2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd
*xhci
,
72 struct xhci_virt_device
*virt_dev
,
73 struct xhci_event_cmd
*event
);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
79 dma_addr_t
xhci_trb_virt_to_dma(struct xhci_segment
*seg
,
82 unsigned long segment_offset
;
84 if (!seg
|| !trb
|| trb
< seg
->trbs
)
87 segment_offset
= trb
- seg
->trbs
;
88 if (segment_offset
> TRBS_PER_SEGMENT
)
90 return seg
->dma
+ (segment_offset
* sizeof(*trb
));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
97 struct xhci_segment
*seg
, union xhci_trb
*trb
)
99 if (ring
== xhci
->event_ring
)
100 return (trb
== &seg
->trbs
[TRBS_PER_SEGMENT
]) &&
101 (seg
->next
== xhci
->event_ring
->first_seg
);
103 return le32_to_cpu(trb
->link
.control
) & LINK_TOGGLE
;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
110 static int last_trb(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
111 struct xhci_segment
*seg
, union xhci_trb
*trb
)
113 if (ring
== xhci
->event_ring
)
114 return trb
== &seg
->trbs
[TRBS_PER_SEGMENT
];
116 return TRB_TYPE_LINK_LE32(trb
->link
.control
);
119 static int enqueue_is_link_trb(struct xhci_ring
*ring
)
121 struct xhci_link_trb
*link
= &ring
->enqueue
->link
;
122 return TRB_TYPE_LINK_LE32(link
->control
);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd
*xhci
,
130 struct xhci_ring
*ring
,
131 struct xhci_segment
**seg
,
132 union xhci_trb
**trb
)
134 if (last_trb(xhci
, ring
, *seg
, *trb
)) {
136 *trb
= ((*seg
)->trbs
);
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
, bool consumer
)
148 union xhci_trb
*next
= ++(ring
->dequeue
);
149 unsigned long long addr
;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci
, ring
, ring
->deq_seg
, next
)) {
156 if (consumer
&& last_trb_on_last_seg(xhci
, ring
, ring
->deq_seg
, next
)) {
157 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
159 ring
->deq_seg
= ring
->deq_seg
->next
;
160 ring
->dequeue
= ring
->deq_seg
->trbs
;
161 next
= ring
->dequeue
;
163 addr
= (unsigned long long) xhci_trb_virt_to_dma(ring
->deq_seg
, ring
->dequeue
);
167 * See Cycle bit rules. SW is the consumer for the event ring only.
168 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
170 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
171 * chain bit is set), then set the chain bit in all the following link TRBs.
172 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
173 * have their chain bit cleared (so that each Link TRB is a separate TD).
175 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
176 * set, but other sections talk about dealing with the chain bit set. This was
177 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
178 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
180 * @more_trbs_coming: Will you enqueue more TRBs before calling
181 * prepare_transfer()?
183 static void inc_enq(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
184 bool consumer
, bool more_trbs_coming
, bool isoc
)
187 union xhci_trb
*next
;
188 unsigned long long addr
;
190 chain
= le32_to_cpu(ring
->enqueue
->generic
.field
[3]) & TRB_CHAIN
;
191 next
= ++(ring
->enqueue
);
194 /* Update the dequeue pointer further if that was a link TRB or we're at
195 * the end of an event ring segment (which doesn't have link TRBS)
197 while (last_trb(xhci
, ring
, ring
->enq_seg
, next
)) {
199 if (ring
!= xhci
->event_ring
) {
201 * If the caller doesn't plan on enqueueing more
202 * TDs before ringing the doorbell, then we
203 * don't want to give the link TRB to the
204 * hardware just yet. We'll give the link TRB
205 * back in prepare_ring() just before we enqueue
206 * the TD at the top of the ring.
208 if (!chain
&& !more_trbs_coming
)
211 /* If we're not dealing with 0.95 hardware or
212 * isoc rings on AMD 0.96 host,
213 * carry over the chain bit of the previous TRB
214 * (which may mean the chain bit is cleared).
216 if (!(isoc
&& (xhci
->quirks
& XHCI_AMD_0x96_HOST
))
217 && !xhci_link_trb_quirk(xhci
)) {
218 next
->link
.control
&=
219 cpu_to_le32(~TRB_CHAIN
);
220 next
->link
.control
|=
223 /* Give this link TRB to the hardware */
225 next
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
227 /* Toggle the cycle bit after the last ring segment. */
228 if (last_trb_on_last_seg(xhci
, ring
, ring
->enq_seg
, next
)) {
229 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
232 ring
->enq_seg
= ring
->enq_seg
->next
;
233 ring
->enqueue
= ring
->enq_seg
->trbs
;
234 next
= ring
->enqueue
;
236 addr
= (unsigned long long) xhci_trb_virt_to_dma(ring
->enq_seg
, ring
->enqueue
);
240 * Check to see if there's room to enqueue num_trbs on the ring. See rules
242 * FIXME: this would be simpler and faster if we just kept track of the number
243 * of free TRBs in a ring.
245 static int room_on_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
246 unsigned int num_trbs
)
249 union xhci_trb
*enq
= ring
->enqueue
;
250 struct xhci_segment
*enq_seg
= ring
->enq_seg
;
251 struct xhci_segment
*cur_seg
;
252 unsigned int left_on_ring
;
254 /* If we are currently pointing to a link TRB, advance the
255 * enqueue pointer before checking for space */
256 while (last_trb(xhci
, ring
, enq_seg
, enq
)) {
257 enq_seg
= enq_seg
->next
;
261 /* Check if ring is empty */
262 if (enq
== ring
->dequeue
) {
263 /* Can't use link trbs */
264 left_on_ring
= TRBS_PER_SEGMENT
- 1;
265 for (cur_seg
= enq_seg
->next
; cur_seg
!= enq_seg
;
266 cur_seg
= cur_seg
->next
)
267 left_on_ring
+= TRBS_PER_SEGMENT
- 1;
269 /* Always need one TRB free in the ring. */
271 if (num_trbs
> left_on_ring
) {
272 xhci_warn(xhci
, "Not enough room on ring; "
273 "need %u TRBs, %u TRBs left\n",
274 num_trbs
, left_on_ring
);
279 /* Make sure there's an extra empty TRB available */
280 for (i
= 0; i
<= num_trbs
; ++i
) {
281 if (enq
== ring
->dequeue
)
284 while (last_trb(xhci
, ring
, enq_seg
, enq
)) {
285 enq_seg
= enq_seg
->next
;
292 /* Ring the host controller doorbell after placing a command on the ring */
293 void xhci_ring_cmd_db(struct xhci_hcd
*xhci
)
295 xhci_dbg(xhci
, "// Ding dong!\n");
296 xhci_writel(xhci
, DB_VALUE_HOST
, &xhci
->dba
->doorbell
[0]);
297 /* Flush PCI posted writes */
298 xhci_readl(xhci
, &xhci
->dba
->doorbell
[0]);
301 void xhci_ring_ep_doorbell(struct xhci_hcd
*xhci
,
302 unsigned int slot_id
,
303 unsigned int ep_index
,
304 unsigned int stream_id
)
306 __le32 __iomem
*db_addr
= &xhci
->dba
->doorbell
[slot_id
];
307 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
308 unsigned int ep_state
= ep
->ep_state
;
310 /* Don't ring the doorbell for this endpoint if there are pending
311 * cancellations because we don't want to interrupt processing.
312 * We don't want to restart any stream rings if there's a set dequeue
313 * pointer command pending because the device can choose to start any
314 * stream once the endpoint is on the HW schedule.
315 * FIXME - check all the stream rings for pending cancellations.
317 if ((ep_state
& EP_HALT_PENDING
) || (ep_state
& SET_DEQ_PENDING
) ||
318 (ep_state
& EP_HALTED
))
320 xhci_writel(xhci
, DB_VALUE(ep_index
, stream_id
), db_addr
);
321 /* The CPU has better things to do at this point than wait for a
322 * write-posting flush. It'll get there soon enough.
326 /* Ring the doorbell for any rings with pending URBs */
327 static void ring_doorbell_for_active_rings(struct xhci_hcd
*xhci
,
328 unsigned int slot_id
,
329 unsigned int ep_index
)
331 unsigned int stream_id
;
332 struct xhci_virt_ep
*ep
;
334 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
336 /* A ring has pending URBs if its TD list is not empty */
337 if (!(ep
->ep_state
& EP_HAS_STREAMS
)) {
338 if (!(list_empty(&ep
->ring
->td_list
)))
339 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, 0);
343 for (stream_id
= 1; stream_id
< ep
->stream_info
->num_streams
;
345 struct xhci_stream_info
*stream_info
= ep
->stream_info
;
346 if (!list_empty(&stream_info
->stream_rings
[stream_id
]->td_list
))
347 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
,
353 * Find the segment that trb is in. Start searching in start_seg.
354 * If we must move past a segment that has a link TRB with a toggle cycle state
355 * bit set, then we will toggle the value pointed at by cycle_state.
357 static struct xhci_segment
*find_trb_seg(
358 struct xhci_segment
*start_seg
,
359 union xhci_trb
*trb
, int *cycle_state
)
361 struct xhci_segment
*cur_seg
= start_seg
;
362 struct xhci_generic_trb
*generic_trb
;
364 while (cur_seg
->trbs
> trb
||
365 &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1] < trb
) {
366 generic_trb
= &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1].generic
;
367 if (generic_trb
->field
[3] & cpu_to_le32(LINK_TOGGLE
))
369 cur_seg
= cur_seg
->next
;
370 if (cur_seg
== start_seg
)
371 /* Looped over the entire list. Oops! */
378 static struct xhci_ring
*xhci_triad_to_transfer_ring(struct xhci_hcd
*xhci
,
379 unsigned int slot_id
, unsigned int ep_index
,
380 unsigned int stream_id
)
382 struct xhci_virt_ep
*ep
;
384 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
385 /* Common case: no streams */
386 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
389 if (stream_id
== 0) {
391 "WARN: Slot ID %u, ep index %u has streams, "
392 "but URB has no stream ID.\n",
397 if (stream_id
< ep
->stream_info
->num_streams
)
398 return ep
->stream_info
->stream_rings
[stream_id
];
401 "WARN: Slot ID %u, ep index %u has "
402 "stream IDs 1 to %u allocated, "
403 "but stream ID %u is requested.\n",
405 ep
->stream_info
->num_streams
- 1,
410 /* Get the right ring for the given URB.
411 * If the endpoint supports streams, boundary check the URB's stream ID.
412 * If the endpoint doesn't support streams, return the singular endpoint ring.
414 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
417 return xhci_triad_to_transfer_ring(xhci
, urb
->dev
->slot_id
,
418 xhci_get_endpoint_index(&urb
->ep
->desc
), urb
->stream_id
);
422 * Move the xHC's endpoint ring dequeue pointer past cur_td.
423 * Record the new state of the xHC's endpoint ring dequeue segment,
424 * dequeue pointer, and new consumer cycle state in state.
425 * Update our internal representation of the ring's dequeue pointer.
427 * We do this in three jumps:
428 * - First we update our new ring state to be the same as when the xHC stopped.
429 * - Then we traverse the ring to find the segment that contains
430 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
431 * any link TRBs with the toggle cycle bit set.
432 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
433 * if we've moved it past a link TRB with the toggle cycle bit set.
435 * Some of the uses of xhci_generic_trb are grotty, but if they're done
436 * with correct __le32 accesses they should work fine. Only users of this are
439 void xhci_find_new_dequeue_state(struct xhci_hcd
*xhci
,
440 unsigned int slot_id
, unsigned int ep_index
,
441 unsigned int stream_id
, struct xhci_td
*cur_td
,
442 struct xhci_dequeue_state
*state
)
444 struct xhci_virt_device
*dev
= xhci
->devs
[slot_id
];
445 struct xhci_ring
*ep_ring
;
446 struct xhci_generic_trb
*trb
;
447 struct xhci_ep_ctx
*ep_ctx
;
450 ep_ring
= xhci_triad_to_transfer_ring(xhci
, slot_id
,
451 ep_index
, stream_id
);
453 xhci_warn(xhci
, "WARN can't find new dequeue state "
454 "for invalid stream ID %u.\n",
458 state
->new_cycle_state
= 0;
459 xhci_dbg(xhci
, "Finding segment containing stopped TRB.\n");
460 state
->new_deq_seg
= find_trb_seg(cur_td
->start_seg
,
461 dev
->eps
[ep_index
].stopped_trb
,
462 &state
->new_cycle_state
);
463 if (!state
->new_deq_seg
) {
468 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
469 xhci_dbg(xhci
, "Finding endpoint context\n");
470 ep_ctx
= xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
471 state
->new_cycle_state
= 0x1 & le64_to_cpu(ep_ctx
->deq
);
473 state
->new_deq_ptr
= cur_td
->last_trb
;
474 xhci_dbg(xhci
, "Finding segment containing last TRB in TD.\n");
475 state
->new_deq_seg
= find_trb_seg(state
->new_deq_seg
,
477 &state
->new_cycle_state
);
478 if (!state
->new_deq_seg
) {
483 trb
= &state
->new_deq_ptr
->generic
;
484 if (TRB_TYPE_LINK_LE32(trb
->field
[3]) &&
485 (trb
->field
[3] & cpu_to_le32(LINK_TOGGLE
)))
486 state
->new_cycle_state
^= 0x1;
487 next_trb(xhci
, ep_ring
, &state
->new_deq_seg
, &state
->new_deq_ptr
);
490 * If there is only one segment in a ring, find_trb_seg()'s while loop
491 * will not run, and it will return before it has a chance to see if it
492 * needs to toggle the cycle bit. It can't tell if the stalled transfer
493 * ended just before the link TRB on a one-segment ring, or if the TD
494 * wrapped around the top of the ring, because it doesn't have the TD in
495 * question. Look for the one-segment case where stalled TRB's address
496 * is greater than the new dequeue pointer address.
498 if (ep_ring
->first_seg
== ep_ring
->first_seg
->next
&&
499 state
->new_deq_ptr
< dev
->eps
[ep_index
].stopped_trb
)
500 state
->new_cycle_state
^= 0x1;
501 xhci_dbg(xhci
, "Cycle state = 0x%x\n", state
->new_cycle_state
);
503 /* Don't update the ring cycle state for the producer (us). */
504 xhci_dbg(xhci
, "New dequeue segment = %p (virtual)\n",
506 addr
= xhci_trb_virt_to_dma(state
->new_deq_seg
, state
->new_deq_ptr
);
507 xhci_dbg(xhci
, "New dequeue pointer = 0x%llx (DMA)\n",
508 (unsigned long long) addr
);
511 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
512 * (The last TRB actually points to the ring enqueue pointer, which is not part
513 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
515 static void td_to_noop(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
516 struct xhci_td
*cur_td
, bool flip_cycle
)
518 struct xhci_segment
*cur_seg
;
519 union xhci_trb
*cur_trb
;
521 for (cur_seg
= cur_td
->start_seg
, cur_trb
= cur_td
->first_trb
;
523 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
524 if (TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3])) {
525 /* Unchain any chained Link TRBs, but
526 * leave the pointers intact.
