2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
28 /* #define UDC_VERBOSE */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
56 #include <asm/byteorder.h>
57 #include <asm/system.h>
58 #include <asm/unaligned.h>
61 #include <linux/usb/ch9.h>
62 #include <linux/usb/gadget.h>
65 #include "amd5536udc.h"
68 static void udc_tasklet_disconnect(unsigned long);
69 static void empty_req_queue(struct udc_ep
*);
70 static int udc_probe(struct udc
*dev
);
71 static void udc_basic_init(struct udc
*dev
);
72 static void udc_setup_endpoints(struct udc
*dev
);
73 static void udc_soft_reset(struct udc
*dev
);
74 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
75 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
76 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
77 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
78 unsigned long buf_len
, gfp_t gfp_flags
);
79 static int udc_remote_wakeup(struct udc
*dev
);
80 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
81 static void udc_pci_remove(struct pci_dev
*pdev
);
84 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
85 static const char name
[] = "amd5536udc";
87 /* structure to hold endpoint function pointers */
88 static const struct usb_ep_ops udc_ep_ops
;
90 /* received setup data */
91 static union udc_setup_data setup_data
;
93 /* pointer to device object */
94 static struct udc
*udc
;
96 /* irq spin lock for soft reset */
97 static DEFINE_SPINLOCK(udc_irq_spinlock
);
99 static DEFINE_SPINLOCK(udc_stall_spinlock
);
102 * slave mode: pending bytes in rx fifo after nyet,
103 * used if EPIN irq came but no req was available
105 static unsigned int udc_rxfifo_pending
;
107 /* count soft resets after suspend to avoid loop */
108 static int soft_reset_occured
;
109 static int soft_reset_after_usbreset_occured
;
112 static struct timer_list udc_timer
;
113 static int stop_timer
;
115 /* set_rde -- Is used to control enabling of RX DMA. Problem is
116 * that UDC has only one bit (RDE) to enable/disable RX DMA for
117 * all OUT endpoints. So we have to handle race conditions like
118 * when OUT data reaches the fifo but no request was queued yet.
119 * This cannot be solved by letting the RX DMA disabled until a
120 * request gets queued because there may be other OUT packets
121 * in the FIFO (important for not blocking control traffic).
122 * The value of set_rde controls the correspondig timer.
124 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
125 * set_rde 0 == do not touch RDE, do no start the RDE timer
126 * set_rde 1 == timer function will look whether FIFO has data
127 * set_rde 2 == set by timer function to enable RX DMA on next call
129 static int set_rde
= -1;
131 static DECLARE_COMPLETION(on_exit
);
132 static struct timer_list udc_pollstall_timer
;
133 static int stop_pollstall_timer
;
134 static DECLARE_COMPLETION(on_pollstall_exit
);
136 /* tasklet for usb disconnect */
137 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
138 (unsigned long) &udc
);
141 /* endpoint names used for print */
142 static const char ep0_string
[] = "ep0in";
143 static const char *ep_string
[] = {
145 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
146 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
147 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
148 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
149 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
150 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
151 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
155 static bool use_dma
= 1;
156 /* packet per buffer dma */
157 static bool use_dma_ppb
= 1;
158 /* with per descr. update */
159 static bool use_dma_ppb_du
;
160 /* buffer fill mode */
161 static int use_dma_bufferfill_mode
;
162 /* full speed only mode */
163 static bool use_fullspeed
;
164 /* tx buffer size for high speed */
165 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
167 /* module parameters */
168 module_param(use_dma
, bool, S_IRUGO
);
169 MODULE_PARM_DESC(use_dma
, "true for DMA");
170 module_param(use_dma_ppb
, bool, S_IRUGO
);
171 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
172 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
173 MODULE_PARM_DESC(use_dma_ppb_du
,
174 "true for DMA in packet per buffer mode with descriptor update");
175 module_param(use_fullspeed
, bool, S_IRUGO
);
176 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
178 /*---------------------------------------------------------------------------*/
179 /* Prints UDC device registers and endpoint irq registers */
180 static void print_regs(struct udc
*dev
)
182 DBG(dev
, "------- Device registers -------\n");
183 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
184 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
185 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
187 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
188 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
190 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
191 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
193 DBG(dev
, "USE DMA = %d\n", use_dma
);
194 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
195 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
196 "WITHOUT desc. update)\n");
197 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
198 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
199 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
200 "WITH desc. update)\n");
201 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
203 if (use_dma
&& use_dma_bufferfill_mode
) {
204 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
205 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
208 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
210 DBG(dev
, "-------------------------------------------------------\n");
213 /* Masks unused interrupts */
214 static int udc_mask_unused_interrupts(struct udc
*dev
)
218 /* mask all dev interrupts */
219 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
220 AMD_BIT(UDC_DEVINT_ENUM
) |
221 AMD_BIT(UDC_DEVINT_US
) |
222 AMD_BIT(UDC_DEVINT_UR
) |
223 AMD_BIT(UDC_DEVINT_ES
) |
224 AMD_BIT(UDC_DEVINT_SI
) |
225 AMD_BIT(UDC_DEVINT_SOF
)|
226 AMD_BIT(UDC_DEVINT_SC
);
227 writel(tmp
, &dev
->regs
->irqmsk
);
229 /* mask all ep interrupts */
230 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
235 /* Enables endpoint 0 interrupts */
236 static int udc_enable_ep0_interrupts(struct udc
*dev
)
240 DBG(dev
, "udc_enable_ep0_interrupts()\n");
243 tmp
= readl(&dev
->regs
->ep_irqmsk
);
244 /* enable ep0 irq's */
245 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
246 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
247 writel(tmp
, &dev
->regs
->ep_irqmsk
);
252 /* Enables device interrupts for SET_INTF and SET_CONFIG */
253 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
257 DBG(dev
, "enable device interrupts for setup data\n");
260 tmp
= readl(&dev
->regs
->irqmsk
);
262 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
263 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
264 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
265 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
266 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
267 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
268 writel(tmp
, &dev
->regs
->irqmsk
);
273 /* Calculates fifo start of endpoint based on preceding endpoints */
274 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
280 if (!ep
|| !(ep
->in
))
284 ep
->txfifo
= dev
->txfifo
;
287 for (i
= 0; i
< ep
->num
; i
++) {
288 if (dev
->ep
[i
].regs
) {
290 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
291 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
298 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
299 static u32 cnak_pending
;
301 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
303 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
304 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
305 cnak_pending
|= 1 << (num
);
308 cnak_pending
= cnak_pending
& (~(1 << (num
)));
312 /* Enables endpoint, is called by gadget driver */
314 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
319 unsigned long iflags
;
324 || usbep
->name
== ep0_string
326 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
329 ep
= container_of(usbep
, struct udc_ep
, ep
);
332 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
334 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
337 spin_lock_irqsave(&dev
->lock
, iflags
);
342 /* set traffic type */
343 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
344 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
345 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
347 /* set max packet size */
348 maxpacket
= usb_endpoint_maxp(desc
);
349 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
350 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
351 ep
->ep
.maxpacket
= maxpacket
;
352 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
357 /* ep ix in UDC CSR register space */
358 udc_csr_epix
= ep
->num
;
360 /* set buffer size (tx fifo entries) */
361 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
362 /* double buffering: fifo size = 2 x max packet size */
365 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
368 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
370 /* calc. tx fifo base addr */
371 udc_set_txfifo_addr(ep
);
374 tmp
= readl(&ep
->regs
->ctl
);
375 tmp
|= AMD_BIT(UDC_EPCTL_F
);
376 writel(tmp
, &ep
->regs
->ctl
);
380 /* ep ix in UDC CSR register space */
381 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
383 /* set max packet size UDC CSR */
384 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
