i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / usb / gadget / amd5536udc.c
blob18883bd0f162dfdb4d9025a24caa7de6a81d9e12
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
27 /* debug control */
28 /* #define UDC_VERBOSE */
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
48 #include <linux/fs.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
52 #include <linux/io.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
56 #include <asm/byteorder.h>
57 #include <asm/system.h>
58 #include <asm/unaligned.h>
60 /* gadget stack */
61 #include <linux/usb/ch9.h>
62 #include <linux/usb/gadget.h>
64 /* udc specific */
65 #include "amd5536udc.h"
68 static void udc_tasklet_disconnect(unsigned long);
69 static void empty_req_queue(struct udc_ep *);
70 static int udc_probe(struct udc *dev);
71 static void udc_basic_init(struct udc *dev);
72 static void udc_setup_endpoints(struct udc *dev);
73 static void udc_soft_reset(struct udc *dev);
74 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
75 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
76 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
77 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
78 unsigned long buf_len, gfp_t gfp_flags);
79 static int udc_remote_wakeup(struct udc *dev);
80 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
81 static void udc_pci_remove(struct pci_dev *pdev);
83 /* description */
84 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
85 static const char name[] = "amd5536udc";
87 /* structure to hold endpoint function pointers */
88 static const struct usb_ep_ops udc_ep_ops;
90 /* received setup data */
91 static union udc_setup_data setup_data;
93 /* pointer to device object */
94 static struct udc *udc;
96 /* irq spin lock for soft reset */
97 static DEFINE_SPINLOCK(udc_irq_spinlock);
98 /* stall spin lock */
99 static DEFINE_SPINLOCK(udc_stall_spinlock);
102 * slave mode: pending bytes in rx fifo after nyet,
103 * used if EPIN irq came but no req was available
105 static unsigned int udc_rxfifo_pending;
107 /* count soft resets after suspend to avoid loop */
108 static int soft_reset_occured;
109 static int soft_reset_after_usbreset_occured;
111 /* timer */
112 static struct timer_list udc_timer;
113 static int stop_timer;
115 /* set_rde -- Is used to control enabling of RX DMA. Problem is
116 * that UDC has only one bit (RDE) to enable/disable RX DMA for
117 * all OUT endpoints. So we have to handle race conditions like
118 * when OUT data reaches the fifo but no request was queued yet.
119 * This cannot be solved by letting the RX DMA disabled until a
120 * request gets queued because there may be other OUT packets
121 * in the FIFO (important for not blocking control traffic).
122 * The value of set_rde controls the correspondig timer.
124 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
125 * set_rde 0 == do not touch RDE, do no start the RDE timer
126 * set_rde 1 == timer function will look whether FIFO has data
127 * set_rde 2 == set by timer function to enable RX DMA on next call
129 static int set_rde = -1;
131 static DECLARE_COMPLETION(on_exit);
132 static struct timer_list udc_pollstall_timer;
133 static int stop_pollstall_timer;
134 static DECLARE_COMPLETION(on_pollstall_exit);
136 /* tasklet for usb disconnect */
137 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
138 (unsigned long) &udc);
141 /* endpoint names used for print */
142 static const char ep0_string[] = "ep0in";
143 static const char *ep_string[] = {
144 ep0_string,
145 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
146 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
147 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
148 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
149 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
150 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
151 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
154 /* DMA usage flag */
155 static bool use_dma = 1;
156 /* packet per buffer dma */
157 static bool use_dma_ppb = 1;
158 /* with per descr. update */
159 static bool use_dma_ppb_du;
160 /* buffer fill mode */
161 static int use_dma_bufferfill_mode;
162 /* full speed only mode */
163 static bool use_fullspeed;
164 /* tx buffer size for high speed */
165 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
167 /* module parameters */
168 module_param(use_dma, bool, S_IRUGO);
169 MODULE_PARM_DESC(use_dma, "true for DMA");
170 module_param(use_dma_ppb, bool, S_IRUGO);
171 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
172 module_param(use_dma_ppb_du, bool, S_IRUGO);
173 MODULE_PARM_DESC(use_dma_ppb_du,
174 "true for DMA in packet per buffer mode with descriptor update");
175 module_param(use_fullspeed, bool, S_IRUGO);
176 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
178 /*---------------------------------------------------------------------------*/
179 /* Prints UDC device registers and endpoint irq registers */
180 static void print_regs(struct udc *dev)
182 DBG(dev, "------- Device registers -------\n");
183 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
184 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
185 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
186 DBG(dev, "\n");
187 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
188 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
189 DBG(dev, "\n");
190 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
191 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
192 DBG(dev, "\n");
193 DBG(dev, "USE DMA = %d\n", use_dma);
194 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
195 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
196 "WITHOUT desc. update)\n");
197 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
198 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
199 DBG(dev, "DMA mode = PPBDU (packet per buffer "
200 "WITH desc. update)\n");
201 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
203 if (use_dma && use_dma_bufferfill_mode) {
204 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
205 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
207 if (!use_dma) {
208 dev_info(&dev->pdev->dev, "FIFO mode\n");
210 DBG(dev, "-------------------------------------------------------\n");
213 /* Masks unused interrupts */
214 static int udc_mask_unused_interrupts(struct udc *dev)
216 u32 tmp;
218 /* mask all dev interrupts */
219 tmp = AMD_BIT(UDC_DEVINT_SVC) |
220 AMD_BIT(UDC_DEVINT_ENUM) |
221 AMD_BIT(UDC_DEVINT_US) |
222 AMD_BIT(UDC_DEVINT_UR) |
223 AMD_BIT(UDC_DEVINT_ES) |
224 AMD_BIT(UDC_DEVINT_SI) |
225 AMD_BIT(UDC_DEVINT_SOF)|
226 AMD_BIT(UDC_DEVINT_SC);
227 writel(tmp, &dev->regs->irqmsk);
229 /* mask all ep interrupts */
230 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
232 return 0;
235 /* Enables endpoint 0 interrupts */
236 static int udc_enable_ep0_interrupts(struct udc *dev)
238 u32 tmp;
240 DBG(dev, "udc_enable_ep0_interrupts()\n");
242 /* read irq mask */
243 tmp = readl(&dev->regs->ep_irqmsk);
244 /* enable ep0 irq's */
245 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
246 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
247 writel(tmp, &dev->regs->ep_irqmsk);
249 return 0;
252 /* Enables device interrupts for SET_INTF and SET_CONFIG */
253 static int udc_enable_dev_setup_interrupts(struct udc *dev)
255 u32 tmp;
257 DBG(dev, "enable device interrupts for setup data\n");
259 /* read irq mask */
260 tmp = readl(&dev->regs->irqmsk);
262 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
263 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
264 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
265 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
266 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
267 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
268 writel(tmp, &dev->regs->irqmsk);
270 return 0;
273 /* Calculates fifo start of endpoint based on preceding endpoints */
274 static int udc_set_txfifo_addr(struct udc_ep *ep)
276 struct udc *dev;
277 u32 tmp;
278 int i;
280 if (!ep || !(ep->in))
281 return -EINVAL;
283 dev = ep->dev;
284 ep->txfifo = dev->txfifo;
286 /* traverse ep's */
287 for (i = 0; i < ep->num; i++) {
288 if (dev->ep[i].regs) {
289 /* read fifo size */
290 tmp = readl(&dev->ep[i].regs->bufin_framenum);
291 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
292 ep->txfifo += tmp;
295 return 0;
298 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
299 static u32 cnak_pending;
301 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
303 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
304 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
305 cnak_pending |= 1 << (num);
306 ep->naking = 1;
307 } else
308 cnak_pending = cnak_pending & (~(1 << (num)));
312 /* Enables endpoint, is called by gadget driver */
313 static int
314 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
316 struct udc_ep *ep;
317 struct udc *dev;
318 u32 tmp;
319 unsigned long iflags;
320 u8 udc_csr_epix;
321 unsigned maxpacket;
323 if (!usbep
324 || usbep->name == ep0_string
325 || !desc
326 || desc->bDescriptorType != USB_DT_ENDPOINT)
327 return -EINVAL;
329 ep = container_of(usbep, struct udc_ep, ep);
330 dev = ep->dev;
332 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
334 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
335 return -ESHUTDOWN;
337 spin_lock_irqsave(&dev->lock, iflags);
338 ep->desc = desc;
340 ep->halted = 0;
342 /* set traffic type */
343 tmp = readl(&dev->ep[ep->num].regs->ctl);
344 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
345 writel(tmp, &dev->ep[ep->num].regs->ctl);
347 /* set max packet size */
348 maxpacket = usb_endpoint_maxp(desc);
349 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
350 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
351 ep->ep.maxpacket = maxpacket;
352 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
354 /* IN ep */
355 if (ep->in) {
357 /* ep ix in UDC CSR register space */
358 udc_csr_epix = ep->num;
360 /* set buffer size (tx fifo entries) */
361 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
362 /* double buffering: fifo size = 2 x max packet size */
363 tmp = AMD_ADDBITS(
364 tmp,
365 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
366 / UDC_DWORD_BYTES,
367 UDC_EPIN_BUFF_SIZE);
368 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
370 /* calc. tx fifo base addr */
371 udc_set_txfifo_addr(ep);
373 /* flush fifo */
374 tmp = readl(&ep->regs->ctl);
375 tmp |= AMD_BIT(UDC_EPCTL_F);
376 writel(tmp, &ep->regs->ctl);
378 /* OUT ep */
379 } else {
380 /* ep ix in UDC CSR register space */
381 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
383 /* set max packet size UDC CSR */
384 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
385 tmp = AMD_ADDBITS(tmp, maxpacket,
386 UDC_CSR_NE_MAX_PKT);
387 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
389 if (use_dma && !ep->in) {
390 /* alloc and init BNA dummy request */
391 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
392 ep->bna_occurred = 0;
395 if (ep->num != UDC_EP0OUT_IX)
396 dev->data_ep_enabled = 1;
399 /* set ep values */
400 tmp = readl(&dev->csr->ne[udc_csr_epix]);
401 /* max packet */
402 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