528 cur_trb
->generic
.field
[3] &= cpu_to_le32(~TRB_CHAIN
);
529 /* Flip the cycle bit (link TRBs can't be the first
533 cur_trb
->generic
.field
[3] ^=
534 cpu_to_le32(TRB_CYCLE
);
535 xhci_dbg(xhci
, "Cancel (unchain) link TRB\n");
536 xhci_dbg(xhci
, "Address = %p (0x%llx dma); "
537 "in seg %p (0x%llx dma)\n",
539 (unsigned long long)xhci_trb_virt_to_dma(cur_seg
, cur_trb
),
541 (unsigned long long)cur_seg
->dma
);
543 cur_trb
->generic
.field
[0] = 0;
544 cur_trb
->generic
.field
[1] = 0;
545 cur_trb
->generic
.field
[2] = 0;
546 /* Preserve only the cycle bit of this TRB */
547 cur_trb
->generic
.field
[3] &= cpu_to_le32(TRB_CYCLE
);
548 /* Flip the cycle bit except on the first or last TRB */
549 if (flip_cycle
&& cur_trb
!= cur_td
->first_trb
&&
550 cur_trb
!= cur_td
->last_trb
)
551 cur_trb
->generic
.field
[3] ^=
552 cpu_to_le32(TRB_CYCLE
);
553 cur_trb
->generic
.field
[3] |= cpu_to_le32(
554 TRB_TYPE(TRB_TR_NOOP
));
555 xhci_dbg(xhci
, "TRB to noop at offset 0x%llx\n",
557 xhci_trb_virt_to_dma(cur_seg
, cur_trb
));
559 if (cur_trb
== cur_td
->last_trb
)
564 static int queue_set_tr_deq(struct xhci_hcd
*xhci
, int slot_id
,
565 unsigned int ep_index
, unsigned int stream_id
,
566 struct xhci_segment
*deq_seg
,
567 union xhci_trb
*deq_ptr
, u32 cycle_state
);
569 void xhci_queue_new_dequeue_state(struct xhci_hcd
*xhci
,
570 unsigned int slot_id
, unsigned int ep_index
,
571 unsigned int stream_id
,
572 struct xhci_dequeue_state
*deq_state
)
574 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
576 xhci_dbg(xhci
, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
577 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
578 deq_state
->new_deq_seg
,
579 (unsigned long long)deq_state
->new_deq_seg
->dma
,
580 deq_state
->new_deq_ptr
,
581 (unsigned long long)xhci_trb_virt_to_dma(deq_state
->new_deq_seg
, deq_state
->new_deq_ptr
),
582 deq_state
->new_cycle_state
);
583 queue_set_tr_deq(xhci
, slot_id
, ep_index
, stream_id
,
584 deq_state
->new_deq_seg
,
585 deq_state
->new_deq_ptr
,
586 (u32
) deq_state
->new_cycle_state
);
587 /* Stop the TD queueing code from ringing the doorbell until
588 * this command completes. The HC won't set the dequeue pointer
589 * if the ring is running, and ringing the doorbell starts the
592 ep
->ep_state
|= SET_DEQ_PENDING
;
595 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd
*xhci
,
596 struct xhci_virt_ep
*ep
)
598 ep
->ep_state
&= ~EP_HALT_PENDING
;
599 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
600 * timer is running on another CPU, we don't decrement stop_cmds_pending
601 * (since we didn't successfully stop the watchdog timer).
603 if (del_timer(&ep
->stop_cmd_timer
))
604 ep
->stop_cmds_pending
--;
607 /* Must be called with xhci->lock held in interrupt context */
608 static void xhci_giveback_urb_in_irq(struct xhci_hcd
*xhci
,
609 struct xhci_td
*cur_td
, int status
, char *adjective
)
613 struct urb_priv
*urb_priv
;
616 urb_priv
= urb
->hcpriv
;
618 hcd
= bus_to_hcd(urb
->dev
->bus
);
620 /* Only giveback urb when this is the last td in urb */
621 if (urb_priv
->td_cnt
== urb_priv
->length
) {
622 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
623 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
--;
624 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
625 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
626 usb_amd_quirk_pll_enable();
629 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
631 spin_unlock(&xhci
->lock
);
632 usb_hcd_giveback_urb(hcd
, urb
, status
);
633 xhci_urb_free_priv(xhci
, urb_priv
);
634 spin_lock(&xhci
->lock
);
639 * When we get a command completion for a Stop Endpoint Command, we need to
640 * unlink any cancelled TDs from the ring. There are two ways to do that:
642 * 1. If the HW was in the middle of processing the TD that needs to be
643 * cancelled, then we must move the ring's dequeue pointer past the last TRB
644 * in the TD with a Set Dequeue Pointer Command.
645 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
646 * bit cleared) so that the HW will skip over them.
648 static void handle_stopped_endpoint(struct xhci_hcd
*xhci
,
649 union xhci_trb
*trb
, struct xhci_event_cmd
*event
)
651 unsigned int slot_id
;
652 unsigned int ep_index
;
653 struct xhci_virt_device
*virt_dev
;
654 struct xhci_ring
*ep_ring
;
655 struct xhci_virt_ep
*ep
;
656 struct list_head
*entry
;
657 struct xhci_td
*cur_td
= NULL
;
658 struct xhci_td
*last_unlinked_td
;
660 struct xhci_dequeue_state deq_state
;
662 if (unlikely(TRB_TO_SUSPEND_PORT(
663 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3])))) {
664 slot_id
= TRB_TO_SLOT_ID(
665 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3]));
666 virt_dev
= xhci
->devs
[slot_id
];
668 handle_cmd_in_cmd_wait_list(xhci
, virt_dev
,
671 xhci_warn(xhci
, "Stop endpoint command "
672 "completion for disabled slot %u\n",
677 memset(&deq_state
, 0, sizeof(deq_state
));
678 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
679 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
680 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
682 if (list_empty(&ep
->cancelled_td_list
)) {
683 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
684 ep
->stopped_td
= NULL
;
685 ep
->stopped_trb
= NULL
;
686 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
690 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
691 * We have the xHCI lock, so nothing can modify this list until we drop
692 * it. We're also in the event handler, so we can't get re-interrupted
693 * if another Stop Endpoint command completes
695 list_for_each(entry
, &ep
->cancelled_td_list
) {
696 cur_td
= list_entry(entry
, struct xhci_td
, cancelled_td_list
);
697 xhci_dbg(xhci
, "Removing canceled TD starting at 0x%llx (dma).\n",
698 (unsigned long long)xhci_trb_virt_to_dma(
699 cur_td
->start_seg
, cur_td
->first_trb
));
700 ep_ring
= xhci_urb_to_transfer_ring(xhci
, cur_td
->urb
);
702 /* This shouldn't happen unless a driver is mucking
703 * with the stream ID after submission. This will
704 * leave the TD on the hardware ring, and the hardware
705 * will try to execute it, and may access a buffer
706 * that has already been freed. In the best case, the
707 * hardware will execute it, and the event handler will
708 * ignore the completion event for that TD, since it was
709 * removed from the td_list for that endpoint. In
710 * short, don't muck with the stream ID after
713 xhci_warn(xhci
, "WARN Cancelled URB %p "
714 "has invalid stream ID %u.\n",
716 cur_td
->urb
->stream_id
);
717 goto remove_finished_td
;
720 * If we stopped on the TD we need to cancel, then we have to
721 * move the xHC endpoint ring dequeue pointer past this TD.
723 if (cur_td
== ep
->stopped_td
)
724 xhci_find_new_dequeue_state(xhci
, slot_id
, ep_index
,
725 cur_td
->urb
->stream_id
,
728 td_to_noop(xhci
, ep_ring
, cur_td
, false);
731 * The event handler won't see a completion for this TD anymore,
732 * so remove it from the endpoint ring's TD list. Keep it in
733 * the cancelled TD list for URB completion later.
735 list_del_init(&cur_td
->td_list
);
737 last_unlinked_td
= cur_td
;
738 xhci_stop_watchdog_timer_in_irq(xhci
, ep
);
740 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
741 if (deq_state
.new_deq_ptr
&& deq_state
.new_deq_seg
) {
742 xhci_queue_new_dequeue_state(xhci
,
744 ep
->stopped_td
->urb
->stream_id
,
746 xhci_ring_cmd_db(xhci
);
748 /* Otherwise ring the doorbell(s) to restart queued transfers */
749 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
751 ep
->stopped_td
= NULL
;
752 ep
->stopped_trb
= NULL
;
755 * Drop the lock and complete the URBs in the cancelled TD list.
756 * New TDs to be cancelled might be added to the end of the list before
757 * we can complete all the URBs for the TDs we already unlinked.
758 * So stop when we've completed the URB for the last TD we unlinked.
761 cur_td
= list_entry(ep
->cancelled_td_list
.next
,
762 struct xhci_td
, cancelled_td_list
);
763 list_del_init(&cur_td
->cancelled_td_list
);
765 /* Clean up the cancelled URB */
766 /* Doesn't matter what we pass for status, since the core will
767 * just overwrite it (because the URB has been unlinked).
769 xhci_giveback_urb_in_irq(xhci
, cur_td
, 0, "cancelled");
771 /* Stop processing the cancelled list if the watchdog timer is
774 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
776 } while (cur_td
!= last_unlinked_td
);
778 /* Return to the event handler with xhci->lock re-acquired */
781 /* Watchdog timer function for when a stop endpoint command fails to complete.
782 * In this case, we assume the host controller is broken or dying or dead. The
783 * host may still be completing some other events, so we have to be careful to
784 * let the event ring handler and the URB dequeueing/enqueueing functions know
785 * through xhci->state.
787 * The timer may also fire if the host takes a very long time to respond to the
788 * command, and the stop endpoint command completion handler cannot delete the
789 * timer before the timer function is called. Another endpoint cancellation may
790 * sneak in before the timer function can grab the lock, and that may queue
791 * another stop endpoint command and add the timer back. So we cannot use a
792 * simple flag to say whether there is a pending stop endpoint command for a
793 * particular endpoint.
795 * Instead we use a combination of that flag and a counter for the number of
796 * pending stop endpoint commands. If the timer is the tail end of the last
797 * stop endpoint command, and the endpoint's command is still pending, we assume
800 void xhci_stop_endpoint_command_watchdog(unsigned long arg
)
802 struct xhci_hcd
*xhci
;
803 struct xhci_virt_ep
*ep
;
804 struct xhci_virt_ep
*temp_ep
;
805 struct xhci_ring
*ring
;
806 struct xhci_td
*cur_td
;
810 ep
= (struct xhci_virt_ep
*) arg
;
813 spin_lock_irqsave(&xhci
->lock
, flags
);
815 ep
->stop_cmds_pending
--;
816 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
817 xhci_dbg(xhci
, "Stop EP timer ran, but another timer marked "
818 "xHCI as DYING, exiting.\n");
819 spin_unlock_irqrestore(&xhci
->lock
, flags
);
822 if (!(ep
->stop_cmds_pending
== 0 && (ep
->ep_state
& EP_HALT_PENDING
))) {
823 xhci_dbg(xhci
, "Stop EP timer ran, but no command pending, "
825 spin_unlock_irqrestore(&xhci
->lock
, flags
);
829 xhci_warn(xhci
, "xHCI host not responding to stop endpoint command.\n");
830 xhci_warn(xhci
, "Assuming host is dying, halting host.\n");
831 /* Oops, HC is dead or dying or at least not responding to the stop
834 xhci
->xhc_state
|= XHCI_STATE_DYING
;
835 /* Disable interrupts from the host controller and start halting it */
837 spin_unlock_irqrestore(&xhci
->lock
, flags
);
839 ret
= xhci_halt(xhci
);
841 spin_lock_irqsave(&xhci
->lock
, flags
);
843 /* This is bad; the host is not responding to commands and it's
844 * not allowing itself to be halted. At least interrupts are
845 * disabled. If we call usb_hc_died(), it will attempt to
846 * disconnect all device drivers under this host. Those
847 * disconnect() methods will wait for all URBs to be unlinked,
848 * so we must complete them.
850 xhci_warn(xhci
, "Non-responsive xHCI host is not halting.\n");
851 xhci_warn(xhci
, "Completing active URBs anyway.\n");
852 /* We could turn all TDs on the rings to no-ops. This won't
853 * help if the host has cached part of the ring, and is slow if
854 * we want to preserve the cycle bit. Skip it and hope the host
855 * doesn't touch the memory.
858 for (i
= 0; i
< MAX_HC_SLOTS
; i
++) {
861 for (j
= 0; j
< 31; j
++) {
862 temp_ep
= &xhci
->devs
[i
]->eps
[j
];
863 ring
= temp_ep
->ring
;
866 xhci_dbg(xhci
, "Killing URBs for slot ID %u, "
867 "ep index %u\n", i
, j
);
868 while (!list_empty(&ring
->td_list
)) {
869 cur_td
= list_first_entry(&ring
->td_list
,
872 list_del_init(&cur_td
->td_list
);
873 if (!list_empty(&cur_td
->cancelled_td_list
))
874 list_del_init(&cur_td
->cancelled_td_list
);
875 xhci_giveback_urb_in_irq(xhci
, cur_td
,
876 -ESHUTDOWN
, "killed");
878 while (!list_empty(&temp_ep
->cancelled_td_list
)) {
879 cur_td
= list_first_entry(
880 &temp_ep
->cancelled_td_list
,
883 list_del_init(&cur_td
->cancelled_td_list
);
884 xhci_giveback_urb_in_irq(xhci
, cur_td
,
885 -ESHUTDOWN
, "killed");
889 spin_unlock_irqrestore(&xhci
->lock
, flags
);
890 xhci_dbg(xhci
, "Calling usb_hc_died()\n");
891 usb_hc_died(xhci_to_hcd(xhci
)->primary_hcd
);
892 xhci_dbg(xhci
, "xHCI host controller is dead.\n");
896 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
897 * we need to clear the set deq pending flag in the endpoint ring state, so that
898 * the TD queueing code can ring the doorbell again. We also need to ring the
899 * endpoint doorbell to restart the ring, but only if there aren't more
900 * cancellations pending.