385 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
387 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
389 if (use_dma
&& !ep
->in
) {
390 /* alloc and init BNA dummy request */
391 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
392 ep
->bna_occurred
= 0;
395 if (ep
->num
!= UDC_EP0OUT_IX
)
396 dev
->data_ep_enabled
= 1;
400 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
402 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
404 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
406 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
408 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
410 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
412 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
414 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
416 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
419 tmp
= readl(&dev
->regs
->ep_irqmsk
);
420 tmp
&= AMD_UNMASK_BIT(ep
->num
);
421 writel(tmp
, &dev
->regs
->ep_irqmsk
);
424 * clear NAK by writing CNAK
425 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
427 if (!use_dma
|| ep
->in
) {
428 tmp
= readl(&ep
->regs
->ctl
);
429 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
430 writel(tmp
, &ep
->regs
->ctl
);
432 UDC_QUEUE_CNAK(ep
, ep
->num
);
434 tmp
= desc
->bEndpointAddress
;
435 DBG(dev
, "%s enabled\n", usbep
->name
);
437 spin_unlock_irqrestore(&dev
->lock
, iflags
);
441 /* Resets endpoint */
442 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
446 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
449 ep
->ep
.ops
= &udc_ep_ops
;
450 INIT_LIST_HEAD(&ep
->queue
);
452 ep
->ep
.maxpacket
= (u16
) ~0;
454 tmp
= readl(&ep
->regs
->ctl
);
455 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
456 writel(tmp
, &ep
->regs
->ctl
);
459 /* disable interrupt */
460 tmp
= readl(®s
->ep_irqmsk
);
461 tmp
|= AMD_BIT(ep
->num
);
462 writel(tmp
, ®s
->ep_irqmsk
);
465 /* unset P and IN bit of potential former DMA */
466 tmp
= readl(&ep
->regs
->ctl
);
467 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
468 writel(tmp
, &ep
->regs
->ctl
);
470 tmp
= readl(&ep
->regs
->sts
);
471 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
472 writel(tmp
, &ep
->regs
->sts
);
475 tmp
= readl(&ep
->regs
->ctl
);
476 tmp
|= AMD_BIT(UDC_EPCTL_F
);
477 writel(tmp
, &ep
->regs
->ctl
);
480 /* reset desc pointer */
481 writel(0, &ep
->regs
->desptr
);
484 /* Disables endpoint, is called by gadget driver */
485 static int udc_ep_disable(struct usb_ep
*usbep
)
487 struct udc_ep
*ep
= NULL
;
488 unsigned long iflags
;
493 ep
= container_of(usbep
, struct udc_ep
, ep
);
494 if (usbep
->name
== ep0_string
|| !ep
->desc
)
497 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
499 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
500 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
502 ep_init(ep
->dev
->regs
, ep
);
503 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
508 /* Allocates request packet, called by gadget driver */
509 static struct usb_request
*
510 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
512 struct udc_request
*req
;
513 struct udc_data_dma
*dma_desc
;
519 ep
= container_of(usbep
, struct udc_ep
, ep
);
521 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
522 req
= kzalloc(sizeof(struct udc_request
), gfp
);
526 req
->req
.dma
= DMA_DONT_USE
;
527 INIT_LIST_HEAD(&req
->queue
);
530 /* ep0 in requests are allocated from data pool here */
531 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
538 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
541 (unsigned long)req
->td_phys
);
542 /* prevent from using desc. - set HOST BUSY */
543 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
544 UDC_DMA_STP_STS_BS_HOST_BUSY
,
546 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
547 req
->td_data
= dma_desc
;
548 req
->td_data_last
= NULL
;
555 /* Frees request packet, called by gadget driver */
557 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
560 struct udc_request
*req
;
562 if (!usbep
|| !usbreq
)
565 ep
= container_of(usbep
, struct udc_ep
, ep
);
566 req
= container_of(usbreq
, struct udc_request
, req
);
567 VDBG(ep
->dev
, "free_req req=%p\n", req
);
568 BUG_ON(!list_empty(&req
->queue
));
570 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
572 /* free dma chain if created */
573 if (req
->chain_len
> 1) {
574 udc_free_dma_chain(ep
->dev
, req
);
577 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
583 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
584 static void udc_init_bna_dummy(struct udc_request
*req
)
588 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
589 /* set next pointer to itself */
590 req
->td_data
->next
= req
->td_phys
;
593 = AMD_ADDBITS(req
->td_data
->status
,
594 UDC_DMA_STP_STS_BS_DMA_DONE
,
597 pr_debug("bna desc = %p, sts = %08x\n",
598 req
->td_data
, req
->td_data
->status
);
603 /* Allocate BNA dummy descriptor */
604 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
606 struct udc_request
*req
= NULL
;
607 struct usb_request
*_req
= NULL
;
609 /* alloc the dummy request */
610 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
612 req
= container_of(_req
, struct udc_request
, req
);
613 ep
->bna_dummy_req
= req
;
614 udc_init_bna_dummy(req
);
619 /* Write data to TX fifo for IN packets */
621 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
627 unsigned remaining
= 0;
632 req_buf
= req
->buf
+ req
->actual
;
634 remaining
= req
->length
- req
->actual
;
636 buf
= (u32
*) req_buf
;
638 bytes
= ep
->ep
.maxpacket
;
639 if (bytes
> remaining
)
643 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
644 writel(*(buf
+ i
), ep
->txfifo
);
647 /* remaining bytes must be written by byte access */
648 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
649 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
653 /* dummy write confirm */
654 writel(0, &ep
->regs
->confirm
);
657 /* Read dwords from RX fifo for OUT transfers */
658 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
662 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
664 for (i
= 0; i
< dwords
; i
++) {
665 *(buf
+ i
) = readl(dev
->rxfifo
);
670 /* Read bytes from RX fifo for OUT transfers */
671 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
676 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
679 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
680 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
683 /* remaining bytes must be read by byte access */
684 if (bytes
% UDC_DWORD_BYTES
) {
685 tmp
= readl(dev
->rxfifo
);
686 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
687 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
688 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
695 /* Read data from RX fifo for OUT transfers */
697 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
702 unsigned finished
= 0;
704 /* received number bytes */
705 bytes
= readl(&ep
->regs
->sts
);
706 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
708 buf_space
= req
->req
.length
- req
->req
.actual
;
709 buf
= req
->req
.buf
+ req
->req
.actual
;
710 if (bytes
> buf_space
) {
711 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
713 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
714 ep
->ep
.name
, bytes
, buf_space
);
715 req
->req
.status
= -EOVERFLOW
;
719 req
->req
.actual
+= bytes
;
722 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
723 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
726 /* read rx fifo bytes */
727 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
728 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
733 /* create/re-init a DMA descriptor or a DMA descriptor chain */
734 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
739 VDBG(ep
->dev
, "prep_dma\n");
740 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
741 ep
->num
, req
->td_data
);
743 /* set buffer pointer */
744 req
->td_data
->bufptr
= req
->req
.dma
;
747 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
749 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
752 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
754 if (retval
== -ENOMEM
)
755 DBG(ep
->dev
, "Out of DMA memory\n");
759 if (req
->req
.length
== ep
->ep
.maxpacket
) {
761 req
->td_data
->status
=
762 AMD_ADDBITS(req
->td_data
->status
,
764 UDC_DMA_IN_STS_TXBYTES
);
772 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
773 "maxpacket=%d ep%d\n",
774 use_dma_ppb
, req
->req
.length
,
775 ep
->ep
.maxpacket
, ep
->num
);
777 * if bytes < max packet then tx bytes must
778 * be written in packet per buffer mode
780 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
781 || ep
->num
== UDC_EP0OUT_IX
782 || ep
->num
== UDC_EP0IN_IX
) {
784 req
->td_data
->status
=
785 AMD_ADDBITS(req
->td_data
->status
,
787 UDC_DMA_IN_STS_TXBYTES
);
788 /* reset frame num */
789 req
->td_data
->status
=
790 AMD_ADDBITS(req
->td_data
->status
,
792 UDC_DMA_IN_STS_FRAMENUM
);
795 req
->td_data
->status
=
796 AMD_ADDBITS(req
->td_data
->status
,
797 UDC_DMA_STP_STS_BS_HOST_BUSY
,
800 VDBG(ep
->dev
, "OUT set host ready\n");
802 req
->td_data
->status
=
803 AMD_ADDBITS(req
->td_data
->status
,
804 UDC_DMA_STP_STS_BS_HOST_READY
,
808 /* clear NAK by writing CNAK */
810 tmp
= readl(&ep
->regs
->ctl
);
811 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
812 writel(tmp
, &ep
->regs
->ctl
);
814 UDC_QUEUE_CNAK(ep
, ep
->num
);
822 /* Completes request packet ... caller MUST hold lock */
824 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
825 __releases(ep
->dev
->lock
)
826 __acquires(ep
->dev
->lock
)
831 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
835 if (req
