eps
[i
] || !usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
1926 hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
1928 EXPORT_SYMBOL_GPL(usb_free_streams
);
1930 /* Protect against drivers that try to unlink URBs after the device
1931 * is gone, by waiting until all unlinks for @udev are finished.
1932 * Since we don't currently track URBs by device, simply wait until
1933 * nothing is running in the locked region of usb_hcd_unlink_urb().
1935 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
1937 spin_lock_irq(&hcd_urb_unlink_lock
);
1938 spin_unlock_irq(&hcd_urb_unlink_lock
);
1941 /*-------------------------------------------------------------------------*/
1943 /* called in any context */
1944 int usb_hcd_get_frame_number (struct usb_device
*udev
)
1946 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1948 if (!HCD_RH_RUNNING(hcd
))
1950 return hcd
->driver
->get_frame_number (hcd
);
1953 /*-------------------------------------------------------------------------*/
1957 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
1959 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1961 int old_state
= hcd
->state
;
1963 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
1964 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
1965 rhdev
->do_remote_wakeup
);
1966 if (HCD_DEAD(hcd
)) {
1967 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
1971 if (!hcd
->driver
->bus_suspend
) {
1974 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
1975 hcd
->state
= HC_STATE_QUIESCING
;
1976 status
= hcd
->driver
->bus_suspend(hcd
);
1979 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
1980 hcd
->state
= HC_STATE_SUSPENDED
;
1982 spin_lock_irq(&hcd_root_hub_lock
);
1983 if (!HCD_DEAD(hcd
)) {
1984 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
1985 hcd
->state
= old_state
;
1987 spin_unlock_irq(&hcd_root_hub_lock
);
1988 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1994 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
1996 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1998 int old_state
= hcd
->state
;
2000 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2001 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2002 if (HCD_DEAD(hcd
)) {
2003 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2006 if (!hcd
->driver
->bus_resume
)
2008 if (HCD_RH_RUNNING(hcd
))
2011 hcd
->state
= HC_STATE_RESUMING
;
2012 status
= hcd
->driver
->bus_resume(hcd
);
2013 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2015 /* TRSMRCY = 10 msec */
2017 spin_lock_irq(&hcd_root_hub_lock
);
2018 if (!HCD_DEAD(hcd
)) {
2019 usb_set_device_state(rhdev
, rhdev
->actconfig
2020 ? USB_STATE_CONFIGURED
2021 : USB_STATE_ADDRESS
);
2022 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2023 hcd
->state
= HC_STATE_RUNNING
;
2025 spin_unlock_irq(&hcd_root_hub_lock
);
2027 hcd
->state
= old_state
;
2028 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2030 if (status
!= -ESHUTDOWN
)
2036 #endif /* CONFIG_PM */
2038 #ifdef CONFIG_USB_SUSPEND
2040 /* Workqueue routine for root-hub remote wakeup */
2041 static void hcd_resume_work(struct work_struct
*work
)
2043 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2044 struct usb_device
*udev
= hcd
->self
.root_hub
;
2046 usb_lock_device(udev
);
2047 usb_remote_wakeup(udev
);
2048 usb_unlock_device(udev
);
2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2053 * @hcd: host controller for this root hub
2055 * The USB host controller calls this function when its root hub is
2056 * suspended (with the remote wakeup feature enabled) and a remote
2057 * wakeup request is received. The routine submits a workqueue request
2058 * to resume the root hub (that is, manage its downstream ports again).
2060 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2062 unsigned long flags
;
2064 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2065 if (hcd
->rh_registered
) {
2066 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2067 queue_work(pm_wq
, &hcd
->wakeup_work
);
2069 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2071 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2073 #endif /* CONFIG_USB_SUSPEND */
2075 /*-------------------------------------------------------------------------*/
2077 #ifdef CONFIG_USB_OTG
2080 * usb_bus_start_enum - start immediate enumeration (for OTG)
2081 * @bus: the bus (must use hcd framework)
2082 * @port_num: 1-based number of port; usually bus->otg_port
2083 * Context: in_interrupt()
2085 * Starts enumeration, with an immediate reset followed later by
2086 * khubd identifying and possibly configuring the device.
2087 * This is needed by OTG controller drivers, where it helps meet
2088 * HNP protocol timing requirements for starting a port reset.
2090 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2092 struct usb_hcd
*hcd
;
2093 int status
= -EOPNOTSUPP
;
2095 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096 * boards with root hubs hooked up to internal devices (instead of
2097 * just the OTG port) may need more attention to resetting...