902 static void handle_set_deq_completion(struct xhci_hcd
*xhci
,
903 struct xhci_event_cmd
*event
,
906 unsigned int slot_id
;
907 unsigned int ep_index
;
908 unsigned int stream_id
;
909 struct xhci_ring
*ep_ring
;
910 struct xhci_virt_device
*dev
;
911 struct xhci_ep_ctx
*ep_ctx
;
912 struct xhci_slot_ctx
*slot_ctx
;
914 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
915 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
916 stream_id
= TRB_TO_STREAM_ID(le32_to_cpu(trb
->generic
.field
[2]));
917 dev
= xhci
->devs
[slot_id
];
919 ep_ring
= xhci_stream_id_to_ring(dev
, ep_index
, stream_id
);
921 xhci_warn(xhci
, "WARN Set TR deq ptr command for "
922 "freed stream ID %u\n",
924 /* XXX: Harmless??? */
925 dev
->eps
[ep_index
].ep_state
&= ~SET_DEQ_PENDING
;
929 ep_ctx
= xhci_get_ep_ctx(xhci
, dev
->out_ctx
, ep_index
);
930 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->out_ctx
);
932 if (GET_COMP_CODE(le32_to_cpu(event
->status
)) != COMP_SUCCESS
) {
933 unsigned int ep_state
;
934 unsigned int slot_state
;
936 switch (GET_COMP_CODE(le32_to_cpu(event
->status
))) {
938 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd invalid because "
939 "of stream ID configuration\n");
942 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed due "
943 "to incorrect slot or ep state.\n");
944 ep_state
= le32_to_cpu(ep_ctx
->ep_info
);
945 ep_state
&= EP_STATE_MASK
;
946 slot_state
= le32_to_cpu(slot_ctx
->dev_state
);
947 slot_state
= GET_SLOT_STATE(slot_state
);
948 xhci_dbg(xhci
, "Slot state = %u, EP state = %u\n",
949 slot_state
, ep_state
);
952 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd failed because "
953 "slot %u was not enabled.\n", slot_id
);
956 xhci_warn(xhci
, "WARN Set TR Deq Ptr cmd with unknown "
957 "completion code of %u.\n",
958 GET_COMP_CODE(le32_to_cpu(event
->status
)));
961 /* OK what do we do now? The endpoint state is hosed, and we
962 * should never get to this point if the synchronization between
963 * queueing, and endpoint state are correct. This might happen
964 * if the device gets disconnected after we've finished
965 * cancelling URBs, which might not be an error...
968 xhci_dbg(xhci
, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
969 le64_to_cpu(ep_ctx
->deq
));
970 if (xhci_trb_virt_to_dma(dev
->eps
[ep_index
].queued_deq_seg
,
971 dev
->eps
[ep_index
].queued_deq_ptr
) ==
972 (le64_to_cpu(ep_ctx
->deq
) & ~(EP_CTX_CYCLE_MASK
))) {
973 /* Update the ring's dequeue segment and dequeue pointer
974 * to reflect the new position.
976 ep_ring
->deq_seg
= dev
->eps
[ep_index
].queued_deq_seg
;
977 ep_ring
->dequeue
= dev
->eps
[ep_index
].queued_deq_ptr
;
979 xhci_warn(xhci
, "Mismatch between completed Set TR Deq "
980 "Ptr command & xHCI internal state.\n");
981 xhci_warn(xhci
, "ep deq seg = %p, deq ptr = %p\n",
982 dev
->eps
[ep_index
].queued_deq_seg
,
983 dev
->eps
[ep_index
].queued_deq_ptr
);
987 dev
->eps
[ep_index
].ep_state
&= ~SET_DEQ_PENDING
;
988 dev
->eps
[ep_index
].queued_deq_seg
= NULL
;
989 dev
->eps
[ep_index
].queued_deq_ptr
= NULL
;
990 /* Restart any rings with pending URBs */
991 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
994 static void handle_reset_ep_completion(struct xhci_hcd
*xhci
,
995 struct xhci_event_cmd
*event
,
999 unsigned int ep_index
;
1001 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(trb
->generic
.field
[3]));
1002 ep_index
= TRB_TO_EP_INDEX(le32_to_cpu(trb
->generic
.field
[3]));
1003 /* This command will only fail if the endpoint wasn't halted,
1004 * but we don't care.
1006 xhci_dbg(xhci
, "Ignoring reset ep completion code of %u\n",
1007 GET_COMP_CODE(le32_to_cpu(event
->status
)));
1009 /* HW with the reset endpoint quirk needs to have a configure endpoint
1010 * command complete before the endpoint can be used. Queue that here
1011 * because the HW can't handle two commands being queued in a row.
1013 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
) {
1014 xhci_dbg(xhci
, "Queueing configure endpoint command\n");
1015 xhci_queue_configure_endpoint(xhci
,
1016 xhci
->devs
[slot_id
]->in_ctx
->dma
, slot_id
,
1018 xhci_ring_cmd_db(xhci
);
1020 /* Clear our internal halted state and restart the ring(s) */
1021 xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&= ~EP_HALTED
;
1022 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1026 /* Check to see if a command in the device's command queue matches this one.
1027 * Signal the completion or free the command, and return 1. Return 0 if the
1028 * completed command isn't at the head of the command list.
1030 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd
*xhci
,
1031 struct xhci_virt_device
*virt_dev
,
1032 struct xhci_event_cmd
*event
)
1034 struct xhci_command
*command
;
1036 if (list_empty(&virt_dev
->cmd_list
))
1039 command
= list_entry(virt_dev
->cmd_list
.next
,
1040 struct xhci_command
, cmd_list
);
1041 if (xhci
->cmd_ring
->dequeue
!= command
->command_trb
)
1044 command
->status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1045 list_del(&command
->cmd_list
);
1046 if (command
->completion
)
1047 complete(command
->completion
);
1049 xhci_free_command(xhci
, command
);
1053 static void handle_cmd_completion(struct xhci_hcd
*xhci
,
1054 struct xhci_event_cmd
*event
)
1056 int slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1058 dma_addr_t cmd_dequeue_dma
;
1059 struct xhci_input_control_ctx
*ctrl_ctx
;
1060 struct xhci_virt_device
*virt_dev
;
1061 unsigned int ep_index
;
1062 struct xhci_ring
*ep_ring
;
1063 unsigned int ep_state
;
1065 cmd_dma
= le64_to_cpu(event
->cmd_trb
);
1066 cmd_dequeue_dma
= xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
1067 xhci
->cmd_ring
->dequeue
);
1068 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1069 if (cmd_dequeue_dma
== 0) {
1070 xhci
->error_bitmask
|= 1 << 4;
1073 /* Does the DMA address match our internal dequeue pointer address? */
1074 if (cmd_dma
!= (u64
) cmd_dequeue_dma
) {
1075 xhci
->error_bitmask
|= 1 << 5;
1078 switch (le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3])
1079 & TRB_TYPE_BITMASK
) {
1080 case TRB_TYPE(TRB_ENABLE_SLOT
):
1081 if (GET_COMP_CODE(le32_to_cpu(event
->status
)) == COMP_SUCCESS
)
1082 xhci
->slot_id
= slot_id
;
1085 complete(&xhci
->addr_dev
);
1087 case TRB_TYPE(TRB_DISABLE_SLOT
):
1088 if (xhci
->devs
[slot_id
]) {
1089 if (xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)
1090 /* Delete default control endpoint resources */
1091 xhci_free_device_endpoint_resources(xhci
,
1092 xhci
->devs
[slot_id
], true);
1093 xhci_free_virt_device(xhci
, slot_id
);
1096 case TRB_TYPE(TRB_CONFIG_EP
):
1097 virt_dev
= xhci
->devs
[slot_id
];
1098 if (handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
))
1101 * Configure endpoint commands can come from the USB core
1102 * configuration or alt setting changes, or because the HW
1103 * needed an extra configure endpoint command after a reset
1104 * endpoint command or streams were being configured.
1105 * If the command was for a halted endpoint, the xHCI driver
1106 * is not waiting on the configure endpoint command.
1108 ctrl_ctx
= xhci_get_input_control_ctx(xhci
,
1110 /* Input ctx add_flags are the endpoint index plus one */
1111 ep_index
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
)) - 1;
1112 /* A usb_set_interface() call directly after clearing a halted
1113 * condition may race on this quirky hardware. Not worth
1114 * worrying about, since this is prototype hardware. Not sure
1115 * if this will work for streams, but streams support was
1116 * untested on this prototype.
1118 if (xhci
->quirks
& XHCI_RESET_EP_QUIRK
&&
1119 ep_index
!= (unsigned int) -1 &&
1120 le32_to_cpu(ctrl_ctx
->add_flags
) - SLOT_FLAG
==
1121 le32_to_cpu(ctrl_ctx
->drop_flags
)) {
1122 ep_ring
= xhci
->devs
[slot_id
]->eps
[ep_index
].ring
;
1123 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
1124 if (!(ep_state
& EP_HALTED
))
1125 goto bandwidth_change
;
1126 xhci_dbg(xhci
, "Completed config ep cmd - "
1127 "last ep index = %d, state = %d\n",
1128 ep_index
, ep_state
);
1129 /* Clear internal halted state and restart ring(s) */
1130 xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&=
1132 ring_doorbell_for_active_rings(xhci
, slot_id
, ep_index
);
1136 xhci_dbg(xhci
, "Completed config ep cmd\n");
1137 xhci
->devs
[slot_id
]->cmd_status
=
1138 GET_COMP_CODE(le32_to_cpu(event
->status
));
1139 complete(&xhci
->devs
[slot_id
]->cmd_completion
);
1141 case TRB_TYPE(TRB_EVAL_CONTEXT
):
1142 virt_dev
= xhci
->devs
[slot_id
];
1143 if (handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
))
1145 xhci
->devs
[slot_id
]->cmd_status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1146 complete(&xhci
->devs
[slot_id
]->cmd_completion
);
1148 case TRB_TYPE(TRB_ADDR_DEV
):
1149 xhci
->devs
[slot_id
]->cmd_status
= GET_COMP_CODE(le32_to_cpu(event
->status
));
1150 complete(&xhci
->addr_dev
);
1152 case TRB_TYPE(TRB_STOP_RING
):
1153 handle_stopped_endpoint(xhci
, xhci
->cmd_ring
->dequeue
, event
);
1155 case TRB_TYPE(TRB_SET_DEQ
):
1156 handle_set_deq_completion(xhci
, event
, xhci
->cmd_ring
->dequeue
);
1158 case TRB_TYPE(TRB_CMD_NOOP
):
1160 case TRB_TYPE(TRB_RESET_EP
):
1161 handle_reset_ep_completion(xhci
, event
, xhci
->cmd_ring
->dequeue
);
1163 case TRB_TYPE(TRB_RESET_DEV
):
1164 xhci_dbg(xhci
, "Completed reset device command.\n");
1165 slot_id
= TRB_TO_SLOT_ID(
1166 le32_to_cpu(xhci
->cmd_ring
->dequeue
->generic
.field
[3]));
1167 virt_dev
= xhci
->devs
[slot_id
];
1169 handle_cmd_in_cmd_wait_list(xhci
, virt_dev
, event
);
1171 xhci_warn(xhci
, "Reset device command completion "
1172 "for disabled slot %u\n", slot_id
);
1174 case TRB_TYPE(TRB_NEC_GET_FW
):
1175 if (!(xhci
->quirks
& XHCI_NEC_HOST
)) {
1176 xhci
->error_bitmask
|= 1 << 6;
1179 xhci_dbg(xhci
, "NEC firmware version %2x.%02x\n",
1180 NEC_FW_MAJOR(le32_to_cpu(event
->status
)),
1181 NEC_FW_MINOR(le32_to_cpu(event
->status
)));
1184 /* Skip over unknown commands on the event ring */
1185 xhci
->error_bitmask
|= 1 << 6;
1188 inc_deq(xhci
, xhci
->cmd_ring
, false);
1191 static void handle_vendor_event(struct xhci_hcd
*xhci
,
1192 union xhci_trb
*event
)
1196 trb_type
= TRB_FIELD_TO_TYPE(le32_to_cpu(event
->generic
.field
[3]));
1197 xhci_dbg(xhci
, "Vendor specific event TRB type = %u\n", trb_type
);
1198 if (trb_type
== TRB_NEC_CMD_COMP
&& (xhci
->quirks
& XHCI_NEC_HOST
))
1199 handle_cmd_completion(xhci
, &event
->event_cmd
);
1202 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1203 * port registers -- USB 3.0 and USB 2.0).
1205 * Returns a zero-based port number, which is suitable for indexing into each of
1206 * the split roothubs' port arrays and bus state arrays.
1207 * Add one to it in order to call xhci_find_slot_id_by_port.
1209 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd
*hcd
,
1210 struct xhci_hcd
*xhci
, u32 port_id
)
1213 unsigned int num_similar_speed_ports
= 0;
1215 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1216 * and usb2_ports are 0-based indexes. Count the number of similar
1217 * speed ports, up to 1 port before this port.
1219 for (i
= 0; i
< (port_id
- 1); i
++) {
1220 u8 port_speed
= xhci
->port_array
[i
];
1223 * Skip ports that don't have known speeds, or have duplicate
1224 * Extended Capabilities port speed entries.
1226 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
1230 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1231 * 1.1 ports are under the USB 2.0 hub. If the port speed
1232 * matches the device speed, it's a similar speed port.
1234 if ((port_speed
== 0x03) == (hcd
->speed
== HCD_USB3
))
1235 num_similar_speed_ports
++;
1237 return num_similar_speed_ports
;
1240 static void handle_port_status(struct xhci_hcd
*xhci
,
1241 union xhci_trb
*event
)
1243 struct usb_hcd
*hcd
;
1248 unsigned int faked_port_index
;
1250 struct xhci_bus_state
*bus_state
;
1251 __le32 __iomem
**port_array
;
1252 bool bogus_port_status
= false;
1254 /* Port status change events always have a successful completion code */
1255 if (GET_COMP_CODE(le32_to_cpu(event
->generic
.field
[2])) != COMP_SUCCESS
) {
1256 xhci_warn(xhci
, "WARN: xHC returned failed port status event\n");
1257 xhci
->error_bitmask
|= 1 << 8;
1259 port_id
= GET_PORT_ID(le32_to_cpu(event
->generic
.field
[0]));
1260 xhci_dbg(xhci
, "Port Status Change Event for port %d\n", port_id
);
1262 max_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1263 if ((port_id
<= 0) || (port_id
> max_ports
)) {
1264 xhci_warn(xhci
, "Invalid port id %d\n", port_id
);
1265 bogus_port_status
= true;
1269 /* Figure out which usb_hcd this port is attached to:
1270 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1272 major_revision
= xhci
->port_array
[port_id
- 1];
1273 if (major_revision
== 0) {
1274 xhci_warn(xhci
, "Event for port %u not in "
1275 "Extended Capabilities, ignoring.\n",
1277 bogus_port_status
= true;
1280 if (major_revision
== DUPLICATE_ENTRY
) {
1281 xhci_warn(xhci
, "Event for port %u duplicated in"
1282 "Extended Capabilities, ignoring.\n",
1284 bogus_port_status
= true;
1289 * Hardware port IDs reported by a Port Status Change Event include USB
1290 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1291 * resume event, but we first need to translate the hardware port ID
1292 * into the index into the ports on the correct split roothub, and the
1293 * correct bus_state structure.