->dma_mapping
) {
837 pci_unmap_single(dev
->pdev
,
842 pci_unmap_single(dev
->pdev
,
846 req
->dma_mapping
= 0;
847 req
->req
.dma
= DMA_DONT_USE
;
853 /* set new status if pending */
854 if (req
->req
.status
== -EINPROGRESS
)
855 req
->req
.status
= sts
;
857 /* remove from ep queue */
858 list_del_init(&req
->queue
);
860 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
861 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
863 spin_unlock(&dev
->lock
);
864 req
->req
.complete(&ep
->ep
, &req
->req
);
865 spin_lock(&dev
->lock
);
869 /* frees pci pool descriptors of a DMA chain */
870 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
874 struct udc_data_dma
*td
;
875 struct udc_data_dma
*td_last
= NULL
;
878 DBG(dev
, "free chain req = %p\n", req
);
880 /* do not free first desc., will be done by free for request */
881 td_last
= req
->td_data
;
882 td
= phys_to_virt(td_last
->next
);
884 for (i
= 1; i
< req
->chain_len
; i
++) {
886 pci_pool_free(dev
->data_requests
, td
,
887 (dma_addr_t
) td_last
->next
);
889 td
= phys_to_virt(td_last
->next
);
895 /* Iterates to the end of a DMA chain and returns last descriptor */
896 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
898 struct udc_data_dma
*td
;
901 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
902 td
= phys_to_virt(td
->next
);
909 /* Iterates to the end of a DMA chain and counts bytes received */
910 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
912 struct udc_data_dma
*td
;
916 /* received number bytes */
917 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
919 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
920 td
= phys_to_virt(td
->next
);
921 /* received number bytes */
923 count
+= AMD_GETBITS(td
->status
,
924 UDC_DMA_OUT_STS_RXBYTES
);
932 /* Creates or re-inits a DMA chain */
933 static int udc_create_dma_chain(
935 struct udc_request
*req
,
936 unsigned long buf_len
, gfp_t gfp_flags
939 unsigned long bytes
= req
->req
.length
;
942 struct udc_data_dma
*td
= NULL
;
943 struct udc_data_dma
*last
= NULL
;
944 unsigned long txbytes
;
945 unsigned create_new_chain
= 0;
948 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
950 dma_addr
= DMA_DONT_USE
;
952 /* unset L bit in first desc for OUT */
954 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
957 /* alloc only new desc's if not already available */
958 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
959 if (req
->req
.length
% ep
->ep
.maxpacket
) {
963 if (len
> req
->chain_len
) {
964 /* shorter chain already allocated before */
965 if (req
->chain_len
> 1) {
966 udc_free_dma_chain(ep
->dev
, req
);
968 req
->chain_len
= len
;
969 create_new_chain
= 1;
973 /* gen. required number of descriptors and buffers */
974 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
975 /* create or determine next desc. */
976 if (create_new_chain
) {
978 td
= pci_pool_alloc(ep
->dev
->data_requests
,
979 gfp_flags
, &dma_addr
);
984 } else if (i
== buf_len
) {
986 td
= (struct udc_data_dma
*) phys_to_virt(
990 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
996 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1000 /* short packet ? */
1001 if ((bytes
- i
) >= buf_len
) {
1005 txbytes
= bytes
- i
;
1008 /* link td and assign tx bytes */
1010 if (create_new_chain
) {
1011 req
->td_data
->next
= dma_addr
;
1013 /* req->td_data->next = virt_to_phys(td); */
1015 /* write tx bytes */
1018 req
->td_data
->status
=
1019 AMD_ADDBITS(req
->td_data
->status
,
1021 UDC_DMA_IN_STS_TXBYTES
);
1023 td
->status
= AMD_ADDBITS(td
->status
,
1025 UDC_DMA_IN_STS_TXBYTES
);
1028 if (create_new_chain
) {
1029 last
->next
= dma_addr
;
1031 /* last->next = virt_to_phys(td); */
1034 /* write tx bytes */
1035 td
->status
= AMD_ADDBITS(td
->status
,
1037 UDC_DMA_IN_STS_TXBYTES
);
1044 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1045 /* last desc. points to itself */
1046 req
->td_data_last
= td
;
1052 /* Enabling RX DMA */
1053 static void udc_set_rde(struct udc
*dev
)
1057 VDBG(dev
, "udc_set_rde()\n");
1058 /* stop RDE timer */
1059 if (timer_pending(&udc_timer
)) {
1061 mod_timer(&udc_timer
, jiffies
- 1);
1064 tmp
= readl(&dev
->regs
->ctl
);
1065 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1066 writel(tmp
, &dev
->regs
->ctl
);
1069 /* Queues a request packet, called by gadget driver */
1071 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1075 unsigned long iflags
;
1077 struct udc_request
*req
;
1081 /* check the inputs */
1082 req
= container_of(usbreq
, struct udc_request
, req
);
1084 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1085 || !list_empty(&req
->queue
))
1088 ep
= container_of(usbep
, struct udc_ep
, ep
);
1089 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1092 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1095 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1098 /* map dma (usually done before) */
1099 if (ep
->dma
&& usbreq
->length
!= 0
1100 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1101 VDBG(dev
, "DMA map req %p\n", req
);
1103 usbreq
->dma
= pci_map_single(dev
->pdev
,
1108 usbreq
->dma
= pci_map_single(dev
->pdev
,
1111 PCI_DMA_FROMDEVICE
);
1112 req
->dma_mapping
= 1;
1115 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1116 usbep
->name
, usbreq
, usbreq
->length
,
1117 req
->td_data
, usbreq
->buf
);
1119 spin_lock_irqsave(&dev
->lock
, iflags
);
1121 usbreq
->status
= -EINPROGRESS
;
1124 /* on empty queue just do first transfer */
1125 if (list_empty(&ep
->queue
)) {
1127 if (usbreq
->length
== 0) {
1128 /* IN zlp's are handled by hardware */
1129 complete_req(ep
, req
, 0);
1130 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1132 * if set_config or set_intf is waiting for ack by zlp
1135 if (dev
->set_cfg_not_acked
) {
1136 tmp
= readl(&dev
->regs
->ctl
);
1137 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1138 writel(tmp
, &dev
->regs
->ctl
);
1139 dev
->set_cfg_not_acked
= 0;
1141 /* setup command is ACK'ed now by zlp */
1142 if (dev
->waiting_zlp_ack_ep0in
) {
1143 /* clear NAK by writing CNAK in EP0_IN */
1144 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1145 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1146 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1147 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1148 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1150 dev
->waiting_zlp_ack_ep0in
= 0;
1155 retval
= prep_dma(ep
, req
, gfp
);
1158 /* write desc pointer to enable DMA */
1160 /* set HOST READY */
1161 req
->td_data
->status
=
1162 AMD_ADDBITS(req
->td_data
->status
,
1163 UDC_DMA_IN_STS_BS_HOST_READY
,
1167 /* disabled rx dma while descriptor update */
1169 /* stop RDE timer */
1170 if (timer_pending(&udc_timer
)) {
1172 mod_timer(&udc_timer
, jiffies
- 1);
1175 tmp
= readl(&dev
->regs
->ctl
);
1176 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1177 writel(tmp
, &dev
->regs
->ctl
);
1181 * if BNA occurred then let BNA dummy desc.
1182 * point to current desc.
1184 if (ep
->bna_occurred
) {
1185 VDBG(dev
, "copy to BNA dummy desc.\n");
1186 memcpy(ep
->bna_dummy_req
->td_data
,
1188 sizeof(struct udc_data_dma
));
1191 /* write desc pointer */
1192 writel(req
->td_phys
, &ep
->regs
->desptr
);
1194 /* clear NAK by writing CNAK */
1196 tmp
= readl(&ep
->regs
->ctl
);
1197 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1198 writel(tmp
, &ep
->regs
->ctl
);
1200 UDC_QUEUE_CNAK(ep
, ep
->num
);
1205 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1206 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1207 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1209 } else if (ep
->in
) {
1211 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1212 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1213 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1216 } else if (ep
->dma
) {
1219 * prep_dma not used for OUT ep's, this is not possible
1220 * for PPB modes, because of chain creation reasons
1223 retval
= prep_dma(ep
, req
, gfp
);
1228 VDBG(dev
, "list_add\n");
1229 /* add request to ep queue */
1232 list_add_tail(&req
->queue
, &ep
->queue
);
1234 /* open rxfifo if out data queued */
1239 if (ep
->num
!= UDC_EP0OUT_IX
)
1240 dev
->data_ep_queued
= 1;
1242 /* stop OUT naking */
1244 if (!use_dma
&& udc_rxfifo_pending
) {
1245 DBG(dev
, "udc_queue(): pending bytes in "
1246 "rxfifo after nyet\n");
1248 * read pending bytes afer nyet:
1251 if (udc_rxfifo_read(ep
, req
)) {
1253 complete_req(ep
, req
, 0);
1255 udc_rxfifo_pending
= 0;
1262 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1266 /* Empty request queue of an endpoint; caller holds spinlock */
1267 static void empty_req_queue(struct udc_ep
*ep
)
1269 struct udc_request
*req
;
1272 while (!list_empty(&ep
->queue
)) {
1273 req
= list_entry(ep
->queue
.next
,
1276 complete_req(ep
, req
, -ESHUTDOWN
);
1280 /* Dequeues a request packet, called by gadget driver */
1281 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1284 struct udc_request
*req
;
1286 unsigned long iflags
;
1288 ep
= container_of(usbep
, struct udc_ep
, ep
);
1289 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1290 && ep
->num
!= UDC_EP0OUT_IX
)))
1293 req
= container_of(usbreq
, struct udc_request
, req
);
1295 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1296 halted
= ep
->halted
;
1298 /* request in processing or next one */
1299 if (ep
->queue
.next
== &req
->queue
) {
1300 if (ep
->dma
&& req
->dma_going
) {
1302 ep
->cancel_transfer
= 1;
1306 /* stop potential receive DMA */
1307 tmp
= readl(&udc
->regs
->ctl
);
1308 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1311 * Cancel transfer later in ISR
1312 * if descriptor was touched.