403 /* ep number */
404 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
405 /* ep direction */
406 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
407 /* ep type */
408 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
409 /* ep config */
410 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
411 /* ep interface */
412 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
413 /* ep alt */
414 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
415 /* write reg */
416 writel(tmp, &dev->csr->ne[udc_csr_epix]);
418 /* enable ep irq */
419 tmp = readl(&dev->regs->ep_irqmsk);
420 tmp &= AMD_UNMASK_BIT(ep->num);
421 writel(tmp, &dev->regs->ep_irqmsk);
424 * clear NAK by writing CNAK
425 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
427 if (!use_dma || ep->in) {
428 tmp = readl(&ep->regs->ctl);
429 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
430 writel(tmp, &ep->regs->ctl);
431 ep->naking = 0;
432 UDC_QUEUE_CNAK(ep, ep->num);
434 tmp = desc->bEndpointAddress;
435 DBG(dev, "%s enabled\n", usbep->name);
437 spin_unlock_irqrestore(&dev->lock, iflags);
438 return 0;
441 /* Resets endpoint */
442 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
444 u32 tmp;
446 VDBG(ep->dev, "ep-%d reset\n", ep->num);
447 ep->desc = NULL;
448 ep->ep.desc = NULL;
449 ep->ep.ops = &udc_ep_ops;
450 INIT_LIST_HEAD(&ep->queue);
452 ep->ep.maxpacket = (u16) ~0;
453 /* set NAK */
454 tmp = readl(&ep->regs->ctl);
455 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
456 writel(tmp, &ep->regs->ctl);
457 ep->naking = 1;
459 /* disable interrupt */
460 tmp = readl(&regs->ep_irqmsk);
461 tmp |= AMD_BIT(ep->num);
462 writel(tmp, &regs->ep_irqmsk);
464 if (ep->in) {
465 /* unset P and IN bit of potential former DMA */
466 tmp = readl(&ep->regs->ctl);
467 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
468 writel(tmp, &ep->regs->ctl);
470 tmp = readl(&ep->regs->sts);
471 tmp |= AMD_BIT(UDC_EPSTS_IN);
472 writel(tmp, &ep->regs->sts);
474 /* flush the fifo */
475 tmp = readl(&ep->regs->ctl);
476 tmp |= AMD_BIT(UDC_EPCTL_F);
477 writel(tmp, &ep->regs->ctl);
480 /* reset desc pointer */
481 writel(0, &ep->regs->desptr);
484 /* Disables endpoint, is called by gadget driver */
485 static int udc_ep_disable(struct usb_ep *usbep)
487 struct udc_ep *ep = NULL;
488 unsigned long iflags;
490 if (!usbep)
491 return -EINVAL;
493 ep = container_of(usbep, struct udc_ep, ep);
494 if (usbep->name == ep0_string || !ep->desc)
495 return -EINVAL;
497 DBG(ep->dev, "Disable ep-%d\n", ep->num);
499 spin_lock_irqsave(&ep->dev->lock, iflags);
500 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
501 empty_req_queue(ep);
502 ep_init(ep->dev->regs, ep);
503 spin_unlock_irqrestore(&ep->dev->lock, iflags);
505 return 0;
508 /* Allocates request packet, called by gadget driver */
509 static struct usb_request *
510 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
512 struct udc_request *req;
513 struct udc_data_dma *dma_desc;
514 struct udc_ep *ep;
516 if (!usbep)
517 return NULL;
519 ep = container_of(usbep, struct udc_ep, ep);
521 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
522 req = kzalloc(sizeof(struct udc_request), gfp);
523 if (!req)
524 return NULL;
526 req->req.dma = DMA_DONT_USE;
527 INIT_LIST_HEAD(&req->queue);
529 if (ep->dma) {
530 /* ep0 in requests are allocated from data pool here */
531 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
532 &req->td_phys);
533 if (!dma_desc) {
534 kfree(req);
535 return NULL;
538 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
539 "td_phys = %lx\n",
540 req, dma_desc,
541 (unsigned long)req->td_phys);
542 /* prevent from using desc. - set HOST BUSY */
543 dma_desc->status = AMD_ADDBITS(dma_desc->status,
544 UDC_DMA_STP_STS_BS_HOST_BUSY,
545 UDC_DMA_STP_STS_BS);
546 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
547 req->td_data = dma_desc;
548 req->td_data_last = NULL;
549 req->chain_len = 1;
552 return &req->req;
555 /* Frees request packet, called by gadget driver */
556 static void
557 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
559 struct udc_ep *ep;
560 struct udc_request *req;
562 if (!usbep || !usbreq)
563 return;
565 ep = container_of(usbep, struct udc_ep, ep);
566 req = container_of(usbreq, struct udc_request, req);
567 VDBG(ep->dev, "free_req req=%p\n", req);
568 BUG_ON(!list_empty(&req->queue));
569 if (req->td_data) {
570 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
572 /* free dma chain if created */
573 if (req->chain_len > 1) {
574 udc_free_dma_chain(ep->dev, req);
577 pci_pool_free(ep->dev->data_requests, req->td_data,
578 req->td_phys);
580 kfree(req);
583 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
584 static void udc_init_bna_dummy(struct udc_request *req)
586 if (req) {
587 /* set last bit */
588 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
589 /* set next pointer to itself */
590 req->td_data->next = req->td_phys;
591 /* set HOST BUSY */
592 req->td_data->status
593 = AMD_ADDBITS(req->td_data->status,
594 UDC_DMA_STP_STS_BS_DMA_DONE,
595 UDC_DMA_STP_STS_BS);
596 #ifdef UDC_VERBOSE
597 pr_debug("bna desc = %p, sts = %08x\n",
598 req->td_data, req->td_data->status);
599 #endif
603 /* Allocate BNA dummy descriptor */
604 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
606 struct udc_request *req = NULL;
607 struct usb_request *_req = NULL;
609 /* alloc the dummy request */
610 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
611 if (_req) {
612 req = container_of(_req, struct udc_request, req);
613 ep->bna_dummy_req = req;
614 udc_init_bna_dummy(req);
616 return req;
619 /* Write data to TX fifo for IN packets */
620 static void
621 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
623 u8 *req_buf;
624 u32 *buf;
625 int i, j;
626 unsigned bytes = 0;
627 unsigned remaining = 0;
629 if (!req || !ep)
630 return;
632 req_buf = req->buf + req->actual;
633 prefetch(req_buf);
634 remaining = req->length - req->actual;
636 buf = (u32 *) req_buf;
638 bytes = ep->ep.maxpacket;
639 if (bytes > remaining)
640 bytes = remaining;
642 /* dwords first */
643 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
644 writel(*(buf + i), ep->txfifo);
647 /* remaining bytes must be written by byte access */
648 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
649 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
650 ep->txfifo);
653 /* dummy write confirm */
654 writel(0, &ep->regs->confirm);
657 /* Read dwords from RX fifo for OUT transfers */
658 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
660 int i;
662 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
664 for (i = 0; i < dwords; i++) {
665 *(buf + i) = readl(dev->rxfifo);
667 return 0;
670 /* Read bytes from RX fifo for OUT transfers */
671 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
673 int i, j;
674 u32 tmp;
676 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
678 /* dwords first */
679 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
680 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
683 /* remaining bytes must be read by byte access */
684 if (bytes % UDC_DWORD_BYTES) {
685 tmp = readl(dev->rxfifo);
686 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
687 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
688 tmp = tmp >> UDC_BITS_PER_BYTE;
692 return 0;
695 /* Read data from RX fifo for OUT transfers */
696 static int
697 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
699 u8 *buf;
700 unsigned buf_space;
701 unsigned bytes = 0;
702 unsigned finished = 0;
704 /* received number bytes */
705 bytes = readl(&ep->regs->sts);
706 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
708 buf_space = req->req.length - req->req.actual;
709 buf = req->req.buf + req->req.actual;
710 if (bytes > buf_space) {
711 if ((buf_space % ep->ep.maxpacket) != 0) {
712 DBG(ep->dev,
713 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
714 ep->ep.name, bytes, buf_space);
715 req->req.status = -EOVERFLOW;
717 bytes = buf_space;
719 req->req.actual += bytes;
721 /* last packet ? */
722 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
723 || ((req->req.actual == req->req.length) && !req->req.zero))
724 finished = 1;
726 /* read rx fifo bytes */
727 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
728 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
730 return finished;
733 /* create/re-init a DMA descriptor or a DMA descriptor chain */
734 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
736 int retval = 0;
737 u32 tmp;
739 VDBG(ep->dev, "prep_dma\n");
740 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
741 ep->num, req->td_data);
743 /* set buffer pointer */
744 req->td_data->bufptr = req->req.dma;
746 /* set last bit */
747 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
749 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
750 if (use_dma_ppb) {
752 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
753 if (retval != 0) {
754 if (retval == -ENOMEM)
755 DBG(ep->dev, "Out of DMA memory\n");
756 return retval;
758 if (ep->in) {
759 if (req->req.length == ep->ep.maxpacket) {
760 /* write tx bytes */
761 req->td_data->status =
762 AMD_ADDBITS(req->td_data->status,
763 ep->ep.maxpacket,
764 UDC_DMA_IN_STS_TXBYTES);
771 if (ep->in) {
772 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
773 "maxpacket=%d ep%d\n",
774 use_dma_ppb, req->req.length,
775 ep->ep.maxpacket, ep->num);
777 * if bytes < max packet then tx bytes must
778 * be written in packet per buffer mode
780 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
781 || ep->num == UDC_EP0OUT_IX
782 || ep->num == UDC_EP0IN_IX) {
783 /* write tx bytes */
784 req->td_data->status =
785 AMD_ADDBITS(req->td_data->status,
786 req->req.length,
787 UDC_DMA_IN_STS_TXBYTES);
788 /* reset frame num */
789 req->td_data->status =
790 AMD_ADDBITS(req->td_data->status,
792 UDC_DMA_IN_STS_FRAMENUM);
794 /* set HOST BUSY */
795 req->td_data->status =
796 AMD_ADDBITS(req->td_data->status,
797 UDC_DMA_STP_STS_BS_HOST_BUSY,
798 UDC_DMA_STP_STS_BS);
799 } else {
800 VDBG(ep->dev, "OUT set host ready\n");
801 /* set HOST READY */
802 req->td_data->status =
803 AMD_ADDBITS(req->td_data->status,
804 UDC_DMA_STP_STS_BS_HOST_READY,
805 UDC_DMA_STP_STS_BS);
808 /* clear NAK by writing CNAK */
809 if (ep->naking) {
810 tmp = readl(&ep->regs->ctl);
811 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
812 writel(tmp, &ep->regs->ctl);
813 ep->naking = 0;
814 UDC_QUEUE_CNAK(ep, ep->num);
819 return retval;
822 /* Completes request packet ... caller MUST hold lock */
823 static void
824 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
825 __releases(ep->dev->lock)
826 __acquires(ep->dev->lock)
828 struct udc *dev;
829 unsigned halted;
831 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
833 dev = ep->dev;
834 /* unmap DMA */
835 if (req->dma_mapping) {
836 if (ep->in)
837 pci_unmap_single(dev->pdev,
838 req->req.dma,
839 req->req.length,
840 PCI_DMA_TODEVICE);
841 else
842 pci_unmap_single(dev->pdev,
843 req->req.dma,
844 req->req.length,
845 PCI_DMA_FROMDEVICE);
846 req->dma_mapping = 0;
847 req->req.dma = DMA_DONT_USE;
850 halted = ep->halted;
851 ep->halted = 1;
853 /* set new status if pending */
854 if (req->req.status == -EINPROGRESS)