1295 /* Find the right roothub. */
1296 hcd
= xhci_to_hcd(xhci
);
1297 if ((major_revision
== 0x03) != (hcd
->speed
== HCD_USB3
))
1298 hcd
= xhci
->shared_hcd
;
1299 bus_state
= &xhci
->bus_state
[hcd_index(hcd
)];
1300 if (hcd
->speed
== HCD_USB3
)
1301 port_array
= xhci
->usb3_ports
;
1303 port_array
= xhci
->usb2_ports
;
1304 /* Find the faked port hub number */
1305 faked_port_index
= find_faked_portnum_from_hw_portnum(hcd
, xhci
,
1308 temp
= xhci_readl(xhci
, port_array
[faked_port_index
]);
1309 if (hcd
->state
== HC_STATE_SUSPENDED
) {
1310 xhci_dbg(xhci
, "resume root hub\n");
1311 usb_hcd_resume_root_hub(hcd
);
1314 if ((temp
& PORT_PLC
) && (temp
& PORT_PLS_MASK
) == XDEV_RESUME
) {
1315 xhci_dbg(xhci
, "port resume event for port %d\n", port_id
);
1317 temp1
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
1318 if (!(temp1
& CMD_RUN
)) {
1319 xhci_warn(xhci
, "xHC is not running.\n");
1323 if (DEV_SUPERSPEED(temp
)) {
1324 xhci_dbg(xhci
, "resume SS port %d\n", port_id
);
1325 xhci_set_link_state(xhci
, port_array
, faked_port_index
,
1327 slot_id
= xhci_find_slot_id_by_port(hcd
, xhci
,
1328 faked_port_index
+ 1);
1330 xhci_dbg(xhci
, "slot_id is zero\n");
1333 xhci_ring_device(xhci
, slot_id
);
1334 xhci_dbg(xhci
, "resume SS port %d finished\n", port_id
);
1335 /* Clear PORT_PLC */
1336 xhci_test_and_clear_bit(xhci
, port_array
,
1337 faked_port_index
, PORT_PLC
);
1339 xhci_dbg(xhci
, "resume HS port %d\n", port_id
);
1340 bus_state
->resume_done
[faked_port_index
] = jiffies
+
1341 msecs_to_jiffies(20);
1342 mod_timer(&hcd
->rh_timer
,
1343 bus_state
->resume_done
[faked_port_index
]);
1344 /* Do the rest in GetPortStatus */
1348 if (hcd
->speed
!= HCD_USB3
)
1349 xhci_test_and_clear_bit(xhci
, port_array
, faked_port_index
,
1353 /* Update event ring dequeue pointer before dropping the lock */
1354 inc_deq(xhci
, xhci
->event_ring
, true);
1356 /* Don't make the USB core poll the roothub if we got a bad port status
1357 * change event. Besides, at that point we can't tell which roothub
1358 * (USB 2.0 or USB 3.0) to kick.
1360 if (bogus_port_status
)
1363 spin_unlock(&xhci
->lock
);
1364 /* Pass this up to the core */
1365 usb_hcd_poll_rh_status(hcd
);
1366 spin_lock(&xhci
->lock
);
1370 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1371 * at end_trb, which may be in another segment. If the suspect DMA address is a
1372 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1375 struct xhci_segment
*trb_in_td(struct xhci_segment
*start_seg
,
1376 union xhci_trb
*start_trb
,
1377 union xhci_trb
*end_trb
,
1378 dma_addr_t suspect_dma
)
1380 dma_addr_t start_dma
;
1381 dma_addr_t end_seg_dma
;
1382 dma_addr_t end_trb_dma
;
1383 struct xhci_segment
*cur_seg
;
1385 start_dma
= xhci_trb_virt_to_dma(start_seg
, start_trb
);
1386 cur_seg
= start_seg
;
1391 /* We may get an event for a Link TRB in the middle of a TD */
1392 end_seg_dma
= xhci_trb_virt_to_dma(cur_seg
,
1393 &cur_seg
->trbs
[TRBS_PER_SEGMENT
- 1]);
1394 /* If the end TRB isn't in this segment, this is set to 0 */
1395 end_trb_dma
= xhci_trb_virt_to_dma(cur_seg
, end_trb
);
1397 if (end_trb_dma
> 0) {
1398 /* The end TRB is in this segment, so suspect should be here */
1399 if (start_dma
<= end_trb_dma
) {
1400 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_trb_dma
)
1403 /* Case for one segment with
1404 * a TD wrapped around to the top
1406 if ((suspect_dma
>= start_dma
&&
1407 suspect_dma
<= end_seg_dma
) ||
1408 (suspect_dma
>= cur_seg
->dma
&&
1409 suspect_dma
<= end_trb_dma
))
1414 /* Might still be somewhere in this segment */
1415 if (suspect_dma
>= start_dma
&& suspect_dma
<= end_seg_dma
)
1418 cur_seg
= cur_seg
->next
;
1419 start_dma
= xhci_trb_virt_to_dma(cur_seg
, &cur_seg
->trbs
[0]);
1420 } while (cur_seg
!= start_seg
);
1425 static void xhci_cleanup_halted_endpoint(struct xhci_hcd
*xhci
,
1426 unsigned int slot_id
, unsigned int ep_index
,
1427 unsigned int stream_id
,
1428 struct xhci_td
*td
, union xhci_trb
*event_trb
)
1430 struct xhci_virt_ep
*ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1431 ep
->ep_state
|= EP_HALTED
;
1432 ep
->stopped_td
= td
;
1433 ep
->stopped_trb
= event_trb
;
1434 ep
->stopped_stream
= stream_id
;
1436 xhci_queue_reset_ep(xhci
, slot_id
, ep_index
);
1437 xhci_cleanup_stalled_ring(xhci
, td
->urb
->dev
, ep_index
);
1439 ep
->stopped_td
= NULL
;
1440 ep
->stopped_trb
= NULL
;
1441 ep
->stopped_stream
= 0;
1443 xhci_ring_cmd_db(xhci
);
1446 /* Check if an error has halted the endpoint ring. The class driver will
1447 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1448 * However, a babble and other errors also halt the endpoint ring, and the class
1449 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1450 * Ring Dequeue Pointer command manually.
1452 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd
*xhci
,
1453 struct xhci_ep_ctx
*ep_ctx
,
1454 unsigned int trb_comp_code
)
1456 /* TRB completion codes that may require a manual halt cleanup */
1457 if (trb_comp_code
== COMP_TX_ERR
||
1458 trb_comp_code
== COMP_BABBLE
||
1459 trb_comp_code
== COMP_SPLIT_ERR
)
1460 /* The 0.96 spec says a babbling control endpoint
1461 * is not halted. The 0.96 spec says it is. Some HW
1462 * claims to be 0.95 compliant, but it halts the control
1463 * endpoint anyway. Check if a babble halted the
1466 if ((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1467 cpu_to_le32(EP_STATE_HALTED
))
1473 int xhci_is_vendor_info_code(struct xhci_hcd
*xhci
, unsigned int trb_comp_code
)
1475 if (trb_comp_code
>= 224 && trb_comp_code
<= 255) {
1476 /* Vendor defined "informational" completion code,
1477 * treat as not-an-error.
1479 xhci_dbg(xhci
, "Vendor defined info completion code %u\n",
1481 xhci_dbg(xhci
, "Treating code as success.\n");
1488 * Finish the td processing, remove the td from td list;
1489 * Return 1 if the urb can be given back.
1491 static int finish_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1492 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1493 struct xhci_virt_ep
*ep
, int *status
, bool skip
)
1495 struct xhci_virt_device
*xdev
;
1496 struct xhci_ring
*ep_ring
;
1497 unsigned int slot_id
;
1499 struct urb
*urb
= NULL
;
1500 struct xhci_ep_ctx
*ep_ctx
;
1502 struct urb_priv
*urb_priv
;
1505 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1506 xdev
= xhci
->devs
[slot_id
];
1507 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1508 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1509 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1510 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1515 if (trb_comp_code
== COMP_STOP_INVAL
||
1516 trb_comp_code
== COMP_STOP
) {
1517 /* The Endpoint Stop Command completion will take care of any
1518 * stopped TDs. A stopped TD may be restarted, so don't update
1519 * the ring dequeue pointer or take this TD off any lists yet.
1521 ep
->stopped_td
= td
;
1522 ep
->stopped_trb
= event_trb
;
1525 if (trb_comp_code
== COMP_STALL
) {
1526 /* The transfer is completed from the driver's
1527 * perspective, but we need to issue a set dequeue
1528 * command for this stalled endpoint to move the dequeue
1529 * pointer past the TD. We can't do that here because
1530 * the halt condition must be cleared first. Let the
1531 * USB class driver clear the stall later.
1533 ep
->stopped_td
= td
;
1534 ep
->stopped_trb
= event_trb
;
1535 ep
->stopped_stream
= ep_ring
->stream_id
;
1536 } else if (xhci_requires_manual_halt_cleanup(xhci
,
1537 ep_ctx
, trb_comp_code
)) {
1538 /* Other types of errors halt the endpoint, but the
1539 * class driver doesn't call usb_reset_endpoint() unless
1540 * the error is -EPIPE. Clear the halted status in the
1541 * xHCI hardware manually.
1543 xhci_cleanup_halted_endpoint(xhci
,
1544 slot_id
, ep_index
, ep_ring
->stream_id
,
1547 /* Update ring dequeue pointer */
1548 while (ep_ring
->dequeue
!= td
->last_trb
)
1549 inc_deq(xhci
, ep_ring
, false);
1550 inc_deq(xhci
, ep_ring
, false);
1554 /* Clean up the endpoint's TD list */
1556 urb_priv
= urb
->hcpriv
;
1558 /* Do one last check of the actual transfer length.
1559 * If the host controller said we transferred more data than
1560 * the buffer length, urb->actual_length will be a very big
1561 * number (since it's unsigned). Play it safe and say we didn't
1562 * transfer anything.
1564 if (urb
->actual_length
> urb
->transfer_buffer_length
) {
1565 xhci_warn(xhci
, "URB transfer length is wrong, "
1566 "xHC issue? req. len = %u, "
1568 urb
->transfer_buffer_length
,
1569 urb
->actual_length
);
1570 urb
->actual_length
= 0;
1571 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1572 *status
= -EREMOTEIO
;
1576 list_del_init(&td
->td_list
);
1577 /* Was this TD slated to be cancelled but completed anyway? */
1578 if (!list_empty(&td
->cancelled_td_list
))
1579 list_del_init(&td
->cancelled_td_list
);
1582 /* Giveback the urb when all the tds are completed */
1583 if (urb_priv
->td_cnt
== urb_priv
->length
) {
1585 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
1586 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
--;
1587 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
1589 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
1590 usb_amd_quirk_pll_enable();
1600 * Process control tds, update urb status and actual_length.
1602 static int process_ctrl_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1603 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1604 struct xhci_virt_ep
*ep
, int *status
)
1606 struct xhci_virt_device
*xdev
;
1607 struct xhci_ring
*ep_ring
;
1608 unsigned int slot_id
;
1610 struct xhci_ep_ctx
*ep_ctx
;
1613 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1614 xdev
= xhci
->devs
[slot_id
];
1615 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1616 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1617 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1618 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1620 switch (trb_comp_code
) {
1622 if (event_trb
== ep_ring
->dequeue
) {
1623 xhci_warn(xhci
, "WARN: Success on ctrl setup TRB "
1624 "without IOC set??\n");
1625 *status
= -ESHUTDOWN
;
1626 } else if (event_trb
!= td
->last_trb
) {
1627 xhci_warn(xhci
, "WARN: Success on ctrl data TRB "
1628 "without IOC set??\n");
1629 *status
= -ESHUTDOWN
;
1635 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1636 *status
= -EREMOTEIO
;
1640 case COMP_STOP_INVAL
:
1642 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1644 if (!xhci_requires_manual_halt_cleanup(xhci
,
1645 ep_ctx
, trb_comp_code
))
1647 xhci_dbg(xhci
, "TRB error code %u, "
1648 "halted endpoint index = %u\n",
1649 trb_comp_code
, ep_index
);
1650 /* else fall through */
1652 /* Did we transfer part of the data (middle) phase? */
1653 if (event_trb
!= ep_ring
->dequeue
&&
1654 event_trb
!= td
->last_trb
)
1655 td
->urb
->actual_length
=
1656 td
->urb
->transfer_buffer_length
1657 - TRB_LEN(le32_to_cpu(event
->transfer_len
));
1659 td
->urb
->actual_length
= 0;
1661 xhci_cleanup_halted_endpoint(xhci
,
1662 slot_id
, ep_index
, 0, td
, event_trb
);
1663 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, true);
1666 * Did we transfer any data, despite the errors that might have
1667 * happened? I.e. did we get past the setup stage?
1669 if (event_trb
!= ep_ring
->dequeue
) {
1670 /* The event was for the status stage */
1671 if (event_trb
== td
->last_trb
) {
1672 if (td
->urb
->actual_length
!= 0) {
1673 /* Don't overwrite a previously set error code
1675 if ((*status
== -EINPROGRESS
|| *status
== 0) &&
1676 (td
->urb
->transfer_flags
1677 & URB_SHORT_NOT_OK
))
1678 /* Did we already see a short data
1680 *status
= -EREMOTEIO
;
1682 td
->urb
->actual_length
=
1683 td
->urb
->transfer_buffer_length
;
1686 /* Maybe the event was for the data stage? */
1687 td
->urb
->actual_length
=
1688 td
->urb
->transfer_buffer_length
-
1689 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1690 xhci_dbg(xhci
, "Waiting for status "
1696 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1700 * Process isochronous tds, update urb packet status and actual_length.
1702 static int process_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1703 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1704 struct xhci_virt_ep
*ep
, int *status
)
1706 struct xhci_ring
*ep_ring
;
1707 struct urb_priv
*urb_priv
;
1710 union xhci_trb
*cur_trb
;
1711 struct xhci_segment
*cur_seg
;
1712 struct usb_iso_packet_descriptor
*frame
;
1714 bool skip_td
= false;
1716 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1717 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1718 urb_priv
= td
->urb
->hcpriv
;
1719 idx
= urb_priv
->td_cnt
;
1720 frame
= &td
->urb
->iso_frame_desc
[idx
];
1722 /* handle completion code */
1723 switch (trb_comp_code
) {
1728 frame
->status
= td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
?
1732 frame
->status
= -ECOMM
;
1735 case COMP_BUFF_OVER
:
1737 frame
->status
= -EOVERFLOW
;
1742 frame
->status
= -EPROTO
;
1746 case COMP_STOP_INVAL
:
1753 if (trb_comp_code
== COMP_SUCCESS
|| skip_td
) {
1754 frame
->actual_length
= frame
->length
;
1755 td
->urb
->actual_length
+= frame
->length
;
1757 for (cur_trb
= ep_ring
->dequeue
,
1758 cur_seg
= ep_ring
->deq_seg
; cur_trb
!= event_trb
;
1759 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
1760 if (!TRB_TYPE_NOOP_LE32(cur_trb
->generic
.field
[3]) &&
1761 !TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3]))
1762 len
+= TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2]));
1764 len
+= TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2])) -
1765 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1767 if (trb_comp_code
!= COMP_STOP_INVAL
) {
1768 frame
->actual_length
= len
;
1769 td
->urb
->actual_length
+= len
;
1773 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1776 static int skip_isoc_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1777 struct xhci_transfer_event
*event
,
1778 struct xhci_virt_ep
*ep
, int *status
)
1780 struct xhci_ring
*ep_ring
;
1781 struct urb_priv
*urb_priv
;
1782 struct usb_iso_packet_descriptor
*frame
;
1785 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1786 urb_priv
= td
->urb
->hcpriv
;
1787 idx
= urb_priv
->td_cnt
;
1788 frame
= &td
->urb
->iso_frame_desc
[idx
];
1790 /* The transfer is partly done. */
1791 frame
->status
= -EXDEV
;
1793 /* calc actual length */
1794 frame
->actual_length
= 0;
1796 /* Update ring dequeue pointer */
1797 while (ep_ring
->dequeue
!= td
->last_trb
)
1798 inc_deq(xhci
, ep_ring
, false);
1799 inc_deq(xhci
, ep_ring
, false);
1801 return finish_td(xhci
, td
, NULL
, event
, ep
, status
, true);
1805 * Process bulk and interrupt tds, update urb status and actual_length.