1314 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1315 UDC_DMA_OUT_STS_BS
);
1316 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1317 ep
->cancel_transfer
= 1;
1319 udc_init_bna_dummy(ep
->req
);
1320 writel(ep
->bna_dummy_req
->td_phys
,
1323 writel(tmp
, &udc
->regs
->ctl
);
1327 complete_req(ep
, req
, -ECONNRESET
);
1328 ep
->halted
= halted
;
1330 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1334 /* Halt or clear halt of endpoint */
1336 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1340 unsigned long iflags
;
1346 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1348 ep
= container_of(usbep
, struct udc_ep
, ep
);
1349 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1351 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1354 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1355 /* halt or clear halt */
1358 ep
->dev
->stall_ep0in
= 1;
1362 * rxfifo empty not taken into acount
1364 tmp
= readl(&ep
->regs
->ctl
);
1365 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1366 writel(tmp
, &ep
->regs
->ctl
);
1369 /* setup poll timer */
1370 if (!timer_pending(&udc_pollstall_timer
)) {
1371 udc_pollstall_timer
.expires
= jiffies
+
1372 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1374 if (!stop_pollstall_timer
) {
1375 DBG(ep
->dev
, "start polltimer\n");
1376 add_timer(&udc_pollstall_timer
);
1381 /* ep is halted by set_halt() before */
1383 tmp
= readl(&ep
->regs
->ctl
);
1384 /* clear stall bit */
1385 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1386 /* clear NAK by writing CNAK */
1387 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1388 writel(tmp
, &ep
->regs
->ctl
);
1390 UDC_QUEUE_CNAK(ep
, ep
->num
);
1393 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1397 /* gadget interface */
1398 static const struct usb_ep_ops udc_ep_ops
= {
1399 .enable
= udc_ep_enable
,
1400 .disable
= udc_ep_disable
,
1402 .alloc_request
= udc_alloc_request
,
1403 .free_request
= udc_free_request
,
1406 .dequeue
= udc_dequeue
,
1408 .set_halt
= udc_set_halt
,
1409 /* fifo ops not implemented */
1412 /*-------------------------------------------------------------------------*/
1414 /* Get frame counter (not implemented) */
1415 static int udc_get_frame(struct usb_gadget
*gadget
)
1420 /* Remote wakeup gadget interface */
1421 static int udc_wakeup(struct usb_gadget
*gadget
)
1427 dev
= container_of(gadget
, struct udc
, gadget
);
1428 udc_remote_wakeup(dev
);
1433 static int amd5536_start(struct usb_gadget_driver
*driver
,
1434 int (*bind
)(struct usb_gadget
*));
1435 static int amd5536_stop(struct usb_gadget_driver
*driver
);
1436 /* gadget operations */
1437 static const struct usb_gadget_ops udc_ops
= {
1438 .wakeup
= udc_wakeup
,
1439 .get_frame
= udc_get_frame
,
1440 .start
= amd5536_start
,
1441 .stop
= amd5536_stop
,
1444 /* Setups endpoint parameters, adds endpoints to linked list */
1445 static void make_ep_lists(struct udc
*dev
)
1447 /* make gadget ep lists */
1448 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1449 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1450 &dev
->gadget
.ep_list
);
1451 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1452 &dev
->gadget
.ep_list
);
1453 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1454 &dev
->gadget
.ep_list
);
1457 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1458 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1459 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1460 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1461 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1462 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1465 /* init registers at driver load time */
1466 static int startup_registers(struct udc
*dev
)
1470 /* init controller by soft reset */
1471 udc_soft_reset(dev
);
1473 /* mask not needed interrupts */
1474 udc_mask_unused_interrupts(dev
);
1476 /* put into initial config */
1477 udc_basic_init(dev
);
1478 /* link up all endpoints */
1479 udc_setup_endpoints(dev
);
1482 tmp
= readl(&dev
->regs
->cfg
);
1483 if (use_fullspeed
) {
1484 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1486 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1488 writel(tmp
, &dev
->regs
->cfg
);
1493 /* Inits UDC context */
1494 static void udc_basic_init(struct udc
*dev
)
1498 DBG(dev
, "udc_basic_init()\n");
1500 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1502 /* stop RDE timer */
1503 if (timer_pending(&udc_timer
)) {
1505 mod_timer(&udc_timer
, jiffies
- 1);
1507 /* stop poll stall timer */
1508 if (timer_pending(&udc_pollstall_timer
)) {
1509 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1512 tmp
= readl(&dev
->regs
->ctl
);
1513 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1514 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1515 writel(tmp
, &dev
->regs
->ctl
);
1517 /* enable dynamic CSR programming */
1518 tmp
= readl(&dev
->regs
->cfg
);
1519 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1520 /* set self powered */
1521 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1522 /* set remote wakeupable */
1523 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1524 writel(tmp
, &dev
->regs
->cfg
);
1528 dev
->data_ep_enabled
= 0;
1529 dev
->data_ep_queued
= 0;
1532 /* Sets initial endpoint parameters */
1533 static void udc_setup_endpoints(struct udc
*dev
)
1539 DBG(dev
, "udc_setup_endpoints()\n");
1541 /* read enum speed */
1542 tmp
= readl(&dev
->regs
->sts
);
1543 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1544 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1545 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1546 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1547 dev
->gadget
.speed
= USB_SPEED_FULL
;
1550 /* set basic ep parameters */
1551 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1554 ep
->ep
.name
= ep_string
[tmp
];
1556 /* txfifo size is calculated at enable time */
1557 ep
->txfifo
= dev
->txfifo
;
1560 if (tmp
< UDC_EPIN_NUM
) {
1561 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1564 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1568 ep
->regs
= &dev
->ep_regs
[tmp
];
1570 * ep will be reset only if ep was not enabled before to avoid
1571 * disabling ep interrupts when ENUM interrupt occurs but ep is
1572 * not enabled by gadget driver
1575 ep_init(dev
->regs
, ep
);
1580 * ep->dma is not really used, just to indicate that
1581 * DMA is active: remove this
1582 * dma regs = dev control regs
1584 ep
->dma
= &dev
->regs
->ctl
;
1586 /* nak OUT endpoints until enable - not for ep0 */
1587 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1588 && tmp
> UDC_EPIN_NUM
) {
1590 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1591 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1592 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1593 dev
->ep
[tmp
].naking
= 1;
1598 /* EP0 max packet */
1599 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1600 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1601 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1602 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1603 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1604 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1605 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1609 * with suspend bug workaround, ep0 params for gadget driver
1610 * are set at gadget driver bind() call
1612 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1613 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1614 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1616 /* init cfg/alt/int */
1617 dev
->cur_config
= 0;
1622 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1623 static void usb_connect(struct udc
*dev
)
1626 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1630 /* put into initial config */
1631 udc_basic_init(dev
);
1633 /* enable device setup interrupts */
1634 udc_enable_dev_setup_interrupts(dev
);
1638 * Calls gadget with disconnect event and resets the UDC and makes
1639 * initial bringup to be ready for ep0 events
1641 static void usb_disconnect(struct udc
*dev
)
1644 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1648 /* mask interrupts */
1649 udc_mask_unused_interrupts(dev
);
1651 /* REVISIT there doesn't seem to be a point to having this
1652 * talk to a tasklet ... do it directly, we already hold
1653 * the spinlock needed to process the disconnect.
1656 tasklet_schedule(&disconnect_tasklet
);
1659 /* Tasklet for disconnect to be outside of interrupt context */
1660 static void udc_tasklet_disconnect(unsigned long par
)
1662 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1665 DBG(dev
, "Tasklet disconnect\n");
1666 spin_lock_irq(&dev
->lock
);
1669 spin_unlock(&dev
->lock
);
1670 dev
->driver
->disconnect(&dev
->gadget
);
1671 spin_lock(&dev
->lock
);
1674 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1675 empty_req_queue(&dev
->ep
[tmp
]);
1682 &dev
->ep
[UDC_EP0IN_IX
]);
1685 if (!soft_reset_occured
) {
1686 /* init controller by soft reset */
1687 udc_soft_reset(dev
);
1688 soft_reset_occured
++;
1691 /* re-enable dev interrupts */
1692 udc_enable_dev_setup_interrupts(dev
);
1693 /* back to full speed ? */
1694 if (use_fullspeed
) {
1695 tmp
= readl(&dev
->regs
->cfg
);
1696 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1697 writel(tmp
, &dev
->regs
->cfg
);
1700 spin_unlock_irq(&dev
->lock
);
1703 /* Reset the UDC core */
1704 static void udc_soft_reset(struct udc
*dev
)
1706 unsigned long flags
;
1708 DBG(dev
, "Soft reset\n");
1710 * reset possible waiting interrupts, because int.
1711 * status is lost after soft reset,
1712 * ep int. status reset
1714 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1715 /* device int. status reset */
1716 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1718 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1719 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1720 readl(&dev
->regs
->cfg
);
1721 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1725 /* RDE timer callback to set RDE bit */
1726 static void udc_timer_function(unsigned long v
)
1730 spin_lock_irq(&udc_irq_spinlock
);
1734 * open the fifo if fifo was filled on last timer call
1738 /* set RDE to receive setup data */
1739 tmp
= readl(&udc
->regs
->ctl
);
1740 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1741 writel(tmp
, &udc
->regs
->ctl
);
1743 } else if (readl(&udc
->regs
->sts
)
1744 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1746 * if fifo empty setup polling, do not just
1749 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1751 add_timer(&udc_timer
);
1755 * fifo contains data now, setup timer for opening
1756 * the fifo when timer expires to be able to receive
1757 * setup packets, when data packets gets queued by
1758 * gadget layer then timer will forced to expire with
1759 * set_rde=0 (RDE is set in udc_queue())
1762 /* debug: lhadmot_timer_start = 221070 */
1763 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1765 add_timer(&udc_timer
);
1770 set_rde
= -1; /* RDE was set by udc_queue() */
1771 spin_unlock_irq(&udc_irq_spinlock
);
1777 /* Handle halt state, used in stall poll timer */
1778 static void udc_handle_halt_state(struct udc_ep
*ep
)
1781 /* set stall as long not halted */
1782 if (ep
->halted
== 1) {
1783 tmp
= readl(&ep
->regs
->ctl
);
1784 /* STALL cleared ? */
1785 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1787 * FIXME: MSC spec requires that stall remains
1788 * even on receivng of CLEAR_FEATURE HALT. So
1789 * we would set STALL again here to be compliant.