855 req->req.status = sts;
857 /* remove from ep queue */
858 list_del_init(&req->queue);
860 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
861 &req->req, req->req.length, ep->ep.name, sts);
863 spin_unlock(&dev->lock);
864 req->req.complete(&ep->ep, &req->req);
865 spin_lock(&dev->lock);
866 ep->halted = halted;
869 /* frees pci pool descriptors of a DMA chain */
870 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
873 int ret_val = 0;
874 struct udc_data_dma *td;
875 struct udc_data_dma *td_last = NULL;
876 unsigned int i;
878 DBG(dev, "free chain req = %p\n", req);
880 /* do not free first desc., will be done by free for request */
881 td_last = req->td_data;
882 td = phys_to_virt(td_last->next);
884 for (i = 1; i < req->chain_len; i++) {
886 pci_pool_free(dev->data_requests, td,
887 (dma_addr_t) td_last->next);
888 td_last = td;
889 td = phys_to_virt(td_last->next);
892 return ret_val;
895 /* Iterates to the end of a DMA chain and returns last descriptor */
896 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
898 struct udc_data_dma *td;
900 td = req->td_data;
901 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
902 td = phys_to_virt(td->next);
905 return td;
909 /* Iterates to the end of a DMA chain and counts bytes received */
910 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
912 struct udc_data_dma *td;
913 u32 count;
915 td = req->td_data;
916 /* received number bytes */
917 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
919 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
920 td = phys_to_virt(td->next);
921 /* received number bytes */
922 if (td) {
923 count += AMD_GETBITS(td->status,
924 UDC_DMA_OUT_STS_RXBYTES);
928 return count;
932 /* Creates or re-inits a DMA chain */
933 static int udc_create_dma_chain(
934 struct udc_ep *ep,
935 struct udc_request *req,
936 unsigned long buf_len, gfp_t gfp_flags
939 unsigned long bytes = req->req.length;
940 unsigned int i;
941 dma_addr_t dma_addr;
942 struct udc_data_dma *td = NULL;
943 struct udc_data_dma *last = NULL;
944 unsigned long txbytes;
945 unsigned create_new_chain = 0;
946 unsigned len;
948 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
949 bytes, buf_len);
950 dma_addr = DMA_DONT_USE;
952 /* unset L bit in first desc for OUT */
953 if (!ep->in) {
954 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
957 /* alloc only new desc's if not already available */
958 len = req->req.length / ep->ep.maxpacket;
959 if (req->req.length % ep->ep.maxpacket) {
960 len++;
963 if (len > req->chain_len) {
964 /* shorter chain already allocated before */
965 if (req->chain_len > 1) {
966 udc_free_dma_chain(ep->dev, req);
968 req->chain_len = len;
969 create_new_chain = 1;
972 td = req->td_data;
973 /* gen. required number of descriptors and buffers */
974 for (i = buf_len; i < bytes; i += buf_len) {
975 /* create or determine next desc. */
976 if (create_new_chain) {
978 td = pci_pool_alloc(ep->dev->data_requests,
979 gfp_flags, &dma_addr);
980 if (!td)
981 return -ENOMEM;
983 td->status = 0;
984 } else if (i == buf_len) {
985 /* first td */
986 td = (struct udc_data_dma *) phys_to_virt(
987 req->td_data->next);
988 td->status = 0;
989 } else {
990 td = (struct udc_data_dma *) phys_to_virt(last->next);
991 td->status = 0;
995 if (td)
996 td->bufptr = req->req.dma + i; /* assign buffer */
997 else
998 break;
1000 /* short packet ? */
1001 if ((bytes - i) >= buf_len) {
1002 txbytes = buf_len;
1003 } else {
1004 /* short packet */
1005 txbytes = bytes - i;
1008 /* link td and assign tx bytes */
1009 if (i == buf_len) {
1010 if (create_new_chain) {
1011 req->td_data->next = dma_addr;
1012 } else {
1013 /* req->td_data->next = virt_to_phys(td); */
1015 /* write tx bytes */
1016 if (ep->in) {
1017 /* first desc */
1018 req->td_data->status =
1019 AMD_ADDBITS(req->td_data->status,
1020 ep->ep.maxpacket,
1021 UDC_DMA_IN_STS_TXBYTES);
1022 /* second desc */
1023 td->status = AMD_ADDBITS(td->status,
1024 txbytes,
1025 UDC_DMA_IN_STS_TXBYTES);
1027 } else {
1028 if (create_new_chain) {
1029 last->next = dma_addr;
1030 } else {
1031 /* last->next = virt_to_phys(td); */
1033 if (ep->in) {
1034 /* write tx bytes */
1035 td->status = AMD_ADDBITS(td->status,
1036 txbytes,
1037 UDC_DMA_IN_STS_TXBYTES);
1040 last = td;
1042 /* set last bit */
1043 if (td) {
1044 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1045 /* last desc. points to itself */
1046 req->td_data_last = td;
1049 return 0;
1052 /* Enabling RX DMA */
1053 static void udc_set_rde(struct udc *dev)
1055 u32 tmp;
1057 VDBG(dev, "udc_set_rde()\n");
1058 /* stop RDE timer */
1059 if (timer_pending(&udc_timer)) {
1060 set_rde = 0;
1061 mod_timer(&udc_timer, jiffies - 1);
1063 /* set RDE */
1064 tmp = readl(&dev->regs->ctl);
1065 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1066 writel(tmp, &dev->regs->ctl);
1069 /* Queues a request packet, called by gadget driver */
1070 static int
1071 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1073 int retval = 0;
1074 u8 open_rxfifo = 0;
1075 unsigned long iflags;
1076 struct udc_ep *ep;
1077 struct udc_request *req;
1078 struct udc *dev;
1079 u32 tmp;
1081 /* check the inputs */
1082 req = container_of(usbreq, struct udc_request, req);
1084 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1085 || !list_empty(&req->queue))
1086 return -EINVAL;
1088 ep = container_of(usbep, struct udc_ep, ep);
1089 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1090 return -EINVAL;
1092 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1093 dev = ep->dev;
1095 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1096 return -ESHUTDOWN;
1098 /* map dma (usually done before) */
1099 if (ep->dma && usbreq->length != 0
1100 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1101 VDBG(dev, "DMA map req %p\n", req);
1102 if (ep->in)
1103 usbreq->dma = pci_map_single(dev->pdev,
1104 usbreq->buf,
1105 usbreq->length,
1106 PCI_DMA_TODEVICE);
1107 else
1108 usbreq->dma = pci_map_single(dev->pdev,
1109 usbreq->buf,
1110 usbreq->length,
1111 PCI_DMA_FROMDEVICE);
1112 req->dma_mapping = 1;
1115 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1116 usbep->name, usbreq, usbreq->length,
1117 req->td_data, usbreq->buf);
1119 spin_lock_irqsave(&dev->lock, iflags);
1120 usbreq->actual = 0;
1121 usbreq->status = -EINPROGRESS;
1122 req->dma_done = 0;
1124 /* on empty queue just do first transfer */
1125 if (list_empty(&ep->queue)) {
1126 /* zlp */
1127 if (usbreq->length == 0) {
1128 /* IN zlp's are handled by hardware */
1129 complete_req(ep, req, 0);
1130 VDBG(dev, "%s: zlp\n", ep->ep.name);
1132 * if set_config or set_intf is waiting for ack by zlp
1133 * then set CSR_DONE
1135 if (dev->set_cfg_not_acked) {
1136 tmp = readl(&dev->regs->ctl);
1137 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1138 writel(tmp, &dev->regs->ctl);
1139 dev->set_cfg_not_acked = 0;
1141 /* setup command is ACK'ed now by zlp */
1142 if (dev->waiting_zlp_ack_ep0in) {
1143 /* clear NAK by writing CNAK in EP0_IN */
1144 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1145 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1146 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1147 dev->ep[UDC_EP0IN_IX].naking = 0;
1148 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1149 UDC_EP0IN_IX);
1150 dev->waiting_zlp_ack_ep0in = 0;
1152 goto finished;
1154 if (ep->dma) {
1155 retval = prep_dma(ep, req, gfp);
1156 if (retval != 0)
1157 goto finished;
1158 /* write desc pointer to enable DMA */
1159 if (ep->in) {
1160 /* set HOST READY */
1161 req->td_data->status =
1162 AMD_ADDBITS(req->td_data->status,
1163 UDC_DMA_IN_STS_BS_HOST_READY,
1164 UDC_DMA_IN_STS_BS);
1167 /* disabled rx dma while descriptor update */
1168 if (!ep->in) {
1169 /* stop RDE timer */
1170 if (timer_pending(&udc_timer)) {
1171 set_rde = 0;
1172 mod_timer(&udc_timer, jiffies - 1);
1174 /* clear RDE */
1175 tmp = readl(&dev->regs->ctl);
1176 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1177 writel(tmp, &dev->regs->ctl);
1178 open_rxfifo = 1;
1181 * if BNA occurred then let BNA dummy desc.
1182 * point to current desc.
1184 if (ep->bna_occurred) {
1185 VDBG(dev, "copy to BNA dummy desc.\n");
1186 memcpy(ep->bna_dummy_req->td_data,
1187 req->td_data,
1188 sizeof(struct udc_data_dma));
1191 /* write desc pointer */
1192 writel(req->td_phys, &ep->regs->desptr);
1194 /* clear NAK by writing CNAK */
1195 if (ep->naking) {
1196 tmp = readl(&ep->regs->ctl);
1197 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1198 writel(tmp, &ep->regs->ctl);
1199 ep->naking = 0;
1200 UDC_QUEUE_CNAK(ep, ep->num);
1203 if (ep->in) {
1204 /* enable ep irq */
1205 tmp = readl(&dev->regs->ep_irqmsk);
1206 tmp &= AMD_UNMASK_BIT(ep->num);
1207 writel(tmp, &dev->regs->ep_irqmsk);
1209 } else if (ep->in) {
1210 /* enable ep irq */
1211 tmp = readl(&dev->regs->ep_irqmsk);
1212 tmp &= AMD_UNMASK_BIT(ep->num);
1213 writel(tmp, &dev->regs->ep_irqmsk);
1216 } else if (ep->dma) {
1219 * prep_dma not used for OUT ep's, this is not possible
1220 * for PPB modes, because of chain creation reasons
1222 if (ep->in) {
1223 retval = prep_dma(ep, req, gfp);
1224 if (retval != 0)
1225 goto finished;
1228 VDBG(dev, "list_add\n");
1229 /* add request to ep queue */
1230 if (req) {
1232 list_add_tail(&req->queue, &ep->queue);
1234 /* open rxfifo if out data queued */
1235 if (open_rxfifo) {
1236 /* enable DMA */
1237 req->dma_going = 1;
1238 udc_set_rde(dev);
1239 if (ep->num != UDC_EP0OUT_IX)
1240 dev->data_ep_queued = 1;
1242 /* stop OUT naking */
1243 if (!ep->in) {
1244 if (!use_dma && udc_rxfifo_pending) {
1245 DBG(dev, "udc_queue(): pending bytes in "
1246 "rxfifo after nyet\n");
1248 * read pending bytes afer nyet:
1249 * referring to isr
1251 if (udc_rxfifo_read(ep, req)) {
1252 /* finish */
1253 complete_req(ep, req, 0);
1255 udc_rxfifo_pending = 0;
1261 finished:
1262 spin_unlock_irqrestore(&dev->lock, iflags);
1263 return retval;
1266 /* Empty request queue of an endpoint; caller holds spinlock */
1267 static void empty_req_queue(struct udc_ep *ep)
1269 struct udc_request *req;
1271 ep->halted = 1;
1272 while (!list_empty(&ep->queue)) {
1273 req = list_entry(ep->queue.next,
1274 struct udc_request,
1275 queue);
1276 complete_req(ep, req, -ESHUTDOWN);
1280 /* Dequeues a request packet, called by gadget driver */
1281 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1283 struct udc_ep *ep;
1284 struct udc_request *req;
1285 unsigned halted;
1286 unsigned long iflags;
1288 ep = container_of(usbep, struct udc_ep, ep);
1289 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1290 && ep->num != UDC_EP0OUT_IX)))
1291 return -EINVAL;
1293 req = container_of(usbreq, struct udc_request, req);
1295 spin_lock_irqsave(&ep->dev->lock, iflags);
1296 halted = ep->halted;
1297 ep->halted = 1;
1298 /* request in processing or next one */
1299 if (ep->queue.next == &req->queue) {
1300 if (ep->dma && req->dma_going) {
1301 if (ep->in)
1302 ep->cancel_transfer = 1;
1303 else {
1304 u32 tmp;
1305 u32 dma_sts;
1306 /* stop potential receive DMA */
1307 tmp = readl(&udc->regs->ctl);
1308 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1309 &udc->regs->ctl);
1311 * Cancel transfer later in ISR
1312 * if descriptor was touched.