1807 static int process_bulk_intr_td(struct xhci_hcd
*xhci
, struct xhci_td
*td
,
1808 union xhci_trb
*event_trb
, struct xhci_transfer_event
*event
,
1809 struct xhci_virt_ep
*ep
, int *status
)
1811 struct xhci_ring
*ep_ring
;
1812 union xhci_trb
*cur_trb
;
1813 struct xhci_segment
*cur_seg
;
1816 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1817 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1819 switch (trb_comp_code
) {
1821 /* Double check that the HW transferred everything. */
1822 if (event_trb
!= td
->last_trb
) {
1823 xhci_warn(xhci
, "WARN Successful completion "
1825 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1826 *status
= -EREMOTEIO
;
1834 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1835 *status
= -EREMOTEIO
;
1840 /* Others already handled above */
1843 if (trb_comp_code
== COMP_SHORT_TX
)
1844 xhci_dbg(xhci
, "ep %#x - asked for %d bytes, "
1845 "%d bytes untransferred\n",
1846 td
->urb
->ep
->desc
.bEndpointAddress
,
1847 td
->urb
->transfer_buffer_length
,
1848 TRB_LEN(le32_to_cpu(event
->transfer_len
)));
1849 /* Fast path - was this the last TRB in the TD for this URB? */
1850 if (event_trb
== td
->last_trb
) {
1851 if (TRB_LEN(le32_to_cpu(event
->transfer_len
)) != 0) {
1852 td
->urb
->actual_length
=
1853 td
->urb
->transfer_buffer_length
-
1854 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1855 if (td
->urb
->transfer_buffer_length
<
1856 td
->urb
->actual_length
) {
1857 xhci_warn(xhci
, "HC gave bad length "
1858 "of %d bytes left\n",
1859 TRB_LEN(le32_to_cpu(event
->transfer_len
)));
1860 td
->urb
->actual_length
= 0;
1861 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1862 *status
= -EREMOTEIO
;
1866 /* Don't overwrite a previously set error code */
1867 if (*status
== -EINPROGRESS
) {
1868 if (td
->urb
->transfer_flags
& URB_SHORT_NOT_OK
)
1869 *status
= -EREMOTEIO
;
1874 td
->urb
->actual_length
=
1875 td
->urb
->transfer_buffer_length
;
1876 /* Ignore a short packet completion if the
1877 * untransferred length was zero.
1879 if (*status
== -EREMOTEIO
)
1883 /* Slow path - walk the list, starting from the dequeue
1884 * pointer, to get the actual length transferred.
1886 td
->urb
->actual_length
= 0;
1887 for (cur_trb
= ep_ring
->dequeue
, cur_seg
= ep_ring
->deq_seg
;
1888 cur_trb
!= event_trb
;
1889 next_trb(xhci
, ep_ring
, &cur_seg
, &cur_trb
)) {
1890 if (!TRB_TYPE_NOOP_LE32(cur_trb
->generic
.field
[3]) &&
1891 !TRB_TYPE_LINK_LE32(cur_trb
->generic
.field
[3]))
1892 td
->urb
->actual_length
+=
1893 TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2]));
1895 /* If the ring didn't stop on a Link or No-op TRB, add
1896 * in the actual bytes transferred from the Normal TRB
1898 if (trb_comp_code
!= COMP_STOP_INVAL
)
1899 td
->urb
->actual_length
+=
1900 TRB_LEN(le32_to_cpu(cur_trb
->generic
.field
[2])) -
1901 TRB_LEN(le32_to_cpu(event
->transfer_len
));
1904 return finish_td(xhci
, td
, event_trb
, event
, ep
, status
, false);
1908 * If this function returns an error condition, it means it got a Transfer
1909 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1910 * At this point, the host controller is probably hosed and should be reset.
1912 static int handle_tx_event(struct xhci_hcd
*xhci
,
1913 struct xhci_transfer_event
*event
)
1915 struct xhci_virt_device
*xdev
;
1916 struct xhci_virt_ep
*ep
;
1917 struct xhci_ring
*ep_ring
;
1918 unsigned int slot_id
;
1920 struct xhci_td
*td
= NULL
;
1921 dma_addr_t event_dma
;
1922 struct xhci_segment
*event_seg
;
1923 union xhci_trb
*event_trb
;
1924 struct urb
*urb
= NULL
;
1925 int status
= -EINPROGRESS
;
1926 struct urb_priv
*urb_priv
;
1927 struct xhci_ep_ctx
*ep_ctx
;
1928 struct list_head
*tmp
;
1933 slot_id
= TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
));
1934 xdev
= xhci
->devs
[slot_id
];
1936 xhci_err(xhci
, "ERROR Transfer event pointed to bad slot\n");
1937 xhci_err(xhci
, "@%016llx %08x %08x %08x %08x\n",
1938 (unsigned long long) xhci_trb_virt_to_dma(
1939 xhci
->event_ring
->deq_seg
,
1940 xhci
->event_ring
->dequeue
),
1941 lower_32_bits(le64_to_cpu(event
->buffer
)),
1942 upper_32_bits(le64_to_cpu(event
->buffer
)),
1943 le32_to_cpu(event
->transfer_len
),
1944 le32_to_cpu(event
->flags
));
1945 xhci_dbg(xhci
, "Event ring:\n");
1946 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
1950 /* Endpoint ID is 1 based, our index is zero based */
1951 ep_index
= TRB_TO_EP_ID(le32_to_cpu(event
->flags
)) - 1;
1952 ep
= &xdev
->eps
[ep_index
];
1953 ep_ring
= xhci_dma_to_transfer_ring(ep
, le64_to_cpu(event
->buffer
));
1954 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
1956 (le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
) ==
1957 EP_STATE_DISABLED
) {
1958 xhci_err(xhci
, "ERROR Transfer event for disabled endpoint "
1959 "or incorrect stream ring\n");
1960 xhci_err(xhci
, "@%016llx %08x %08x %08x %08x\n",
1961 (unsigned long long) xhci_trb_virt_to_dma(
1962 xhci
->event_ring
->deq_seg
,
1963 xhci
->event_ring
->dequeue
),
1964 lower_32_bits(le64_to_cpu(event
->buffer
)),
1965 upper_32_bits(le64_to_cpu(event
->buffer
)),
1966 le32_to_cpu(event
->transfer_len
),
1967 le32_to_cpu(event
->flags
));
1968 xhci_dbg(xhci
, "Event ring:\n");
1969 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
1973 /* Count current td numbers if ep->skip is set */
1975 list_for_each(tmp
, &ep_ring
->td_list
)
1979 event_dma
= le64_to_cpu(event
->buffer
);
1980 trb_comp_code
= GET_COMP_CODE(le32_to_cpu(event
->transfer_len
));
1981 /* Look for common error cases */
1982 switch (trb_comp_code
) {
1983 /* Skip codes that require special handling depending on
1990 xhci_dbg(xhci
, "Stopped on Transfer TRB\n");
1992 case COMP_STOP_INVAL
:
1993 xhci_dbg(xhci
, "Stopped on No-op or Link TRB\n");
1996 xhci_dbg(xhci
, "Stalled endpoint\n");
1997 ep
->ep_state
|= EP_HALTED
;
2001 xhci_warn(xhci
, "WARN: TRB error on endpoint\n");
2004 case COMP_SPLIT_ERR
:
2006 xhci_dbg(xhci
, "Transfer error on endpoint\n");
2010 xhci_dbg(xhci
, "Babble error on endpoint\n");
2011 status
= -EOVERFLOW
;
2014 xhci_warn(xhci
, "WARN: HC couldn't access mem fast enough\n");
2018 xhci_warn(xhci
, "WARN: bandwidth overrun event on endpoint\n");
2020 case COMP_BUFF_OVER
:
2021 xhci_warn(xhci
, "WARN: buffer overrun event on endpoint\n");
2025 * When the Isoch ring is empty, the xHC will generate
2026 * a Ring Overrun Event for IN Isoch endpoint or Ring
2027 * Underrun Event for OUT Isoch endpoint.
2029 xhci_dbg(xhci
, "underrun event on endpoint\n");
2030 if (!list_empty(&ep_ring
->td_list
))
2031 xhci_dbg(xhci
, "Underrun Event for slot %d ep %d "
2032 "still with TDs queued?\n",
2033 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2037 xhci_dbg(xhci
, "overrun event on endpoint\n");
2038 if (!list_empty(&ep_ring
->td_list
))
2039 xhci_dbg(xhci
, "Overrun Event for slot %d ep %d "
2040 "still with TDs queued?\n",
2041 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2045 xhci_warn(xhci
, "WARN: detect an incompatible device");
2048 case COMP_MISSED_INT
:
2050 * When encounter missed service error, one or more isoc tds
2051 * may be missed by xHC.
2052 * Set skip flag of the ep_ring; Complete the missed tds as
2053 * short transfer when process the ep_ring next time.
2056 xhci_dbg(xhci
, "Miss service interval error, set skip flag\n");
2059 if (xhci_is_vendor_info_code(xhci
, trb_comp_code
)) {
2063 xhci_warn(xhci
, "ERROR Unknown event condition, HC probably "
2069 /* This TRB should be in the TD at the head of this ring's
2072 if (list_empty(&ep_ring
->td_list
)) {
2073 xhci_warn(xhci
, "WARN Event TRB for slot %d ep %d "
2074 "with no TDs queued?\n",
2075 TRB_TO_SLOT_ID(le32_to_cpu(event
->flags
)),
2077 xhci_dbg(xhci
, "Event TRB with TRB type ID %u\n",
2078 (le32_to_cpu(event
->flags
) &
2079 TRB_TYPE_BITMASK
)>>10);
2080 xhci_print_trb_offsets(xhci
, (union xhci_trb
*) event
);
2083 xhci_dbg(xhci
, "td_list is empty while skip "
2084 "flag set. Clear skip flag.\n");
2090 /* We've skipped all the TDs on the ep ring when ep->skip set */
2091 if (ep
->skip
&& td_num
== 0) {
2093 xhci_dbg(xhci
, "All tds on the ep_ring skipped. "
2094 "Clear skip flag.\n");
2099 td
= list_entry(ep_ring
->td_list
.next
, struct xhci_td
, td_list
);
2103 /* Is this a TRB in the currently executing TD? */
2104 event_seg
= trb_in_td(ep_ring
->deq_seg
, ep_ring
->dequeue
,
2105 td
->last_trb
, event_dma
);
2108 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2109 * is not in the current TD pointed by ep_ring->dequeue because
2110 * that the hardware dequeue pointer still at the previous TRB
2111 * of the current TD. The previous TRB maybe a Link TD or the
2112 * last TRB of the previous TD. The command completion handle
2113 * will take care the rest.
2115 if (!event_seg
&& trb_comp_code
== COMP_STOP_INVAL
) {
2122 !usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
)) {
2123 /* Some host controllers give a spurious
2124 * successful event after a short transfer.
2127 if ((xhci
->quirks
& XHCI_SPURIOUS_SUCCESS
) &&
2128 ep_ring
->last_td_was_short
) {
2129 ep_ring
->last_td_was_short
= false;
2133 /* HC is busted, give up! */
2135 "ERROR Transfer event TRB DMA ptr not "
2136 "part of current TD\n");
2140 ret
= skip_isoc_td(xhci
, td
, event
, ep
, &status
);
2143 if (trb_comp_code
== COMP_SHORT_TX
)
2144 ep_ring
->last_td_was_short
= true;
2146 ep_ring
->last_td_was_short
= false;
2149 xhci_dbg(xhci
, "Found td. Clear skip flag.\n");
2153 event_trb
= &event_seg
->trbs
[(event_dma
- event_seg
->dma
) /
2154 sizeof(*event_trb
)];
2156 * No-op TRB should not trigger interrupts.
2157 * If event_trb is a no-op TRB, it means the
2158 * corresponding TD has been cancelled. Just ignore
2161 if (TRB_TYPE_NOOP_LE32(event_trb
->generic
.field
[3])) {
2163 "event_trb is a no-op TRB. Skip it\n");
2167 /* Now update the urb's actual_length and give back to
2170 if (usb_endpoint_xfer_control(&td
->urb
->ep
->desc
))
2171 ret
= process_ctrl_td(xhci
, td
, event_trb
, event
, ep
,
2173 else if (usb_endpoint_xfer_isoc(&td
->urb
->ep
->desc
))
2174 ret
= process_isoc_td(xhci
, td
, event_trb
, event
, ep
,
2177 ret
= process_bulk_intr_td(xhci
, td
, event_trb
, event
,
2182 * Do not update event ring dequeue pointer if ep->skip is set.
2183 * Will roll back to continue process missed tds.
2185 if (trb_comp_code
== COMP_MISSED_INT
|| !ep
->skip
) {
2186 inc_deq(xhci
, xhci
->event_ring
, true);
2191 urb_priv
= urb
->hcpriv
;
2192 /* Leave the TD around for the reset endpoint function
2193 * to use(but only if it's not a control endpoint,
2194 * since we already queued the Set TR dequeue pointer
2195 * command for stalled control endpoints).
2197 if (usb_endpoint_xfer_control(&urb
->ep
->desc
) ||
2198 (trb_comp_code
!= COMP_STALL
&&
2199 trb_comp_code
!= COMP_BABBLE
))
2200 xhci_urb_free_priv(xhci
, urb_priv
);
2202 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
2203 if ((urb
->actual_length
!= urb
->transfer_buffer_length
&&
2204 (urb
->transfer_flags
&
2205 URB_SHORT_NOT_OK
)) ||
2207 !usb_endpoint_xfer_isoc(&urb
->ep
->desc
)))
2208 xhci_dbg(xhci
, "Giveback URB %p, len = %d, "
2209 "expected = %x, status = %d\n",
2210 urb
, urb
->actual_length
,
2211 urb
->transfer_buffer_length
,
2213 spin_unlock(&xhci
->lock
);
2214 /* EHCI, UHCI, and OHCI always unconditionally set the
2215 * urb->status of an isochronous endpoint to 0.
2217 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
)
2219 usb_hcd_giveback_urb(bus_to_hcd(urb
->dev
->bus
), urb
, status
);
2220 spin_lock(&xhci
->lock
);
2224 * If ep->skip is set, it means there are missed tds on the
2225 * endpoint ring need to take care of.