1790 * But with current mass storage drivers this does
1791 * not work (would produce endless host retries).
1792 * So we clear halt on CLEAR_FEATURE.
1794 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1795 tmp |= AMD_BIT(UDC_EPCTL_S);
1796 writel(tmp, &ep->regs->ctl);*/
1798 /* clear NAK by writing CNAK */
1799 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1800 writel(tmp
, &ep
->regs
->ctl
);
1802 UDC_QUEUE_CNAK(ep
, ep
->num
);
1807 /* Stall timer callback to poll S bit and set it again after */
1808 static void udc_pollstall_timer_function(unsigned long v
)
1813 spin_lock_irq(&udc_stall_spinlock
);
1815 * only one IN and OUT endpoints are handled
1818 ep
= &udc
->ep
[UDC_EPIN_IX
];
1819 udc_handle_halt_state(ep
);
1822 /* OUT poll stall */
1823 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1824 udc_handle_halt_state(ep
);
1828 /* setup timer again when still halted */
1829 if (!stop_pollstall_timer
&& halted
) {
1830 udc_pollstall_timer
.expires
= jiffies
+
1831 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1833 add_timer(&udc_pollstall_timer
);
1835 spin_unlock_irq(&udc_stall_spinlock
);
1837 if (stop_pollstall_timer
)
1838 complete(&on_pollstall_exit
);
1841 /* Inits endpoint 0 so that SETUP packets are processed */
1842 static void activate_control_endpoints(struct udc
*dev
)
1846 DBG(dev
, "activate_control_endpoints\n");
1849 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1850 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1851 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1853 /* set ep0 directions */
1854 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1855 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1857 /* set buffer size (tx fifo entries) of EP0_IN */
1858 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1859 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1860 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1861 UDC_EPIN_BUFF_SIZE
);
1862 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1863 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1864 UDC_EPIN_BUFF_SIZE
);
1865 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1867 /* set max packet size of EP0_IN */
1868 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1869 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1870 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1871 UDC_EP_MAX_PKT_SIZE
);
1872 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1873 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1874 UDC_EP_MAX_PKT_SIZE
);
1875 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1877 /* set max packet size of EP0_OUT */
1878 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1879 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1880 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1881 UDC_EP_MAX_PKT_SIZE
);
1882 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1883 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1884 UDC_EP_MAX_PKT_SIZE
);
1885 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1887 /* set max packet size of EP0 in UDC CSR */
1888 tmp
= readl(&dev
->csr
->ne
[0]);
1889 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1890 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1891 UDC_CSR_NE_MAX_PKT
);
1892 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1893 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1894 UDC_CSR_NE_MAX_PKT
);
1895 writel(tmp
, &dev
->csr
->ne
[0]);
1898 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1899 AMD_BIT(UDC_DMA_OUT_STS_L
);
1900 /* write dma desc address */
1901 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1902 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1903 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1904 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1905 /* stop RDE timer */
1906 if (timer_pending(&udc_timer
)) {
1908 mod_timer(&udc_timer
, jiffies
- 1);
1910 /* stop pollstall timer */
1911 if (timer_pending(&udc_pollstall_timer
)) {
1912 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1915 tmp
= readl(&dev
->regs
->ctl
);
1916 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1917 | AMD_BIT(UDC_DEVCTL_RDE
)
1918 | AMD_BIT(UDC_DEVCTL_TDE
);
1919 if (use_dma_bufferfill_mode
) {
1920 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1921 } else if (use_dma_ppb_du
) {
1922 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1924 writel(tmp
, &dev
->regs
->ctl
);
1927 /* clear NAK by writing CNAK for EP0IN */
1928 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1929 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1930 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1931 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1932 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1934 /* clear NAK by writing CNAK for EP0OUT */
1935 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1936 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1937 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1938 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1939 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1942 /* Make endpoint 0 ready for control traffic */
1943 static int setup_ep0(struct udc
*dev
)
1945 activate_control_endpoints(dev
);
1946 /* enable ep0 interrupts */
1947 udc_enable_ep0_interrupts(dev
);
1948 /* enable device setup interrupts */
1949 udc_enable_dev_setup_interrupts(dev
);
1954 /* Called by gadget driver to register itself */
1955 static int amd5536_start(struct usb_gadget_driver
*driver
,
1956 int (*bind
)(struct usb_gadget
*))
1958 struct udc
*dev
= udc
;
1962 if (!driver
|| !bind
|| !driver
->setup
1963 || driver
->max_speed
< USB_SPEED_HIGH
)
1970 driver
->driver
.bus
= NULL
;
1971 dev
->driver
= driver
;
1972 dev
->gadget
.dev
.driver
= &driver
->driver
;
1974 retval
= bind(&dev
->gadget
);
1976 /* Some gadget drivers use both ep0 directions.
1977 * NOTE: to gadget driver, ep0 is just one endpoint...
1979 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1980 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1983 DBG(dev
, "binding to %s returning %d\n",
1984 driver
->driver
.name
, retval
);
1986 dev
->gadget
.dev
.driver
= NULL
;
1990 /* get ready for ep0 traffic */
1994 tmp
= readl(&dev
->regs
->ctl
);
1995 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1996 writel(tmp
, &dev
->regs
->ctl
);
2003 /* shutdown requests and disconnect from gadget */
2005 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2006 __releases(dev
->lock
)
2007 __acquires(dev
->lock
)
2011 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2012 spin_unlock(&dev
->lock
);
2013 driver
->disconnect(&dev
->gadget
);
2014 spin_lock(&dev
->lock
);
2017 /* empty queues and init hardware */
2018 udc_basic_init(dev
);
2019 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
2020 empty_req_queue(&dev
->ep
[tmp
]);
2022 udc_setup_endpoints(dev
);
2025 /* Called by gadget driver to unregister itself */
2026 static int amd5536_stop(struct usb_gadget_driver
*driver
)
2028 struct udc
*dev
= udc
;
2029 unsigned long flags
;
2034 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2037 spin_lock_irqsave(&dev
->lock
, flags
);
2038 udc_mask_unused_interrupts(dev
);
2039 shutdown(dev
, driver
);
2040 spin_unlock_irqrestore(&dev
->lock
, flags
);
2042 driver
->unbind(&dev
->gadget
);
2043 dev
->gadget
.dev
.driver
= NULL
;
2047 tmp
= readl(&dev
->regs
->ctl
);
2048 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2049 writel(tmp
, &dev
->regs
->ctl
);
2052 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2057 /* Clear pending NAK bits */
2058 static void udc_process_cnak_queue(struct udc
*dev
)
2064 DBG(dev
, "CNAK pending queue processing\n");
2065 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2066 if (cnak_pending
& (1 << tmp
)) {
2067 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2068 /* clear NAK by writing CNAK */
2069 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2070 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2071 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2072 dev
->ep
[tmp
].naking
= 0;
2073 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2076 /* ... and ep0out */
2077 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2078 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2079 /* clear NAK by writing CNAK */
2080 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2081 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2082 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2083 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2084 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2085 dev
->ep
[UDC_EP0OUT_IX
].num
);
2089 /* Enabling RX DMA after setup packet */
2090 static void udc_ep0_set_rde(struct udc
*dev
)
2094 * only enable RXDMA when no data endpoint enabled
2097 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2101 * setup timer for enabling RDE (to not enable
2102 * RXFIFO DMA for data endpoints to early)
2104 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2106 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2109 add_timer(&udc_timer
);
2117 /* Interrupt handler for data OUT traffic */
2118 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2120 irqreturn_t ret_val
= IRQ_NONE
;
2123 struct udc_request
*req
;
2125 struct udc_data_dma
*td
= NULL
;
2128 VDBG(dev
, "ep%d irq\n", ep_ix
);
2129 ep
= &dev
->ep
[ep_ix
];
2131 tmp
= readl(&ep
->regs
->sts
);
2134 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2135 DBG(dev
, "BNA ep%dout occurred - DESPTR = %x \n",
2136 ep
->num
, readl(&ep
->regs
->desptr
));
2138 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2139 if (!ep
->cancel_transfer
)
2140 ep
->bna_occurred
= 1;
2142 ep
->cancel_transfer
= 0;
2143 ret_val
= IRQ_HANDLED
;
2148 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2149 dev_err(&dev
->pdev
->dev
, "HE ep%dout occurred\n", ep
->num
);
2152 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2153 ret_val
= IRQ_HANDLED
;
2157 if (!list_empty(&ep
->queue
)) {
2160 req
= list_entry(ep
->queue
.next
,
2161 struct udc_request
, queue
);
2164 udc_rxfifo_pending
= 1;
2166 VDBG(dev
, "req = %p\n", req
);
2171 if (req
&& udc_rxfifo_read(ep
, req
)) {
2172 ret_val
= IRQ_HANDLED
;
2175 complete_req(ep
, req
, 0);
2177 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2178 req
= list_entry(ep
->queue
.next
,
2179 struct udc_request
, queue
);
2185 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2186 ret_val
= IRQ_HANDLED
;
2188 /* check for DMA done */
2190 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2191 UDC_DMA_OUT_STS_BS
);
2192 /* packet per buffer mode - rx bytes */
2195 * if BNA occurred then recover desc. from
2198 if (ep
->bna_occurred
) {
2199 VDBG(dev
, "Recover desc. from BNA dummy\n");
2200 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2201 sizeof(struct udc_data_dma
));
2202 ep
->bna_occurred
= 0;
2203 udc_init_bna_dummy(ep
->req
);
2205 td
= udc_get_last_dma_desc(req
);
2206 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2208 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2209 /* buffer fill mode - rx bytes */
2211 /* received number bytes */
2212 count
= AMD_GETBITS(req
->td_data
->status
,
2213 UDC_DMA_OUT_STS_RXBYTES
);
2214 VDBG(dev
, "rx bytes=%u\n", count
);
2215 /* packet per buffer mode - rx bytes */
2217 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2218 VDBG(dev
, "last desc = %p\n", td
);
2219 /* received number bytes */
2220 if (use_dma_ppb_du
) {
2221 /* every desc. counts bytes */
2222 count
= udc_get_ppbdu_rxbytes(req
);
2224 /* last desc. counts bytes */
2225 count
= AMD_GETBITS(td
->status
,
2226 UDC_DMA_OUT_STS_RXBYTES
);
2227 if (!count
&& req
->req
.length
2228 == UDC_DMA_MAXPACKET
) {
2230 * on 64k packets the RXBYTES
2233 count
= UDC_DMA_MAXPACKET
;
2236 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2239 tmp
= req
->req
.length
- req
->req
.actual
;
2241 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2242 DBG(dev
, "%s: rx %db, space=%db\n",
2243 ep
->ep
.name
, count
, tmp
);
2244 req
->req
.status
= -EOVERFLOW
;
2248 req
->req
.actual
+= count
;
2250 /* complete request */
2251 complete_req(ep
, req
, 0);
2254 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2255 req
= list_entry(ep
->queue
.next
,
2259 * DMA may be already started by udc_queue()
2260 * called by gadget drivers completion
2261 * routine. This happens when queue
2262 * holds one request only.