1314 dma_sts = AMD_GETBITS(req->td_data->status,
1315 UDC_DMA_OUT_STS_BS);
1316 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1317 ep->cancel_transfer = 1;
1318 else {
1319 udc_init_bna_dummy(ep->req);
1320 writel(ep->bna_dummy_req->td_phys,
1321 &ep->regs->desptr);
1323 writel(tmp, &udc->regs->ctl);
1327 complete_req(ep, req, -ECONNRESET);
1328 ep->halted = halted;
1330 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1331 return 0;
1334 /* Halt or clear halt of endpoint */
1335 static int
1336 udc_set_halt(struct usb_ep *usbep, int halt)
1338 struct udc_ep *ep;
1339 u32 tmp;
1340 unsigned long iflags;
1341 int retval = 0;
1343 if (!usbep)
1344 return -EINVAL;
1346 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1348 ep = container_of(usbep, struct udc_ep, ep);
1349 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1350 return -EINVAL;
1351 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1352 return -ESHUTDOWN;
1354 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1355 /* halt or clear halt */
1356 if (halt) {
1357 if (ep->num == 0)
1358 ep->dev->stall_ep0in = 1;
1359 else {
1361 * set STALL
1362 * rxfifo empty not taken into acount
1364 tmp = readl(&ep->regs->ctl);
1365 tmp |= AMD_BIT(UDC_EPCTL_S);
1366 writel(tmp, &ep->regs->ctl);
1367 ep->halted = 1;
1369 /* setup poll timer */
1370 if (!timer_pending(&udc_pollstall_timer)) {
1371 udc_pollstall_timer.expires = jiffies +
1372 HZ * UDC_POLLSTALL_TIMER_USECONDS
1373 / (1000 * 1000);
1374 if (!stop_pollstall_timer) {
1375 DBG(ep->dev, "start polltimer\n");
1376 add_timer(&udc_pollstall_timer);
1380 } else {
1381 /* ep is halted by set_halt() before */
1382 if (ep->halted) {
1383 tmp = readl(&ep->regs->ctl);
1384 /* clear stall bit */
1385 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1386 /* clear NAK by writing CNAK */
1387 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1388 writel(tmp, &ep->regs->ctl);
1389 ep->halted = 0;
1390 UDC_QUEUE_CNAK(ep, ep->num);
1393 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1394 return retval;
1397 /* gadget interface */
1398 static const struct usb_ep_ops udc_ep_ops = {
1399 .enable = udc_ep_enable,
1400 .disable = udc_ep_disable,
1402 .alloc_request = udc_alloc_request,
1403 .free_request = udc_free_request,
1405 .queue = udc_queue,
1406 .dequeue = udc_dequeue,
1408 .set_halt = udc_set_halt,
1409 /* fifo ops not implemented */
1412 /*-------------------------------------------------------------------------*/
1414 /* Get frame counter (not implemented) */
1415 static int udc_get_frame(struct usb_gadget *gadget)
1417 return -EOPNOTSUPP;
1420 /* Remote wakeup gadget interface */
1421 static int udc_wakeup(struct usb_gadget *gadget)
1423 struct udc *dev;
1425 if (!gadget)
1426 return -EINVAL;
1427 dev = container_of(gadget, struct udc, gadget);
1428 udc_remote_wakeup(dev);
1430 return 0;
1433 static int amd5536_start(struct usb_gadget_driver *driver,
1434 int (*bind)(struct usb_gadget *));
1435 static int amd5536_stop(struct usb_gadget_driver *driver);
1436 /* gadget operations */
1437 static const struct usb_gadget_ops udc_ops = {
1438 .wakeup = udc_wakeup,
1439 .get_frame = udc_get_frame,
1440 .start = amd5536_start,
1441 .stop = amd5536_stop,
1444 /* Setups endpoint parameters, adds endpoints to linked list */
1445 static void make_ep_lists(struct udc *dev)
1447 /* make gadget ep lists */
1448 INIT_LIST_HEAD(&dev->gadget.ep_list);
1449 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1450 &dev->gadget.ep_list);
1451 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1452 &dev->gadget.ep_list);
1453 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1454 &dev->gadget.ep_list);
1456 /* fifo config */
1457 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1458 if (dev->gadget.speed == USB_SPEED_FULL)
1459 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1460 else if (dev->gadget.speed == USB_SPEED_HIGH)
1461 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1462 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1465 /* init registers at driver load time */
1466 static int startup_registers(struct udc *dev)
1468 u32 tmp;
1470 /* init controller by soft reset */
1471 udc_soft_reset(dev);
1473 /* mask not needed interrupts */
1474 udc_mask_unused_interrupts(dev);
1476 /* put into initial config */
1477 udc_basic_init(dev);
1478 /* link up all endpoints */
1479 udc_setup_endpoints(dev);
1481 /* program speed */
1482 tmp = readl(&dev->regs->cfg);
1483 if (use_fullspeed) {
1484 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1485 } else {
1486 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1488 writel(tmp, &dev->regs->cfg);
1490 return 0;
1493 /* Inits UDC context */
1494 static void udc_basic_init(struct udc *dev)
1496 u32 tmp;
1498 DBG(dev, "udc_basic_init()\n");
1500 dev->gadget.speed = USB_SPEED_UNKNOWN;
1502 /* stop RDE timer */
1503 if (timer_pending(&udc_timer)) {
1504 set_rde = 0;
1505 mod_timer(&udc_timer, jiffies - 1);
1507 /* stop poll stall timer */
1508 if (timer_pending(&udc_pollstall_timer)) {
1509 mod_timer(&udc_pollstall_timer, jiffies - 1);
1511 /* disable DMA */
1512 tmp = readl(&dev->regs->ctl);
1513 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1514 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1515 writel(tmp, &dev->regs->ctl);
1517 /* enable dynamic CSR programming */
1518 tmp = readl(&dev->regs->cfg);
1519 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1520 /* set self powered */
1521 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1522 /* set remote wakeupable */
1523 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1524 writel(tmp, &dev->regs->cfg);
1526 make_ep_lists(dev);
1528 dev->data_ep_enabled = 0;
1529 dev->data_ep_queued = 0;
1532 /* Sets initial endpoint parameters */
1533 static void udc_setup_endpoints(struct udc *dev)
1535 struct udc_ep *ep;
1536 u32 tmp;
1537 u32 reg;
1539 DBG(dev, "udc_setup_endpoints()\n");
1541 /* read enum speed */
1542 tmp = readl(&dev->regs->sts);
1543 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1544 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1545 dev->gadget.speed = USB_SPEED_HIGH;
1546 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1547 dev->gadget.speed = USB_SPEED_FULL;
1550 /* set basic ep parameters */
1551 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1552 ep = &dev->ep[tmp];
1553 ep->dev = dev;
1554 ep->ep.name = ep_string[tmp];
1555 ep->num = tmp;
1556 /* txfifo size is calculated at enable time */
1557 ep->txfifo = dev->txfifo;
1559 /* fifo size */
1560 if (tmp < UDC_EPIN_NUM) {
1561 ep->fifo_depth = UDC_TXFIFO_SIZE;
1562 ep->in = 1;
1563 } else {
1564 ep->fifo_depth = UDC_RXFIFO_SIZE;
1565 ep->in = 0;
1568 ep->regs = &dev->ep_regs[tmp];
1570 * ep will be reset only if ep was not enabled before to avoid
1571 * disabling ep interrupts when ENUM interrupt occurs but ep is
1572 * not enabled by gadget driver
1574 if (!ep->desc) {
1575 ep_init(dev->regs, ep);
1578 if (use_dma) {
1580 * ep->dma is not really used, just to indicate that
1581 * DMA is active: remove this
1582 * dma regs = dev control regs
1584 ep->dma = &dev->regs->ctl;
1586 /* nak OUT endpoints until enable - not for ep0 */
1587 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1588 && tmp > UDC_EPIN_NUM) {
1589 /* set NAK */
1590 reg = readl(&dev->ep[tmp].regs->ctl);
1591 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1592 writel(reg, &dev->ep[tmp].regs->ctl);
1593 dev->ep[tmp].naking = 1;
1598 /* EP0 max packet */
1599 if (dev->gadget.speed == USB_SPEED_FULL) {
1600 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1601 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1602 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1603 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1604 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1605 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1609 * with suspend bug workaround, ep0 params for gadget driver
1610 * are set at gadget driver bind() call
1612 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1613 dev->ep[UDC_EP0IN_IX].halted = 0;
1614 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1616 /* init cfg/alt/int */
1617 dev->cur_config = 0;
1618 dev->cur_intf = 0;
1619 dev->cur_alt = 0;
1622 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1623 static void usb_connect(struct udc *dev)
1626 dev_info(&dev->pdev->dev, "USB Connect\n");
1628 dev->connected = 1;
1630 /* put into initial config */
1631 udc_basic_init(dev);
1633 /* enable device setup interrupts */
1634 udc_enable_dev_setup_interrupts(dev);
1638 * Calls gadget with disconnect event and resets the UDC and makes
1639 * initial bringup to be ready for ep0 events
1641 static void usb_disconnect(struct udc *dev)
1644 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1646 dev->connected = 0;
1648 /* mask interrupts */
1649 udc_mask_unused_interrupts(dev);
1651 /* REVISIT there doesn't seem to be a point to having this
1652 * talk to a tasklet ... do it directly, we already hold
1653 * the spinlock needed to process the disconnect.
1656 tasklet_schedule(&disconnect_tasklet);
1659 /* Tasklet for disconnect to be outside of interrupt context */
1660 static void udc_tasklet_disconnect(unsigned long par)
1662 struct udc *dev = (struct udc *)(*((struct udc **) par));
1663 u32 tmp;
1665 DBG(dev, "Tasklet disconnect\n");
1666 spin_lock_irq(&dev->lock);
1668 if (dev->driver) {
1669 spin_unlock(&dev->lock);
1670 dev->driver->disconnect(&dev->gadget);
1671 spin_lock(&dev->lock);
1673 /* empty queues */
1674 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1675 empty_req_queue(&dev->ep[tmp]);
1680 /* disable ep0 */
1681 ep_init(dev->regs,
1682 &dev->ep[UDC_EP0IN_IX]);
1685 if (!soft_reset_occured) {
1686 /* init controller by soft reset */
1687 udc_soft_reset(dev);
1688 soft_reset_occured++;
1691 /* re-enable dev interrupts */
1692 udc_enable_dev_setup_interrupts(dev);
1693 /* back to full speed ? */
1694 if (use_fullspeed) {
1695 tmp = readl(&dev->regs->cfg);
1696 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1697 writel(tmp, &dev->regs->cfg);
1700 spin_unlock_irq(&dev->lock);
1703 /* Reset the UDC core */
1704 static void udc_soft_reset(struct udc *dev)
1706 unsigned long flags;
1708 DBG(dev, "Soft reset\n");
1710 * reset possible waiting interrupts, because int.
1711 * status is lost after soft reset,
1712 * ep int. status reset
1714 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1715 /* device int. status reset */
1716 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1718 spin_lock_irqsave(&udc_irq_spinlock, flags);
1719 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1720 readl(&dev->regs->cfg);
1721 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1725 /* RDE timer callback to set RDE bit */
1726 static void udc_timer_function(unsigned long v)
1728 u32 tmp;
1730 spin_lock_irq(&udc_irq_spinlock);
1732 if (set_rde > 0) {
1734 * open the fifo if fifo was filled on last timer call
1735 * conditionally
1737 if (set_rde > 1) {
1738 /* set RDE to receive setup data */
1739 tmp = readl(&udc->regs->ctl);
1740 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1741 writel(tmp, &udc->regs->ctl);
1742 set_rde = -1;
1743 } else if (readl(&udc->regs->sts)
1744 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1746 * if fifo empty setup polling, do not just
1747 * open the fifo
1749 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1750 if (!stop_timer) {
1751 add_timer(&udc_timer);
1753 } else {
1755 * fifo contains data now, setup timer for opening
1756 * the fifo when timer expires to be able to receive
1757 * setup packets, when data packets gets queued by
1758 * gadget layer then timer will forced to expire with
1759 * set_rde=0 (RDE is set in udc_queue())
1761 set_rde++;
1762 /* debug: lhadmot_timer_start = 221070 */
1763 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1764 if (!stop_timer) {
1765 add_timer(&udc_timer);
1769 } else
1770 set_rde = -1; /* RDE was set by udc_queue() */
1771 spin_unlock_irq(&udc_irq_spinlock);
1772 if (stop_timer)
1773 complete(&on_exit);
1777 /* Handle halt state, used in stall poll timer */
1778 static void udc_handle_halt_state(struct udc_ep *ep)
1780 u32 tmp;
1781 /* set stall as long not halted */
1782 if (ep->halted == 1) {
1783 tmp = readl(&ep->regs->ctl);
1784 /* STALL cleared ? */
1785 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1787 * FIXME: MSC spec requires that stall remains
1788 * even on receivng of CLEAR_FEATURE HALT. So
1789 * we would set STALL again here to be compliant.
1790 * But with current mass storage drivers this does
1791 * not work (would produce endless host retries).
1792 * So we clear halt on CLEAR_FEATURE.
1794 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1795 tmp |= AMD_BIT(UDC_EPCTL_S);
1796 writel(tmp, &ep->regs->ctl);*/
1798 /* clear NAK by writing CNAK */
1799 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1800 writel(tmp, &ep->regs->ctl);
1801 ep->halted = 0;
1802 UDC_QUEUE_CNAK(ep, ep->num);
1807 /* Stall timer callback to poll S bit and set it again after */
1808 static void udc_pollstall_timer_function(unsigned long v)
1810 struct udc_ep *ep;
1811 int halted = 0;
1813 spin_lock_irq(&udc_stall_spinlock);
1815 * only one IN and OUT endpoints are handled
1816 * IN poll stall
1818 ep = &udc->ep[UDC_EPIN_IX];
1819 udc_handle_halt_state(ep);
1820 if (ep->halted)
1821 halted = 1;
1822 /* OUT poll stall */
1823 ep = &udc->ep[UDC_EPOUT_IX];
1824 udc_handle_halt_state(ep);
1825 if (ep->halted)
1826 halted = 1;
1828 /* setup timer again when still halted */
1829 if (!stop_pollstall_timer && halted) {
1830 udc_pollstall_timer.expires = jiffies +
1831 HZ * UDC_POLLSTALL_TIMER_USECONDS
1832 / (1000 * 1000);
1833 add_timer(&udc_pollstall_timer);
1835 spin_unlock_irq(&udc_stall_spinlock);
1837 if (stop_pollstall_timer)
1838 complete(&on_pollstall_exit);
1841 /* Inits endpoint 0 so that SETUP packets are processed */
1842 static void activate_control_endpoints(struct udc *dev)
1844 u32 tmp;
1846 DBG(dev, "activate_control_endpoints\n");
1848 /* flush fifo */
1849 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1850 tmp |= AMD_BIT(UDC_EPCTL_F);
1851 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1853 /* set ep0 directions */
1854 dev->ep[UDC_EP0IN_IX].in = 1;
1855 dev->ep[UDC_EP0OUT_IX].in = 0;
1857 /* set buffer size (tx fifo entries) of EP0_IN */
1858 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1859 if (dev->gadget.speed == USB_SPEED_FULL)
1860 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1861 UDC_EPIN_BUFF_SIZE);
1862 else if (dev->gadget.speed == USB_SPEED_HIGH)
1863 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1864 UDC_EPIN_BUFF_SIZE);
1865 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1867 /* set max packet size of EP0_IN */
1868 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1869 if (dev->gadget.speed == USB_SPEED_FULL)
1870 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1871 UDC_EP_MAX_PKT_SIZE);
1872 else if (dev->gadget.speed == USB_SPEED_HIGH)
1873 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1874 UDC_EP_MAX_PKT_SIZE);
1875 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1877 /* set max packet size of EP0_OUT */
1878 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1879 if (dev->gadget.speed == USB_SPEED_FULL)
1880 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1881 UDC_EP_MAX_PKT_SIZE);
1882 else if (dev->gadget.speed == USB_SPEED_HIGH)
1883 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1884 UDC_EP_MAX_PKT_SIZE);
1885 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1887 /* set max packet size of EP0 in UDC CSR */
1888 tmp = readl(&dev->csr->ne[0]);
1889 if (dev->gadget.speed == USB_SPEED_FULL)
1890 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1891 UDC_CSR_NE_MAX_PKT);
1892 else if (dev->gadget.speed == USB_SPEED_HIGH)
1893 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1894 UDC_CSR_NE_MAX_PKT);
1895 writel(tmp, &dev->csr->ne[0]);
1897 if (use_dma) {
1898 dev->ep[UDC_EP0OUT_IX].td->status |=
1899 AMD_BIT(UDC_DMA_OUT_STS_L);
1900 /* write dma desc address */
1901 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1902 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1903 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1904 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1905 /* stop RDE timer */
1906 if (timer_pending(&udc_timer)) {
1907 set_rde = 0;
1908 mod_timer(&udc_timer, jiffies - 1);
1910 /* stop pollstall timer */
1911 if (timer_pending(&udc_pollstall_timer)) {
1912 mod_timer(&udc_pollstall_timer, jiffies - 1);
1914 /* enable DMA */
1915 tmp = readl(&dev->regs->ctl);
1916 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1917 | AMD_BIT(UDC_DEVCTL_RDE)
1918 | AMD_BIT(UDC_DEVCTL_TDE);
1919 if (use_dma_bufferfill_mode) {
1920 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1921 } else if (use_dma_ppb_du) {
1922 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1924 writel(tmp, &dev->regs->ctl);
1927 /* clear NAK by writing CNAK for EP0IN */
1928 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1929 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1930 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1931 dev->ep[UDC_EP0IN_IX].naking = 0;
1932 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1934 /* clear NAK by writing CNAK for EP0OUT */
1935 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1936 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1937 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1938 dev->ep[UDC_EP0OUT_IX].naking = 0;
1939 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1942 /* Make endpoint 0 ready for control traffic */
1943 static int setup_ep0(struct udc *dev)
1945 activate_control_endpoints(dev);
1946 /* enable ep0 interrupts */
1947 udc_enable_ep0_interrupts(dev);
1948 /* enable device setup interrupts */
1949 udc_enable_dev_setup_interrupts(dev);
1951 return 0;
1954 /* Called by gadget driver to register itself */
1955 static int amd5536_start(struct usb_gadget_driver *driver,
1956 int (*bind)(struct usb_gadget *))
1958 struct udc *dev = udc;
1959 int retval;
1960 u32 tmp;
1962 if (!driver || !bind || !driver->setup
1963 || driver->max_speed < USB_SPEED_HIGH)
1964 return -EINVAL;
1965 if (!dev)
1966 return -ENODEV;
1967 if (dev->driver)
1968 return -EBUSY;
1970 driver->driver.bus = NULL;
1971 dev->driver = driver;
1972 dev->gadget.dev.driver = &driver->driver;
1974 retval = bind(&dev->gadget);
1976 /* Some gadget drivers use both ep0 directions.
1977 * NOTE: to gadget driver, ep0 is just one endpoint...
1979 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1980 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1982 if (retval) {
1983 DBG(dev, "binding to %s returning %d\n",
1984 driver->driver.name, retval);
1985 dev->driver = NULL;
1986 dev->gadget.dev.driver = NULL;
1987 return retval;
1990 /* get ready for ep0 traffic */
1991 setup_ep0(dev);
1993 /* clear SD */
1994 tmp = readl(&dev->regs->ctl);
1995 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1996 writel(tmp, &dev->regs->ctl);
1998 usb_connect(dev);
2000 return 0;
2003 /* shutdown requests and disconnect from gadget */
2004 static void
2005 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2006 __releases(dev->lock)
2007 __acquires(dev->lock)
2009 int tmp;
2011 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2012 spin_unlock(&dev->lock);
2013 driver->disconnect(&dev->gadget);
2014 spin_lock(&dev->lock);
2017 /* empty queues and init hardware */
2018 udc_basic_init(dev);
2019 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
2020 empty_req_queue(&dev->ep[tmp]);
2022 udc_setup_endpoints(dev);
2025 /* Called by gadget driver to unregister itself */
2026 static int amd5536_stop(struct usb_gadget_driver *driver)
2028 struct udc *dev = udc;
2029 unsigned long flags;
2030 u32 tmp;
2032 if (!dev)
2033 return -ENODEV;
2034 if (!driver || driver != dev->driver || !driver->unbind)
2035 return -EINVAL;
2037 spin_lock_irqsave(&dev->lock, flags);
2038 udc_mask_unused_interrupts(dev);
2039 shutdown(dev, driver);
2040 spin_unlock_irqrestore(&dev->lock, flags);
2042 driver->unbind(&dev->gadget);
2043 dev->gadget.dev.driver = NULL;
2044 dev->driver = NULL;
2046 /* set SD */
2047 tmp = readl(&dev->regs->ctl);
2048 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2049 writel(tmp, &dev->regs->ctl);
2052 DBG(dev, "%s: unregistered\n", driver->driver.name);
2054 return 0;
2057 /* Clear pending NAK bits */
2058 static void udc_process_cnak_queue(struct udc *dev)
2060 u32 tmp;
2061 u32 reg;
2063 /* check epin's */
2064 DBG(dev, "CNAK pending queue processing\n");
2065 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2066 if (cnak_pending & (1 << tmp)) {
2067 DBG(dev, "CNAK pending for ep%d\n", tmp);
2068 /* clear NAK by writing CNAK */
2069 reg = readl(&dev->ep[tmp].regs->ctl);
2070 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2071 writel(reg, &dev->ep[tmp].regs->ctl);
2072 dev->ep[tmp].naking = 0;
2073 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2076 /* ... and ep0out */
2077 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2078 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2079 /* clear NAK by writing CNAK */
2080 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2081 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2082 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2083 dev->ep[UDC_EP0OUT_IX].naking = 0;
2084 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2085 dev->ep[UDC_EP0OUT_IX].num);
2089 /* Enabling RX DMA after setup packet */
2090 static void udc_ep0_set_rde(struct udc *dev)
2092 if (use_dma) {
2094 * only enable RXDMA when no data endpoint enabled
2095 * or data is queued
2097 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2098 udc_set_rde(dev);
2099 } else {
2101 * setup timer for enabling RDE (to not enable
2102 * RXFIFO DMA for data endpoints to early)
2104 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2105 udc_timer.expires =
2106 jiffies + HZ/UDC_RDE_TIMER_DIV;
2107 set_rde = 1;
2108 if (!stop_timer) {
2109 add_timer(&udc_timer);
2117 /* Interrupt handler for data OUT traffic */
2118 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2120 irqreturn_t ret_val = IRQ_NONE;
2121 u32 tmp;
2122 struct udc_ep *ep;
2123 struct udc_request *req;
2124 unsigned int count;
2125 struct udc_data_dma *td = NULL;
2126 unsigned dma_done;
2128 VDBG(dev, "ep%d irq\n", ep_ix);
2129 ep = &dev->ep[ep_ix];
2131 tmp = readl(&ep->regs->sts);
2132 if (use_dma) {
2133 /* BNA event ? */
2134 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2135 DBG(dev, "BNA ep%dout occurred - DESPTR = %x \n",
2136 ep->num, readl(&ep->regs->desptr));
2137 /* clear BNA */
2138 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2139 if (!ep->cancel_transfer)
2140 ep->bna_occurred = 1;
2141 else
2142 ep->cancel_transfer = 0;
2143 ret_val = IRQ_HANDLED;
2144 goto finished;
2147 /* HE event ? */
2148 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2149 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2151 /* clear HE */
2152 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2153 ret_val = IRQ_HANDLED;
2154 goto finished;
2157 if (!list_empty(&ep->queue)) {
2159 /* next request */
2160 req = list_entry(ep->queue.next,
2161 struct udc_request, queue);
2162 } else {
2163 req = NULL;
2164 udc_rxfifo_pending = 1;
2166 VDBG(dev, "req = %p\n", req);
2167 /* fifo mode */
2168 if (!use_dma) {
2170 /* read fifo */
2171 if (req && udc_rxfifo_read(ep, req)) {
2172 ret_val = IRQ_HANDLED;
2174 /* finish */
2175 complete_req(ep, req, 0);
2176 /* next request */
2177 if (!list_empty(&ep->queue) && !ep->halted) {
2178 req = list_entry(ep->queue.next,
2179 struct udc_request, queue);
2180 } else
2181 req = NULL;
2184 /* DMA */
2185 } else if (!ep->cancel_transfer && req != NULL) {
2186 ret_val = IRQ_HANDLED;
2188 /* check for DMA done */
2189 if (!use_dma_ppb) {
2190 dma_done = AMD_GETBITS(req->td_data->status,
2191 UDC_DMA_OUT_STS_BS);
2192 /* packet per buffer mode - rx bytes */
2193 } else {
2195 * if BNA occurred then recover desc. from
2196 * BNA dummy desc.
2198 if (ep->bna_occurred) {
2199 VDBG(dev, "Recover desc. from BNA dummy\n");
2200 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2201 sizeof(struct udc_data_dma));
2202 ep->bna_occurred = 0;
2203 udc_init_bna_dummy(ep->req);
2205 td = udc_get_last_dma_desc(req);
2206 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2208 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2209 /* buffer fill mode - rx bytes */
2210 if (!use_dma_ppb) {
2211 /* received number bytes */
2212 count = AMD_GETBITS(req->td_data->status,
2213 UDC_DMA_OUT_STS_RXBYTES);
2214 VDBG(dev, "rx bytes=%u\n", count);
2215 /* packet per buffer mode - rx bytes */
2216 } else {
2217 VDBG(dev, "req->td_data=%p\n", req->td_data);
2218 VDBG(dev, "last desc = %p\n", td);
2219 /* received number bytes */
2220 if (use_dma_ppb_du) {
2221 /* every desc. counts bytes */
2222 count = udc_get_ppbdu_rxbytes(req);
2223 } else {
2224 /* last desc. counts bytes */
2225 count = AMD_GETBITS(td->status,
2226 UDC_DMA_OUT_STS_RXBYTES);
2227 if (!count && req->req.length
2228 == UDC_DMA_MAXPACKET) {
2230 * on 64k packets the RXBYTES
2231 * field is zero
2233 count = UDC_DMA_MAXPACKET;
2236 VDBG(dev, "last desc rx bytes=%u\n", count);
2239 tmp = req->req.length - req->req.actual;
2240 if (count > tmp) {
2241 if ((tmp % ep->ep.maxpacket) != 0) {
2242 DBG(dev, "%s: rx %db, space=%db\n",
2243 ep->ep.name, count, tmp);
2244 req->req.status = -EOVERFLOW;
2246 count = tmp;
2248 req->req.actual += count;
2249 req->dma_going = 0;
2250 /* complete request */
2251 complete_req(ep, req, 0);
2253 /* next request */
2254 if (!list_empty(&ep->queue) && !ep->halted) {
2255 req = list_entry(ep->queue.next,
2256 struct udc_request,
2257 queue);
2259 * DMA may be already started by udc_queue()
2260 * called by gadget drivers completion
2261 * routine. This happens when queue
2262 * holds one request only.
2264 if (req->dma_going == 0) {
2265 /* next dma */
2266 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2267 goto finished;
2268 /* write desc pointer */
2269 writel(req->td_phys,
2270 &ep->regs->desptr);
2271 req->dma_going = 1;
2272 /* enable DMA */
2273 udc_set_rde(dev);
2275 } else {
2277 * implant BNA dummy descriptor to allow
2278 * RXFIFO opening by RDE
2280 if (ep->bna_dummy_req) {
2281 /* write desc pointer */
2282 writel(ep->bna_dummy_req->td_phys,
2283 &ep->regs->desptr);
2284 ep->bna_occurred = 0;
2288 * schedule timer for setting RDE if queue
2289 * remains empty to allow ep0 packets pass
2290 * through
2292 if (set_rde != 0
2293 && !timer_pending(&udc_timer)) {
2294 udc_timer.expires =
2295 jiffies
2296 + HZ*UDC_RDE_TIMER_SECONDS;
2297 set_rde = 1;
2298 if (!stop_timer) {
2299 add_timer(&udc_timer);
2302 if (ep->num != UDC_EP0OUT_IX)
2303 dev->data_ep_queued = 0;
2306 } else {
2308 * RX DMA must be reenabled for each desc in PPBDU mode
2309 * and must be enabled for PPBNDU mode in case of BNA
2311 udc_set_rde(dev);
2314 } else if (ep->cancel_transfer) {
2315 ret_val = IRQ_HANDLED;
2316 ep->cancel_transfer = 0;
2319 /* check pending CNAKS */
2320 if (cnak_pending) {
2321 /* CNAk processing when rxfifo empty only */
2322 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2323 udc_process_cnak_queue(dev);
2327 /* clear OUT bits in ep status */
2328 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2329 finished:
2330 return ret_val;
2333 /* Interrupt handler for data IN traffic */
2334 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2336 irqreturn_t ret_val = IRQ_NONE;
2337 u32 tmp;
2338 u32 epsts;
2339 struct udc_ep *ep;
2340 struct udc_request *req;
2341 struct udc_data_dma *td;
2342 unsigned dma_done;
2343 unsigned len;
2345 ep = &dev->ep[ep_ix];
2347 epsts = readl(&ep->regs->sts);
2348 if (use_dma) {
2349 /* BNA ? */
2350 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2351 dev_err(&dev->pdev->dev,
2352 "BNA ep%din occurred - DESPTR = %08lx \n",
2353 ep->num,
2354 (unsigned long) readl(&ep->regs->desptr));
2356 /* clear BNA */
2357 writel(epsts, &ep->regs->sts);
2358 ret_val = IRQ_HANDLED;
2359 goto finished;
2362 /* HE event ? */
2363 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2364 dev_err(&dev->pdev->dev,
2365 "HE ep%dn occurred - DESPTR = %08lx \n",
2366 ep->num, (unsigned long) readl(&ep->regs->desptr));
2368 /* clear HE */
2369 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2370 ret_val = IRQ_HANDLED;
2371 goto finished;
2374 /* DMA completion */
2375 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2376 VDBG(dev, "TDC set- completion\n");
2377 ret_val = IRQ_HANDLED;
2378 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2379 req = list_entry(ep->queue.next,
2380 struct udc_request, queue);
2382 * length bytes transferred
2383 * check dma done of last desc. in PPBDU mode
2385 if (use_dma_ppb_du) {
2386 td = udc_get_last_dma_desc(req);
2387 if (td) {
2388 dma_done =
2389 AMD_GETBITS(td->status,
2390 UDC_DMA_IN_STS_BS);
2391 /* don't care DMA done */
2392 req->req.actual = req->req.length;
2394 } else {
2395 /* assume all bytes transferred */
2396 req->req.actual = req->req.length;
2399 if (req->req.actual == req->req.length) {
2400 /* complete req */
2401 complete_req(ep, req, 0);
2402 req->dma_going = 0;
2403 /* further request available ? */
2404 if (list_empty(&ep->queue)) {
2405 /* disable interrupt */
2406 tmp = readl(&dev->regs->ep_irqmsk);
2407 tmp |= AMD_BIT(ep->num);
2408 writel(tmp, &dev->regs->ep_irqmsk);
2412 ep->cancel_transfer = 0;
2416 * status reg has IN bit set and TDC not set (if TDC was handled,
2417 * IN must not be handled (UDC defect) ?
2419 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2420 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2421 ret_val = IRQ_HANDLED;
2422 if (!list_empty(&ep->queue)) {
2423 /* next request */
2424 req = list_entry(ep->queue.next,
2425 struct udc_request, queue);
2426 /* FIFO mode */
2427 if (!use_dma) {
2428 /* write fifo */
2429 udc_txfifo_write(ep, &req->req);
2430 len = req->req.length - req->req.actual;
2431 if (len > ep->ep.maxpacket)
2432 len = ep->ep.maxpacket;
2433 req->req.actual += len;
2434 if (req->req.actual == req->req.length
2435 || (len != ep->ep.maxpacket)) {
2436 /* complete req */
2437 complete_req(ep, req, 0);
2439 /* DMA */
2440 } else if (req && !req->dma_going) {
2441 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2442 req, req->td_data);
2443 if (req->td_data) {
2445 req->dma_going = 1;
2448 * unset L bit of first desc.
2449 * for chain
2451 if (use_dma_ppb && req->req.length >
2452 ep->ep.maxpacket) {
2453 req->td_data->status &=
2454 AMD_CLEAR_BIT(
2455 UDC_DMA_IN_STS_L);
2458 /* write desc pointer */
2459 writel(req->td_phys, &ep->regs->desptr);
2461 /* set HOST READY */
2462 req->td_data->status =
2463 AMD_ADDBITS(
2464 req->td_data->status,
2465 UDC_DMA_IN_STS_BS_HOST_READY,
2466 UDC_DMA_IN_STS_BS);
2468 /* set poll demand bit */
2469 tmp = readl(&ep->regs->ctl);
2470 tmp |= AMD_BIT(UDC_EPCTL_P);
2471 writel(tmp, &ep->regs->ctl);
2475 } else if (!use_dma && ep->in) {
2476 /* disable interrupt */
2477 tmp = readl(
2478 &dev->regs->ep_irqmsk);
2479 tmp |= AMD_BIT(ep->num);
2480 writel(tmp,
2481 &dev->regs->ep_irqmsk);
2484 /* clear status bits */
2485 writel(epsts, &ep->regs->sts);
2487 finished:
2488 return ret_val;
2492 /* Interrupt handler for Control OUT traffic */
2493 static irqreturn_t udc_control_out_isr(struct udc *dev)
2494 __releases(dev->lock)
2495 __acquires(dev->lock)
2497 irqreturn_t ret_val = IRQ_NONE;
2498 u32 tmp;
2499 int setup_supported;
2500 u32 count;
2501 int set = 0;
2502 struct udc_ep *ep;
2503 struct udc_ep *ep_tmp;
2505 ep = &dev->ep[UDC_EP0OUT_IX];
2507 /* clear irq */
2508 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2510 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2511 /* check BNA and clear if set */
2512 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2513 VDBG(dev, "ep0: BNA set\n");
2514 writel(AMD_BIT(UDC_EPSTS_BNA),
2515 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2516 ep->bna_occurred = 1;
2517 ret_val = IRQ_HANDLED;
2518 goto finished;
2521 /* type of data: SETUP or DATA 0 bytes */
2522 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2523 VDBG(dev, "data_typ = %x\n", tmp);
2525 /* setup data */
2526 if (tmp == UDC_EPSTS_OUT_SETUP) {
2527 ret_val = IRQ_HANDLED;
2529 ep->dev->stall_ep0in = 0;
2530 dev->waiting_zlp_ack_ep0in = 0;
2532 /* set NAK for EP0_IN */
2533 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2534 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2535 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2536 dev->ep[UDC_EP0IN_IX].naking = 1;
2537 /* get setup data */
2538 if (use_dma) {
2540 /* clear OUT bits in ep status */
2541 writel(UDC_EPSTS_OUT_CLEAR,
2542 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2544 setup_data.data[0] =
2545 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2546 setup_data.data[1] =
2547 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2548 /* set HOST READY */
2549 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2550 UDC_DMA_STP_STS_BS_HOST_READY;
2551 } else {
2552 /* read fifo */
2553 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2556 /* determine direction of control data */
2557 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2558 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2559 /* enable RDE */
2560 udc_ep0_set_rde(dev);
2561 set = 0;
2562 } else {
2563 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2565 * implant BNA dummy descriptor to allow RXFIFO opening
2566 * by RDE
2568 if (ep->bna_dummy_req) {
2569 /* write desc pointer */
2570 writel(ep->bna_dummy_req->td_phys,
2571 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2572 ep->bna_occurred = 0;
2575 set = 1;
2576 dev->ep[UDC_EP0OUT_IX].naking = 1;
2578 * setup timer for enabling RDE (to not enable
2579 * RXFIFO DMA for data to early)
2581 set_rde = 1;
2582 if (!timer_pending(&udc_timer)) {
2583 udc_timer.expires = jiffies +
2584 HZ/UDC_RDE_TIMER_DIV;
2585 if (!stop_timer) {
2586 add_timer(&udc_timer);
2592 * mass storage reset must be processed here because
2593 * next packet may be a CLEAR_FEATURE HALT which would not
2594 * clear the stall bit when no STALL handshake was received
2595 * before (autostall can cause this)
2597 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2598 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2599 DBG(dev, "MSC Reset\n");
2601 * clear stall bits
2602 * only one IN and OUT endpoints are handled
2604 ep_tmp = &udc->ep[UDC_EPIN_IX];
2605 udc_set_halt(&ep_tmp->ep, 0);
2606 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2607 udc_set_halt(&ep_tmp->ep, 0);
2610 /* call gadget with setup data received */
2611 spin_unlock(&dev->lock);
2612 setup_supported = dev->driver->setup(&dev->gadget,
2613 &setup_data.request);
2614 spin_lock(&dev->lock);
2616 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2617 /* ep0 in returns data (not zlp) on IN phase */
2618 if (setup_supported >= 0 && setup_supported <
2619 UDC_EP0IN_MAXPACKET) {
2620 /* clear NAK by writing CNAK in EP0_IN */
2621 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2622 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2623 dev->ep[UDC_EP0IN_IX].naking = 0;
2624 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2626 /* if unsupported request then stall */
2627 } else if (setup_supported < 0) {
2628 tmp |= AMD_BIT(UDC_EPCTL_S);
2629 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2630 } else
2631 dev->waiting_zlp_ack_ep0in = 1;
2634 /* clear NAK by writing CNAK in EP0_OUT */
2635 if (!set) {
2636 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2637 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2638 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2639 dev->ep[UDC_EP0OUT_IX].naking = 0;
2640 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2643 if (!use_dma) {
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR,
2646 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2649 /* data packet 0 bytes */
2650 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2651 /* clear OUT bits in ep status */
2652 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2654 /* get setup data: only 0 packet */
2655 if (use_dma) {
2656 /* no req if 0 packet, just reactivate */
2657 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2658 VDBG(dev, "ZLP\n");
2660 /* set HOST READY */
2661 dev->ep[UDC_EP0OUT_IX].td->status =
2662 AMD_ADDBITS(
2663 dev->ep[UDC_EP0OUT_IX].td->status,
2664 UDC_DMA_OUT_STS_BS_HOST_READY,
2665 UDC_DMA_OUT_STS_BS);
2666 /* enable RDE */
2667 udc_ep0_set_rde(dev);
2668 ret_val = IRQ_HANDLED;
2670 } else {
2671 /* control write */
2672 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2673 /* re-program desc. pointer for possible ZLPs */
2674 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2675 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2676 /* enable RDE */
2677 udc_ep0_set_rde(dev);
2679 } else {
2681 /* received number bytes */
2682 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2683 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2684 /* out data for fifo mode not working */
2685 count = 0;
2687 /* 0 packet or real data ? */
2688 if (count != 0) {
2689 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2690 } else {
2691 /* dummy read confirm */
2692 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2693 ret_val = IRQ_HANDLED;
2698 /* check pending CNAKS */
2699 if (cnak_pending) {
2700 /* CNAk processing when rxfifo empty only */
2701 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2702 udc_process_cnak_queue(dev);
2706 finished:
2707 return ret_val;
2710 /* Interrupt handler for Control IN traffic */
2711 static irqreturn_t udc_control_in_isr(struct udc *dev)
2713 irqreturn_t ret_val = IRQ_NONE;
2714 u32 tmp;
2715 struct udc_ep *ep;
2716 struct udc_request *req;
2717 unsigned len;
2719 ep = &dev->ep[UDC_EP0IN_IX];
2721 /* clear irq */
2722 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2724 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2725 /* DMA completion */
2726 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2727 VDBG(dev, "isr: TDC clear \n");
2728 ret_val = IRQ_HANDLED;
2730 /* clear TDC bit */
2731 writel(AMD_BIT(UDC_EPSTS_TDC),
2732 &dev->ep[UDC_EP0IN_IX].regs->sts);
2734 /* status reg has IN bit set ? */
2735 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2736 ret_val = IRQ_HANDLED;
2738 if (ep->dma) {
2739 /* clear IN bit */
2740 writel(AMD_BIT(UDC_EPSTS_IN),
2741 &dev->ep[UDC_EP0IN_IX].regs->sts);
2743 if (dev->stall_ep0in) {
2744 DBG(dev, "stall ep0in\n");
2745 /* halt ep0in */
2746 tmp = readl(&ep->regs->ctl);
2747 tmp |= AMD_BIT(UDC_EPCTL_S);
2748 writel(tmp, &ep->regs->ctl);
2749 } else {
2750 if (!list_empty(&ep->queue)) {
2751 /* next request */
2752 req = list_entry(ep->queue.next,
2753 struct udc_request, queue);
2755 if (ep->dma) {
2756 /* write desc pointer */
2757 writel(req->td_phys, &ep->regs->desptr);
2758 /* set HOST READY */
2759 req->td_data->status =
2760 AMD_ADDBITS(
2761 req->td_data->status,
2762 UDC_DMA_STP_STS_BS_HOST_READY,
2763 UDC_DMA_STP_STS_BS);
2765 /* set poll demand bit */
2766 tmp =
2767 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2768 tmp |= AMD_BIT(UDC_EPCTL_P);
2769 writel(tmp,
2770 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2772 /* all bytes will be transferred */
2773 req->req.actual = req->req.length;
2775 /* complete req */
2776 complete_req(ep, req, 0);
2778 } else {
2779 /* write fifo */
2780 udc_txfifo_write(ep, &req->req);
2782 /* lengh bytes transferred */
2783 len = req->req.length - req->req.actual;
2784 if (len > ep->ep.maxpacket)
2785 len = ep->ep.maxpacket;
2787 req->req.actual += len;
2788 if (req->req.actual == req->req.length
2789 || (len != ep->ep.maxpacket)) {
2790 /* complete req */
2791 complete_req(ep, req, 0);
2797 ep->halted = 0;
2798 dev->stall_ep0in = 0;
2799 if (!ep->dma) {
2800 /* clear IN bit */
2801 writel(AMD_BIT(UDC_EPSTS_IN),
2802 &dev->ep[UDC_EP0IN_IX].regs->sts);
2806 return ret_val;
2810 /* Interrupt handler for global device events */
2811 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2812 __releases(dev->lock)
2813 __acquires(dev->lock)
2815 irqreturn_t ret_val = IRQ_NONE;
2816 u32 tmp;
2817 u32 cfg;
2818 struct udc_ep *ep;
2819 u16 i;
2820 u8 udc_csr_epix;
2822 /* SET_CONFIG irq ? */
2823 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2824 ret_val = IRQ_HANDLED;
2826 /* read config value */
2827 tmp = readl(&dev->regs->sts);
2828 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2829 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2830 dev->cur_config = cfg;
2831 dev->set_cfg_not_acked = 1;
2833 /* make usb request for gadget driver */
2834 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2835 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2836 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2838 /* programm the NE registers */
2839 for (i = 0; i < UDC_EP_NUM; i++) {
2840 ep = &dev->ep[i];
2841 if (ep->in) {
2843 /* ep ix in UDC CSR register space */
2844 udc_csr_epix = ep->num;
2847 /* OUT ep */
2848 } else {
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2853 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2854 /* ep cfg */
2855 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2856 UDC_CSR_NE_CFG);
2857 /* write reg */
2858 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2860 /* clear stall bits */
2861 ep->halted = 0;
2862 tmp = readl(&ep->regs->ctl);
2863 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2864 writel(tmp, &ep->regs->ctl);
2866 /* call gadget zero with setup data received */
2867 spin_unlock(&dev->lock);
2868 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2869 spin_lock(&dev->lock);
2871 } /* SET_INTERFACE ? */
2872 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2873 ret_val = IRQ_HANDLED;
2875 dev->set_cfg_not_acked = 1;
2876 /* read interface and alt setting values */
2877 tmp = readl(&dev->regs->sts);
2878 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2879 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2881 /* make usb request for gadget driver */
2882 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2883 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2884 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2885 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2886 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2888 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2889 dev->cur_alt, dev->cur_intf);
2891 /* programm the NE registers */
2892 for (i = 0; i < UDC_EP_NUM; i++) {
2893 ep = &dev->ep[i];
2894 if (ep->in) {
2896 /* ep ix in UDC CSR register space */
2897 udc_csr_epix = ep->num;
2900 /* OUT ep */
2901 } else {
2902 /* ep ix in UDC CSR register space */
2903 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2906 /* UDC CSR reg */
2907 /* set ep values */
2908 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2909 /* ep interface */
2910 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2911 UDC_CSR_NE_INTF);
2912 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2913 /* ep alt */
2914 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2915 UDC_CSR_NE_ALT);
2916 /* write reg */
2917 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2919 /* clear stall bits */
2920 ep->halted = 0;
2921 tmp = readl(&ep->regs->ctl);
2922 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2923 writel(tmp, &ep->regs->ctl);
2926 /* call gadget zero with setup data received */
2927 spin_unlock(&dev->lock);
2928 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2929 spin_lock(&dev->lock);
2931 } /* USB reset */
2932 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2933 DBG(dev, "USB Reset interrupt\n");
2934 ret_val = IRQ_HANDLED;
2936 /* allow soft reset when suspend occurs */
2937 soft_reset_occured = 0;
2939 dev->waiting_zlp_ack_ep0in = 0;
2940 dev->set_cfg_not_acked = 0;
2942 /* mask not needed interrupts */
2943 udc_mask_unused_interrupts(dev);
2945 /* call gadget to resume and reset configs etc. */
2946 spin_unlock(&dev->lock);
2947 if (dev->sys_suspended && dev->driver->resume) {
2948 dev->driver->resume(&dev->gadget);
2949 dev->sys_suspended = 0;
2951 dev->driver->disconnect(&dev->gadget);
2952 spin_lock(&dev->lock);
2954 /* disable ep0 to empty req queue */
2955 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2956 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2958 /* soft reset when rxfifo not empty */
2959 tmp = readl(&dev->regs->sts);
2960 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2961 && !soft_reset_after_usbreset_occured) {
2962 udc_soft_reset(dev);
2963 soft_reset_after_usbreset_occured++;
2967 * DMA reset to kill potential old DMA hw hang,
2968 * POLL bit is already reset by ep_init() through
2969 * disconnect()
2971 DBG(dev, "DMA machine reset\n");
2972 tmp = readl(&dev->regs->cfg);
2973 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2974 writel(tmp, &dev->regs->cfg);
2976 /* put into initial config */
2977 udc_basic_init(dev);
2979 /* enable device setup interrupts */
2980 udc_enable_dev_setup_interrupts(dev);
2982 /* enable suspend interrupt */
2983 tmp = readl(&dev->regs->irqmsk);
2984 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2985 writel(tmp, &dev->regs->irqmsk);
2987 } /* USB suspend */
2988 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2989 DBG(dev, "USB Suspend interrupt\n");
2990 ret_val = IRQ_HANDLED;
2991 if (dev->driver->suspend) {
2992 spin_unlock(&dev->lock);
2993 dev->sys_suspended = 1;
2994 dev->driver->suspend(&dev->gadget);
2995 spin_lock(&dev->lock);
2997 } /* new speed ? */
2998 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2999 DBG(dev, "ENUM interrupt\n");
3000 ret_val = IRQ_HANDLED;
3001 soft_reset_after_usbreset_occured = 0;
3003 /* disable ep0 to empty req queue */
3004 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3005 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3007 /* link up all endpoints */
3008 udc_setup_endpoints(dev);
3009 dev_info(&dev->pdev->dev, "Connect: %s\n",
3010 usb_speed_string(dev->gadget.speed));
3012 /* init ep 0 */
3013 activate_control_endpoints(dev);
3015 /* enable ep0 interrupts */
3016 udc_enable_ep0_interrupts(dev);
3018 /* session valid change interrupt */
3019 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3020 DBG(dev, "USB SVC interrupt\n");
3021 ret_val = IRQ_HANDLED;
3023 /* check that session is not valid to detect disconnect */
3024 tmp = readl(&dev->regs->sts);
3025 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3026 /* disable suspend interrupt */
3027 tmp = readl(&dev->regs->irqmsk);
3028 tmp |= AMD_BIT(UDC_DEVINT_US);
3029 writel(tmp, &dev->regs->irqmsk);
3030 DBG(dev, "USB Disconnect (session valid low)\n");
3031 /* cleanup on disconnect */
3032 usb_disconnect(udc);
3037 return ret_val;
3040 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3041 static irqreturn_t udc_irq(int irq, void *pdev)
3043 struct udc *dev = pdev;
3044 u32 reg;
3045 u16 i;
3046 u32 ep_irq;
3047 irqreturn_t ret_val = IRQ_NONE;
3049 spin_lock(&dev->lock);
3051 /* check for ep irq */
3052 reg = readl(&dev->regs->ep_irqsts);
3053 if (reg) {
3054 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3055 ret_val |= udc_control_out_isr(dev);
3056 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3057 ret_val |= udc_control_in_isr(dev);
3060 * data endpoint
3061 * iterate ep's
3063 for (i = 1; i < UDC_EP_NUM; i++) {
3064 ep_irq = 1 << i;
3065 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3066 continue;
3068 /* clear irq status */
3069 writel(ep_irq, &dev->regs->ep_irqsts);
3071 /* irq for out ep ? */
3072 if (i > UDC_EPIN_NUM)
3073 ret_val |= udc_data_out_isr(dev, i);
3074 else
3075 ret_val |= udc_data_in_isr(dev, i);
3081 /* check for dev irq */
3082 reg = readl(&dev->regs->irqsts);
3083 if (reg) {
3084 /* clear irq */
3085 writel(reg, &dev->regs->irqsts);
3086 ret_val |= udc_dev_isr(dev, reg);
3090 spin_unlock(&dev->lock);
3091 return ret_val;
3094 /* Tears down device */
3095 static void gadget_release(struct device *pdev)
3097 struct amd5536udc *dev = dev_get_drvdata(pdev);
3098 kfree(dev);
3101 /* Cleanup on device remove */
3102 static void udc_remove(struct udc *dev)
3104 /* remove timer */
3105 stop_timer++;
3106 if (timer_pending(&udc_timer))
3107 wait_for_completion(&on_exit);
3108 if (udc_timer.data)
3109 del_timer_sync(&udc_timer);
3110 /* remove pollstall timer */
3111 stop_pollstall_timer++;
3112 if (timer_pending(&udc_pollstall_timer))
3113 wait_for_completion(&on_pollstall_exit);
3114 if (udc_pollstall_timer.data)
3115 del_timer_sync(&udc_pollstall_timer);
3116 udc = NULL;
3119 /* Reset all pci context */
3120 static void udc_pci_remove(struct pci_dev *pdev)
3122 struct udc *dev;
3124 dev = pci_get_drvdata(pdev);
3126 usb_del_gadget_udc(&udc->gadget);
3127 /* gadget driver must not be registered */
3128 BUG_ON(dev->driver != NULL);
3130 /* dma pool cleanup */
3131 if (dev->data_requests)
3132 pci_pool_destroy(dev->data_requests);
3134 if (dev->stp_requests) {
3135 /* cleanup DMA desc's for ep0in */
3136 pci_pool_free(dev->stp_requests,
3137 dev->ep[UDC_EP0OUT_IX].td_stp,
3138 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3139 pci_pool_free(dev->stp_requests,
3140 dev->ep[UDC_EP0OUT_IX].td,
3141 dev->ep[UDC_EP0OUT_IX].td_phys);
3143 pci_pool_destroy(dev->stp_requests);
3146 /* reset controller */
3147 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3148 if (dev->irq_registered)
3149 free_irq(pdev->irq, dev);
3150 if (dev->regs)
3151 iounmap(dev->regs);
3152 if (dev->mem_region)
3153 release_mem_region(pci_resource_start(pdev, 0),
3154 pci_resource_len(pdev, 0));
3155 if (dev->active)
3156 pci_disable_device(pdev);
3158 device_unregister(&dev->gadget.dev);
3159 pci_set_drvdata(pdev, NULL);
3161 udc_remove(dev);
3164 /* create dma pools on init */
3165 static int init_dma_pools(struct udc *dev)
3167 struct udc_stp_dma *td_stp;
3168 struct udc_data_dma *td_data;
3169 int retval;
3171 /* consistent DMA mode setting ? */
3172 if (use_dma_ppb) {
3173 use_dma_bufferfill_mode = 0;
3174 } else {
3175 use_dma_ppb_du = 0;
3176 use_dma_bufferfill_mode = 1;
3179 /* DMA setup */
3180 dev->data_requests = dma_pool_create("data_requests", NULL,
3181 sizeof(struct udc_data_dma), 0, 0);
3182 if (!dev->data_requests) {
3183 DBG(dev, "can't get request data pool\n");
3184 retval = -ENOMEM;
3185 goto finished;
3188 /* EP0 in dma regs = dev control regs */
3189 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3191 /* dma desc for setup data */
3192 dev->stp_requests = dma_pool_create("setup requests", NULL,
3193 sizeof(struct udc_stp_dma), 0, 0);
3194 if (!dev->stp_requests) {
3195 DBG(dev, "can't get stp request pool\n");
3196 retval = -ENOMEM;
3197 goto finished;
3199 /* setup */
3200 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3201 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3202 if (td_stp == NULL) {
3203 retval = -ENOMEM;
3204 goto finished;
3206 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3208 /* data: 0 packets !? */
3209 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3210 &dev->ep[UDC_EP0OUT_IX].td_phys);
3211 if (td_data == NULL) {
3212 retval = -ENOMEM;
3213 goto finished;
3215 dev->ep[UDC_EP0OUT_IX].td = td_data;
3216 return 0;
3218 finished:
3219 return retval;
3222 /* Called by pci bus driver to init pci context */
3223 static int udc_pci_probe(
3224 struct pci_dev *pdev,
3225 const struct pci_device_id *id
3228 struct udc *dev;
3229 unsigned long resource;
3230 unsigned long len;
3231 int retval = 0;
3233 /* one udc only */
3234 if (udc) {
3235 dev_dbg(&pdev->dev, "already probed\n");
3236 return -EBUSY;
3239 /* init */
3240 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3241 if (!dev) {
3242 retval = -ENOMEM;
3243 goto finished;
3246 /* pci setup */
3247 if (pci_enable_device(pdev) < 0) {
3248 kfree(dev);
3249 dev = NULL;
3250 retval = -ENODEV;
3251 goto finished;
3253 dev->active = 1;
3255 /* PCI resource allocation */
3256 resource = pci_resource_start(pdev, 0);
3257 len = pci_resource_len(pdev, 0);
3259 if (!request_mem_region(resource, len, name)) {
3260 dev_dbg(&pdev->dev, "pci device used already\n");
3261 kfree(dev);
3262 dev = NULL;
3263 retval = -EBUSY;
3264 goto finished;
3266 dev->mem_region = 1;
3268 dev->virt_addr = ioremap_nocache(resource, len);
3269 if (dev->virt_addr == NULL) {
3270 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3271 kfree(dev);
3272 dev = NULL;
3273 retval = -EFAULT;
3274 goto finished;
3277 if (!pdev->irq) {
3278 dev_err(&dev->pdev->dev, "irq not set\n");
3279 kfree(dev);
3280 dev = NULL;
3281 retval = -ENODEV;
3282 goto finished;
3285 spin_lock_init(&dev->lock);
3286 /* udc csr registers base */
3287 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3288 /* dev registers base */
3289 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3290 /* ep registers base */
3291 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3292 /* fifo's base */
3293 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3294 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3296 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3297 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3298 kfree(dev);
3299 dev = NULL;
3300 retval = -EBUSY;
3301 goto finished;
3303 dev->irq_registered = 1;
3305 pci_set_drvdata(pdev, dev);
3307 /* chip revision for Hs AMD5536 */
3308 dev->chiprev = pdev->revision;
3310 pci_set_master(pdev);
3311 pci_try_set_mwi(pdev);
3313 /* init dma pools */
3314 if (use_dma) {
3315 retval = init_dma_pools(dev);
3316 if (retval != 0)
3317 goto finished;
3320 dev->phys_addr = resource;
3321 dev->irq = pdev->irq;
3322 dev->pdev = pdev;
3323 dev->gadget.dev.parent = &pdev->dev;
3324 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3326 /* general probing */
3327 if (udc_probe(dev) == 0)
3328 return 0;
3330 finished:
3331 if (dev)
3332 udc_pci_remove(pdev);
3333 return retval;
3336 /* general probe */
3337 static int udc_probe(struct udc *dev)
3339 char tmp[128];
3340 u32 reg;
3341 int retval;
3343 /* mark timer as not initialized */
3344 udc_timer.data = 0;
3345 udc_pollstall_timer.data = 0;
3347 /* device struct setup */
3348 dev->gadget.ops = &udc_ops;
3350 dev_set_name(&dev->gadget.dev, "gadget");
3351 dev->gadget.dev.release = gadget_release;
3352 dev->gadget.name = name;
3353 dev->gadget.max_speed = USB_SPEED_HIGH;
3355 /* init registers, interrupts, ... */
3356 startup_registers(dev);
3358 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3360 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3361 dev_info(&dev->pdev->dev,
3362 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3363 tmp, dev->phys_addr, dev->chiprev,
3364 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3365 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3366 if (dev->chiprev == UDC_HSA0_REV) {
3367 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3368 retval = -ENODEV;
3369 goto finished;
3371 dev_info(&dev->pdev->dev,
3372 "driver version: %s(for Geode5536 B1)\n", tmp);
3373 udc = dev;
3375 retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
3376 if (retval)
3377 goto finished;
3379 retval = device_register(&dev->gadget.dev);
3380 if (retval) {
3381 usb_del_gadget_udc(&dev->gadget);
3382 put_device(&dev->gadget.dev);
3383 goto finished;
3386 /* timer init */
3387 init_timer(&udc_timer);
3388 udc_timer.function = udc_timer_function;
3389 udc_timer.data = 1;
3390 /* timer pollstall init */
3391 init_timer(&udc_pollstall_timer);
3392 udc_pollstall_timer.function = udc_pollstall_timer_function;
3393 udc_pollstall_timer.data = 1;
3395 /* set SD */
3396 reg = readl(&dev->regs->ctl);
3397 reg |= AMD_BIT(UDC_DEVCTL_SD);
3398 writel(reg, &dev->regs->ctl);
3400 /* print dev register info */
3401 print_regs(dev);
3403 return 0;
3405 finished:
3406 return retval;
3409 /* Initiates a remote wakeup */
3410 static int udc_remote_wakeup(struct udc *dev)
3412 unsigned long flags;
3413 u32 tmp;
3415 DBG(dev, "UDC initiates remote wakeup\n");
3417 spin_lock_irqsave(&dev->lock, flags);
3419 tmp = readl(&dev->regs->ctl);
3420 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3421 writel(tmp, &dev->regs->ctl);
3422 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3423 writel(tmp, &dev->regs->ctl);
3425 spin_unlock_irqrestore(&dev->lock, flags);
3426 return 0;
3429 /* PCI device parameters */
3430 static const struct pci_device_id pci_id[] = {
3432 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3433 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3434 .class_mask = 0xffffffff,
3438 MODULE_DEVICE_TABLE(pci, pci_id);
3440 /* PCI functions */
3441 static struct pci_driver udc_pci_driver = {
3442 .name = (char *) name,
3443 .id_table = pci_id,
3444 .probe = udc_pci_probe,
3445 .remove = udc_pci_remove,
3448 /* Inits driver */
3449 static int __init init(void)
3451 return pci_register_driver(&udc_pci_driver);
3453 module_init(init);
3455 /* Cleans driver */
3456 static void __exit cleanup(void)
3458 pci_unregister_driver(&udc_pci_driver);
3460 module_exit(cleanup);
3462 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3463 MODULE_AUTHOR("Thomas Dahlmann");
3464 MODULE_LICENSE("GPL");