2226 * Process them as short transfer until reach the td pointed by
2229 } while (ep
->skip
&& trb_comp_code
!= COMP_MISSED_INT
);
2235 * This function handles all OS-owned events on the event ring. It may drop
2236 * xhci->lock between event processing (e.g. to pass up port status changes).
2237 * Returns >0 for "possibly more events to process" (caller should call again),
2238 * otherwise 0 if done. In future, <0 returns should indicate error code.
2240 static int xhci_handle_event(struct xhci_hcd
*xhci
)
2242 union xhci_trb
*event
;
2243 int update_ptrs
= 1;
2246 if (!xhci
->event_ring
|| !xhci
->event_ring
->dequeue
) {
2247 xhci
->error_bitmask
|= 1 << 1;
2251 event
= xhci
->event_ring
->dequeue
;
2252 /* Does the HC or OS own the TRB? */
2253 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_CYCLE
) !=
2254 xhci
->event_ring
->cycle_state
) {
2255 xhci
->error_bitmask
|= 1 << 2;
2260 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2261 * speculative reads of the event's flags/data below.
2264 /* FIXME: Handle more event types. */
2265 switch ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
)) {
2266 case TRB_TYPE(TRB_COMPLETION
):
2267 handle_cmd_completion(xhci
, &event
->event_cmd
);
2269 case TRB_TYPE(TRB_PORT_STATUS
):
2270 handle_port_status(xhci
, event
);
2273 case TRB_TYPE(TRB_TRANSFER
):
2274 ret
= handle_tx_event(xhci
, &event
->trans_event
);
2276 xhci
->error_bitmask
|= 1 << 9;
2281 if ((le32_to_cpu(event
->event_cmd
.flags
) & TRB_TYPE_BITMASK
) >=
2283 handle_vendor_event(xhci
, event
);
2285 xhci
->error_bitmask
|= 1 << 3;
2287 /* Any of the above functions may drop and re-acquire the lock, so check
2288 * to make sure a watchdog timer didn't mark the host as non-responsive.
2290 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
2291 xhci_dbg(xhci
, "xHCI host dying, returning from "
2292 "event handler.\n");
2297 /* Update SW event ring dequeue pointer */
2298 inc_deq(xhci
, xhci
->event_ring
, true);
2300 /* Are there more items on the event ring? Caller will call us again to
2307 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2308 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2309 * indicators of an event TRB error, but we check the status *first* to be safe.
2311 irqreturn_t
xhci_irq(struct usb_hcd
*hcd
)
2313 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
2315 union xhci_trb
*trb
;
2317 union xhci_trb
*event_ring_deq
;
2320 spin_lock(&xhci
->lock
);
2321 trb
= xhci
->event_ring
->dequeue
;
2322 /* Check if the xHC generated the interrupt, or the irq is shared */
2323 status
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
2324 if (status
== 0xffffffff)
2327 if (!(status
& STS_EINT
)) {
2328 spin_unlock(&xhci
->lock
);
2331 if (status
& STS_FATAL
) {
2332 xhci_warn(xhci
, "WARNING: Host System Error\n");
2335 spin_unlock(&xhci
->lock
);
2340 * Clear the op reg interrupt status first,
2341 * so we can receive interrupts from other MSI-X interrupters.
2342 * Write 1 to clear the interrupt status.
2345 xhci_writel(xhci
, status
, &xhci
->op_regs
->status
);
2346 /* FIXME when MSI-X is supported and there are multiple vectors */
2347 /* Clear the MSI-X event interrupt status */
2349 if (hcd
->irq
!= -1) {
2351 /* Acknowledge the PCI interrupt */
2352 irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
2353 irq_pending
|= IMAN_IP
;
2354 xhci_writel(xhci
, irq_pending
, &xhci
->ir_set
->irq_pending
);
2357 if (xhci
->xhc_state
& XHCI_STATE_DYING
) {
2358 xhci_dbg(xhci
, "xHCI dying, ignoring interrupt. "
2359 "Shouldn't IRQs be disabled?\n");
2360 /* Clear the event handler busy flag (RW1C);
2361 * the event ring should be empty.
2363 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2364 xhci_write_64(xhci
, temp_64
| ERST_EHB
,
2365 &xhci
->ir_set
->erst_dequeue
);
2366 spin_unlock(&xhci
->lock
);
2371 event_ring_deq
= xhci
->event_ring
->dequeue
;
2372 /* FIXME this should be a delayed service routine
2373 * that clears the EHB.
2375 while (xhci_handle_event(xhci
) > 0) {}
2377 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2378 /* If necessary, update the HW's version of the event ring deq ptr. */
2379 if (event_ring_deq
!= xhci
->event_ring
->dequeue
) {
2380 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2381 xhci
->event_ring
->dequeue
);
2383 xhci_warn(xhci
, "WARN something wrong with SW event "
2384 "ring dequeue ptr.\n");
2385 /* Update HC event ring dequeue pointer */
2386 temp_64
&= ERST_PTR_MASK
;
2387 temp_64
|= ((u64
) deq
& (u64
) ~ERST_PTR_MASK
);
2390 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2391 temp_64
|= ERST_EHB
;
2392 xhci_write_64(xhci
, temp_64
, &xhci
->ir_set
->erst_dequeue
);
2394 spin_unlock(&xhci
->lock
);
2399 irqreturn_t
xhci_msi_irq(int irq
, struct usb_hcd
*hcd
)
2401 return xhci_irq(hcd
);
2404 /**** Endpoint Ring Operations ****/
2407 * Generic function for queueing a TRB on a ring.
2408 * The caller must have checked to make sure there's room on the ring.
2410 * @more_trbs_coming: Will you enqueue more TRBs before calling
2411 * prepare_transfer()?
2413 static void queue_trb(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
2414 bool consumer
, bool more_trbs_coming
, bool isoc
,
2415 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
2417 struct xhci_generic_trb
*trb
;
2419 trb
= &ring
->enqueue
->generic
;
2420 trb
->field
[0] = cpu_to_le32(field1
);
2421 trb
->field
[1] = cpu_to_le32(field2
);
2422 trb
->field
[2] = cpu_to_le32(field3
);
2423 trb
->field
[3] = cpu_to_le32(field4
);
2424 inc_enq(xhci
, ring
, consumer
, more_trbs_coming
, isoc
);
2428 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2429 * FIXME allocate segments if the ring is full.
2431 static int prepare_ring(struct xhci_hcd
*xhci
, struct xhci_ring
*ep_ring
,
2432 u32 ep_state
, unsigned int num_trbs
, bool isoc
, gfp_t mem_flags
)
2434 /* Make sure the endpoint has been added to xHC schedule */
2436 case EP_STATE_DISABLED
:
2438 * USB core changed config/interfaces without notifying us,
2439 * or hardware is reporting the wrong state.
2441 xhci_warn(xhci
, "WARN urb submitted to disabled ep\n");
2443 case EP_STATE_ERROR
:
2444 xhci_warn(xhci
, "WARN waiting for error on ep to be cleared\n");
2445 /* FIXME event handling code for error needs to clear it */
2446 /* XXX not sure if this should be -ENOENT or not */
2448 case EP_STATE_HALTED
:
2449 xhci_dbg(xhci
, "WARN halted endpoint, queueing URB anyway.\n");
2450 case EP_STATE_STOPPED
:
2451 case EP_STATE_RUNNING
:
2454 xhci_err(xhci
, "ERROR unknown endpoint state for ep\n");
2456 * FIXME issue Configure Endpoint command to try to get the HC
2457 * back into a known state.
2461 if (!room_on_ring(xhci
, ep_ring
, num_trbs
)) {
2462 /* FIXME allocate more room */
2463 xhci_err(xhci
, "ERROR no room on ep ring\n");
2467 if (enqueue_is_link_trb(ep_ring
)) {
2468 struct xhci_ring
*ring
= ep_ring
;
2469 union xhci_trb
*next
;
2471 next
= ring
->enqueue
;
2473 while (last_trb(xhci
, ring
, ring
->enq_seg
, next
)) {
2474 /* If we're not dealing with 0.95 hardware or isoc rings
2475 * on AMD 0.96 host, clear the chain bit.
2477 if (!xhci_link_trb_quirk(xhci
) && !(isoc
&&
2478 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
2479 next
->link
.control
&= cpu_to_le32(~TRB_CHAIN
);
2481 next
->link
.control
|= cpu_to_le32(TRB_CHAIN
);
2484 next
->link
.control
^= cpu_to_le32(TRB_CYCLE
);
2486 /* Toggle the cycle bit after the last ring segment. */
2487 if (last_trb_on_last_seg(xhci
, ring
, ring
->enq_seg
, next
)) {
2488 ring
->cycle_state
= (ring
->cycle_state
? 0 : 1);
2490 ring
->enq_seg
= ring
->enq_seg
->next
;
2491 ring
->enqueue
= ring
->enq_seg
->trbs
;
2492 next
= ring
->enqueue
;
2499 static int prepare_transfer(struct xhci_hcd
*xhci
,
2500 struct xhci_virt_device
*xdev
,
2501 unsigned int ep_index
,
2502 unsigned int stream_id
,
2503 unsigned int num_trbs
,
2505 unsigned int td_index
,
2510 struct urb_priv
*urb_priv
;
2512 struct xhci_ring
*ep_ring
;
2513 struct xhci_ep_ctx
*ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
2515 ep_ring
= xhci_stream_id_to_ring(xdev
, ep_index
, stream_id
);
2517 xhci_dbg(xhci
, "Can't prepare ring for bad stream ID %u\n",
2522 ret
= prepare_ring(xhci
, ep_ring
,
2523 le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
,
2524 num_trbs
, isoc
, mem_flags
);
2528 urb_priv
= urb
->hcpriv
;
2529 td
= urb_priv
->td
[td_index
];
2531 INIT_LIST_HEAD(&td
->td_list
);
2532 INIT_LIST_HEAD(&td
->cancelled_td_list
);
2534 if (td_index
== 0) {
2535 ret
= usb_hcd_link_urb_to_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
2541 /* Add this TD to the tail of the endpoint ring's TD list */
2542 list_add_tail(&td
->td_list
, &ep_ring
->td_list
);
2543 td
->start_seg
= ep_ring
->enq_seg
;
2544 td
->first_trb
= ep_ring
->enqueue
;
2546 urb_priv
->td
[td_index
] = td
;
2551 static unsigned int count_sg_trbs_needed(struct xhci_hcd
*xhci
, struct urb
*urb
)
2553 int num_sgs
, num_trbs
, running_total
, temp
, i
;
2554 struct scatterlist
*sg
;
2557 num_sgs
= urb
->num_mapped_sgs
;
2558 temp
= urb
->transfer_buffer_length
;
2561 for_each_sg(urb
->sg
, sg
, num_sgs
, i
) {
2562 unsigned int len
= sg_dma_len(sg
);
2564 /* Scatter gather list entries may cross 64KB boundaries */
2565 running_total
= TRB_MAX_BUFF_SIZE
-
2566 (sg_dma_address(sg
) & (TRB_MAX_BUFF_SIZE
- 1));
2567 running_total
&= TRB_MAX_BUFF_SIZE
- 1;
2568 if (running_total
!= 0)
2571 /* How many more 64KB chunks to transfer, how many more TRBs? */
2572 while (running_total
< sg_dma_len(sg
) && running_total
< temp
) {
2574 running_total
+= TRB_MAX_BUFF_SIZE
;
2576 len
= min_t(int, len
, temp
);
2584 static void check_trb_math(struct urb
*urb
, int num_trbs
, int running_total
)
2587 dev_err(&urb
->dev
->dev
, "%s - ep %#x - Miscalculated number of "
2588 "TRBs, %d left\n", __func__
,
2589 urb
->ep
->desc
.bEndpointAddress
, num_trbs
);
2590 if (running_total
!= urb
->transfer_buffer_length
)
2591 dev_err(&urb
->dev
->dev
, "%s - ep %#x - Miscalculated tx length, "
2592 "queued %#x (%d), asked for %#x (%d)\n",
2594 urb
->ep
->desc
.bEndpointAddress
,
2595 running_total
, running_total
,
2596 urb
->transfer_buffer_length
,
2597 urb
->transfer_buffer_length
);
2600 static void giveback_first_trb(struct xhci_hcd
*xhci
, int slot_id
,
2601 unsigned int ep_index
, unsigned int stream_id
, int start_cycle
,
2602 struct xhci_generic_trb
*start_trb
)
2605 * Pass all the TRBs to the hardware at once and make sure this write
2610 start_trb
->field
[3] |= cpu_to_le32(start_cycle
);
2612 start_trb
->field
[3] &= cpu_to_le32(~TRB_CYCLE
);
2613 xhci_ring_ep_doorbell(xhci
, slot_id
, ep_index
, stream_id
);
2617 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2618 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2619 * (comprised of sg list entries) can take several service intervals to
2622 int xhci_queue_intr_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2623 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2625 struct xhci_ep_ctx
*ep_ctx
= xhci_get_ep_ctx(xhci
,
2626 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2630 xhci_interval
= EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx
->ep_info
));
2631 ep_interval
= urb
->interval
;
2632 /* Convert to microframes */
2633 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2634 urb
->dev
->speed
== USB_SPEED_FULL
)
2636 /* FIXME change this to a warning and a suggestion to use the new API
2637 * to set the polling interval (once the API is added).
2639 if (xhci_interval
!= ep_interval
) {
2640 if (printk_ratelimit())
2641 dev_dbg(&urb
->dev
->dev
, "Driver uses different interval"
2642 " (%d microframe%s) than xHCI "
2643 "(%d microframe%s)\n",
2645 ep_interval
== 1 ? "" : "s",
2647 xhci_interval
== 1 ? "" : "s");
2648 urb
->interval
= xhci_interval
;
2649 /* Convert back to frames for LS/FS devices */
2650 if (urb
->dev
->speed
== USB_SPEED_LOW
||
2651 urb
->dev
->speed
== USB_SPEED_FULL
)
2654 return xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
, slot_id
, ep_index
);
2658 * The TD size is the number of bytes remaining in the TD (including this TRB),
2659 * right shifted by 10.
2660 * It must fit in bits 21:17, so it can't be bigger than 31.
2662 static u32
xhci_td_remainder(unsigned int remainder
)
2664 u32 max
= (1 << (21 - 17 + 1)) - 1;
2666 if ((remainder
>> 10) >= max
)
2669 return (remainder
>> 10) << 17;
2673 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2674 * the TD (*not* including this TRB).
2676 * Total TD packet count = total_packet_count =
2677 * roundup(TD size in bytes / wMaxPacketSize)
2679 * Packets transferred up to and including this TRB = packets_transferred =
2680 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2682 * TD size = total_packet_count - packets_transferred
2684 * It must fit in bits 21:17, so it can't be bigger than 31.