2264 if (req
->dma_going
== 0) {
2266 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2268 /* write desc pointer */
2269 writel(req
->td_phys
,
2277 * implant BNA dummy descriptor to allow
2278 * RXFIFO opening by RDE
2280 if (ep
->bna_dummy_req
) {
2281 /* write desc pointer */
2282 writel(ep
->bna_dummy_req
->td_phys
,
2284 ep
->bna_occurred
= 0;
2288 * schedule timer for setting RDE if queue
2289 * remains empty to allow ep0 packets pass
2293 && !timer_pending(&udc_timer
)) {
2296 + HZ
*UDC_RDE_TIMER_SECONDS
;
2299 add_timer(&udc_timer
);
2302 if (ep
->num
!= UDC_EP0OUT_IX
)
2303 dev
->data_ep_queued
= 0;
2308 * RX DMA must be reenabled for each desc in PPBDU mode
2309 * and must be enabled for PPBNDU mode in case of BNA
2314 } else if (ep
->cancel_transfer
) {
2315 ret_val
= IRQ_HANDLED
;
2316 ep
->cancel_transfer
= 0;
2319 /* check pending CNAKS */
2321 /* CNAk processing when rxfifo empty only */
2322 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2323 udc_process_cnak_queue(dev
);
2327 /* clear OUT bits in ep status */
2328 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2333 /* Interrupt handler for data IN traffic */
2334 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2336 irqreturn_t ret_val
= IRQ_NONE
;
2340 struct udc_request
*req
;
2341 struct udc_data_dma
*td
;
2345 ep
= &dev
->ep
[ep_ix
];
2347 epsts
= readl(&ep
->regs
->sts
);
2350 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2351 dev_err(&dev
->pdev
->dev
,
2352 "BNA ep%din occurred - DESPTR = %08lx \n",
2354 (unsigned long) readl(&ep
->regs
->desptr
));
2357 writel(epsts
, &ep
->regs
->sts
);
2358 ret_val
= IRQ_HANDLED
;
2363 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2364 dev_err(&dev
->pdev
->dev
,
2365 "HE ep%dn occurred - DESPTR = %08lx \n",
2366 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2369 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2370 ret_val
= IRQ_HANDLED
;
2374 /* DMA completion */
2375 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2376 VDBG(dev
, "TDC set- completion\n");
2377 ret_val
= IRQ_HANDLED
;
2378 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2379 req
= list_entry(ep
->queue
.next
,
2380 struct udc_request
, queue
);
2382 * length bytes transferred
2383 * check dma done of last desc. in PPBDU mode
2385 if (use_dma_ppb_du
) {
2386 td
= udc_get_last_dma_desc(req
);
2389 AMD_GETBITS(td
->status
,
2391 /* don't care DMA done */
2392 req
->req
.actual
= req
->req
.length
;
2395 /* assume all bytes transferred */
2396 req
->req
.actual
= req
->req
.length
;
2399 if (req
->req
.actual
== req
->req
.length
) {
2401 complete_req(ep
, req
, 0);
2403 /* further request available ? */
2404 if (list_empty(&ep
->queue
)) {
2405 /* disable interrupt */
2406 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2407 tmp
|= AMD_BIT(ep
->num
);
2408 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2412 ep
->cancel_transfer
= 0;
2416 * status reg has IN bit set and TDC not set (if TDC was handled,
2417 * IN must not be handled (UDC defect) ?
2419 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2420 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2421 ret_val
= IRQ_HANDLED
;
2422 if (!list_empty(&ep
->queue
)) {
2424 req
= list_entry(ep
->queue
.next
,
2425 struct udc_request
, queue
);
2429 udc_txfifo_write(ep
, &req
->req
);
2430 len
= req
->req
.length
- req
->req
.actual
;
2431 if (len
> ep
->ep
.maxpacket
)
2432 len
= ep
->ep
.maxpacket
;
2433 req
->req
.actual
+= len
;
2434 if (req
->req
.actual
== req
->req
.length
2435 || (len
!= ep
->ep
.maxpacket
)) {
2437 complete_req(ep
, req
, 0);
2440 } else if (req
&& !req
->dma_going
) {
2441 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2448 * unset L bit of first desc.
2451 if (use_dma_ppb
&& req
->req
.length
>
2453 req
->td_data
->status
&=
2458 /* write desc pointer */
2459 writel(req
->td_phys
, &ep
->regs
->desptr
);
2461 /* set HOST READY */
2462 req
->td_data
->status
=
2464 req
->td_data
->status
,
2465 UDC_DMA_IN_STS_BS_HOST_READY
,
2468 /* set poll demand bit */
2469 tmp
= readl(&ep
->regs
->ctl
);
2470 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2471 writel(tmp
, &ep
->regs
->ctl
);
2475 } else if (!use_dma
&& ep
->in
) {
2476 /* disable interrupt */
2478 &dev
->regs
->ep_irqmsk
);
2479 tmp
|= AMD_BIT(ep
->num
);
2481 &dev
->regs
->ep_irqmsk
);
2484 /* clear status bits */
2485 writel(epsts
, &ep
->regs
->sts
);
2492 /* Interrupt handler for Control OUT traffic */
2493 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2494 __releases(dev
->lock
)
2495 __acquires(dev
->lock
)
2497 irqreturn_t ret_val
= IRQ_NONE
;
2499 int setup_supported
;
2503 struct udc_ep
*ep_tmp
;
2505 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2508 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2510 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2511 /* check BNA and clear if set */
2512 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2513 VDBG(dev
, "ep0: BNA set\n");
2514 writel(AMD_BIT(UDC_EPSTS_BNA
),
2515 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2516 ep
->bna_occurred
= 1;
2517 ret_val
= IRQ_HANDLED
;
2521 /* type of data: SETUP or DATA 0 bytes */
2522 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2523 VDBG(dev
, "data_typ = %x\n", tmp
);
2526 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2527 ret_val
= IRQ_HANDLED
;
2529 ep
->dev
->stall_ep0in
= 0;
2530 dev
->waiting_zlp_ack_ep0in
= 0;
2532 /* set NAK for EP0_IN */
2533 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2534 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2535 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2536 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2537 /* get setup data */
2540 /* clear OUT bits in ep status */
2541 writel(UDC_EPSTS_OUT_CLEAR
,
2542 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2544 setup_data
.data
[0] =
2545 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2546 setup_data
.data
[1] =
2547 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2548 /* set HOST READY */
2549 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2550 UDC_DMA_STP_STS_BS_HOST_READY
;
2553 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2556 /* determine direction of control data */
2557 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2558 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2560 udc_ep0_set_rde(dev
);
2563 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2565 * implant BNA dummy descriptor to allow RXFIFO opening
2568 if (ep
->bna_dummy_req
) {
2569 /* write desc pointer */
2570 writel(ep
->bna_dummy_req
->td_phys
,
2571 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2572 ep
->bna_occurred
= 0;
2576 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2578 * setup timer for enabling RDE (to not enable
2579 * RXFIFO DMA for data to early)
2582 if (!timer_pending(&udc_timer
)) {
2583 udc_timer
.expires
= jiffies
+
2584 HZ
/UDC_RDE_TIMER_DIV
;
2586 add_timer(&udc_timer
);
2592 * mass storage reset must be processed here because
2593 * next packet may be a CLEAR_FEATURE HALT which would not
2594 * clear the stall bit when no STALL handshake was received
2595 * before (autostall can cause this)
2597 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2598 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2599 DBG(dev
, "MSC Reset\n");
2602 * only one IN and OUT endpoints are handled
2604 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2605 udc_set_halt(&ep_tmp
->ep
, 0);
2606 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2607 udc_set_halt(&ep_tmp
->ep
, 0);
2610 /* call gadget with setup data received */
2611 spin_unlock(&dev
->lock
);
2612 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2613 &setup_data
.request
);
2614 spin_lock(&dev
->lock
);
2616 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2617 /* ep0 in returns data (not zlp) on IN phase */
2618 if (setup_supported
>= 0 && setup_supported
<
2619 UDC_EP0IN_MAXPACKET
) {
2620 /* clear NAK by writing CNAK in EP0_IN */
2621 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2622 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2623 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2624 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2626 /* if unsupported request then stall */
2627 } else if (setup_supported
< 0) {
2628 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2629 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2631 dev
->waiting_zlp_ack_ep0in
= 1;
2634 /* clear NAK by writing CNAK in EP0_OUT */
2636 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2637 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2638 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2639 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2640 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR
,
2646 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2649 /* data packet 0 bytes */
2650 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2651 /* clear OUT bits in ep status */
2652 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2654 /* get setup data: only 0 packet */
2656 /* no req if 0 packet, just reactivate */