2099 hcd
= container_of (bus
, struct usb_hcd
, self
);
2100 if (port_num
&& hcd
->driver
->start_port_reset
)
2101 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2103 /* run khubd shortly after (first) root port reset finishes;
2104 * it may issue others, until at least 50 msecs have passed.
2107 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2110 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2114 /*-------------------------------------------------------------------------*/
2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118 * @irq: the IRQ being raised
2119 * @__hcd: pointer to the HCD whose IRQ is being signaled
2121 * If the controller isn't HALTed, calls the driver's irq handler.
2122 * Checks whether the controller is now dead.
2124 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2126 struct usb_hcd
*hcd
= __hcd
;
2127 unsigned long flags
;
2130 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2131 * when the first handler doesn't use it. So let's just
2132 * assume it's never used.
2134 local_irq_save(flags
);
2136 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2138 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2143 local_irq_restore(flags
);
2146 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2148 /*-------------------------------------------------------------------------*/
2151 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2152 * @hcd: pointer to the HCD representing the controller
2154 * This is called by bus glue to report a USB host controller that died
2155 * while operations may still have been pending. It's called automatically
2156 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2158 * Only call this function with the primary HCD.
2160 void usb_hc_died (struct usb_hcd
*hcd
)
2162 unsigned long flags
;
2164 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2166 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2167 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2168 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2169 if (hcd
->rh_registered
) {
2170 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2172 /* make khubd clean up old urbs and devices */
2173 usb_set_device_state (hcd
->self
.root_hub
,
2174 USB_STATE_NOTATTACHED
);
2175 usb_kick_khubd (hcd
->self
.root_hub
);
2177 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2178 hcd
= hcd
->shared_hcd
;
2179 if (hcd
->rh_registered
) {
2180 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2182 /* make khubd clean up old urbs and devices */
2183 usb_set_device_state(hcd
->self
.root_hub
,
2184 USB_STATE_NOTATTACHED
);
2185 usb_kick_khubd(hcd
->self
.root_hub
);
2188 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2189 /* Make sure that the other roothub is also deallocated. */
2191 EXPORT_SYMBOL_GPL (usb_hc_died
);
2193 /*-------------------------------------------------------------------------*/
2196 * usb_create_shared_hcd - create and initialize an HCD structure
2197 * @driver: HC driver that will use this hcd
2198 * @dev: device for this HC, stored in hcd->self.controller
2199 * @bus_name: value to store in hcd->self.bus_name
2200 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2201 * PCI device. Only allocate certain resources for the primary HCD
2202 * Context: !in_interrupt()
2204 * Allocate a struct usb_hcd, with extra space at the end for the
2205 * HC driver's private data. Initialize the generic members of the
2208 * If memory is unavailable, returns NULL.
2210 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2211 struct device
*dev
, const char *bus_name
,
2212 struct usb_hcd
*primary_hcd
)
2214 struct usb_hcd
*hcd
;
2216 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2218 dev_dbg (dev
, "hcd alloc failed\n");
2221 if (primary_hcd
== NULL
) {
2222 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2224 if (!hcd
->bandwidth_mutex
) {
2226 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2229 mutex_init(hcd
->bandwidth_mutex
);
2230 dev_set_drvdata(dev
, hcd
);
2232 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2233 hcd
->primary_hcd
= primary_hcd
;
2234 primary_hcd
->primary_hcd
= primary_hcd
;
2235 hcd
->shared_hcd
= primary_hcd
;
2236 primary_hcd
->shared_hcd
= hcd
;
2239 kref_init(&hcd
->kref
);
2241 usb_bus_init(&hcd
->self
);
2242 hcd
->self
.controller
= dev
;
2243 hcd
->self
.bus_name
= bus_name
;
2244 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
2246 init_timer(&hcd
->rh_timer
);
2247 hcd
->rh_timer
.function
= rh_timer_func
;
2248 hcd
->rh_timer
.data
= (unsigned long) hcd
;
2249 #ifdef CONFIG_USB_SUSPEND
2250 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2253 hcd
->driver
= driver
;
2254 hcd
->speed
= driver
->flags
& HCD_MASK
;
2255 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2256 "USB Host Controller";
2259 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2262 * usb_create_hcd - create and initialize an HCD structure
2263 * @driver: HC driver that will use this hcd
2264 * @dev: device for this HC, stored in hcd->self.controller
2265 * @bus_name: value to store in hcd->self.bus_name
2266 * Context: !in_interrupt()
2268 * Allocate a struct usb_hcd, with extra space at the end for the
2269 * HC driver's private data. Initialize the generic members of the
2272 * If memory is unavailable, returns NULL.
2274 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2275 struct device
*dev
, const char *bus_name
)
2277 return usb_create_shared_hcd(driver
, dev
, bus_name
, NULL
);
2279 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2282 * Roothubs that share one PCI device must also share the bandwidth mutex.