2687 static u32
xhci_v1_0_td_remainder(int running_total
, int trb_buff_len
,
2688 unsigned int total_packet_count
, struct urb
*urb
)
2690 int packets_transferred
;
2692 /* One TRB with a zero-length data packet. */
2693 if (running_total
== 0 && trb_buff_len
== 0)
2696 /* All the TRB queueing functions don't count the current TRB in
2699 packets_transferred
= (running_total
+ trb_buff_len
) /
2700 usb_endpoint_maxp(&urb
->ep
->desc
);
2702 return xhci_td_remainder(total_packet_count
- packets_transferred
);
2705 static int queue_bulk_sg_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2706 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2708 struct xhci_ring
*ep_ring
;
2709 unsigned int num_trbs
;
2710 struct urb_priv
*urb_priv
;
2712 struct scatterlist
*sg
;
2714 int trb_buff_len
, this_sg_len
, running_total
;
2715 unsigned int total_packet_count
;
2718 bool more_trbs_coming
;
2720 struct xhci_generic_trb
*start_trb
;
2723 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
2727 num_trbs
= count_sg_trbs_needed(xhci
, urb
);
2728 num_sgs
= urb
->num_mapped_sgs
;
2729 total_packet_count
= roundup(urb
->transfer_buffer_length
,
2730 usb_endpoint_maxp(&urb
->ep
->desc
));
2732 trb_buff_len
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
2733 ep_index
, urb
->stream_id
,
2734 num_trbs
, urb
, 0, false, mem_flags
);
2735 if (trb_buff_len
< 0)
2736 return trb_buff_len
;
2738 urb_priv
= urb
->hcpriv
;
2739 td
= urb_priv
->td
[0];
2742 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2743 * until we've finished creating all the other TRBs. The ring's cycle
2744 * state may change as we enqueue the other TRBs, so save it too.
2746 start_trb
= &ep_ring
->enqueue
->generic
;
2747 start_cycle
= ep_ring
->cycle_state
;
2751 * How much data is in the first TRB?
2753 * There are three forces at work for TRB buffer pointers and lengths:
2754 * 1. We don't want to walk off the end of this sg-list entry buffer.
2755 * 2. The transfer length that the driver requested may be smaller than
2756 * the amount of memory allocated for this scatter-gather list.
2757 * 3. TRBs buffers can't cross 64KB boundaries.
2760 addr
= (u64
) sg_dma_address(sg
);
2761 this_sg_len
= sg_dma_len(sg
);
2762 trb_buff_len
= TRB_MAX_BUFF_SIZE
- (addr
& (TRB_MAX_BUFF_SIZE
- 1));
2763 trb_buff_len
= min_t(int, trb_buff_len
, this_sg_len
);
2764 if (trb_buff_len
> urb
->transfer_buffer_length
)
2765 trb_buff_len
= urb
->transfer_buffer_length
;
2768 /* Queue the first TRB, even if it's zero-length */
2771 u32 length_field
= 0;
2774 /* Don't change the cycle bit of the first TRB until later */
2777 if (start_cycle
== 0)
2780 field
|= ep_ring
->cycle_state
;
2782 /* Chain all the TRBs together; clear the chain bit in the last
2783 * TRB to indicate it's the last TRB in the chain.
2788 /* FIXME - add check for ZERO_PACKET flag before this */
2789 td
->last_trb
= ep_ring
->enqueue
;
2793 /* Only set interrupt on short packet for IN endpoints */
2794 if (usb_urb_dir_in(urb
))
2797 if (TRB_MAX_BUFF_SIZE
-
2798 (addr
& (TRB_MAX_BUFF_SIZE
- 1)) < trb_buff_len
) {
2799 xhci_warn(xhci
, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2800 xhci_dbg(xhci
, "Next boundary at %#x, end dma = %#x\n",
2801 (unsigned int) (addr
+ TRB_MAX_BUFF_SIZE
) & ~(TRB_MAX_BUFF_SIZE
- 1),
2802 (unsigned int) addr
+ trb_buff_len
);
2805 /* Set the TRB length, TD size, and interrupter fields. */
2806 if (xhci
->hci_version
< 0x100) {
2807 remainder
= xhci_td_remainder(
2808 urb
->transfer_buffer_length
-
2811 remainder
= xhci_v1_0_td_remainder(running_total
,
2812 trb_buff_len
, total_packet_count
, urb
);
2814 length_field
= TRB_LEN(trb_buff_len
) |
2819 more_trbs_coming
= true;
2821 more_trbs_coming
= false;
2822 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
, false,
2823 lower_32_bits(addr
),
2824 upper_32_bits(addr
),
2826 field
| TRB_TYPE(TRB_NORMAL
));
2828 running_total
+= trb_buff_len
;
2830 /* Calculate length for next transfer --
2831 * Are we done queueing all the TRBs for this sg entry?
2833 this_sg_len
-= trb_buff_len
;
2834 if (this_sg_len
== 0) {
2839 addr
= (u64
) sg_dma_address(sg
);
2840 this_sg_len
= sg_dma_len(sg
);
2842 addr
+= trb_buff_len
;
2845 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
2846 (addr
& (TRB_MAX_BUFF_SIZE
- 1));
2847 trb_buff_len
= min_t(int, trb_buff_len
, this_sg_len
);
2848 if (running_total
+ trb_buff_len
> urb
->transfer_buffer_length
)
2850 urb
->transfer_buffer_length
- running_total
;
2851 } while (running_total
< urb
->transfer_buffer_length
);
2853 check_trb_math(urb
, num_trbs
, running_total
);
2854 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
2855 start_cycle
, start_trb
);
2859 /* This is very similar to what ehci-q.c qtd_fill() does */
2860 int xhci_queue_bulk_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2861 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
2863 struct xhci_ring
*ep_ring
;
2864 struct urb_priv
*urb_priv
;
2867 struct xhci_generic_trb
*start_trb
;
2869 bool more_trbs_coming
;
2871 u32 field
, length_field
;
2873 int running_total
, trb_buff_len
, ret
;
2874 unsigned int total_packet_count
;
2878 return queue_bulk_sg_tx(xhci
, mem_flags
, urb
, slot_id
, ep_index
);
2880 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
2885 /* How much data is (potentially) left before the 64KB boundary? */
2886 running_total
= TRB_MAX_BUFF_SIZE
-
2887 (urb
->transfer_dma
& (TRB_MAX_BUFF_SIZE
- 1));
2888 running_total
&= TRB_MAX_BUFF_SIZE
- 1;
2890 /* If there's some data on this 64KB chunk, or we have to send a
2891 * zero-length transfer, we need at least one TRB
2893 if (running_total
!= 0 || urb
->transfer_buffer_length
== 0)
2895 /* How many more 64KB chunks to transfer, how many more TRBs? */
2896 while (running_total
< urb
->transfer_buffer_length
) {
2898 running_total
+= TRB_MAX_BUFF_SIZE
;
2900 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2902 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
2903 ep_index
, urb
->stream_id
,
2904 num_trbs
, urb
, 0, false, mem_flags
);
2908 urb_priv
= urb
->hcpriv
;
2909 td
= urb_priv
->td
[0];
2912 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2913 * until we've finished creating all the other TRBs. The ring's cycle
2914 * state may change as we enqueue the other TRBs, so save it too.
2916 start_trb
= &ep_ring
->enqueue
->generic
;
2917 start_cycle
= ep_ring
->cycle_state
;
2920 total_packet_count
= roundup(urb
->transfer_buffer_length
,
2921 usb_endpoint_maxp(&urb
->ep
->desc
));
2922 /* How much data is in the first TRB? */
2923 addr
= (u64
) urb
->transfer_dma
;
2924 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
2925 (urb
->transfer_dma
& (TRB_MAX_BUFF_SIZE
- 1));
2926 if (trb_buff_len
> urb
->transfer_buffer_length
)
2927 trb_buff_len
= urb
->transfer_buffer_length
;
2931 /* Queue the first TRB, even if it's zero-length */
2936 /* Don't change the cycle bit of the first TRB until later */
2939 if (start_cycle
== 0)
2942 field
|= ep_ring
->cycle_state
;
2944 /* Chain all the TRBs together; clear the chain bit in the last
2945 * TRB to indicate it's the last TRB in the chain.
2950 /* FIXME - add check for ZERO_PACKET flag before this */
2951 td
->last_trb
= ep_ring
->enqueue
;
2955 /* Only set interrupt on short packet for IN endpoints */
2956 if (usb_urb_dir_in(urb
))
2959 /* Set the TRB length, TD size, and interrupter fields. */
2960 if (xhci
->hci_version
< 0x100) {
2961 remainder
= xhci_td_remainder(
2962 urb
->transfer_buffer_length
-
2965 remainder
= xhci_v1_0_td_remainder(running_total
,
2966 trb_buff_len
, total_packet_count
, urb
);
2968 length_field
= TRB_LEN(trb_buff_len
) |
2973 more_trbs_coming
= true;
2975 more_trbs_coming
= false;
2976 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
, false,
2977 lower_32_bits(addr
),
2978 upper_32_bits(addr
),
2980 field
| TRB_TYPE(TRB_NORMAL
));
2982 running_total
+= trb_buff_len
;
2984 /* Calculate length for next transfer */
2985 addr
+= trb_buff_len
;
2986 trb_buff_len
= urb
->transfer_buffer_length
- running_total
;
2987 if (trb_buff_len
> TRB_MAX_BUFF_SIZE
)
2988 trb_buff_len
= TRB_MAX_BUFF_SIZE
;
2989 } while (running_total
< urb
->transfer_buffer_length
);
2991 check_trb_math(urb
, num_trbs
, running_total
);
2992 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
2993 start_cycle
, start_trb
);
2997 /* Caller must have locked xhci->lock */
2998 int xhci_queue_ctrl_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
2999 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3001 struct xhci_ring
*ep_ring
;
3004 struct usb_ctrlrequest
*setup
;
3005 struct xhci_generic_trb
*start_trb
;
3007 u32 field
, length_field
;
3008 struct urb_priv
*urb_priv
;
3011 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
3016 * Need to copy setup packet into setup TRB, so we can't use the setup
3019 if (!urb
->setup_packet
)
3022 /* 1 TRB for setup, 1 for status */
3025 * Don't need to check if we need additional event data and normal TRBs,
3026 * since data in control transfers will never get bigger than 16MB
3027 * XXX: can we get a buffer that crosses 64KB boundaries?
3029 if (urb
->transfer_buffer_length
> 0)
3031 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
],
3032 ep_index
, urb
->stream_id
,
3033 num_trbs
, urb
, 0, false, mem_flags
);
3037 urb_priv
= urb
->hcpriv
;
3038 td
= urb_priv
->td
[0];
3041 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3042 * until we've finished creating all the other TRBs. The ring's cycle
3043 * state may change as we enqueue the other TRBs, so save it too.
3045 start_trb
= &ep_ring
->enqueue
->generic
;
3046 start_cycle
= ep_ring
->cycle_state
;
3048 /* Queue setup TRB - see section 6.4.1.2.1 */
3049 /* FIXME better way to translate setup_packet into two u32 fields? */
3050 setup
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
3052 field
|= TRB_IDT
| TRB_TYPE(TRB_SETUP
);
3053 if (start_cycle
== 0)
3056 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3057 if (xhci
->hci_version
== 0x100) {
3058 if (urb
->transfer_buffer_length
> 0) {
3059 if (setup
->bRequestType
& USB_DIR_IN
)
3060 field
|= TRB_TX_TYPE(TRB_DATA_IN
);
3062 field
|= TRB_TX_TYPE(TRB_DATA_OUT
);
3066 queue_trb(xhci
, ep_ring
, false, true, false,
3067 setup
->bRequestType
| setup
->bRequest
<< 8 | le16_to_cpu(setup
->wValue
) << 16,
3068 le16_to_cpu(setup
->wIndex
) | le16_to_cpu(setup
->wLength
) << 16,
3069 TRB_LEN(8) | TRB_INTR_TARGET(0),
3070 /* Immediate data in pointer */
3073 /* If there's data, queue data TRBs */
3074 /* Only set interrupt on short packet for IN endpoints */
3075 if (usb_urb_dir_in(urb
))
3076 field
= TRB_ISP
| TRB_TYPE(TRB_DATA
);
3078 field
= TRB_TYPE(TRB_DATA
);
3080 length_field
= TRB_LEN(urb
->transfer_buffer_length
) |
3081 xhci_td_remainder(urb
->transfer_buffer_length
) |
3083 if (urb
->transfer_buffer_length
> 0) {
3084 if (setup
->bRequestType
& USB_DIR_IN
)
3085 field
|= TRB_DIR_IN
;
3086 queue_trb(xhci
, ep_ring
, false, true, false,
3087 lower_32_bits(urb
->transfer_dma
),
3088 upper_32_bits(urb
->transfer_dma
),
3090 field
| ep_ring
->cycle_state
);
3093 /* Save the DMA address of the last TRB in the TD */
3094 td
->last_trb
= ep_ring
->enqueue
;
3096 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3097 /* If the device sent data, the status stage is an OUT transfer */
3098 if (urb
->transfer_buffer_length
> 0 && setup
->bRequestType
& USB_DIR_IN
)
3102 queue_trb(xhci
, ep_ring
, false, false, false,
3106 /* Event on completion */
3107 field
| TRB_IOC
| TRB_TYPE(TRB_STATUS
) | ep_ring
->cycle_state
);
3109 giveback_first_trb(xhci
, slot_id
, ep_index
, 0,
3110 start_cycle
, start_trb
);
3114 static int count_isoc_trbs_needed(struct xhci_hcd
*xhci
,
3115 struct urb
*urb
, int i
)
3120 addr
= (u64
) (urb
->transfer_dma
+ urb
->iso_frame_desc
[i
].offset
);
3121 td_len
= urb
->iso_frame_desc
[i
].length
;
3123 num_trbs
= DIV_ROUND_UP(td_len
+ (addr
& (TRB_MAX_BUFF_SIZE
- 1)),
3132 * The transfer burst count field of the isochronous TRB defines the number of
3133 * bursts that are required to move all packets in this TD. Only SuperSpeed
3134 * devices can burst up to bMaxBurst number of packets per service interval.
3135 * This field is zero based, meaning a value of zero in the field means one
3136 * burst. Basically, for everything but SuperSpeed devices, this field will be
3137 * zero. Only xHCI 1.0 host controllers support this field.
3139 static unsigned int xhci_get_burst_count(struct xhci_hcd
*xhci
,
3140 struct usb_device
*udev
,
3141 struct urb
*urb
, unsigned int total_packet_count
)
3143 unsigned int max_burst
;
3145 if (xhci
->hci_version
< 0x100 || udev
->speed
!= USB_SPEED_SUPER
)
3148 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3149 return roundup(total_packet_count
, max_burst
+ 1) - 1;
3153 * Returns the number of packets in the last "burst" of packets. This field is
3154 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3155 * the last burst packet count is equal to the total number of packets in the
3156 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3157 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3158 * contain 1 to (bMaxBurst + 1) packets.
3160 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd
*xhci
,
3161 struct usb_device
*udev
,
3162 struct urb
*urb
, unsigned int total_packet_count
)
3164 unsigned int max_burst
;
3165 unsigned int residue
;
3167 if (xhci
->hci_version
< 0x100)
3170 switch (udev
->speed
) {
3171 case USB_SPEED_SUPER
:
3172 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3173 max_burst
= urb
->ep
->ss_ep_comp
.bMaxBurst
;
3174 residue
= total_packet_count
% (max_burst
+ 1);
3175 /* If residue is zero, the last burst contains (max_burst + 1)
3176 * number of packets, but the TLBPC field is zero-based.
3182 if (total_packet_count
== 0)
3184 return total_packet_count
- 1;
3188 /* This is for isoc transfer */
3189 static int xhci_queue_isoc_tx(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3190 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3192 struct xhci_ring
*ep_ring
;
3193 struct urb_priv
*urb_priv
;
3195 int num_tds
, trbs_per_td
;
3196 struct xhci_generic_trb
*start_trb
;
3199 u32 field
, length_field
;
3200 int running_total
, trb_buff_len
, td_len
, td_remain_len
, ret
;
3201 u64 start_addr
, addr
;
3203 bool more_trbs_coming
;
3205 ep_ring
= xhci
->devs
[slot_id
]->eps
[ep_index
].ring
;
3207 num_tds
= urb
->number_of_packets
;
3209 xhci_dbg(xhci
, "Isoc URB with zero packets?\n");
3213 start_addr
= (u64
) urb
->transfer_dma
;
3214 start_trb
= &ep_ring
->enqueue
->generic
;
3215 start_cycle
= ep_ring
->cycle_state
;
3217 urb_priv
= urb
->hcpriv
;
3218 /* Queue the first TRB, even if it's zero-length */
3219 for (i
= 0; i
< num_tds
; i
++) {
3220 unsigned int total_packet_count
;
3221 unsigned int burst_count
;
3222 unsigned int residue
;
3226 addr
= start_addr
+ urb
->iso_frame_desc
[i
].offset
;
3227 td_len
= urb
->iso_frame_desc
[i
].length
;
3228 td_remain_len
= td_len
;
3229 total_packet_count
= roundup(td_len
,
3230 usb_endpoint_maxp(&urb
->ep
->desc
));
3231 /* A zero-length transfer still involves at least one packet. */
3232 if (total_packet_count
== 0)
3233 total_packet_count
++;
3234 burst_count
= xhci_get_burst_count(xhci
, urb
->dev
, urb
,
3235 total_packet_count
);
3236 residue
= xhci_get_last_burst_packet_count(xhci
,
3237 urb
->dev
, urb
, total_packet_count
);
3239 trbs_per_td
= count_isoc_trbs_needed(xhci
, urb
, i
);
3241 ret
= prepare_transfer(xhci
, xhci
->devs
[slot_id
], ep_index
,
3242 urb
->stream_id
, trbs_per_td
, urb
, i
, true,
3250 td
= urb_priv
->td
[i
];
3251 for (j
= 0; j
< trbs_per_td
; j
++) {
3253 field
= TRB_TBC(burst_count
) | TRB_TLBPC(residue
);
3256 /* Queue the isoc TRB */
3257 field
|= TRB_TYPE(TRB_ISOC
);
3258 /* Assume URB_ISO_ASAP is set */
3261 if (start_cycle
== 0)
3264 field
|= ep_ring
->cycle_state
;
3267 /* Queue other normal TRBs */
3268 field
|= TRB_TYPE(TRB_NORMAL
);
3269 field
|= ep_ring
->cycle_state
;
3272 /* Only set interrupt on short packet for IN EPs */
3273 if (usb_urb_dir_in(urb
))
3276 /* Chain all the TRBs together; clear the chain bit in
3277 * the last TRB to indicate it's the last TRB in the
3280 if (j
< trbs_per_td
- 1) {
3282 more_trbs_coming
= true;
3284 td
->last_trb
= ep_ring
->enqueue
;
3286 if (xhci
->hci_version
== 0x100) {
3287 /* Set BEI bit except for the last td */
3288 if (i
< num_tds
- 1)
3291 more_trbs_coming
= false;
3294 /* Calculate TRB length */
3295 trb_buff_len
= TRB_MAX_BUFF_SIZE
-
3296 (addr
& ((1 << TRB_MAX_BUFF_SHIFT
) - 1));
3297 if (trb_buff_len
> td_remain_len
)
3298 trb_buff_len
= td_remain_len
;
3300 /* Set the TRB length, TD size, & interrupter fields. */
3301 if (xhci
->hci_version
< 0x100) {
3302 remainder
= xhci_td_remainder(
3303 td_len
- running_total
);
3305 remainder
= xhci_v1_0_td_remainder(
3306 running_total
, trb_buff_len
,
3307 total_packet_count
, urb
);
3309 length_field
= TRB_LEN(trb_buff_len
) |
3313 queue_trb(xhci
, ep_ring
, false, more_trbs_coming
, true,
3314 lower_32_bits(addr
),
3315 upper_32_bits(addr
),
3318 running_total
+= trb_buff_len
;
3320 addr
+= trb_buff_len
;
3321 td_remain_len
-= trb_buff_len
;
3324 /* Check TD length */
3325 if (running_total
!= td_len
) {
3326 xhci_err(xhci
, "ISOC TD length unmatch\n");
3332 if (xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
== 0) {
3333 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
3334 usb_amd_quirk_pll_disable();
3336 xhci_to_hcd(xhci
)->self
.bandwidth_isoc_reqs
++;
3338 giveback_first_trb(xhci
, slot_id
, ep_index
, urb
->stream_id
,
3339 start_cycle
, start_trb
);
3342 /* Clean up a partially enqueued isoc transfer. */
3344 for (i
--; i
>= 0; i
--)
3345 list_del_init(&urb_priv
->td
[i
]->td_list
);
3347 /* Use the first TD as a temporary variable to turn the TDs we've queued
3348 * into No-ops with a software-owned cycle bit. That way the hardware
3349 * won't accidentally start executing bogus TDs when we partially
3350 * overwrite them. td->first_trb and td->start_seg are already set.
3352 urb_priv
->td
[0]->last_trb
= ep_ring
->enqueue
;
3353 /* Every TRB except the first & last will have its cycle bit flipped. */
3354 td_to_noop(xhci
, ep_ring
, urb_priv
->td
[0], true);
3356 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3357 ep_ring
->enqueue
= urb_priv
->td
[0]->first_trb
;
3358 ep_ring
->enq_seg
= urb_priv
->td
[0]->start_seg
;
3359 ep_ring
->cycle_state
= start_cycle
;
3360 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb
->dev
->bus
), urb
);
3365 * Check transfer ring to guarantee there is enough room for the urb.
3366 * Update ISO URB start_frame and interval.
3367 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3368 * update the urb->start_frame by now.
3369 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3371 int xhci_queue_isoc_tx_prepare(struct xhci_hcd
*xhci
, gfp_t mem_flags
,
3372 struct urb
*urb
, int slot_id
, unsigned int ep_index
)
3374 struct xhci_virt_device
*xdev
;
3375 struct xhci_ring
*ep_ring
;
3376 struct xhci_ep_ctx
*ep_ctx
;
3380 int num_tds
, num_trbs
, i
;
3383 xdev
= xhci
->devs
[slot_id
];
3384 ep_ring
= xdev
->eps
[ep_index
].ring
;
3385 ep_ctx
= xhci_get_ep_ctx(xhci
, xdev
->out_ctx
, ep_index
);
3388 num_tds
= urb
->number_of_packets
;
3389 for (i
= 0; i
< num_tds
; i
++)
3390 num_trbs
+= count_isoc_trbs_needed(xhci
, urb
, i
);
3392 /* Check the ring to guarantee there is enough room for the whole urb.
3393 * Do not insert any td of the urb to the ring if the check failed.
3395 ret
= prepare_ring(xhci
, ep_ring
, le32_to_cpu(ep_ctx
->ep_info
) & EP_STATE_MASK
,
3396 num_trbs
, true, mem_flags
);
3400 start_frame
= xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
);
3401 start_frame
&= 0x3fff;
3403 urb
->start_frame
= start_frame
;
3404 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3405 urb
->dev
->speed
== USB_SPEED_FULL
)
3406 urb
->start_frame
>>= 3;
3408 xhci_interval
= EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx
->ep_info
));
3409 ep_interval
= urb
->interval
;
3410 /* Convert to microframes */
3411 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3412 urb
->dev
->speed
== USB_SPEED_FULL
)
3414 /* FIXME change this to a warning and a suggestion to use the new API
3415 * to set the polling interval (once the API is added).
3417 if (xhci_interval
!= ep_interval
) {
3418 if (printk_ratelimit())
3419 dev_dbg(&urb
->dev
->dev
, "Driver uses different interval"
3420 " (%d microframe%s) than xHCI "
3421 "(%d microframe%s)\n",
3423 ep_interval
== 1 ? "" : "s",
3425 xhci_interval
== 1 ? "" : "s");
3426 urb
->interval
= xhci_interval
;
3427 /* Convert back to frames for LS/FS devices */
3428 if (urb
->dev
->speed
== USB_SPEED_LOW
||
3429 urb
->dev
->speed
== USB_SPEED_FULL
)
3432 return xhci_queue_isoc_tx(xhci
, GFP_ATOMIC
, urb
, slot_id
, ep_index
);
3435 /**** Command Ring Operations ****/
3437 /* Generic function for queueing a command TRB on the command ring.
3438 * Check to make sure there's room on the command ring for one command TRB.
3439 * Also check that there's room reserved for commands that must not fail.
3440 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3441 * then only check for the number of reserved spots.
3442 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3443 * because the command event handler may want to resubmit a failed command.
3445 static int queue_command(struct xhci_hcd
*xhci
, u32 field1
, u32 field2
,
3446 u32 field3
, u32 field4
, bool command_must_succeed
)
3448 int reserved_trbs
= xhci
->cmd_ring_reserved_trbs
;
3451 if (!command_must_succeed
)
3454 ret
= prepare_ring(xhci
, xhci
->cmd_ring
, EP_STATE_RUNNING
,
3455 reserved_trbs
, false, GFP_ATOMIC
);
3457 xhci_err(xhci
, "ERR: No room for command on command ring\n");
3458 if (command_must_succeed
)
3459 xhci_err(xhci
, "ERR: Reserved TRB counting for "
3460 "unfailable commands failed.\n");
3463 queue_trb(xhci
, xhci
->cmd_ring
, false, false, false, field1
, field2
,
3464 field3
, field4
| xhci
->cmd_ring
->cycle_state
);
3468 /* Queue a slot enable or disable request on the command ring */
3469 int xhci_queue_slot_control(struct xhci_hcd
*xhci
, u32 trb_type
, u32 slot_id
)
3471 return queue_command(xhci
, 0, 0, 0,
3472 TRB_TYPE(trb_type
) | SLOT_ID_FOR_TRB(slot_id
), false);
3475 /* Queue an address device command TRB */
3476 int xhci_queue_address_device(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3479 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3480 upper_32_bits(in_ctx_ptr
), 0,
3481 TRB_TYPE(TRB_ADDR_DEV
) | SLOT_ID_FOR_TRB(slot_id
),
3485 int xhci_queue_vendor_command(struct xhci_hcd
*xhci
,
3486 u32 field1
, u32 field2
, u32 field3
, u32 field4
)
3488 return queue_command(xhci
, field1
, field2
, field3
, field4
, false);
3491 /* Queue a reset device command TRB */
3492 int xhci_queue_reset_device(struct xhci_hcd
*xhci
, u32 slot_id
)
3494 return queue_command(xhci
, 0, 0, 0,
3495 TRB_TYPE(TRB_RESET_DEV
) | SLOT_ID_FOR_TRB(slot_id
),
3499 /* Queue a configure endpoint command TRB */
3500 int xhci_queue_configure_endpoint(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3501 u32 slot_id
, bool command_must_succeed
)
3503 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3504 upper_32_bits(in_ctx_ptr
), 0,
3505 TRB_TYPE(TRB_CONFIG_EP
) | SLOT_ID_FOR_TRB(slot_id
),
3506 command_must_succeed
);
3509 /* Queue an evaluate context command TRB */
3510 int xhci_queue_evaluate_context(struct xhci_hcd
*xhci
, dma_addr_t in_ctx_ptr
,
3513 return queue_command(xhci
, lower_32_bits(in_ctx_ptr
),
3514 upper_32_bits(in_ctx_ptr
), 0,
3515 TRB_TYPE(TRB_EVAL_CONTEXT
) | SLOT_ID_FOR_TRB(slot_id
),
3520 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3521 * activity on an endpoint that is about to be suspended.
3523 int xhci_queue_stop_endpoint(struct xhci_hcd
*xhci
, int slot_id
,
3524 unsigned int ep_index
, int suspend
)
3526 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3527 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3528 u32 type
= TRB_TYPE(TRB_STOP_RING
);
3529 u32 trb_suspend
= SUSPEND_PORT_FOR_TRB(suspend
);
3531 return queue_command(xhci
, 0, 0, 0,
3532 trb_slot_id
| trb_ep_index
| type
| trb_suspend
, false);
3535 /* Set Transfer Ring Dequeue Pointer command.
3536 * This should not be used for endpoints that have streams enabled.
3538 static int queue_set_tr_deq(struct xhci_hcd
*xhci
, int slot_id
,
3539 unsigned int ep_index
, unsigned int stream_id
,
3540 struct xhci_segment
*deq_seg
,
3541 union xhci_trb
*deq_ptr
, u32 cycle_state
)
3544 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3545 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3546 u32 trb_stream_id
= STREAM_ID_FOR_TRB(stream_id
);
3547 u32 type
= TRB_TYPE(TRB_SET_DEQ
);
3548 struct xhci_virt_ep
*ep
;
3550 addr
= xhci_trb_virt_to_dma(deq_seg
, deq_ptr
);
3552 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3553 xhci_warn(xhci
, "WARN deq seg = %p, deq pt = %p\n",
3557 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
3558 if ((ep
->ep_state
& SET_DEQ_PENDING
)) {
3559 xhci_warn(xhci
, "WARN Cannot submit Set TR Deq Ptr\n");
3560 xhci_warn(xhci
, "A Set TR Deq Ptr command is pending.\n");
3563 ep
->queued_deq_seg
= deq_seg
;
3564 ep
->queued_deq_ptr
= deq_ptr
;
3565 return queue_command(xhci
, lower_32_bits(addr
) | cycle_state
,
3566 upper_32_bits(addr
), trb_stream_id
,
3567 trb_slot_id
| trb_ep_index
| type
, false);
3570 int xhci_queue_reset_ep(struct xhci_hcd
*xhci
, int slot_id
,
3571 unsigned int ep_index
)
3573 u32 trb_slot_id
= SLOT_ID_FOR_TRB(slot_id
);
3574 u32 trb_ep_index
= EP_ID_FOR_TRB(ep_index
);
3575 u32 type
= TRB_TYPE(TRB_RESET_EP
);
3577 return queue_command(xhci
, 0, 0, 0, trb_slot_id
| trb_ep_index
| type
,