2657 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2660 /* set HOST READY */
2661 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2663 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2664 UDC_DMA_OUT_STS_BS_HOST_READY
,
2665 UDC_DMA_OUT_STS_BS
);
2667 udc_ep0_set_rde(dev
);
2668 ret_val
= IRQ_HANDLED
;
2672 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2673 /* re-program desc. pointer for possible ZLPs */
2674 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2675 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2677 udc_ep0_set_rde(dev
);
2681 /* received number bytes */
2682 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2683 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2684 /* out data for fifo mode not working */
2687 /* 0 packet or real data ? */
2689 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2691 /* dummy read confirm */
2692 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2693 ret_val
= IRQ_HANDLED
;
2698 /* check pending CNAKS */
2700 /* CNAk processing when rxfifo empty only */
2701 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2702 udc_process_cnak_queue(dev
);
2710 /* Interrupt handler for Control IN traffic */
2711 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2713 irqreturn_t ret_val
= IRQ_NONE
;
2716 struct udc_request
*req
;
2719 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2722 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2724 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2725 /* DMA completion */
2726 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2727 VDBG(dev
, "isr: TDC clear \n");
2728 ret_val
= IRQ_HANDLED
;
2731 writel(AMD_BIT(UDC_EPSTS_TDC
),
2732 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2734 /* status reg has IN bit set ? */
2735 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2736 ret_val
= IRQ_HANDLED
;
2740 writel(AMD_BIT(UDC_EPSTS_IN
),
2741 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2743 if (dev
->stall_ep0in
) {
2744 DBG(dev
, "stall ep0in\n");
2746 tmp
= readl(&ep
->regs
->ctl
);
2747 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2748 writel(tmp
, &ep
->regs
->ctl
);
2750 if (!list_empty(&ep
->queue
)) {
2752 req
= list_entry(ep
->queue
.next
,
2753 struct udc_request
, queue
);
2756 /* write desc pointer */
2757 writel(req
->td_phys
, &ep
->regs
->desptr
);
2758 /* set HOST READY */
2759 req
->td_data
->status
=
2761 req
->td_data
->status
,
2762 UDC_DMA_STP_STS_BS_HOST_READY
,
2763 UDC_DMA_STP_STS_BS
);
2765 /* set poll demand bit */
2767 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2768 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2770 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2772 /* all bytes will be transferred */
2773 req
->req
.actual
= req
->req
.length
;
2776 complete_req(ep
, req
, 0);
2780 udc_txfifo_write(ep
, &req
->req
);
2782 /* lengh bytes transferred */
2783 len
= req
->req
.length
- req
->req
.actual
;
2784 if (len
> ep
->ep
.maxpacket
)
2785 len
= ep
->ep
.maxpacket
;
2787 req
->req
.actual
+= len
;
2788 if (req
->req
.actual
== req
->req
.length
2789 || (len
!= ep
->ep
.maxpacket
)) {
2791 complete_req(ep
, req
, 0);
2798 dev
->stall_ep0in
= 0;
2801 writel(AMD_BIT(UDC_EPSTS_IN
),
2802 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2810 /* Interrupt handler for global device events */
2811 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2812 __releases(dev
->lock
)
2813 __acquires(dev
->lock
)
2815 irqreturn_t ret_val
= IRQ_NONE
;
2822 /* SET_CONFIG irq ? */
2823 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2824 ret_val
= IRQ_HANDLED
;
2826 /* read config value */
2827 tmp
= readl(&dev
->regs
->sts
);
2828 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2829 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2830 dev
->cur_config
= cfg
;
2831 dev
->set_cfg_not_acked
= 1;
2833 /* make usb request for gadget driver */
2834 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2835 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2836 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2838 /* programm the NE registers */
2839 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2843 /* ep ix in UDC CSR register space */
2844 udc_csr_epix
= ep
->num
;
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2853 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2855 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2858 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2860 /* clear stall bits */
2862 tmp
= readl(&ep
->regs
->ctl
);
2863 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2864 writel(tmp
, &ep
->regs
->ctl
);
2866 /* call gadget zero with setup data received */
2867 spin_unlock(&dev
->lock
);
2868 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2869 spin_lock(&dev
->lock
);
2871 } /* SET_INTERFACE ? */
2872 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2873 ret_val
= IRQ_HANDLED
;
2875 dev
->set_cfg_not_acked
= 1;
2876 /* read interface and alt setting values */
2877 tmp
= readl(&dev
->regs
->sts
);
2878 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2879 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2881 /* make usb request for gadget driver */
2882 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2883 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2884 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2885 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2886 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2888 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2889 dev
->cur_alt
, dev
->cur_intf
);
2891 /* programm the NE registers */
2892 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2896 /* ep ix in UDC CSR register space */
2897 udc_csr_epix
= ep
->num
;
2902 /* ep ix in UDC CSR register space */
2903 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2908 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2910 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2912 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2914 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2917 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2919 /* clear stall bits */
2921 tmp
= readl(&ep
->regs
->ctl
);
2922 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2923 writel(tmp
, &ep
->regs
->ctl
);
2926 /* call gadget zero with setup data received */
2927 spin_unlock(&dev
->lock
);
2928 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2929 spin_lock(&dev
->lock
);
2932 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2933 DBG(dev
, "USB Reset interrupt\n");
2934 ret_val
= IRQ_HANDLED
;
2936 /* allow soft reset when suspend occurs */
2937 soft_reset_occured
= 0;
2939 dev
->waiting_zlp_ack_ep0in
= 0;
2940 dev
->set_cfg_not_acked
= 0;
2942 /* mask not needed interrupts */
2943 udc_mask_unused_interrupts(dev
);
2945 /* call gadget to resume and reset configs etc. */
2946 spin_unlock(&dev
->lock
);
2947 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2948 dev
->driver
->resume(&dev
->gadget
);
2949 dev
->sys_suspended
= 0;
2951 dev
->driver
->disconnect(&dev
->gadget
);
2952 spin_lock(&dev
->lock
);
2954 /* disable ep0 to empty req queue */
2955 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2956 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2958 /* soft reset when rxfifo not empty */
2959 tmp
= readl(&dev
->regs
->sts
);
2960 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2961 && !soft_reset_after_usbreset_occured
) {
2962 udc_soft_reset(dev
);
2963 soft_reset_after_usbreset_occured
++;
2967 * DMA reset to kill potential old DMA hw hang,
2968 * POLL bit is already reset by ep_init() through
2971 DBG(dev
, "DMA machine reset\n");
2972 tmp
= readl(&dev
->regs
->cfg
);
2973 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2974 writel(tmp
, &dev
->regs
->cfg
);
2976 /* put into initial config */
2977 udc_basic_init(dev
);
2979 /* enable device setup interrupts */
2980 udc_enable_dev_setup_interrupts(dev
);
2982 /* enable suspend interrupt */
2983 tmp
= readl(&dev
->regs
->irqmsk
);
2984 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2985 writel(tmp
, &dev
->regs
->irqmsk
);
2988 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2989 DBG(dev
, "USB Suspend interrupt\n");
2990 ret_val
= IRQ_HANDLED
;
2991 if (dev
->driver
->suspend
) {
2992 spin_unlock(&dev
->lock
);
2993 dev
->sys_suspended
= 1;
2994 dev
->driver
->suspend(&dev
->gadget
);
2995 spin_lock(&dev
->lock
);
2998 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2999 DBG(dev
, "ENUM interrupt\n");
3000 ret_val
= IRQ_HANDLED
;
3001 soft_reset_after_usbreset_occured
= 0;
3003 /* disable ep0 to empty req queue */
3004 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3005 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3007 /* link up all endpoints */
3008 udc_setup_endpoints(dev
);
3009 dev_info(&dev
->pdev
->dev
, "Connect: %s\n",
3010 usb_speed_string(dev
->gadget
.speed
));
3013 activate_control_endpoints(dev
);
3015 /* enable ep0 interrupts */
3016 udc_enable_ep0_interrupts(dev
);
3018 /* session valid change interrupt */
3019 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3020 DBG(dev
, "USB SVC interrupt\n");
3021 ret_val
= IRQ_HANDLED
;
3023 /* check that session is not valid to detect disconnect */
3024 tmp
= readl(&dev
->regs
->sts
);
3025 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3026 /* disable suspend interrupt */
3027 tmp
= readl(&dev
->regs
->irqmsk
);
3028 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3029 writel(tmp
, &dev
->regs
->irqmsk
);
3030 DBG(dev
, "USB Disconnect (session valid low)\n");
3031 /* cleanup on disconnect */
3032 usb_disconnect(udc
);
3040 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3041 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3043 struct udc
*dev
= pdev
;
3047 irqreturn_t ret_val
= IRQ_NONE
;
3049 spin_lock(&dev
->lock
);
3051 /* check for ep irq */
3052 reg
= readl(&dev
->regs
->ep_irqsts
);
3054 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3055 ret_val
|= udc_control_out_isr(dev
);
3056 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3057 ret_val
|= udc_control_in_isr(dev
);
3063 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3065 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3068 /* clear irq status */
3069 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3071 /* irq for out ep ? */
3072 if (i
> UDC_EPIN_NUM
)
3073 ret_val
|= udc_data_out_isr(dev
, i
);
3075 ret_val
|= udc_data_in_isr(dev
, i
);
3081 /* check for dev irq */
3082 reg
= readl(&dev
->regs
->irqsts
);
3085 writel(reg
, &dev
->regs
->irqsts
);
3086 ret_val
|= udc_dev_isr(dev
, reg
);
3090 spin_unlock(&dev
->lock
);
3094 /* Tears down device */
3095 static void gadget_release(struct device
*pdev
)
3097 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3101 /* Cleanup on device remove */
3102 static void udc_remove(struct udc
*dev
)
3106 if (timer_pending(&udc_timer
))
3107 wait_for_completion(&on_exit
);
3109 del_timer_sync(&udc_timer
);
3110 /* remove pollstall timer */
3111 stop_pollstall_timer
++;
3112 if (timer_pending(&udc_pollstall_timer
))
3113 wait_for_completion(&on_pollstall_exit
);
3114 if (udc_pollstall_timer
.data
)
3115 del_timer_sync(&udc_pollstall_timer
);
3119 /* Reset all pci context */
3120 static void udc_pci_remove(struct pci_dev
*pdev
)
3124 dev
= pci_get_drvdata(pdev
);
3126 usb_del_gadget_udc(&udc
->gadget
);
3127 /* gadget driver must not be registered */
3128 BUG_ON(dev
->driver
!= NULL
);
3130 /* dma pool cleanup */
3131 if (dev
->data_requests
)
3132 pci_pool_destroy(dev
->data_requests
);
3134 if (dev
->stp_requests
) {
3135 /* cleanup DMA desc's for ep0in */
3136 pci_pool_free(dev
->stp_requests
,
3137 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3138 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3139 pci_pool_free(dev
->stp_requests
,
3140 dev
->ep
[UDC_EP0OUT_IX
].td
,
3141 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3143 pci_pool_destroy(dev
->stp_requests
);
3146 /* reset controller */
3147 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3148 if (dev
->irq_registered
)
3149 free_irq(pdev
->irq
, dev
);
3152 if (dev
->mem_region
)
3153 release_mem_region(pci_resource_start(pdev
, 0),
3154 pci_resource_len(pdev
, 0));
3156 pci_disable_device(pdev
);
3158 device_unregister(&dev
->gadget
.dev
);
3159 pci_set_drvdata(pdev
, NULL
);
3164 /* create dma pools on init */
3165 static int init_dma_pools(struct udc
*dev
)
3167 struct udc_stp_dma
*td_stp
;
3168 struct udc_data_dma
*td_data
;
3171 /* consistent DMA mode setting ? */
3173 use_dma_bufferfill_mode
= 0;
3176 use_dma_bufferfill_mode
= 1;
3180 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3181 sizeof(struct udc_data_dma
), 0, 0);
3182 if (!dev
->data_requests
) {
3183 DBG(dev
, "can't get request data pool\n");
3188 /* EP0 in dma regs = dev control regs */
3189 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3191 /* dma desc for setup data */
3192 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3193 sizeof(struct udc_stp_dma
), 0, 0);
3194 if (!dev
->stp_requests
) {
3195 DBG(dev
, "can't get stp request pool\n");
3200 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3201 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3202 if (td_stp
== NULL
) {
3206 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3208 /* data: 0 packets !? */
3209 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3210 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3211 if (td_data
== NULL
) {
3215 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3222 /* Called by pci bus driver to init pci context */
3223 static int udc_pci_probe(
3224 struct pci_dev
*pdev
,
3225 const struct pci_device_id
*id
3229 unsigned long resource
;
3235 dev_dbg(&pdev
->dev
, "already probed\n");
3240 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3247 if (pci_enable_device(pdev
) < 0) {
3255 /* PCI resource allocation */
3256 resource
= pci_resource_start(pdev
, 0);
3257 len
= pci_resource_len(pdev
, 0);
3259 if (!request_mem_region(resource
, len
, name
)) {
3260 dev_dbg(&pdev
->dev
, "pci device used already\n");
3266 dev
->mem_region
= 1;
3268 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3269 if (dev
->virt_addr
== NULL
) {
3270 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3278 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3285 spin_lock_init(&dev
->lock
);
3286 /* udc csr registers base */
3287 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3288 /* dev registers base */
3289 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3290 /* ep registers base */
3291 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3293 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3294 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3296 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3297 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3303 dev
->irq_registered
= 1;
3305 pci_set_drvdata(pdev
, dev
);
3307 /* chip revision for Hs AMD5536 */
3308 dev
->chiprev
= pdev
->revision
;
3310 pci_set_master(pdev
);
3311 pci_try_set_mwi(pdev
);
3313 /* init dma pools */
3315 retval
= init_dma_pools(dev
);
3320 dev
->phys_addr
= resource
;
3321 dev
->irq
= pdev
->irq
;
3323 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3324 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3326 /* general probing */
3327 if (udc_probe(dev
) == 0)
3332 udc_pci_remove(pdev
);
3337 static int udc_probe(struct udc
*dev
)
3343 /* mark timer as not initialized */
3345 udc_pollstall_timer
.data
= 0;
3347 /* device struct setup */
3348 dev
->gadget
.ops
= &udc_ops
;
3350 dev_set_name(&dev
->gadget
.dev
, "gadget");
3351 dev
->gadget
.dev
.release
= gadget_release
;
3352 dev
->gadget
.name
= name
;
3353 dev
->gadget
.max_speed
= USB_SPEED_HIGH
;
3355 /* init registers, interrupts, ... */
3356 startup_registers(dev
);
3358 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3360 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3361 dev_info(&dev
->pdev
->dev
,
3362 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3363 tmp
, dev
->phys_addr
, dev
->chiprev
,
3364 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3365 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3366 if (dev
->chiprev
== UDC_HSA0_REV
) {
3367 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3371 dev_info(&dev
->pdev
->dev
,
3372 "driver version: %s(for Geode5536 B1)\n", tmp
);
3375 retval
= usb_add_gadget_udc(&udc
->pdev
->dev
, &dev
->gadget
);
3379 retval
= device_register(&dev
->gadget
.dev
);
3381 usb_del_gadget_udc(&dev
->gadget
);
3382 put_device(&dev
->gadget
.dev
);
3387 init_timer(&udc_timer
);
3388 udc_timer
.function
= udc_timer_function
;
3390 /* timer pollstall init */
3391 init_timer(&udc_pollstall_timer
);
3392 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3393 udc_pollstall_timer
.data
= 1;
3396 reg
= readl(&dev
->regs
->ctl
);
3397 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3398 writel(reg
, &dev
->regs
->ctl
);
3400 /* print dev register info */
3409 /* Initiates a remote wakeup */
3410 static int udc_remote_wakeup(struct udc
*dev
)
3412 unsigned long flags
;
3415 DBG(dev
, "UDC initiates remote wakeup\n");
3417 spin_lock_irqsave(&dev
->lock
, flags
);
3419 tmp
= readl(&dev
->regs
->ctl
);
3420 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3421 writel(tmp
, &dev
->regs
->ctl
);
3422 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3423 writel(tmp
, &dev
->regs
->ctl
);
3425 spin_unlock_irqrestore(&dev
->lock
, flags
);
3429 /* PCI device parameters */
3430 static const struct pci_device_id pci_id
[] = {
3432 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3433 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3434 .class_mask
= 0xffffffff,
3438 MODULE_DEVICE_TABLE(pci
, pci_id
);
3441 static struct pci_driver udc_pci_driver
= {
3442 .name
= (char *) name
,
3444 .probe
= udc_pci_probe
,
3445 .remove
= udc_pci_remove
,
3449 static int __init
init(void)
3451 return pci_register_driver(&udc_pci_driver
);
3456 static void __exit
cleanup(void)
3458 pci_unregister_driver(&udc_pci_driver
);
3460 module_exit(cleanup
);
3462 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3463 MODULE_AUTHOR("Thomas Dahlmann");
3464 MODULE_LICENSE("GPL");