2283 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2286 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2287 * freed. When hcd_release() is called for the non-primary HCD, set the
2288 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2291 static void hcd_release (struct kref
*kref
)
2293 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2295 if (usb_hcd_is_primary_hcd(hcd
))
2296 kfree(hcd
->bandwidth_mutex
);
2298 hcd
->shared_hcd
->shared_hcd
= NULL
;
2302 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2305 kref_get (&hcd
->kref
);
2308 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2310 void usb_put_hcd (struct usb_hcd
*hcd
)
2313 kref_put (&hcd
->kref
, hcd_release
);
2315 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2317 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2319 if (!hcd
->primary_hcd
)
2321 return hcd
== hcd
->primary_hcd
;
2323 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2325 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2326 unsigned int irqnum
, unsigned long irqflags
)
2330 if (hcd
->driver
->irq
) {
2332 /* IRQF_DISABLED doesn't work as advertised when used together
2333 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2334 * interrupts we can remove it here.
2336 if (irqflags
& IRQF_SHARED
)
2337 irqflags
&= ~IRQF_DISABLED
;
2339 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2340 hcd
->driver
->description
, hcd
->self
.busnum
);
2341 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2342 hcd
->irq_descr
, hcd
);
2344 dev_err(hcd
->self
.controller
,
2345 "request interrupt %d failed\n",
2350 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2351 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2352 "io mem" : "io base",
2353 (unsigned long long)hcd
->rsrc_start
);
2356 if (hcd
->rsrc_start
)
2357 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2358 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2359 "io mem" : "io base",
2360 (unsigned long long)hcd
->rsrc_start
);
2366 * usb_add_hcd - finish generic HCD structure initialization and register
2367 * @hcd: the usb_hcd structure to initialize
2368 * @irqnum: Interrupt line to allocate
2369 * @irqflags: Interrupt type flags
2371 * Finish the remaining parts of generic HCD initialization: allocate the
2372 * buffers of consistent memory, register the bus, request the IRQ line,
2373 * and call the driver's reset() and start() routines.
2375 int usb_add_hcd(struct usb_hcd
*hcd
,
2376 unsigned int irqnum
, unsigned long irqflags
)
2379 struct usb_device
*rhdev
;
2381 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2383 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2384 if (authorized_default
< 0 || authorized_default
> 1)
2385 hcd
->authorized_default
= hcd
->wireless
? 0 : 1;
2387 hcd
->authorized_default
= authorized_default
;
2388 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2390 /* HC is in reset state, but accessible. Now do the one-time init,
2391 * bottom up so that hcds can customize the root hubs before khubd
2392 * starts talking to them. (Note, bus id is assigned early too.)
2394 if ((retval
= hcd_buffer_create(hcd
)) != 0) {
2395 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2399 if ((retval
= usb_register_bus(&hcd
->self
)) < 0)
2400 goto err_register_bus
;
2402 if ((rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0)) == NULL
) {
2403 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2405 goto err_allocate_root_hub
;
2407 hcd
->self
.root_hub
= rhdev
;
2409 switch (hcd
->speed
) {
2411 rhdev
->speed
= USB_SPEED_FULL
;
2414 rhdev
->speed
= USB_SPEED_HIGH
;
2417 rhdev
->speed
= USB_SPEED_SUPER
;
2421 goto err_set_rh_speed
;
2424 /* wakeup flag init defaults to "everything works" for root hubs,
2425 * but drivers can override it in reset() if needed, along with
2426 * recording the overall controller's system wakeup capability.
2428 device_set_wakeup_capable(&rhdev
->dev
, 1);
2430 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2431 * registered. But since the controller can die at any time,
2432 * let's initialize the flag before touching the hardware.
2434 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2436 /* "reset" is misnamed; its role is now one-time init. the controller
2437 * should already have been reset (and boot firmware kicked off etc).
2439 if (hcd
->driver
->reset
&& (retval
= hcd
->driver
->reset(hcd
)) < 0) {
2440 dev_err(hcd
->self
.controller
, "can't setup\n");
2441 goto err_hcd_driver_setup
;
2443 hcd
->rh_pollable
= 1;
2445 /* NOTE: root hub and controller capabilities may not be the same */
2446 if (device_can_wakeup(hcd
->self
.controller
)
2447 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2448 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2450 /* enable irqs just before we start the controller,
2451 * if the BIOS provides legacy PCI irqs.
2453 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2454 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2456 goto err_request_irq
;
2459 hcd
->state
= HC_STATE_RUNNING
;
2460 retval
= hcd
->driver
->start(hcd
);
2462 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2463 goto err_hcd_driver_start
;
2466 /* starting here, usbcore will pay attention to this root hub */
2467 rhdev
->bus_mA
= min(500u, hcd
->power_budget
);
2468 if ((retval
= register_root_hub(hcd
)) != 0)
2469 goto err_register_root_hub
;
2471 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2473 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2475 goto error_create_attr_group
;
2477 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2478 usb_hcd_poll_rh_status(hcd
);
2481 * Host controllers don't generate their own wakeup requests;
2482 * they only forward requests from the root hub. Therefore
2483 * controllers should always be enabled for remote wakeup.
2485 device_wakeup_enable(hcd
->self
.controller
);
2488 error_create_attr_group
:
2489 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2490 if (HC_IS_RUNNING(hcd
->state
))
2491 hcd
->state
= HC_STATE_QUIESCING
;
2492 spin_lock_irq(&hcd_root_hub_lock
);
2493 hcd
->rh_registered
= 0;
2494 spin_unlock_irq(&hcd_root_hub_lock
);
2496 #ifdef CONFIG_USB_SUSPEND
2497 cancel_work_sync(&hcd
->wakeup_work
);
2499 mutex_lock(&usb_bus_list_lock
);
2500 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2501 mutex_unlock(&usb_bus_list_lock
);
2502 err_register_root_hub
:
2503 hcd
->rh_pollable
= 0;
2504 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2505 del_timer_sync(&hcd
->rh_timer
);
2506 hcd
->driver
->stop(hcd
);
2507 hcd
->state
= HC_STATE_HALT
;
2508 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2509 del_timer_sync(&hcd
->rh_timer
);
2510 err_hcd_driver_start
:
2511 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
>= 0)
2512 free_irq(irqnum
, hcd
);
2514 err_hcd_driver_setup
:
2516 usb_put_dev(hcd
->self
.root_hub
);
2517 err_allocate_root_hub
:
2518 usb_deregister_bus(&hcd
->self
);
2520 hcd_buffer_destroy(hcd
);
2523 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2526 * usb_remove_hcd - shutdown processing for generic HCDs
2527 * @hcd: the usb_hcd structure to remove
2528 * Context: !in_interrupt()
2530 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2531 * invoking the HCD's stop() method.
2533 void usb_remove_hcd(struct usb_hcd
*hcd
)
2535 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2537 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2540 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2542 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2543 if (HC_IS_RUNNING (hcd
->state
))
2544 hcd
->state
= HC_STATE_QUIESCING
;
2546 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2547 spin_lock_irq (&hcd_root_hub_lock
);
2548 hcd
->rh_registered
= 0;
2549 spin_unlock_irq (&hcd_root_hub_lock
);
2551 #ifdef CONFIG_USB_SUSPEND
2552 cancel_work_sync(&hcd
->wakeup_work
);
2555 mutex_lock(&usb_bus_list_lock
);
2556 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2557 mutex_unlock(&usb_bus_list_lock
);
2559 /* Prevent any more root-hub status calls from the timer.
2560 * The HCD might still restart the timer (if a port status change
2561 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2562 * the hub_status_data() callback.
2564 hcd
->rh_pollable
= 0;
2565 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2566 del_timer_sync(&hcd
->rh_timer
);
2568 hcd
->driver
->stop(hcd
);
2569 hcd
->state
= HC_STATE_HALT
;
2571 /* In case the HCD restarted the timer, stop it again. */
2572 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2573 del_timer_sync(&hcd
->rh_timer
);
2575 if (usb_hcd_is_primary_hcd(hcd
)) {
2577 free_irq(hcd
->irq
, hcd
);
2580 usb_put_dev(hcd
->self
.root_hub
);
2581 usb_deregister_bus(&hcd
->self
);
2582 hcd_buffer_destroy(hcd
);
2584 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
2587 usb_hcd_platform_shutdown(struct platform_device
* dev
)
2589 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2591 if (hcd
->driver
->shutdown
)
2592 hcd
->driver
->shutdown(hcd
);
2594 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2596 /*-------------------------------------------------------------------------*/
2598 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2600 struct usb_mon_operations
*mon_ops
;
2603 * The registration is unlocked.
2604 * We do it this way because we do not want to lock in hot paths.
2606 * Notice that the code is minimally error-proof. Because usbmon needs
2607 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2610 int usb_mon_register (struct usb_mon_operations
*ops
)
2620 EXPORT_SYMBOL_GPL (usb_mon_register
);
2622 void usb_mon_deregister (void)
2625 if (mon_ops
== NULL
) {
2626 printk(KERN_ERR
"USB: monitor was not registered\n");
2632 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
2634 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */