i2c-eg20t: change timeout value 50msec to 1000msec
[zen-stable.git] / drivers / usb / host / xhci.c
blobf9ea3c84fcdfec14699fe0c5591c579223852088
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
30 #include "xhci.h"
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
57 u32 result;
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd *xhci)
77 u32 halted;
78 u32 cmd;
79 u32 mask;
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd *xhci)
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd *xhci)
117 u32 temp;
118 int ret;
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
142 * Reset a halted HC.
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd *xhci)
150 u32 command;
151 u32 state;
152 int ret;
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
181 int i;
183 if (!xhci->msix_entries)
184 return -EINVAL;
186 for (i = 0; i < xhci->msix_count; i++)
187 if (xhci->msix_entries[i].vector)
188 free_irq(xhci->msix_entries[i].vector,
189 xhci_to_hcd(xhci));
190 return 0;
194 * Set up MSI
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
198 int ret;
199 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
201 ret = pci_enable_msi(pdev);
202 if (ret) {
203 xhci_dbg(xhci, "failed to allocate MSI entry\n");
204 return ret;
207 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208 0, "xhci_hcd", xhci_to_hcd(xhci));
209 if (ret) {
210 xhci_dbg(xhci, "disable MSI interrupt\n");
211 pci_disable_msi(pdev);
214 return ret;
218 * Free IRQs
219 * free all IRQs request
221 static void xhci_free_irq(struct xhci_hcd *xhci)
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 int ret;
226 /* return if using legacy interrupt */
227 if (xhci_to_hcd(xhci)->irq >= 0)
228 return;
230 ret = xhci_free_msi(xhci);
231 if (!ret)
232 return;
233 if (pdev->irq >= 0)
234 free_irq(pdev->irq, xhci_to_hcd(xhci));
236 return;
240 * Set up MSI-X
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
244 int i, ret = 0;
245 struct usb_hcd *hcd = xhci_to_hcd(xhci);
246 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
249 * calculate number of msi-x vectors supported.
250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 * with max number of interrupters based on the xhci HCSPARAMS1.
252 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 * Add additional 1 vector to ensure always available interrupt.
255 xhci->msix_count = min(num_online_cpus() + 1,
256 HCS_MAX_INTRS(xhci->hcs_params1));
258 xhci->msix_entries =
259 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260 GFP_KERNEL);
261 if (!xhci->msix_entries) {
262 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263 return -ENOMEM;
266 for (i = 0; i < xhci->msix_count; i++) {
267 xhci->msix_entries[i].entry = i;
268 xhci->msix_entries[i].vector = 0;
271 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272 if (ret) {
273 xhci_dbg(xhci, "Failed to enable MSI-X\n");
274 goto free_entries;
277 for (i = 0; i < xhci->msix_count; i++) {
278 ret = request_irq(xhci->msix_entries[i].vector,
279 (irq_handler_t)xhci_msi_irq,
280 0, "xhci_hcd", xhci_to_hcd(xhci));
281 if (ret)
282 goto disable_msix;
285 hcd->msix_enabled = 1;
286 return ret;
288 disable_msix:
289 xhci_dbg(xhci, "disable MSI-X interrupt\n");
290 xhci_free_irq(xhci);
291 pci_disable_msix(pdev);
292 free_entries:
293 kfree(xhci->msix_entries);
294 xhci->msix_entries = NULL;
295 return ret;
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
301 struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
304 xhci_free_irq(xhci);
306 if (xhci->msix_entries) {
307 pci_disable_msix(pdev);
308 kfree(xhci->msix_entries);
309 xhci->msix_entries = NULL;
310 } else {
311 pci_disable_msi(pdev);
314 hcd->msix_enabled = 0;
315 return;
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
320 int i;
322 if (xhci->msix_entries) {
323 for (i = 0; i < xhci->msix_count; i++)
324 synchronize_irq(xhci->msix_entries[i].vector);
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
330 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 int ret;
335 * Some Fresco Logic host controllers advertise MSI, but fail to
336 * generate interrupts. Don't even try to enable MSI.
338 if (xhci->quirks & XHCI_BROKEN_MSI)
339 return 0;
341 /* unregister the legacy interrupt */
342 if (hcd->irq)
343 free_irq(hcd->irq, hcd);
344 hcd->irq = -1;
346 ret = xhci_setup_msix(xhci);
347 if (ret)
348 /* fall back to msi*/
349 ret = xhci_setup_msi(xhci);
351 if (!ret)
352 /* hcd->irq is -1, we have MSI */
353 return 0;
355 if (!pdev->irq) {
356 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
357 return -EINVAL;
360 /* fall back to legacy interrupt*/
361 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
362 hcd->irq_descr, hcd);
363 if (ret) {
364 xhci_err(xhci, "request interrupt %d failed\n",
365 pdev->irq);
366 return ret;
368 hcd->irq = pdev->irq;
369 return 0;
372 #else
374 static int xhci_try_enable_msi(struct usb_hcd *hcd)
376 return 0;
379 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
383 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
387 #endif
390 * Initialize memory for HCD and xHC (one-time init).
392 * Program the PAGESIZE register, initialize the device context array, create
393 * device contexts (?), set up a command ring segment (or two?), create event
394 * ring (one for now).
396 int xhci_init(struct usb_hcd *hcd)
398 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
399 int retval = 0;
401 xhci_dbg(xhci, "xhci_init\n");
402 spin_lock_init(&xhci->lock);
403 if (xhci->hci_version == 0x95 && link_quirk) {
404 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
405 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
406 } else {
407 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
409 retval = xhci_mem_init(xhci, GFP_KERNEL);
410 xhci_dbg(xhci, "Finished xhci_init\n");
412 return retval;
415 /*-------------------------------------------------------------------------*/
418 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
419 static void xhci_event_ring_work(unsigned long arg)
421 unsigned long flags;
422 int temp;
423 u64 temp_64;
424 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
425 int i, j;
427 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
429 spin_lock_irqsave(&xhci->lock, flags);
430 temp = xhci_readl(xhci, &xhci->op_regs->status);
431 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
432 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
433 (xhci->xhc_state & XHCI_STATE_HALTED)) {
434 xhci_dbg(xhci, "HW died, polling stopped.\n");
435 spin_unlock_irqrestore(&xhci->lock, flags);
436 return;
439 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
440 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
441 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
442 xhci->error_bitmask = 0;
443 xhci_dbg(xhci, "Event ring:\n");
444 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
445 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
446 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
447 temp_64 &= ~ERST_PTR_MASK;
448 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
449 xhci_dbg(xhci, "Command ring:\n");
450 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
451 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
452 xhci_dbg_cmd_ptrs(xhci);
453 for (i = 0; i < MAX_HC_SLOTS; ++i) {
454 if (!xhci->devs[i])
455 continue;
456 for (j = 0; j < 31; ++j) {
457 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
460 spin_unlock_irqrestore(&xhci->lock, flags);
462 if (!xhci->zombie)
463 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
464 else
465 xhci_dbg(xhci, "Quit polling the event ring.\n");
467 #endif
469 static int xhci_run_finished(struct xhci_hcd *xhci)
471 if (xhci_start(xhci)) {
472 xhci_halt(xhci);
473 return -ENODEV;
475 xhci->shared_hcd->state = HC_STATE_RUNNING;
477 if (xhci->quirks & XHCI_NEC_HOST)
478 xhci_ring_cmd_db(xhci);
480 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
481 return 0;
485 * Start the HC after it was halted.
487 * This function is called by the USB core when the HC driver is added.
488 * Its opposite is xhci_stop().
490 * xhci_init() must be called once before this function can be called.
491 * Reset the HC, enable device slot contexts, program DCBAAP, and
492 * set command ring pointer and event ring pointer.
494 * Setup MSI-X vectors and enable interrupts.
496 int xhci_run(struct usb_hcd *hcd)
498 u32 temp;
499 u64 temp_64;
500 int ret;
501 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
503 /* Start the xHCI host controller running only after the USB 2.0 roothub
504 * is setup.
507 hcd->uses_new_polling = 1;
508 if (!usb_hcd_is_primary_hcd(hcd))
509 return xhci_run_finished(xhci);
511 xhci_dbg(xhci, "xhci_run\n");
513 ret = xhci_try_enable_msi(hcd);
514 if (ret)
515 return ret;
517 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
518 init_timer(&xhci->event_ring_timer);
519 xhci->event_ring_timer.data = (unsigned long) xhci;
520 xhci->event_ring_timer.function = xhci_event_ring_work;
521 /* Poll the event ring */
522 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
523 xhci->zombie = 0;
524 xhci_dbg(xhci, "Setting event ring polling timer\n");
525 add_timer(&xhci->event_ring_timer);
526 #endif
528 xhci_dbg(xhci, "Command ring memory map follows:\n");
529 xhci_debug_ring(xhci, xhci->cmd_ring);
530 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
531 xhci_dbg_cmd_ptrs(xhci);
533 xhci_dbg(xhci, "ERST memory map follows:\n");
534 xhci_dbg_erst(xhci, &xhci->erst);
535 xhci_dbg(xhci, "Event ring:\n");
536 xhci_debug_ring(xhci, xhci->event_ring);
537 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
538 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
539 temp_64 &= ~ERST_PTR_MASK;
540 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
542 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
543 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
544 temp &= ~ER_IRQ_INTERVAL_MASK;
545 temp |= (u32) 160;
546 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
548 /* Set the HCD state before we enable the irqs */
549 temp = xhci_readl(xhci, &xhci->op_regs->command);
550 temp |= (CMD_EIE);
551 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
552 temp);
553 xhci_writel(xhci, temp, &xhci->op_regs->command);
555 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
556 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
557 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
558 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
559 &xhci->ir_set->irq_pending);
560 xhci_print_ir_set(xhci, 0);
562 if (xhci->quirks & XHCI_NEC_HOST)
563 xhci_queue_vendor_command(xhci, 0, 0, 0,
564 TRB_TYPE(TRB_NEC_GET_FW));
566 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
567 return 0;
570 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
572 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
574 spin_lock_irq(&xhci->lock);
575 xhci_halt(xhci);
577 /* The shared_hcd is going to be deallocated shortly (the USB core only
578 * calls this function when allocation fails in usb_add_hcd(), or
579 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
581 xhci->shared_hcd = NULL;
582 spin_unlock_irq(&xhci->lock);
586 * Stop xHCI driver.
588 * This function is called by the USB core when the HC driver is removed.
589 * Its opposite is xhci_run().
591 * Disable device contexts, disable IRQs, and quiesce the HC.
592 * Reset the HC, finish any completed transactions, and cleanup memory.
594 void xhci_stop(struct usb_hcd *hcd)
596 u32 temp;
597 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 if (!usb_hcd_is_primary_hcd(hcd)) {
600 xhci_only_stop_hcd(xhci->shared_hcd);
601 return;
604 spin_lock_irq(&xhci->lock);
605 /* Make sure the xHC is halted for a USB3 roothub
606 * (xhci_stop() could be called as part of failed init).
608 xhci_halt(xhci);
609 xhci_reset(xhci);
610 spin_unlock_irq(&xhci->lock);
612 xhci_cleanup_msix(xhci);
614 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
615 /* Tell the event ring poll function not to reschedule */
616 xhci->zombie = 1;
617 del_timer_sync(&xhci->event_ring_timer);
618 #endif
620 if (xhci->quirks & XHCI_AMD_PLL_FIX)
621 usb_amd_dev_put();
623 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
624 temp = xhci_readl(xhci, &xhci->op_regs->status);
625 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
628 &xhci->ir_set->irq_pending);
629 xhci_print_ir_set(xhci, 0);
631 xhci_dbg(xhci, "cleaning up memory\n");
632 xhci_mem_cleanup(xhci);
633 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
634 xhci_readl(xhci, &xhci->op_regs->status));
638 * Shutdown HC (not bus-specific)
640 * This is called when the machine is rebooting or halting. We assume that the
641 * machine will be powered off, and the HC's internal state will be reset.
642 * Don't bother to free memory.
644 * This will only ever be called with the main usb_hcd (the USB3 roothub).
646 void xhci_shutdown(struct usb_hcd *hcd)
648 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
650 spin_lock_irq(&xhci->lock);
651 xhci_halt(xhci);
652 spin_unlock_irq(&xhci->lock);
654 xhci_cleanup_msix(xhci);
656 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
657 xhci_readl(xhci, &xhci->op_regs->status));
660 #ifdef CONFIG_PM
661 static void xhci_save_registers(struct xhci_hcd *xhci)
663 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
664 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
665 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
666 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
667 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
668 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
669 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
670 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
671 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
674 static void xhci_restore_registers(struct xhci_hcd *xhci)
676 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
677 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
678 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
679 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
680 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
681 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
682 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
683 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
684 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
687 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
689 u64 val_64;
691 /* step 2: initialize command ring buffer */
692 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
693 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
694 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
695 xhci->cmd_ring->dequeue) &
696 (u64) ~CMD_RING_RSVD_BITS) |
697 xhci->cmd_ring->cycle_state;
698 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
699 (long unsigned long) val_64);
700 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
704 * The whole command ring must be cleared to zero when we suspend the host.
706 * The host doesn't save the command ring pointer in the suspend well, so we
707 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
708 * aligned, because of the reserved bits in the command ring dequeue pointer
709 * register. Therefore, we can't just set the dequeue pointer back in the
710 * middle of the ring (TRBs are 16-byte aligned).
712 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
714 struct xhci_ring *ring;
715 struct xhci_segment *seg;
717 ring = xhci->cmd_ring;
718 seg = ring->deq_seg;
719 do {
720 memset(seg->trbs, 0,
721 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
722 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
723 cpu_to_le32(~TRB_CYCLE);
724 seg = seg->next;
725 } while (seg != ring->deq_seg);
727 /* Reset the software enqueue and dequeue pointers */
728 ring->deq_seg = ring->first_seg;
729 ring->dequeue = ring->first_seg->trbs;
730 ring->enq_seg = ring->deq_seg;
731 ring->enqueue = ring->dequeue;
734 * Ring is now zeroed, so the HW should look for change of ownership
735 * when the cycle bit is set to 1.
737 ring->cycle_state = 1;
740 * Reset the hardware dequeue pointer.
741 * Yes, this will need to be re-written after resume, but we're paranoid
742 * and want to make sure the hardware doesn't access bogus memory
743 * because, say, the BIOS or an SMI started the host without changing
744 * the command ring pointers.
746 xhci_set_cmd_ring_deq(xhci);
750 * Stop HC (not bus-specific)
752 * This is called when the machine transition into S3/S4 mode.
755 int xhci_suspend(struct xhci_hcd *xhci)
757 int rc = 0;
758 struct usb_hcd *hcd = xhci_to_hcd(xhci);
759 u32 command;
761 spin_lock_irq(&xhci->lock);
762 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
763 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
764 /* step 1: stop endpoint */
765 /* skipped assuming that port suspend has done */
767 /* step 2: clear Run/Stop bit */
768 command = xhci_readl(xhci, &xhci->op_regs->command);
769 command &= ~CMD_RUN;
770 xhci_writel(xhci, command, &xhci->op_regs->command);
771 if (handshake(xhci, &xhci->op_regs->status,
772 STS_HALT, STS_HALT, 100*100)) {
773 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
774 spin_unlock_irq(&xhci->lock);
775 return -ETIMEDOUT;
777 xhci_clear_command_ring(xhci);
779 /* step 3: save registers */
780 xhci_save_registers(xhci);
782 /* step 4: set CSS flag */
783 command = xhci_readl(xhci, &xhci->op_regs->command);
784 command |= CMD_CSS;
785 xhci_writel(xhci, command, &xhci->op_regs->command);
786 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
787 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
788 spin_unlock_irq(&xhci->lock);
789 return -ETIMEDOUT;
791 spin_unlock_irq(&xhci->lock);
793 /* step 5: remove core well power */
794 /* synchronize irq when using MSI-X */
795 xhci_msix_sync_irqs(xhci);
797 return rc;
801 * start xHC (not bus-specific)
803 * This is called when the machine transition from S3/S4 mode.
806 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
808 u32 command, temp = 0;
809 struct usb_hcd *hcd = xhci_to_hcd(xhci);
810 struct usb_hcd *secondary_hcd;
811 int retval = 0;
813 /* Wait a bit if either of the roothubs need to settle from the
814 * transition into bus suspend.
816 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
817 time_before(jiffies,
818 xhci->bus_state[1].next_statechange))
819 msleep(100);
821 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
822 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
824 spin_lock_irq(&xhci->lock);
825 if (xhci->quirks & XHCI_RESET_ON_RESUME)
826 hibernated = true;
828 if (!hibernated) {
829 /* step 1: restore register */
830 xhci_restore_registers(xhci);
831 /* step 2: initialize command ring buffer */
832 xhci_set_cmd_ring_deq(xhci);
833 /* step 3: restore state and start state*/
834 /* step 3: set CRS flag */
835 command = xhci_readl(xhci, &xhci->op_regs->command);
836 command |= CMD_CRS;
837 xhci_writel(xhci, command, &xhci->op_regs->command);
838 if (handshake(xhci, &xhci->op_regs->status,
839 STS_RESTORE, 0, 10*100)) {
840 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
841 spin_unlock_irq(&xhci->lock);
842 return -ETIMEDOUT;
844 temp = xhci_readl(xhci, &xhci->op_regs->status);
847 /* If restore operation fails, re-initialize the HC during resume */
848 if ((temp & STS_SRE) || hibernated) {
849 /* Let the USB core know _both_ roothubs lost power. */
850 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
851 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
853 xhci_dbg(xhci, "Stop HCD\n");
854 xhci_halt(xhci);
855 xhci_reset(xhci);
856 spin_unlock_irq(&xhci->lock);
857 xhci_cleanup_msix(xhci);
859 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
860 /* Tell the event ring poll function not to reschedule */
861 xhci->zombie = 1;
862 del_timer_sync(&xhci->event_ring_timer);
863 #endif
865 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
866 temp = xhci_readl(xhci, &xhci->op_regs->status);
867 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
868 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
869 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
870 &xhci->ir_set->irq_pending);
871 xhci_print_ir_set(xhci, 0);
873 xhci_dbg(xhci, "cleaning up memory\n");
874 xhci_mem_cleanup(xhci);
875 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
876 xhci_readl(xhci, &xhci->op_regs->status));
878 /* USB core calls the PCI reinit and start functions twice:
879 * first with the primary HCD, and then with the secondary HCD.
880 * If we don't do the same, the host will never be started.
882 if (!usb_hcd_is_primary_hcd(hcd))
883 secondary_hcd = hcd;
884 else
885 secondary_hcd = xhci->shared_hcd;
887 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
888 retval = xhci_init(hcd->primary_hcd);
889 if (retval)
890 return retval;
891 xhci_dbg(xhci, "Start the primary HCD\n");
892 retval = xhci_run(hcd->primary_hcd);
893 if (!retval) {
894 xhci_dbg(xhci, "Start the secondary HCD\n");
895 retval = xhci_run(secondary_hcd);
897 hcd->state = HC_STATE_SUSPENDED;
898 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
899 goto done;
902 /* step 4: set Run/Stop bit */
903 command = xhci_readl(xhci, &xhci->op_regs->command);
904 command |= CMD_RUN;
905 xhci_writel(xhci, command, &xhci->op_regs->command);
906 handshake(xhci, &xhci->op_regs->status, STS_HALT,
907 0, 250 * 1000);
909 /* step 5: walk topology and initialize portsc,
910 * portpmsc and portli
912 /* this is done in bus_resume */
914 /* step 6: restart each of the previously
915 * Running endpoints by ringing their doorbells
918 spin_unlock_irq(&xhci->lock);
920 done:
921 if (retval == 0) {
922 usb_hcd_resume_root_hub(hcd);
923 usb_hcd_resume_root_hub(xhci->shared_hcd);
925 return retval;
927 #endif /* CONFIG_PM */
929 /*-------------------------------------------------------------------------*/
932 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
933 * HCDs. Find the index for an endpoint given its descriptor. Use the return
934 * value to right shift 1 for the bitmask.
936 * Index = (epnum * 2) + direction - 1,
937 * where direction = 0 for OUT, 1 for IN.
938 * For control endpoints, the IN index is used (OUT index is unused), so
939 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
941 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
943 unsigned int index;
944 if (usb_endpoint_xfer_control(desc))
945 index = (unsigned int) (usb_endpoint_num(desc)*2);
946 else
947 index = (unsigned int) (usb_endpoint_num(desc)*2) +
948 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
949 return index;
952 /* Find the flag for this endpoint (for use in the control context). Use the
953 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
954 * bit 1, etc.
956 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
958 return 1 << (xhci_get_endpoint_index(desc) + 1);
961 /* Find the flag for this endpoint (for use in the control context). Use the
962 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
963 * bit 1, etc.
965 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
967 return 1 << (ep_index + 1);
970 /* Compute the last valid endpoint context index. Basically, this is the
971 * endpoint index plus one. For slot contexts with more than valid endpoint,
972 * we find the most significant bit set in the added contexts flags.
973 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
974 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
976 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
978 return fls(added_ctxs) - 1;
981 /* Returns 1 if the arguments are OK;
982 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
984 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
985 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
986 const char *func) {
987 struct xhci_hcd *xhci;
988 struct xhci_virt_device *virt_dev;
990 if (!hcd || (check_ep && !ep) || !udev) {
991 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
992 func);
993 return -EINVAL;
995 if (!udev->parent) {
996 printk(KERN_DEBUG "xHCI %s called for root hub\n",
997 func);
998 return 0;
1001 xhci = hcd_to_xhci(hcd);
1002 if (xhci->xhc_state & XHCI_STATE_HALTED)
1003 return -ENODEV;
1005 if (check_virt_dev) {
1006 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1007 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1008 "device\n", func);
1009 return -EINVAL;
1012 virt_dev = xhci->devs[udev->slot_id];
1013 if (virt_dev->udev != udev) {
1014 printk(KERN_DEBUG "xHCI %s called with udev and "
1015 "virt_dev does not match\n", func);
1016 return -EINVAL;
1020 return 1;
1023 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1024 struct usb_device *udev, struct xhci_command *command,
1025 bool ctx_change, bool must_succeed);
1028 * Full speed devices may have a max packet size greater than 8 bytes, but the
1029 * USB core doesn't know that until it reads the first 8 bytes of the
1030 * descriptor. If the usb_device's max packet size changes after that point,
1031 * we need to issue an evaluate context command and wait on it.
1033 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1034 unsigned int ep_index, struct urb *urb)
1036 struct xhci_container_ctx *in_ctx;
1037 struct xhci_container_ctx *out_ctx;
1038 struct xhci_input_control_ctx *ctrl_ctx;
1039 struct xhci_ep_ctx *ep_ctx;
1040 int max_packet_size;
1041 int hw_max_packet_size;
1042 int ret = 0;
1044 out_ctx = xhci->devs[slot_id]->out_ctx;
1045 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1046 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1047 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1048 if (hw_max_packet_size != max_packet_size) {
1049 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1050 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1051 max_packet_size);
1052 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1053 hw_max_packet_size);
1054 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1056 /* Set up the modified control endpoint 0 */
1057 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1058 xhci->devs[slot_id]->out_ctx, ep_index);
1059 in_ctx = xhci->devs[slot_id]->in_ctx;
1060 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1061 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1062 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1064 /* Set up the input context flags for the command */
1065 /* FIXME: This won't work if a non-default control endpoint
1066 * changes max packet sizes.
1068 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1069 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1070 ctrl_ctx->drop_flags = 0;
1072 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1073 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1074 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1075 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1077 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1078 true, false);
1080 /* Clean up the input context for later use by bandwidth
1081 * functions.
1083 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1085 return ret;
1089 * non-error returns are a promise to giveback() the urb later
1090 * we drop ownership so next owner (or urb unlink) can get it
1092 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1094 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1095 struct xhci_td *buffer;
1096 unsigned long flags;
1097 int ret = 0;
1098 unsigned int slot_id, ep_index;
1099 struct urb_priv *urb_priv;
1100 int size, i;
1102 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1103 true, true, __func__) <= 0)
1104 return -EINVAL;
1106 slot_id = urb->dev->slot_id;
1107 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1109 if (!HCD_HW_ACCESSIBLE(hcd)) {
1110 if (!in_interrupt())
1111 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1112 ret = -ESHUTDOWN;
1113 goto exit;
1116 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1117 size = urb->number_of_packets;
1118 else
1119 size = 1;
1121 urb_priv = kzalloc(sizeof(struct urb_priv) +
1122 size * sizeof(struct xhci_td *), mem_flags);
1123 if (!urb_priv)
1124 return -ENOMEM;
1126 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1127 if (!buffer) {
1128 kfree(urb_priv);
1129 return -ENOMEM;
1132 for (i = 0; i < size; i++) {
1133 urb_priv->td[i] = buffer;
1134 buffer++;
1137 urb_priv->length = size;
1138 urb_priv->td_cnt = 0;
1139 urb->hcpriv = urb_priv;
1141 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1142 /* Check to see if the max packet size for the default control
1143 * endpoint changed during FS device enumeration
1145 if (urb->dev->speed == USB_SPEED_FULL) {
1146 ret = xhci_check_maxpacket(xhci, slot_id,
1147 ep_index, urb);
1148 if (ret < 0) {
1149 xhci_urb_free_priv(xhci, urb_priv);
1150 urb->hcpriv = NULL;
1151 return ret;
1155 /* We have a spinlock and interrupts disabled, so we must pass
1156 * atomic context to this function, which may allocate memory.
1158 spin_lock_irqsave(&xhci->lock, flags);
1159 if (xhci->xhc_state & XHCI_STATE_DYING)
1160 goto dying;
1161 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1162 slot_id, ep_index);
1163 if (ret)
1164 goto free_priv;
1165 spin_unlock_irqrestore(&xhci->lock, flags);
1166 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1167 spin_lock_irqsave(&xhci->lock, flags);
1168 if (xhci->xhc_state & XHCI_STATE_DYING)
1169 goto dying;
1170 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1171 EP_GETTING_STREAMS) {
1172 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1173 "is transitioning to using streams.\n");
1174 ret = -EINVAL;
1175 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1176 EP_GETTING_NO_STREAMS) {
1177 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1178 "is transitioning to "
1179 "not having streams.\n");
1180 ret = -EINVAL;
1181 } else {
1182 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1183 slot_id, ep_index);
1185 if (ret)
1186 goto free_priv;
1187 spin_unlock_irqrestore(&xhci->lock, flags);
1188 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1189 spin_lock_irqsave(&xhci->lock, flags);
1190 if (xhci->xhc_state & XHCI_STATE_DYING)
1191 goto dying;
1192 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1193 slot_id, ep_index);
1194 if (ret)
1195 goto free_priv;
1196 spin_unlock_irqrestore(&xhci->lock, flags);
1197 } else {
1198 spin_lock_irqsave(&xhci->lock, flags);
1199 if (xhci->xhc_state & XHCI_STATE_DYING)
1200 goto dying;
1201 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1202 slot_id, ep_index);
1203 if (ret)
1204 goto free_priv;
1205 spin_unlock_irqrestore(&xhci->lock, flags);
1207 exit:
1208 return ret;
1209 dying:
1210 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1211 "non-responsive xHCI host.\n",
1212 urb->ep->desc.bEndpointAddress, urb);
1213 ret = -ESHUTDOWN;
1214 free_priv:
1215 xhci_urb_free_priv(xhci, urb_priv);
1216 urb->hcpriv = NULL;
1217 spin_unlock_irqrestore(&xhci->lock, flags);
1218 return ret;
1221 /* Get the right ring for the given URB.
1222 * If the endpoint supports streams, boundary check the URB's stream ID.
1223 * If the endpoint doesn't support streams, return the singular endpoint ring.
1225 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1226 struct urb *urb)
1228 unsigned int slot_id;
1229 unsigned int ep_index;
1230 unsigned int stream_id;
1231 struct xhci_virt_ep *ep;
1233 slot_id = urb->dev->slot_id;
1234 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1235 stream_id = urb->stream_id;
1236 ep = &xhci->devs[slot_id]->eps[ep_index];
1237 /* Common case: no streams */
1238 if (!(ep->ep_state & EP_HAS_STREAMS))
1239 return ep->ring;
1241 if (stream_id == 0) {
1242 xhci_warn(xhci,
1243 "WARN: Slot ID %u, ep index %u has streams, "
1244 "but URB has no stream ID.\n",
1245 slot_id, ep_index);
1246 return NULL;
1249 if (stream_id < ep->stream_info->num_streams)
1250 return ep->stream_info->stream_rings[stream_id];
1252 xhci_warn(xhci,
1253 "WARN: Slot ID %u, ep index %u has "
1254 "stream IDs 1 to %u allocated, "
1255 "but stream ID %u is requested.\n",
1256 slot_id, ep_index,
1257 ep->stream_info->num_streams - 1,
1258 stream_id);
1259 return NULL;
1263 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1264 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1265 * should pick up where it left off in the TD, unless a Set Transfer Ring
1266 * Dequeue Pointer is issued.
1268 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1269 * the ring. Since the ring is a contiguous structure, they can't be physically
1270 * removed. Instead, there are two options:
1272 * 1) If the HC is in the middle of processing the URB to be canceled, we
1273 * simply move the ring's dequeue pointer past those TRBs using the Set
1274 * Transfer Ring Dequeue Pointer command. This will be the common case,
1275 * when drivers timeout on the last submitted URB and attempt to cancel.
1277 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1278 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1279 * HC will need to invalidate the any TRBs it has cached after the stop
1280 * endpoint command, as noted in the xHCI 0.95 errata.
1282 * 3) The TD may have completed by the time the Stop Endpoint Command
1283 * completes, so software needs to handle that case too.
1285 * This function should protect against the TD enqueueing code ringing the
1286 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1287 * It also needs to account for multiple cancellations on happening at the same
1288 * time for the same endpoint.
1290 * Note that this function can be called in any context, or so says
1291 * usb_hcd_unlink_urb()
1293 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1295 unsigned long flags;
1296 int ret, i;
1297 u32 temp;
1298 struct xhci_hcd *xhci;
1299 struct urb_priv *urb_priv;
1300 struct xhci_td *td;
1301 unsigned int ep_index;
1302 struct xhci_ring *ep_ring;
1303 struct xhci_virt_ep *ep;
1305 xhci = hcd_to_xhci(hcd);
1306 spin_lock_irqsave(&xhci->lock, flags);
1307 /* Make sure the URB hasn't completed or been unlinked already */
1308 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1309 if (ret || !urb->hcpriv)
1310 goto done;
1311 temp = xhci_readl(xhci, &xhci->op_regs->status);
1312 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1313 xhci_dbg(xhci, "HW died, freeing TD.\n");
1314 urb_priv = urb->hcpriv;
1315 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1316 td = urb_priv->td[i];
1317 if (!list_empty(&td->td_list))
1318 list_del_init(&td->td_list);
1319 if (!list_empty(&td->cancelled_td_list))
1320 list_del_init(&td->cancelled_td_list);
1323 usb_hcd_unlink_urb_from_ep(hcd, urb);
1324 spin_unlock_irqrestore(&xhci->lock, flags);
1325 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1326 xhci_urb_free_priv(xhci, urb_priv);
1327 return ret;
1329 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1330 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1331 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1332 "non-responsive xHCI host.\n",
1333 urb->ep->desc.bEndpointAddress, urb);
1334 /* Let the stop endpoint command watchdog timer (which set this
1335 * state) finish cleaning up the endpoint TD lists. We must
1336 * have caught it in the middle of dropping a lock and giving
1337 * back an URB.
1339 goto done;
1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1344 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1345 if (!ep_ring) {
1346 ret = -EINVAL;
1347 goto done;
1350 urb_priv = urb->hcpriv;
1351 i = urb_priv->td_cnt;
1352 if (i < urb_priv->length)
1353 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1354 "starting at offset 0x%llx\n",
1355 urb, urb->dev->devpath,
1356 urb->ep->desc.bEndpointAddress,
1357 (unsigned long long) xhci_trb_virt_to_dma(
1358 urb_priv->td[i]->start_seg,
1359 urb_priv->td[i]->first_trb));
1361 for (; i < urb_priv->length; i++) {
1362 td = urb_priv->td[i];
1363 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1366 /* Queue a stop endpoint command, but only if this is
1367 * the first cancellation to be handled.
1369 if (!(ep->ep_state & EP_HALT_PENDING)) {
1370 ep->ep_state |= EP_HALT_PENDING;
1371 ep->stop_cmds_pending++;
1372 ep->stop_cmd_timer.expires = jiffies +
1373 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1374 add_timer(&ep->stop_cmd_timer);
1375 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1376 xhci_ring_cmd_db(xhci);
1378 done:
1379 spin_unlock_irqrestore(&xhci->lock, flags);
1380 return ret;
1383 /* Drop an endpoint from a new bandwidth configuration for this device.
1384 * Only one call to this function is allowed per endpoint before
1385 * check_bandwidth() or reset_bandwidth() must be called.
1386 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1387 * add the endpoint to the schedule with possibly new parameters denoted by a
1388 * different endpoint descriptor in usb_host_endpoint.
1389 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1390 * not allowed.
1392 * The USB core will not allow URBs to be queued to an endpoint that is being
1393 * disabled, so there's no need for mutual exclusion to protect
1394 * the xhci->devs[slot_id] structure.
1396 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1397 struct usb_host_endpoint *ep)
1399 struct xhci_hcd *xhci;
1400 struct xhci_container_ctx *in_ctx, *out_ctx;
1401 struct xhci_input_control_ctx *ctrl_ctx;
1402 struct xhci_slot_ctx *slot_ctx;
1403 unsigned int last_ctx;
1404 unsigned int ep_index;
1405 struct xhci_ep_ctx *ep_ctx;
1406 u32 drop_flag;
1407 u32 new_add_flags, new_drop_flags, new_slot_info;
1408 int ret;
1410 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1411 if (ret <= 0)
1412 return ret;
1413 xhci = hcd_to_xhci(hcd);
1414 if (xhci->xhc_state & XHCI_STATE_DYING)
1415 return -ENODEV;
1417 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1418 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1419 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1420 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1421 __func__, drop_flag);
1422 return 0;
1425 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1426 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1427 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1428 ep_index = xhci_get_endpoint_index(&ep->desc);
1429 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1430 /* If the HC already knows the endpoint is disabled,
1431 * or the HCD has noted it is disabled, ignore this request
1433 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1434 cpu_to_le32(EP_STATE_DISABLED)) ||
1435 le32_to_cpu(ctrl_ctx->drop_flags) &
1436 xhci_get_endpoint_flag(&ep->desc)) {
1437 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1438 __func__, ep);
1439 return 0;
1442 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1443 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1445 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1446 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1448 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1449 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1450 /* Update the last valid endpoint context, if we deleted the last one */
1451 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1452 LAST_CTX(last_ctx)) {
1453 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1454 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1456 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1458 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1460 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1461 (unsigned int) ep->desc.bEndpointAddress,
1462 udev->slot_id,
1463 (unsigned int) new_drop_flags,
1464 (unsigned int) new_add_flags,
1465 (unsigned int) new_slot_info);
1466 return 0;
1469 /* Add an endpoint to a new possible bandwidth configuration for this device.
1470 * Only one call to this function is allowed per endpoint before
1471 * check_bandwidth() or reset_bandwidth() must be called.
1472 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1473 * add the endpoint to the schedule with possibly new parameters denoted by a
1474 * different endpoint descriptor in usb_host_endpoint.
1475 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1476 * not allowed.
1478 * The USB core will not allow URBs to be queued to an endpoint until the
1479 * configuration or alt setting is installed in the device, so there's no need
1480 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1482 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1483 struct usb_host_endpoint *ep)
1485 struct xhci_hcd *xhci;
1486 struct xhci_container_ctx *in_ctx, *out_ctx;
1487 unsigned int ep_index;
1488 struct xhci_ep_ctx *ep_ctx;
1489 struct xhci_slot_ctx *slot_ctx;
1490 struct xhci_input_control_ctx *ctrl_ctx;
1491 u32 added_ctxs;
1492 unsigned int last_ctx;
1493 u32 new_add_flags, new_drop_flags, new_slot_info;
1494 struct xhci_virt_device *virt_dev;
1495 int ret = 0;
1497 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1498 if (ret <= 0) {
1499 /* So we won't queue a reset ep command for a root hub */
1500 ep->hcpriv = NULL;
1501 return ret;
1503 xhci = hcd_to_xhci(hcd);
1504 if (xhci->xhc_state & XHCI_STATE_DYING)
1505 return -ENODEV;
1507 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1508 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1509 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1510 /* FIXME when we have to issue an evaluate endpoint command to
1511 * deal with ep0 max packet size changing once we get the
1512 * descriptors
1514 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1515 __func__, added_ctxs);
1516 return 0;
1519 virt_dev = xhci->devs[udev->slot_id];
1520 in_ctx = virt_dev->in_ctx;
1521 out_ctx = virt_dev->out_ctx;
1522 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1523 ep_index = xhci_get_endpoint_index(&ep->desc);
1524 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1526 /* If this endpoint is already in use, and the upper layers are trying
1527 * to add it again without dropping it, reject the addition.
1529 if (virt_dev->eps[ep_index].ring &&
1530 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1531 xhci_get_endpoint_flag(&ep->desc))) {
1532 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1533 "without dropping it.\n",
1534 (unsigned int) ep->desc.bEndpointAddress);
1535 return -EINVAL;
1538 /* If the HCD has already noted the endpoint is enabled,
1539 * ignore this request.
1541 if (le32_to_cpu(ctrl_ctx->add_flags) &
1542 xhci_get_endpoint_flag(&ep->desc)) {
1543 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1544 __func__, ep);
1545 return 0;
1549 * Configuration and alternate setting changes must be done in
1550 * process context, not interrupt context (or so documenation
1551 * for usb_set_interface() and usb_set_configuration() claim).
1553 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1554 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1555 __func__, ep->desc.bEndpointAddress);
1556 return -ENOMEM;
1559 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1560 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1562 /* If xhci_endpoint_disable() was called for this endpoint, but the
1563 * xHC hasn't been notified yet through the check_bandwidth() call,
1564 * this re-adds a new state for the endpoint from the new endpoint
1565 * descriptors. We must drop and re-add this endpoint, so we leave the
1566 * drop flags alone.
1568 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1570 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1571 /* Update the last valid endpoint context, if we just added one past */
1572 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1573 LAST_CTX(last_ctx)) {
1574 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1575 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1577 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1579 /* Store the usb_device pointer for later use */
1580 ep->hcpriv = udev;
1582 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1583 (unsigned int) ep->desc.bEndpointAddress,
1584 udev->slot_id,
1585 (unsigned int) new_drop_flags,
1586 (unsigned int) new_add_flags,
1587 (unsigned int) new_slot_info);
1588 return 0;
1591 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1593 struct xhci_input_control_ctx *ctrl_ctx;
1594 struct xhci_ep_ctx *ep_ctx;
1595 struct xhci_slot_ctx *slot_ctx;
1596 int i;
1598 /* When a device's add flag and drop flag are zero, any subsequent
1599 * configure endpoint command will leave that endpoint's state
1600 * untouched. Make sure we don't leave any old state in the input
1601 * endpoint contexts.
1603 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1604 ctrl_ctx->drop_flags = 0;
1605 ctrl_ctx->add_flags = 0;
1606 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1607 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1608 /* Endpoint 0 is always valid */
1609 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1610 for (i = 1; i < 31; ++i) {
1611 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1612 ep_ctx->ep_info = 0;
1613 ep_ctx->ep_info2 = 0;
1614 ep_ctx->deq = 0;
1615 ep_ctx->tx_info = 0;
1619 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1620 struct usb_device *udev, u32 *cmd_status)
1622 int ret;
1624 switch (*cmd_status) {
1625 case COMP_ENOMEM:
1626 dev_warn(&udev->dev, "Not enough host controller resources "
1627 "for new device state.\n");
1628 ret = -ENOMEM;
1629 /* FIXME: can we allocate more resources for the HC? */
1630 break;
1631 case COMP_BW_ERR:
1632 case COMP_2ND_BW_ERR:
1633 dev_warn(&udev->dev, "Not enough bandwidth "
1634 "for new device state.\n");
1635 ret = -ENOSPC;
1636 /* FIXME: can we go back to the old state? */
1637 break;
1638 case COMP_TRB_ERR:
1639 /* the HCD set up something wrong */
1640 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1641 "add flag = 1, "
1642 "and endpoint is not disabled.\n");
1643 ret = -EINVAL;
1644 break;
1645 case COMP_DEV_ERR:
1646 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1647 "configure command.\n");
1648 ret = -ENODEV;
1649 break;
1650 case COMP_SUCCESS:
1651 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1652 ret = 0;
1653 break;
1654 default:
1655 xhci_err(xhci, "ERROR: unexpected command completion "
1656 "code 0x%x.\n", *cmd_status);
1657 ret = -EINVAL;
1658 break;
1660 return ret;
1663 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1664 struct usb_device *udev, u32 *cmd_status)
1666 int ret;
1667 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1669 switch (*cmd_status) {
1670 case COMP_EINVAL:
1671 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1672 "context command.\n");
1673 ret = -EINVAL;
1674 break;
1675 case COMP_EBADSLT:
1676 dev_warn(&udev->dev, "WARN: slot not enabled for"
1677 "evaluate context command.\n");
1678 case COMP_CTX_STATE:
1679 dev_warn(&udev->dev, "WARN: invalid context state for "
1680 "evaluate context command.\n");
1681 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1682 ret = -EINVAL;
1683 break;
1684 case COMP_DEV_ERR:
1685 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1686 "context command.\n");
1687 ret = -ENODEV;
1688 break;
1689 case COMP_MEL_ERR:
1690 /* Max Exit Latency too large error */
1691 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1692 ret = -EINVAL;
1693 break;
1694 case COMP_SUCCESS:
1695 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1696 ret = 0;
1697 break;
1698 default:
1699 xhci_err(xhci, "ERROR: unexpected command completion "
1700 "code 0x%x.\n", *cmd_status);
1701 ret = -EINVAL;
1702 break;
1704 return ret;
1707 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1708 struct xhci_container_ctx *in_ctx)
1710 struct xhci_input_control_ctx *ctrl_ctx;
1711 u32 valid_add_flags;
1712 u32 valid_drop_flags;
1714 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1715 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1716 * (bit 1). The default control endpoint is added during the Address
1717 * Device command and is never removed until the slot is disabled.
1719 valid_add_flags = ctrl_ctx->add_flags >> 2;
1720 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1722 /* Use hweight32 to count the number of ones in the add flags, or
1723 * number of endpoints added. Don't count endpoints that are changed
1724 * (both added and dropped).
1726 return hweight32(valid_add_flags) -
1727 hweight32(valid_add_flags & valid_drop_flags);
1730 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1731 struct xhci_container_ctx *in_ctx)
1733 struct xhci_input_control_ctx *ctrl_ctx;
1734 u32 valid_add_flags;
1735 u32 valid_drop_flags;
1737 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1738 valid_add_flags = ctrl_ctx->add_flags >> 2;
1739 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1741 return hweight32(valid_drop_flags) -
1742 hweight32(valid_add_flags & valid_drop_flags);
1746 * We need to reserve the new number of endpoints before the configure endpoint
1747 * command completes. We can't subtract the dropped endpoints from the number
1748 * of active endpoints until the command completes because we can oversubscribe
1749 * the host in this case:
1751 * - the first configure endpoint command drops more endpoints than it adds
1752 * - a second configure endpoint command that adds more endpoints is queued
1753 * - the first configure endpoint command fails, so the config is unchanged
1754 * - the second command may succeed, even though there isn't enough resources
1756 * Must be called with xhci->lock held.
1758 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1759 struct xhci_container_ctx *in_ctx)
1761 u32 added_eps;
1763 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1764 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1765 xhci_dbg(xhci, "Not enough ep ctxs: "
1766 "%u active, need to add %u, limit is %u.\n",
1767 xhci->num_active_eps, added_eps,
1768 xhci->limit_active_eps);
1769 return -ENOMEM;
1771 xhci->num_active_eps += added_eps;
1772 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1773 xhci->num_active_eps);
1774 return 0;
1778 * The configure endpoint was failed by the xHC for some other reason, so we
1779 * need to revert the resources that failed configuration would have used.
1781 * Must be called with xhci->lock held.
1783 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1784 struct xhci_container_ctx *in_ctx)
1786 u32 num_failed_eps;
1788 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1789 xhci->num_active_eps -= num_failed_eps;
1790 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1791 num_failed_eps,
1792 xhci->num_active_eps);
1796 * Now that the command has completed, clean up the active endpoint count by
1797 * subtracting out the endpoints that were dropped (but not changed).
1799 * Must be called with xhci->lock held.
1801 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1802 struct xhci_container_ctx *in_ctx)
1804 u32 num_dropped_eps;
1806 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1807 xhci->num_active_eps -= num_dropped_eps;
1808 if (num_dropped_eps)
1809 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1810 num_dropped_eps,
1811 xhci->num_active_eps);
1814 unsigned int xhci_get_block_size(struct usb_device *udev)
1816 switch (udev->speed) {
1817 case USB_SPEED_LOW:
1818 case USB_SPEED_FULL:
1819 return FS_BLOCK;
1820 case USB_SPEED_HIGH:
1821 return HS_BLOCK;
1822 case USB_SPEED_SUPER:
1823 return SS_BLOCK;
1824 case USB_SPEED_UNKNOWN:
1825 case USB_SPEED_WIRELESS:
1826 default:
1827 /* Should never happen */
1828 return 1;
1832 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1834 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1835 return LS_OVERHEAD;
1836 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1837 return FS_OVERHEAD;
1838 return HS_OVERHEAD;
1841 /* If we are changing a LS/FS device under a HS hub,
1842 * make sure (if we are activating a new TT) that the HS bus has enough
1843 * bandwidth for this new TT.
1845 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1846 struct xhci_virt_device *virt_dev,
1847 int old_active_eps)
1849 struct xhci_interval_bw_table *bw_table;
1850 struct xhci_tt_bw_info *tt_info;
1852 /* Find the bandwidth table for the root port this TT is attached to. */
1853 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1854 tt_info = virt_dev->tt_info;
1855 /* If this TT already had active endpoints, the bandwidth for this TT
1856 * has already been added. Removing all periodic endpoints (and thus
1857 * making the TT enactive) will only decrease the bandwidth used.
1859 if (old_active_eps)
1860 return 0;
1861 if (old_active_eps == 0 && tt_info->active_eps != 0) {
1862 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1863 return -ENOMEM;
1864 return 0;
1866 /* Not sure why we would have no new active endpoints...
1868 * Maybe because of an Evaluate Context change for a hub update or a
1869 * control endpoint 0 max packet size change?
1870 * FIXME: skip the bandwidth calculation in that case.
1872 return 0;
1875 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1876 struct xhci_virt_device *virt_dev)
1878 unsigned int bw_reserved;
1880 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1881 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1882 return -ENOMEM;
1884 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1885 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1886 return -ENOMEM;
1888 return 0;
1892 * This algorithm is a very conservative estimate of the worst-case scheduling
1893 * scenario for any one interval. The hardware dynamically schedules the
1894 * packets, so we can't tell which microframe could be the limiting factor in
1895 * the bandwidth scheduling. This only takes into account periodic endpoints.
1897 * Obviously, we can't solve an NP complete problem to find the minimum worst
1898 * case scenario. Instead, we come up with an estimate that is no less than
1899 * the worst case bandwidth used for any one microframe, but may be an
1900 * over-estimate.
1902 * We walk the requirements for each endpoint by interval, starting with the
1903 * smallest interval, and place packets in the schedule where there is only one
1904 * possible way to schedule packets for that interval. In order to simplify
1905 * this algorithm, we record the largest max packet size for each interval, and
1906 * assume all packets will be that size.
1908 * For interval 0, we obviously must schedule all packets for each interval.
1909 * The bandwidth for interval 0 is just the amount of data to be transmitted
1910 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1911 * the number of packets).
1913 * For interval 1, we have two possible microframes to schedule those packets
1914 * in. For this algorithm, if we can schedule the same number of packets for
1915 * each possible scheduling opportunity (each microframe), we will do so. The
1916 * remaining number of packets will be saved to be transmitted in the gaps in
1917 * the next interval's scheduling sequence.
1919 * As we move those remaining packets to be scheduled with interval 2 packets,
1920 * we have to double the number of remaining packets to transmit. This is
1921 * because the intervals are actually powers of 2, and we would be transmitting
1922 * the previous interval's packets twice in this interval. We also have to be
1923 * sure that when we look at the largest max packet size for this interval, we
1924 * also look at the largest max packet size for the remaining packets and take
1925 * the greater of the two.
1927 * The algorithm continues to evenly distribute packets in each scheduling
1928 * opportunity, and push the remaining packets out, until we get to the last
1929 * interval. Then those packets and their associated overhead are just added
1930 * to the bandwidth used.
1932 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1933 struct xhci_virt_device *virt_dev,
1934 int old_active_eps)
1936 unsigned int bw_reserved;
1937 unsigned int max_bandwidth;
1938 unsigned int bw_used;
1939 unsigned int block_size;
1940 struct xhci_interval_bw_table *bw_table;
1941 unsigned int packet_size = 0;
1942 unsigned int overhead = 0;
1943 unsigned int packets_transmitted = 0;
1944 unsigned int packets_remaining = 0;
1945 unsigned int i;
1947 if (virt_dev->udev->speed == USB_SPEED_SUPER)
1948 return xhci_check_ss_bw(xhci, virt_dev);
1950 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1951 max_bandwidth = HS_BW_LIMIT;
1952 /* Convert percent of bus BW reserved to blocks reserved */
1953 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1954 } else {
1955 max_bandwidth = FS_BW_LIMIT;
1956 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1959 bw_table = virt_dev->bw_table;
1960 /* We need to translate the max packet size and max ESIT payloads into
1961 * the units the hardware uses.
1963 block_size = xhci_get_block_size(virt_dev->udev);
1965 /* If we are manipulating a LS/FS device under a HS hub, double check
1966 * that the HS bus has enough bandwidth if we are activing a new TT.
1968 if (virt_dev->tt_info) {
1969 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1970 virt_dev->real_port);
1971 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1972 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1973 "newly activated TT.\n");
1974 return -ENOMEM;
1976 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1977 virt_dev->tt_info->slot_id,
1978 virt_dev->tt_info->ttport);
1979 } else {
1980 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1981 virt_dev->real_port);
1984 /* Add in how much bandwidth will be used for interval zero, or the
1985 * rounded max ESIT payload + number of packets * largest overhead.
1987 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1988 bw_table->interval_bw[0].num_packets *
1989 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1991 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1992 unsigned int bw_added;
1993 unsigned int largest_mps;
1994 unsigned int interval_overhead;
1997 * How many packets could we transmit in this interval?
1998 * If packets didn't fit in the previous interval, we will need
1999 * to transmit that many packets twice within this interval.
2001 packets_remaining = 2 * packets_remaining +
2002 bw_table->interval_bw[i].num_packets;
2004 /* Find the largest max packet size of this or the previous
2005 * interval.
2007 if (list_empty(&bw_table->interval_bw[i].endpoints))
2008 largest_mps = 0;
2009 else {
2010 struct xhci_virt_ep *virt_ep;
2011 struct list_head *ep_entry;
2013 ep_entry = bw_table->interval_bw[i].endpoints.next;
2014 virt_ep = list_entry(ep_entry,
2015 struct xhci_virt_ep, bw_endpoint_list);
2016 /* Convert to blocks, rounding up */
2017 largest_mps = DIV_ROUND_UP(
2018 virt_ep->bw_info.max_packet_size,
2019 block_size);
2021 if (largest_mps > packet_size)
2022 packet_size = largest_mps;
2024 /* Use the larger overhead of this or the previous interval. */
2025 interval_overhead = xhci_get_largest_overhead(
2026 &bw_table->interval_bw[i]);
2027 if (interval_overhead > overhead)
2028 overhead = interval_overhead;
2030 /* How many packets can we evenly distribute across
2031 * (1 << (i + 1)) possible scheduling opportunities?
2033 packets_transmitted = packets_remaining >> (i + 1);
2035 /* Add in the bandwidth used for those scheduled packets */
2036 bw_added = packets_transmitted * (overhead + packet_size);
2038 /* How many packets do we have remaining to transmit? */
2039 packets_remaining = packets_remaining % (1 << (i + 1));
2041 /* What largest max packet size should those packets have? */
2042 /* If we've transmitted all packets, don't carry over the
2043 * largest packet size.
2045 if (packets_remaining == 0) {
2046 packet_size = 0;
2047 overhead = 0;
2048 } else if (packets_transmitted > 0) {
2049 /* Otherwise if we do have remaining packets, and we've
2050 * scheduled some packets in this interval, take the
2051 * largest max packet size from endpoints with this
2052 * interval.
2054 packet_size = largest_mps;
2055 overhead = interval_overhead;
2057 /* Otherwise carry over packet_size and overhead from the last
2058 * time we had a remainder.
2060 bw_used += bw_added;
2061 if (bw_used > max_bandwidth) {
2062 xhci_warn(xhci, "Not enough bandwidth. "
2063 "Proposed: %u, Max: %u\n",
2064 bw_used, max_bandwidth);
2065 return -ENOMEM;
2069 * Ok, we know we have some packets left over after even-handedly
2070 * scheduling interval 15. We don't know which microframes they will
2071 * fit into, so we over-schedule and say they will be scheduled every
2072 * microframe.
2074 if (packets_remaining > 0)
2075 bw_used += overhead + packet_size;
2077 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2078 unsigned int port_index = virt_dev->real_port - 1;
2080 /* OK, we're manipulating a HS device attached to a
2081 * root port bandwidth domain. Include the number of active TTs
2082 * in the bandwidth used.
2084 bw_used += TT_HS_OVERHEAD *
2085 xhci->rh_bw[port_index].num_active_tts;
2088 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2089 "Available: %u " "percent\n",
2090 bw_used, max_bandwidth, bw_reserved,
2091 (max_bandwidth - bw_used - bw_reserved) * 100 /
2092 max_bandwidth);
2094 bw_used += bw_reserved;
2095 if (bw_used > max_bandwidth) {
2096 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2097 bw_used, max_bandwidth);
2098 return -ENOMEM;
2101 bw_table->bw_used = bw_used;
2102 return 0;
2105 static bool xhci_is_async_ep(unsigned int ep_type)
2107 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2108 ep_type != ISOC_IN_EP &&
2109 ep_type != INT_IN_EP);
2112 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2114 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2117 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2119 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2121 if (ep_bw->ep_interval == 0)
2122 return SS_OVERHEAD_BURST +
2123 (ep_bw->mult * ep_bw->num_packets *
2124 (SS_OVERHEAD + mps));
2125 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2126 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2127 1 << ep_bw->ep_interval);
2131 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2132 struct xhci_bw_info *ep_bw,
2133 struct xhci_interval_bw_table *bw_table,
2134 struct usb_device *udev,
2135 struct xhci_virt_ep *virt_ep,
2136 struct xhci_tt_bw_info *tt_info)
2138 struct xhci_interval_bw *interval_bw;
2139 int normalized_interval;
2141 if (xhci_is_async_ep(ep_bw->type))
2142 return;
2144 if (udev->speed == USB_SPEED_SUPER) {
2145 if (xhci_is_sync_in_ep(ep_bw->type))
2146 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2147 xhci_get_ss_bw_consumed(ep_bw);
2148 else
2149 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2150 xhci_get_ss_bw_consumed(ep_bw);
2151 return;
2154 /* SuperSpeed endpoints never get added to intervals in the table, so
2155 * this check is only valid for HS/FS/LS devices.
2157 if (list_empty(&virt_ep->bw_endpoint_list))
2158 return;
2159 /* For LS/FS devices, we need to translate the interval expressed in
2160 * microframes to frames.
2162 if (udev->speed == USB_SPEED_HIGH)
2163 normalized_interval = ep_bw->ep_interval;
2164 else
2165 normalized_interval = ep_bw->ep_interval - 3;
2167 if (normalized_interval == 0)
2168 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2169 interval_bw = &bw_table->interval_bw[normalized_interval];
2170 interval_bw->num_packets -= ep_bw->num_packets;
2171 switch (udev->speed) {
2172 case USB_SPEED_LOW:
2173 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2174 break;
2175 case USB_SPEED_FULL:
2176 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2177 break;
2178 case USB_SPEED_HIGH:
2179 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2180 break;
2181 case USB_SPEED_SUPER:
2182 case USB_SPEED_UNKNOWN:
2183 case USB_SPEED_WIRELESS:
2184 /* Should never happen because only LS/FS/HS endpoints will get
2185 * added to the endpoint list.
2187 return;
2189 if (tt_info)
2190 tt_info->active_eps -= 1;
2191 list_del_init(&virt_ep->bw_endpoint_list);
2194 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2195 struct xhci_bw_info *ep_bw,
2196 struct xhci_interval_bw_table *bw_table,
2197 struct usb_device *udev,
2198 struct xhci_virt_ep *virt_ep,
2199 struct xhci_tt_bw_info *tt_info)
2201 struct xhci_interval_bw *interval_bw;
2202 struct xhci_virt_ep *smaller_ep;
2203 int normalized_interval;
2205 if (xhci_is_async_ep(ep_bw->type))
2206 return;
2208 if (udev->speed == USB_SPEED_SUPER) {
2209 if (xhci_is_sync_in_ep(ep_bw->type))
2210 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2211 xhci_get_ss_bw_consumed(ep_bw);
2212 else
2213 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2214 xhci_get_ss_bw_consumed(ep_bw);
2215 return;
2218 /* For LS/FS devices, we need to translate the interval expressed in
2219 * microframes to frames.
2221 if (udev->speed == USB_SPEED_HIGH)
2222 normalized_interval = ep_bw->ep_interval;
2223 else
2224 normalized_interval = ep_bw->ep_interval - 3;
2226 if (normalized_interval == 0)
2227 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2228 interval_bw = &bw_table->interval_bw[normalized_interval];
2229 interval_bw->num_packets += ep_bw->num_packets;
2230 switch (udev->speed) {
2231 case USB_SPEED_LOW:
2232 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2233 break;
2234 case USB_SPEED_FULL:
2235 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2236 break;
2237 case USB_SPEED_HIGH:
2238 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2239 break;
2240 case USB_SPEED_SUPER:
2241 case USB_SPEED_UNKNOWN:
2242 case USB_SPEED_WIRELESS:
2243 /* Should never happen because only LS/FS/HS endpoints will get
2244 * added to the endpoint list.
2246 return;
2249 if (tt_info)
2250 tt_info->active_eps += 1;
2251 /* Insert the endpoint into the list, largest max packet size first. */
2252 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2253 bw_endpoint_list) {
2254 if (ep_bw->max_packet_size >=
2255 smaller_ep->bw_info.max_packet_size) {
2256 /* Add the new ep before the smaller endpoint */
2257 list_add_tail(&virt_ep->bw_endpoint_list,
2258 &smaller_ep->bw_endpoint_list);
2259 return;
2262 /* Add the new endpoint at the end of the list. */
2263 list_add_tail(&virt_ep->bw_endpoint_list,
2264 &interval_bw->endpoints);
2267 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2268 struct xhci_virt_device *virt_dev,
2269 int old_active_eps)
2271 struct xhci_root_port_bw_info *rh_bw_info;
2272 if (!virt_dev->tt_info)
2273 return;
2275 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2276 if (old_active_eps == 0 &&
2277 virt_dev->tt_info->active_eps != 0) {
2278 rh_bw_info->num_active_tts += 1;
2279 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2280 } else if (old_active_eps != 0 &&
2281 virt_dev->tt_info->active_eps == 0) {
2282 rh_bw_info->num_active_tts -= 1;
2283 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2287 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2288 struct xhci_virt_device *virt_dev,
2289 struct xhci_container_ctx *in_ctx)
2291 struct xhci_bw_info ep_bw_info[31];
2292 int i;
2293 struct xhci_input_control_ctx *ctrl_ctx;
2294 int old_active_eps = 0;
2296 if (virt_dev->tt_info)
2297 old_active_eps = virt_dev->tt_info->active_eps;
2299 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2301 for (i = 0; i < 31; i++) {
2302 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2303 continue;
2305 /* Make a copy of the BW info in case we need to revert this */
2306 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2307 sizeof(ep_bw_info[i]));
2308 /* Drop the endpoint from the interval table if the endpoint is
2309 * being dropped or changed.
2311 if (EP_IS_DROPPED(ctrl_ctx, i))
2312 xhci_drop_ep_from_interval_table(xhci,
2313 &virt_dev->eps[i].bw_info,
2314 virt_dev->bw_table,
2315 virt_dev->udev,
2316 &virt_dev->eps[i],
2317 virt_dev->tt_info);
2319 /* Overwrite the information stored in the endpoints' bw_info */
2320 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2321 for (i = 0; i < 31; i++) {
2322 /* Add any changed or added endpoints to the interval table */
2323 if (EP_IS_ADDED(ctrl_ctx, i))
2324 xhci_add_ep_to_interval_table(xhci,
2325 &virt_dev->eps[i].bw_info,
2326 virt_dev->bw_table,
2327 virt_dev->udev,
2328 &virt_dev->eps[i],
2329 virt_dev->tt_info);
2332 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2333 /* Ok, this fits in the bandwidth we have.
2334 * Update the number of active TTs.
2336 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2337 return 0;
2340 /* We don't have enough bandwidth for this, revert the stored info. */
2341 for (i = 0; i < 31; i++) {
2342 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2343 continue;
2345 /* Drop the new copies of any added or changed endpoints from
2346 * the interval table.
2348 if (EP_IS_ADDED(ctrl_ctx, i)) {
2349 xhci_drop_ep_from_interval_table(xhci,
2350 &virt_dev->eps[i].bw_info,
2351 virt_dev->bw_table,
2352 virt_dev->udev,
2353 &virt_dev->eps[i],
2354 virt_dev->tt_info);
2356 /* Revert the endpoint back to its old information */
2357 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2358 sizeof(ep_bw_info[i]));
2359 /* Add any changed or dropped endpoints back into the table */
2360 if (EP_IS_DROPPED(ctrl_ctx, i))
2361 xhci_add_ep_to_interval_table(xhci,
2362 &virt_dev->eps[i].bw_info,
2363 virt_dev->bw_table,
2364 virt_dev->udev,
2365 &virt_dev->eps[i],
2366 virt_dev->tt_info);
2368 return -ENOMEM;
2372 /* Issue a configure endpoint command or evaluate context command
2373 * and wait for it to finish.
2375 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2376 struct usb_device *udev,
2377 struct xhci_command *command,
2378 bool ctx_change, bool must_succeed)
2380 int ret;
2381 int timeleft;
2382 unsigned long flags;
2383 struct xhci_container_ctx *in_ctx;
2384 struct completion *cmd_completion;
2385 u32 *cmd_status;
2386 struct xhci_virt_device *virt_dev;
2388 spin_lock_irqsave(&xhci->lock, flags);
2389 virt_dev = xhci->devs[udev->slot_id];
2391 if (command)
2392 in_ctx = command->in_ctx;
2393 else
2394 in_ctx = virt_dev->in_ctx;
2396 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2397 xhci_reserve_host_resources(xhci, in_ctx)) {
2398 spin_unlock_irqrestore(&xhci->lock, flags);
2399 xhci_warn(xhci, "Not enough host resources, "
2400 "active endpoint contexts = %u\n",
2401 xhci->num_active_eps);
2402 return -ENOMEM;
2404 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2405 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2406 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2407 xhci_free_host_resources(xhci, in_ctx);
2408 spin_unlock_irqrestore(&xhci->lock, flags);
2409 xhci_warn(xhci, "Not enough bandwidth\n");
2410 return -ENOMEM;
2413 if (command) {
2414 cmd_completion = command->completion;
2415 cmd_status = &command->status;
2416 command->command_trb = xhci->cmd_ring->enqueue;
2418 /* Enqueue pointer can be left pointing to the link TRB,
2419 * we must handle that
2421 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2422 command->command_trb =
2423 xhci->cmd_ring->enq_seg->next->trbs;
2425 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2426 } else {
2427 cmd_completion = &virt_dev->cmd_completion;
2428 cmd_status = &virt_dev->cmd_status;
2430 init_completion(cmd_completion);
2432 if (!ctx_change)
2433 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2434 udev->slot_id, must_succeed);
2435 else
2436 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2437 udev->slot_id);
2438 if (ret < 0) {
2439 if (command)
2440 list_del(&command->cmd_list);
2441 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2442 xhci_free_host_resources(xhci, in_ctx);
2443 spin_unlock_irqrestore(&xhci->lock, flags);
2444 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2445 return -ENOMEM;
2447 xhci_ring_cmd_db(xhci);
2448 spin_unlock_irqrestore(&xhci->lock, flags);
2450 /* Wait for the configure endpoint command to complete */
2451 timeleft = wait_for_completion_interruptible_timeout(
2452 cmd_completion,
2453 USB_CTRL_SET_TIMEOUT);
2454 if (timeleft <= 0) {
2455 xhci_warn(xhci, "%s while waiting for %s command\n",
2456 timeleft == 0 ? "Timeout" : "Signal",
2457 ctx_change == 0 ?
2458 "configure endpoint" :
2459 "evaluate context");
2460 /* FIXME cancel the configure endpoint command */
2461 return -ETIME;
2464 if (!ctx_change)
2465 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2466 else
2467 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2469 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2470 spin_lock_irqsave(&xhci->lock, flags);
2471 /* If the command failed, remove the reserved resources.
2472 * Otherwise, clean up the estimate to include dropped eps.
2474 if (ret)
2475 xhci_free_host_resources(xhci, in_ctx);
2476 else
2477 xhci_finish_resource_reservation(xhci, in_ctx);
2478 spin_unlock_irqrestore(&xhci->lock, flags);
2480 return ret;
2483 /* Called after one or more calls to xhci_add_endpoint() or
2484 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2485 * to call xhci_reset_bandwidth().
2487 * Since we are in the middle of changing either configuration or
2488 * installing a new alt setting, the USB core won't allow URBs to be
2489 * enqueued for any endpoint on the old config or interface. Nothing
2490 * else should be touching the xhci->devs[slot_id] structure, so we
2491 * don't need to take the xhci->lock for manipulating that.
2493 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2495 int i;
2496 int ret = 0;
2497 struct xhci_hcd *xhci;
2498 struct xhci_virt_device *virt_dev;
2499 struct xhci_input_control_ctx *ctrl_ctx;
2500 struct xhci_slot_ctx *slot_ctx;
2502 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2503 if (ret <= 0)
2504 return ret;
2505 xhci = hcd_to_xhci(hcd);
2506 if (xhci->xhc_state & XHCI_STATE_DYING)
2507 return -ENODEV;
2509 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2510 virt_dev = xhci->devs[udev->slot_id];
2512 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2513 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2514 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2515 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2516 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2518 /* Don't issue the command if there's no endpoints to update. */
2519 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2520 ctrl_ctx->drop_flags == 0)
2521 return 0;
2523 xhci_dbg(xhci, "New Input Control Context:\n");
2524 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2525 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2526 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2528 ret = xhci_configure_endpoint(xhci, udev, NULL,
2529 false, false);
2530 if (ret) {
2531 /* Callee should call reset_bandwidth() */
2532 return ret;
2535 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2536 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2537 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2539 /* Free any rings that were dropped, but not changed. */
2540 for (i = 1; i < 31; ++i) {
2541 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2542 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2543 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2545 xhci_zero_in_ctx(xhci, virt_dev);
2547 * Install any rings for completely new endpoints or changed endpoints,
2548 * and free or cache any old rings from changed endpoints.
2550 for (i = 1; i < 31; ++i) {
2551 if (!virt_dev->eps[i].new_ring)
2552 continue;
2553 /* Only cache or free the old ring if it exists.
2554 * It may not if this is the first add of an endpoint.
2556 if (virt_dev->eps[i].ring) {
2557 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2559 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2560 virt_dev->eps[i].new_ring = NULL;
2563 return ret;
2566 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2568 struct xhci_hcd *xhci;
2569 struct xhci_virt_device *virt_dev;
2570 int i, ret;
2572 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2573 if (ret <= 0)
2574 return;
2575 xhci = hcd_to_xhci(hcd);
2577 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2578 virt_dev = xhci->devs[udev->slot_id];
2579 /* Free any rings allocated for added endpoints */
2580 for (i = 0; i < 31; ++i) {
2581 if (virt_dev->eps[i].new_ring) {
2582 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2583 virt_dev->eps[i].new_ring = NULL;
2586 xhci_zero_in_ctx(xhci, virt_dev);
2589 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2590 struct xhci_container_ctx *in_ctx,
2591 struct xhci_container_ctx *out_ctx,
2592 u32 add_flags, u32 drop_flags)
2594 struct xhci_input_control_ctx *ctrl_ctx;
2595 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2596 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2597 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2598 xhci_slot_copy(xhci, in_ctx, out_ctx);
2599 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2601 xhci_dbg(xhci, "Input Context:\n");
2602 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2605 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2606 unsigned int slot_id, unsigned int ep_index,
2607 struct xhci_dequeue_state *deq_state)
2609 struct xhci_container_ctx *in_ctx;
2610 struct xhci_ep_ctx *ep_ctx;
2611 u32 added_ctxs;
2612 dma_addr_t addr;
2614 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2615 xhci->devs[slot_id]->out_ctx, ep_index);
2616 in_ctx = xhci->devs[slot_id]->in_ctx;
2617 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2618 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2619 deq_state->new_deq_ptr);
2620 if (addr == 0) {
2621 xhci_warn(xhci, "WARN Cannot submit config ep after "
2622 "reset ep command\n");
2623 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2624 deq_state->new_deq_seg,
2625 deq_state->new_deq_ptr);
2626 return;
2628 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2630 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2631 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2632 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2635 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2636 struct usb_device *udev, unsigned int ep_index)
2638 struct xhci_dequeue_state deq_state;
2639 struct xhci_virt_ep *ep;
2641 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2642 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2643 /* We need to move the HW's dequeue pointer past this TD,
2644 * or it will attempt to resend it on the next doorbell ring.
2646 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2647 ep_index, ep->stopped_stream, ep->stopped_td,
2648 &deq_state);
2650 /* HW with the reset endpoint quirk will use the saved dequeue state to
2651 * issue a configure endpoint command later.
2653 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2654 xhci_dbg(xhci, "Queueing new dequeue state\n");
2655 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2656 ep_index, ep->stopped_stream, &deq_state);
2657 } else {
2658 /* Better hope no one uses the input context between now and the
2659 * reset endpoint completion!
2660 * XXX: No idea how this hardware will react when stream rings
2661 * are enabled.
2663 xhci_dbg(xhci, "Setting up input context for "
2664 "configure endpoint command\n");
2665 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2666 ep_index, &deq_state);
2670 /* Deal with stalled endpoints. The core should have sent the control message
2671 * to clear the halt condition. However, we need to make the xHCI hardware
2672 * reset its sequence number, since a device will expect a sequence number of
2673 * zero after the halt condition is cleared.
2674 * Context: in_interrupt
2676 void xhci_endpoint_reset(struct usb_hcd *hcd,
2677 struct usb_host_endpoint *ep)
2679 struct xhci_hcd *xhci;
2680 struct usb_device *udev;
2681 unsigned int ep_index;
2682 unsigned long flags;
2683 int ret;
2684 struct xhci_virt_ep *virt_ep;
2686 xhci = hcd_to_xhci(hcd);
2687 udev = (struct usb_device *) ep->hcpriv;
2688 /* Called with a root hub endpoint (or an endpoint that wasn't added
2689 * with xhci_add_endpoint()
2691 if (!ep->hcpriv)
2692 return;
2693 ep_index = xhci_get_endpoint_index(&ep->desc);
2694 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2695 if (!virt_ep->stopped_td) {
2696 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2697 ep->desc.bEndpointAddress);
2698 return;
2700 if (usb_endpoint_xfer_control(&ep->desc)) {
2701 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2702 return;
2705 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2706 spin_lock_irqsave(&xhci->lock, flags);
2707 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2709 * Can't change the ring dequeue pointer until it's transitioned to the
2710 * stopped state, which is only upon a successful reset endpoint
2711 * command. Better hope that last command worked!
2713 if (!ret) {
2714 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2715 kfree(virt_ep->stopped_td);
2716 xhci_ring_cmd_db(xhci);
2718 virt_ep->stopped_td = NULL;
2719 virt_ep->stopped_trb = NULL;
2720 virt_ep->stopped_stream = 0;
2721 spin_unlock_irqrestore(&xhci->lock, flags);
2723 if (ret)
2724 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2727 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2728 struct usb_device *udev, struct usb_host_endpoint *ep,
2729 unsigned int slot_id)
2731 int ret;
2732 unsigned int ep_index;
2733 unsigned int ep_state;
2735 if (!ep)
2736 return -EINVAL;
2737 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2738 if (ret <= 0)
2739 return -EINVAL;
2740 if (ep->ss_ep_comp.bmAttributes == 0) {
2741 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2742 " descriptor for ep 0x%x does not support streams\n",
2743 ep->desc.bEndpointAddress);
2744 return -EINVAL;
2747 ep_index = xhci_get_endpoint_index(&ep->desc);
2748 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2749 if (ep_state & EP_HAS_STREAMS ||
2750 ep_state & EP_GETTING_STREAMS) {
2751 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2752 "already has streams set up.\n",
2753 ep->desc.bEndpointAddress);
2754 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2755 "dynamic stream context array reallocation.\n");
2756 return -EINVAL;
2758 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2759 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2760 "endpoint 0x%x; URBs are pending.\n",
2761 ep->desc.bEndpointAddress);
2762 return -EINVAL;
2764 return 0;
2767 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2768 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2770 unsigned int max_streams;
2772 /* The stream context array size must be a power of two */
2773 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2775 * Find out how many primary stream array entries the host controller
2776 * supports. Later we may use secondary stream arrays (similar to 2nd
2777 * level page entries), but that's an optional feature for xHCI host
2778 * controllers. xHCs must support at least 4 stream IDs.
2780 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2781 if (*num_stream_ctxs > max_streams) {
2782 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2783 max_streams);
2784 *num_stream_ctxs = max_streams;
2785 *num_streams = max_streams;
2789 /* Returns an error code if one of the endpoint already has streams.
2790 * This does not change any data structures, it only checks and gathers
2791 * information.
2793 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2794 struct usb_device *udev,
2795 struct usb_host_endpoint **eps, unsigned int num_eps,
2796 unsigned int *num_streams, u32 *changed_ep_bitmask)
2798 unsigned int max_streams;
2799 unsigned int endpoint_flag;
2800 int i;
2801 int ret;
2803 for (i = 0; i < num_eps; i++) {
2804 ret = xhci_check_streams_endpoint(xhci, udev,
2805 eps[i], udev->slot_id);
2806 if (ret < 0)
2807 return ret;
2809 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2810 if (max_streams < (*num_streams - 1)) {
2811 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2812 eps[i]->desc.bEndpointAddress,
2813 max_streams);
2814 *num_streams = max_streams+1;
2817 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2818 if (*changed_ep_bitmask & endpoint_flag)
2819 return -EINVAL;
2820 *changed_ep_bitmask |= endpoint_flag;
2822 return 0;
2825 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2826 struct usb_device *udev,
2827 struct usb_host_endpoint **eps, unsigned int num_eps)
2829 u32 changed_ep_bitmask = 0;
2830 unsigned int slot_id;
2831 unsigned int ep_index;
2832 unsigned int ep_state;
2833 int i;
2835 slot_id = udev->slot_id;
2836 if (!xhci->devs[slot_id])
2837 return 0;
2839 for (i = 0; i < num_eps; i++) {
2840 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2841 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2842 /* Are streams already being freed for the endpoint? */
2843 if (ep_state & EP_GETTING_NO_STREAMS) {
2844 xhci_warn(xhci, "WARN Can't disable streams for "
2845 "endpoint 0x%x\n, "
2846 "streams are being disabled already.",
2847 eps[i]->desc.bEndpointAddress);
2848 return 0;
2850 /* Are there actually any streams to free? */
2851 if (!(ep_state & EP_HAS_STREAMS) &&
2852 !(ep_state & EP_GETTING_STREAMS)) {
2853 xhci_warn(xhci, "WARN Can't disable streams for "
2854 "endpoint 0x%x\n, "
2855 "streams are already disabled!",
2856 eps[i]->desc.bEndpointAddress);
2857 xhci_warn(xhci, "WARN xhci_free_streams() called "
2858 "with non-streams endpoint\n");
2859 return 0;
2861 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2863 return changed_ep_bitmask;
2867 * The USB device drivers use this function (though the HCD interface in USB
2868 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2869 * coordinate mass storage command queueing across multiple endpoints (basically
2870 * a stream ID == a task ID).
2872 * Setting up streams involves allocating the same size stream context array
2873 * for each endpoint and issuing a configure endpoint command for all endpoints.
2875 * Don't allow the call to succeed if one endpoint only supports one stream
2876 * (which means it doesn't support streams at all).
2878 * Drivers may get less stream IDs than they asked for, if the host controller
2879 * hardware or endpoints claim they can't support the number of requested
2880 * stream IDs.
2882 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2883 struct usb_host_endpoint **eps, unsigned int num_eps,
2884 unsigned int num_streams, gfp_t mem_flags)
2886 int i, ret;
2887 struct xhci_hcd *xhci;
2888 struct xhci_virt_device *vdev;
2889 struct xhci_command *config_cmd;
2890 unsigned int ep_index;
2891 unsigned int num_stream_ctxs;
2892 unsigned long flags;
2893 u32 changed_ep_bitmask = 0;
2895 if (!eps)
2896 return -EINVAL;
2898 /* Add one to the number of streams requested to account for
2899 * stream 0 that is reserved for xHCI usage.
2901 num_streams += 1;
2902 xhci = hcd_to_xhci(hcd);
2903 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2904 num_streams);
2906 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2907 if (!config_cmd) {
2908 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2909 return -ENOMEM;
2912 /* Check to make sure all endpoints are not already configured for
2913 * streams. While we're at it, find the maximum number of streams that
2914 * all the endpoints will support and check for duplicate endpoints.
2916 spin_lock_irqsave(&xhci->lock, flags);
2917 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2918 num_eps, &num_streams, &changed_ep_bitmask);
2919 if (ret < 0) {
2920 xhci_free_command(xhci, config_cmd);
2921 spin_unlock_irqrestore(&xhci->lock, flags);
2922 return ret;
2924 if (num_streams <= 1) {
2925 xhci_warn(xhci, "WARN: endpoints can't handle "
2926 "more than one stream.\n");
2927 xhci_free_command(xhci, config_cmd);
2928 spin_unlock_irqrestore(&xhci->lock, flags);
2929 return -EINVAL;
2931 vdev = xhci->devs[udev->slot_id];
2932 /* Mark each endpoint as being in transition, so
2933 * xhci_urb_enqueue() will reject all URBs.
2935 for (i = 0; i < num_eps; i++) {
2936 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2937 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2939 spin_unlock_irqrestore(&xhci->lock, flags);
2941 /* Setup internal data structures and allocate HW data structures for
2942 * streams (but don't install the HW structures in the input context
2943 * until we're sure all memory allocation succeeded).
2945 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2946 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2947 num_stream_ctxs, num_streams);
2949 for (i = 0; i < num_eps; i++) {
2950 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2951 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2952 num_stream_ctxs,
2953 num_streams, mem_flags);
2954 if (!vdev->eps[ep_index].stream_info)
2955 goto cleanup;
2956 /* Set maxPstreams in endpoint context and update deq ptr to
2957 * point to stream context array. FIXME
2961 /* Set up the input context for a configure endpoint command. */
2962 for (i = 0; i < num_eps; i++) {
2963 struct xhci_ep_ctx *ep_ctx;
2965 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2966 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2968 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2969 vdev->out_ctx, ep_index);
2970 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2971 vdev->eps[ep_index].stream_info);
2973 /* Tell the HW to drop its old copy of the endpoint context info
2974 * and add the updated copy from the input context.
2976 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2977 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2979 /* Issue and wait for the configure endpoint command */
2980 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2981 false, false);
2983 /* xHC rejected the configure endpoint command for some reason, so we
2984 * leave the old ring intact and free our internal streams data
2985 * structure.
2987 if (ret < 0)
2988 goto cleanup;
2990 spin_lock_irqsave(&xhci->lock, flags);
2991 for (i = 0; i < num_eps; i++) {
2992 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2993 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2994 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2995 udev->slot_id, ep_index);
2996 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2998 xhci_free_command(xhci, config_cmd);
2999 spin_unlock_irqrestore(&xhci->lock, flags);
3001 /* Subtract 1 for stream 0, which drivers can't use */
3002 return num_streams - 1;
3004 cleanup:
3005 /* If it didn't work, free the streams! */
3006 for (i = 0; i < num_eps; i++) {
3007 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3008 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3009 vdev->eps[ep_index].stream_info = NULL;
3010 /* FIXME Unset maxPstreams in endpoint context and
3011 * update deq ptr to point to normal string ring.
3013 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3014 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3015 xhci_endpoint_zero(xhci, vdev, eps[i]);
3017 xhci_free_command(xhci, config_cmd);
3018 return -ENOMEM;
3021 /* Transition the endpoint from using streams to being a "normal" endpoint
3022 * without streams.
3024 * Modify the endpoint context state, submit a configure endpoint command,
3025 * and free all endpoint rings for streams if that completes successfully.
3027 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3028 struct usb_host_endpoint **eps, unsigned int num_eps,
3029 gfp_t mem_flags)
3031 int i, ret;
3032 struct xhci_hcd *xhci;
3033 struct xhci_virt_device *vdev;
3034 struct xhci_command *command;
3035 unsigned int ep_index;
3036 unsigned long flags;
3037 u32 changed_ep_bitmask;
3039 xhci = hcd_to_xhci(hcd);
3040 vdev = xhci->devs[udev->slot_id];
3042 /* Set up a configure endpoint command to remove the streams rings */
3043 spin_lock_irqsave(&xhci->lock, flags);
3044 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3045 udev, eps, num_eps);
3046 if (changed_ep_bitmask == 0) {
3047 spin_unlock_irqrestore(&xhci->lock, flags);
3048 return -EINVAL;
3051 /* Use the xhci_command structure from the first endpoint. We may have
3052 * allocated too many, but the driver may call xhci_free_streams() for
3053 * each endpoint it grouped into one call to xhci_alloc_streams().
3055 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3056 command = vdev->eps[ep_index].stream_info->free_streams_command;
3057 for (i = 0; i < num_eps; i++) {
3058 struct xhci_ep_ctx *ep_ctx;
3060 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3061 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3062 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3063 EP_GETTING_NO_STREAMS;
3065 xhci_endpoint_copy(xhci, command->in_ctx,
3066 vdev->out_ctx, ep_index);
3067 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3068 &vdev->eps[ep_index]);
3070 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3071 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3072 spin_unlock_irqrestore(&xhci->lock, flags);
3074 /* Issue and wait for the configure endpoint command,
3075 * which must succeed.
3077 ret = xhci_configure_endpoint(xhci, udev, command,
3078 false, true);
3080 /* xHC rejected the configure endpoint command for some reason, so we
3081 * leave the streams rings intact.
3083 if (ret < 0)
3084 return ret;
3086 spin_lock_irqsave(&xhci->lock, flags);
3087 for (i = 0; i < num_eps; i++) {
3088 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3089 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3090 vdev->eps[ep_index].stream_info = NULL;
3091 /* FIXME Unset maxPstreams in endpoint context and
3092 * update deq ptr to point to normal string ring.
3094 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3095 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3097 spin_unlock_irqrestore(&xhci->lock, flags);
3099 return 0;
3103 * Deletes endpoint resources for endpoints that were active before a Reset
3104 * Device command, or a Disable Slot command. The Reset Device command leaves
3105 * the control endpoint intact, whereas the Disable Slot command deletes it.
3107 * Must be called with xhci->lock held.
3109 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3110 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3112 int i;
3113 unsigned int num_dropped_eps = 0;
3114 unsigned int drop_flags = 0;
3116 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3117 if (virt_dev->eps[i].ring) {
3118 drop_flags |= 1 << i;
3119 num_dropped_eps++;
3122 xhci->num_active_eps -= num_dropped_eps;
3123 if (num_dropped_eps)
3124 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3125 "%u now active.\n",
3126 num_dropped_eps, drop_flags,
3127 xhci->num_active_eps);
3131 * This submits a Reset Device Command, which will set the device state to 0,
3132 * set the device address to 0, and disable all the endpoints except the default
3133 * control endpoint. The USB core should come back and call
3134 * xhci_address_device(), and then re-set up the configuration. If this is
3135 * called because of a usb_reset_and_verify_device(), then the old alternate
3136 * settings will be re-installed through the normal bandwidth allocation
3137 * functions.
3139 * Wait for the Reset Device command to finish. Remove all structures
3140 * associated with the endpoints that were disabled. Clear the input device
3141 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3143 * If the virt_dev to be reset does not exist or does not match the udev,
3144 * it means the device is lost, possibly due to the xHC restore error and
3145 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3146 * re-allocate the device.
3148 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3150 int ret, i;
3151 unsigned long flags;
3152 struct xhci_hcd *xhci;
3153 unsigned int slot_id;
3154 struct xhci_virt_device *virt_dev;
3155 struct xhci_command *reset_device_cmd;
3156 int timeleft;
3157 int last_freed_endpoint;
3158 struct xhci_slot_ctx *slot_ctx;
3159 int old_active_eps = 0;
3161 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3162 if (ret <= 0)
3163 return ret;
3164 xhci = hcd_to_xhci(hcd);
3165 slot_id = udev->slot_id;
3166 virt_dev = xhci->devs[slot_id];
3167 if (!virt_dev) {
3168 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3169 "not exist. Re-allocate the device\n", slot_id);
3170 ret = xhci_alloc_dev(hcd, udev);
3171 if (ret == 1)
3172 return 0;
3173 else
3174 return -EINVAL;
3177 if (virt_dev->udev != udev) {
3178 /* If the virt_dev and the udev does not match, this virt_dev
3179 * may belong to another udev.
3180 * Re-allocate the device.
3182 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3183 "not match the udev. Re-allocate the device\n",
3184 slot_id);
3185 ret = xhci_alloc_dev(hcd, udev);
3186 if (ret == 1)
3187 return 0;
3188 else
3189 return -EINVAL;
3192 /* If device is not setup, there is no point in resetting it */
3193 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3194 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3195 SLOT_STATE_DISABLED)
3196 return 0;
3198 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3199 /* Allocate the command structure that holds the struct completion.
3200 * Assume we're in process context, since the normal device reset
3201 * process has to wait for the device anyway. Storage devices are
3202 * reset as part of error handling, so use GFP_NOIO instead of
3203 * GFP_KERNEL.
3205 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3206 if (!reset_device_cmd) {
3207 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3208 return -ENOMEM;
3211 /* Attempt to submit the Reset Device command to the command ring */
3212 spin_lock_irqsave(&xhci->lock, flags);
3213 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3215 /* Enqueue pointer can be left pointing to the link TRB,
3216 * we must handle that
3218 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3219 reset_device_cmd->command_trb =
3220 xhci->cmd_ring->enq_seg->next->trbs;
3222 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3223 ret = xhci_queue_reset_device(xhci, slot_id);
3224 if (ret) {
3225 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3226 list_del(&reset_device_cmd->cmd_list);
3227 spin_unlock_irqrestore(&xhci->lock, flags);
3228 goto command_cleanup;
3230 xhci_ring_cmd_db(xhci);
3231 spin_unlock_irqrestore(&xhci->lock, flags);
3233 /* Wait for the Reset Device command to finish */
3234 timeleft = wait_for_completion_interruptible_timeout(
3235 reset_device_cmd->completion,
3236 USB_CTRL_SET_TIMEOUT);
3237 if (timeleft <= 0) {
3238 xhci_warn(xhci, "%s while waiting for reset device command\n",
3239 timeleft == 0 ? "Timeout" : "Signal");
3240 spin_lock_irqsave(&xhci->lock, flags);
3241 /* The timeout might have raced with the event ring handler, so
3242 * only delete from the list if the item isn't poisoned.
3244 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3245 list_del(&reset_device_cmd->cmd_list);
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247 ret = -ETIME;
3248 goto command_cleanup;
3251 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3252 * unless we tried to reset a slot ID that wasn't enabled,
3253 * or the device wasn't in the addressed or configured state.
3255 ret = reset_device_cmd->status;
3256 switch (ret) {
3257 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3258 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3259 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3260 slot_id,
3261 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3262 xhci_info(xhci, "Not freeing device rings.\n");
3263 /* Don't treat this as an error. May change my mind later. */
3264 ret = 0;
3265 goto command_cleanup;
3266 case COMP_SUCCESS:
3267 xhci_dbg(xhci, "Successful reset device command.\n");
3268 break;
3269 default:
3270 if (xhci_is_vendor_info_code(xhci, ret))
3271 break;
3272 xhci_warn(xhci, "Unknown completion code %u for "
3273 "reset device command.\n", ret);
3274 ret = -EINVAL;
3275 goto command_cleanup;
3278 /* Free up host controller endpoint resources */
3279 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3280 spin_lock_irqsave(&xhci->lock, flags);
3281 /* Don't delete the default control endpoint resources */
3282 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3283 spin_unlock_irqrestore(&xhci->lock, flags);
3286 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3287 last_freed_endpoint = 1;
3288 for (i = 1; i < 31; ++i) {
3289 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3291 if (ep->ep_state & EP_HAS_STREAMS) {
3292 xhci_free_stream_info(xhci, ep->stream_info);
3293 ep->stream_info = NULL;
3294 ep->ep_state &= ~EP_HAS_STREAMS;
3297 if (ep->ring) {
3298 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3299 last_freed_endpoint = i;
3301 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3302 xhci_drop_ep_from_interval_table(xhci,
3303 &virt_dev->eps[i].bw_info,
3304 virt_dev->bw_table,
3305 udev,
3306 &virt_dev->eps[i],
3307 virt_dev->tt_info);
3308 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3310 /* If necessary, update the number of active TTs on this root port */
3311 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3313 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3314 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3315 ret = 0;
3317 command_cleanup:
3318 xhci_free_command(xhci, reset_device_cmd);
3319 return ret;
3323 * At this point, the struct usb_device is about to go away, the device has
3324 * disconnected, and all traffic has been stopped and the endpoints have been
3325 * disabled. Free any HC data structures associated with that device.
3327 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3330 struct xhci_virt_device *virt_dev;
3331 unsigned long flags;
3332 u32 state;
3333 int i, ret;
3335 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3336 /* If the host is halted due to driver unload, we still need to free the
3337 * device.
3339 if (ret <= 0 && ret != -ENODEV)
3340 return;
3342 virt_dev = xhci->devs[udev->slot_id];
3344 /* Stop any wayward timer functions (which may grab the lock) */
3345 for (i = 0; i < 31; ++i) {
3346 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3347 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3350 if (udev->usb2_hw_lpm_enabled) {
3351 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3352 udev->usb2_hw_lpm_enabled = 0;
3355 spin_lock_irqsave(&xhci->lock, flags);
3356 /* Don't disable the slot if the host controller is dead. */
3357 state = xhci_readl(xhci, &xhci->op_regs->status);
3358 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3359 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3360 xhci_free_virt_device(xhci, udev->slot_id);
3361 spin_unlock_irqrestore(&xhci->lock, flags);
3362 return;
3365 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3366 spin_unlock_irqrestore(&xhci->lock, flags);
3367 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3368 return;
3370 xhci_ring_cmd_db(xhci);
3371 spin_unlock_irqrestore(&xhci->lock, flags);
3373 * Event command completion handler will free any data structures
3374 * associated with the slot. XXX Can free sleep?
3379 * Checks if we have enough host controller resources for the default control
3380 * endpoint.
3382 * Must be called with xhci->lock held.
3384 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3386 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3387 xhci_dbg(xhci, "Not enough ep ctxs: "
3388 "%u active, need to add 1, limit is %u.\n",
3389 xhci->num_active_eps, xhci->limit_active_eps);
3390 return -ENOMEM;
3392 xhci->num_active_eps += 1;
3393 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3394 xhci->num_active_eps);
3395 return 0;
3400 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3401 * timed out, or allocating memory failed. Returns 1 on success.
3403 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3406 unsigned long flags;
3407 int timeleft;
3408 int ret;
3410 spin_lock_irqsave(&xhci->lock, flags);
3411 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3412 if (ret) {
3413 spin_unlock_irqrestore(&xhci->lock, flags);
3414 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3415 return 0;
3417 xhci_ring_cmd_db(xhci);
3418 spin_unlock_irqrestore(&xhci->lock, flags);
3420 /* XXX: how much time for xHC slot assignment? */
3421 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3422 USB_CTRL_SET_TIMEOUT);
3423 if (timeleft <= 0) {
3424 xhci_warn(xhci, "%s while waiting for a slot\n",
3425 timeleft == 0 ? "Timeout" : "Signal");
3426 /* FIXME cancel the enable slot request */
3427 return 0;
3430 if (!xhci->slot_id) {
3431 xhci_err(xhci, "Error while assigning device slot ID\n");
3432 return 0;
3435 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3436 spin_lock_irqsave(&xhci->lock, flags);
3437 ret = xhci_reserve_host_control_ep_resources(xhci);
3438 if (ret) {
3439 spin_unlock_irqrestore(&xhci->lock, flags);
3440 xhci_warn(xhci, "Not enough host resources, "
3441 "active endpoint contexts = %u\n",
3442 xhci->num_active_eps);
3443 goto disable_slot;
3445 spin_unlock_irqrestore(&xhci->lock, flags);
3447 /* Use GFP_NOIO, since this function can be called from
3448 * xhci_discover_or_reset_device(), which may be called as part of
3449 * mass storage driver error handling.
3451 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3452 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3453 goto disable_slot;
3455 udev->slot_id = xhci->slot_id;
3456 /* Is this a LS or FS device under a HS hub? */
3457 /* Hub or peripherial? */
3458 return 1;
3460 disable_slot:
3461 /* Disable slot, if we can do it without mem alloc */
3462 spin_lock_irqsave(&xhci->lock, flags);
3463 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3464 xhci_ring_cmd_db(xhci);
3465 spin_unlock_irqrestore(&xhci->lock, flags);
3466 return 0;
3470 * Issue an Address Device command (which will issue a SetAddress request to
3471 * the device).
3472 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3473 * we should only issue and wait on one address command at the same time.
3475 * We add one to the device address issued by the hardware because the USB core
3476 * uses address 1 for the root hubs (even though they're not really devices).
3478 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3480 unsigned long flags;
3481 int timeleft;
3482 struct xhci_virt_device *virt_dev;
3483 int ret = 0;
3484 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3485 struct xhci_slot_ctx *slot_ctx;
3486 struct xhci_input_control_ctx *ctrl_ctx;
3487 u64 temp_64;
3489 if (!udev->slot_id) {
3490 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3491 return -EINVAL;
3494 virt_dev = xhci->devs[udev->slot_id];
3496 if (WARN_ON(!virt_dev)) {
3498 * In plug/unplug torture test with an NEC controller,
3499 * a zero-dereference was observed once due to virt_dev = 0.
3500 * Print useful debug rather than crash if it is observed again!
3502 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3503 udev->slot_id);
3504 return -EINVAL;
3507 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3509 * If this is the first Set Address since device plug-in or
3510 * virt_device realloaction after a resume with an xHCI power loss,
3511 * then set up the slot context.
3513 if (!slot_ctx->dev_info)
3514 xhci_setup_addressable_virt_dev(xhci, udev);
3515 /* Otherwise, update the control endpoint ring enqueue pointer. */
3516 else
3517 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3518 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3519 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3520 ctrl_ctx->drop_flags = 0;
3522 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3523 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3525 spin_lock_irqsave(&xhci->lock, flags);
3526 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3527 udev->slot_id);
3528 if (ret) {
3529 spin_unlock_irqrestore(&xhci->lock, flags);
3530 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531 return ret;
3533 xhci_ring_cmd_db(xhci);
3534 spin_unlock_irqrestore(&xhci->lock, flags);
3536 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3537 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3538 USB_CTRL_SET_TIMEOUT);
3539 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3540 * the SetAddress() "recovery interval" required by USB and aborting the
3541 * command on a timeout.
3543 if (timeleft <= 0) {
3544 xhci_warn(xhci, "%s while waiting for address device command\n",
3545 timeleft == 0 ? "Timeout" : "Signal");
3546 /* FIXME cancel the address device command */
3547 return -ETIME;
3550 switch (virt_dev->cmd_status) {
3551 case COMP_CTX_STATE:
3552 case COMP_EBADSLT:
3553 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3554 udev->slot_id);
3555 ret = -EINVAL;
3556 break;
3557 case COMP_TX_ERR:
3558 dev_warn(&udev->dev, "Device not responding to set address.\n");
3559 ret = -EPROTO;
3560 break;
3561 case COMP_DEV_ERR:
3562 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3563 "device command.\n");
3564 ret = -ENODEV;
3565 break;
3566 case COMP_SUCCESS:
3567 xhci_dbg(xhci, "Successful Address Device command\n");
3568 break;
3569 default:
3570 xhci_err(xhci, "ERROR: unexpected command completion "
3571 "code 0x%x.\n", virt_dev->cmd_status);
3572 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3573 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3574 ret = -EINVAL;
3575 break;
3577 if (ret) {
3578 return ret;
3580 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3581 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3582 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3583 udev->slot_id,
3584 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3585 (unsigned long long)
3586 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3587 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3588 (unsigned long long)virt_dev->out_ctx->dma);
3589 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3590 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3591 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3592 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3594 * USB core uses address 1 for the roothubs, so we add one to the
3595 * address given back to us by the HC.
3597 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3598 /* Use kernel assigned address for devices; store xHC assigned
3599 * address locally. */
3600 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3601 + 1;
3602 /* Zero the input context control for later use */
3603 ctrl_ctx->add_flags = 0;
3604 ctrl_ctx->drop_flags = 0;
3606 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3608 return 0;
3611 #ifdef CONFIG_USB_SUSPEND
3613 /* BESL to HIRD Encoding array for USB2 LPM */
3614 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3615 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3617 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3618 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3620 int hird;
3622 if (use_besl) {
3623 for (hird = 0; hird < 16; hird++) {
3624 if (xhci_besl_encoding[hird] >= u2del)
3625 break;
3627 } else {
3628 if (u2del <= 50)
3629 hird = 0;
3630 else
3631 hird = (u2del - 51) / 75 + 1;
3633 if (hird > 15)
3634 hird = 15;
3637 return hird;
3640 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3641 struct usb_device *udev)
3643 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3644 struct dev_info *dev_info;
3645 __le32 __iomem **port_array;
3646 __le32 __iomem *addr, *pm_addr;
3647 u32 temp, dev_id;
3648 unsigned int port_num;
3649 unsigned long flags;
3650 int u2del, hird;
3651 int ret;
3653 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3654 !udev->lpm_capable)
3655 return -EINVAL;
3657 /* we only support lpm for non-hub device connected to root hub yet */
3658 if (!udev->parent || udev->parent->parent ||
3659 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3660 return -EINVAL;
3662 spin_lock_irqsave(&xhci->lock, flags);
3664 /* Look for devices in lpm_failed_devs list */
3665 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3666 le16_to_cpu(udev->descriptor.idProduct);
3667 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3668 if (dev_info->dev_id == dev_id) {
3669 ret = -EINVAL;
3670 goto finish;
3674 port_array = xhci->usb2_ports;
3675 port_num = udev->portnum - 1;
3677 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3678 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3679 ret = -EINVAL;
3680 goto finish;
3684 * Test USB 2.0 software LPM.
3685 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3686 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3687 * in the June 2011 errata release.
3689 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3691 * Set L1 Device Slot and HIRD/BESL.
3692 * Check device's USB 2.0 extension descriptor to determine whether
3693 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3695 pm_addr = port_array[port_num] + 1;
3696 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3697 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3698 hird = xhci_calculate_hird_besl(u2del, 1);
3699 else
3700 hird = xhci_calculate_hird_besl(u2del, 0);
3702 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3703 xhci_writel(xhci, temp, pm_addr);
3705 /* Set port link state to U2(L1) */
3706 addr = port_array[port_num];
3707 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3709 /* wait for ACK */
3710 spin_unlock_irqrestore(&xhci->lock, flags);
3711 msleep(10);
3712 spin_lock_irqsave(&xhci->lock, flags);
3714 /* Check L1 Status */
3715 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3716 if (ret != -ETIMEDOUT) {
3717 /* enter L1 successfully */
3718 temp = xhci_readl(xhci, addr);
3719 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3720 port_num, temp);
3721 ret = 0;
3722 } else {
3723 temp = xhci_readl(xhci, pm_addr);
3724 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3725 port_num, temp & PORT_L1S_MASK);
3726 ret = -EINVAL;
3729 /* Resume the port */
3730 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3732 spin_unlock_irqrestore(&xhci->lock, flags);
3733 msleep(10);
3734 spin_lock_irqsave(&xhci->lock, flags);
3736 /* Clear PLC */
3737 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3739 /* Check PORTSC to make sure the device is in the right state */
3740 if (!ret) {
3741 temp = xhci_readl(xhci, addr);
3742 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3743 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3744 (temp & PORT_PLS_MASK) != XDEV_U0) {
3745 xhci_dbg(xhci, "port L1 resume fail\n");
3746 ret = -EINVAL;
3750 if (ret) {
3751 /* Insert dev to lpm_failed_devs list */
3752 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3753 "re-enumerate\n");
3754 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3755 if (!dev_info) {
3756 ret = -ENOMEM;
3757 goto finish;
3759 dev_info->dev_id = dev_id;
3760 INIT_LIST_HEAD(&dev_info->list);
3761 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3762 } else {
3763 xhci_ring_device(xhci, udev->slot_id);
3766 finish:
3767 spin_unlock_irqrestore(&xhci->lock, flags);
3768 return ret;
3771 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3772 struct usb_device *udev, int enable)
3774 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3775 __le32 __iomem **port_array;
3776 __le32 __iomem *pm_addr;
3777 u32 temp;
3778 unsigned int port_num;
3779 unsigned long flags;
3780 int u2del, hird;
3782 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3783 !udev->lpm_capable)
3784 return -EPERM;
3786 if (!udev->parent || udev->parent->parent ||
3787 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3788 return -EPERM;
3790 if (udev->usb2_hw_lpm_capable != 1)
3791 return -EPERM;
3793 spin_lock_irqsave(&xhci->lock, flags);
3795 port_array = xhci->usb2_ports;
3796 port_num = udev->portnum - 1;
3797 pm_addr = port_array[port_num] + 1;
3798 temp = xhci_readl(xhci, pm_addr);
3800 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3801 enable ? "enable" : "disable", port_num);
3803 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3804 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3805 hird = xhci_calculate_hird_besl(u2del, 1);
3806 else
3807 hird = xhci_calculate_hird_besl(u2del, 0);
3809 if (enable) {
3810 temp &= ~PORT_HIRD_MASK;
3811 temp |= PORT_HIRD(hird) | PORT_RWE;
3812 xhci_writel(xhci, temp, pm_addr);
3813 temp = xhci_readl(xhci, pm_addr);
3814 temp |= PORT_HLE;
3815 xhci_writel(xhci, temp, pm_addr);
3816 } else {
3817 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3818 xhci_writel(xhci, temp, pm_addr);
3821 spin_unlock_irqrestore(&xhci->lock, flags);
3822 return 0;
3825 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3827 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3828 int ret;
3830 ret = xhci_usb2_software_lpm_test(hcd, udev);
3831 if (!ret) {
3832 xhci_dbg(xhci, "software LPM test succeed\n");
3833 if (xhci->hw_lpm_support == 1) {
3834 udev->usb2_hw_lpm_capable = 1;
3835 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3836 if (!ret)
3837 udev->usb2_hw_lpm_enabled = 1;
3841 return 0;
3844 #else
3846 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3847 struct usb_device *udev, int enable)
3849 return 0;
3852 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3854 return 0;
3857 #endif /* CONFIG_USB_SUSPEND */
3859 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3860 * internal data structures for the device.
3862 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3863 struct usb_tt *tt, gfp_t mem_flags)
3865 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3866 struct xhci_virt_device *vdev;
3867 struct xhci_command *config_cmd;
3868 struct xhci_input_control_ctx *ctrl_ctx;
3869 struct xhci_slot_ctx *slot_ctx;
3870 unsigned long flags;
3871 unsigned think_time;
3872 int ret;
3874 /* Ignore root hubs */
3875 if (!hdev->parent)
3876 return 0;
3878 vdev = xhci->devs[hdev->slot_id];
3879 if (!vdev) {
3880 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3881 return -EINVAL;
3883 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3884 if (!config_cmd) {
3885 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3886 return -ENOMEM;
3889 spin_lock_irqsave(&xhci->lock, flags);
3890 if (hdev->speed == USB_SPEED_HIGH &&
3891 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3892 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3893 xhci_free_command(xhci, config_cmd);
3894 spin_unlock_irqrestore(&xhci->lock, flags);
3895 return -ENOMEM;
3898 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3899 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3900 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3901 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3902 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3903 if (tt->multi)
3904 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3905 if (xhci->hci_version > 0x95) {
3906 xhci_dbg(xhci, "xHCI version %x needs hub "
3907 "TT think time and number of ports\n",
3908 (unsigned int) xhci->hci_version);
3909 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3910 /* Set TT think time - convert from ns to FS bit times.
3911 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3912 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3914 * xHCI 1.0: this field shall be 0 if the device is not a
3915 * High-spped hub.
3917 think_time = tt->think_time;
3918 if (think_time != 0)
3919 think_time = (think_time / 666) - 1;
3920 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3921 slot_ctx->tt_info |=
3922 cpu_to_le32(TT_THINK_TIME(think_time));
3923 } else {
3924 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3925 "TT think time or number of ports\n",
3926 (unsigned int) xhci->hci_version);
3928 slot_ctx->dev_state = 0;
3929 spin_unlock_irqrestore(&xhci->lock, flags);
3931 xhci_dbg(xhci, "Set up %s for hub device.\n",
3932 (xhci->hci_version > 0x95) ?
3933 "configure endpoint" : "evaluate context");
3934 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3935 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3937 /* Issue and wait for the configure endpoint or
3938 * evaluate context command.
3940 if (xhci->hci_version > 0x95)
3941 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3942 false, false);
3943 else
3944 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3945 true, false);
3947 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3948 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3950 xhci_free_command(xhci, config_cmd);
3951 return ret;
3954 int xhci_get_frame(struct usb_hcd *hcd)
3956 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3957 /* EHCI mods by the periodic size. Why? */
3958 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3961 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3963 struct xhci_hcd *xhci;
3964 struct device *dev = hcd->self.controller;
3965 int retval;
3966 u32 temp;
3968 hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3970 if (usb_hcd_is_primary_hcd(hcd)) {
3971 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3972 if (!xhci)
3973 return -ENOMEM;
3974 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3975 xhci->main_hcd = hcd;
3976 /* Mark the first roothub as being USB 2.0.
3977 * The xHCI driver will register the USB 3.0 roothub.
3979 hcd->speed = HCD_USB2;
3980 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3982 * USB 2.0 roothub under xHCI has an integrated TT,
3983 * (rate matching hub) as opposed to having an OHCI/UHCI
3984 * companion controller.
3986 hcd->has_tt = 1;
3987 } else {
3988 /* xHCI private pointer was set in xhci_pci_probe for the second
3989 * registered roothub.
3991 xhci = hcd_to_xhci(hcd);
3992 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3993 if (HCC_64BIT_ADDR(temp)) {
3994 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3995 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3996 } else {
3997 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3999 return 0;
4002 xhci->cap_regs = hcd->regs;
4003 xhci->op_regs = hcd->regs +
4004 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4005 xhci->run_regs = hcd->regs +
4006 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4007 /* Cache read-only capability registers */
4008 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4009 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4010 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4011 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4012 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4013 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4014 xhci_print_registers(xhci);
4016 get_quirks(dev, xhci);
4018 /* Make sure the HC is halted. */
4019 retval = xhci_halt(xhci);
4020 if (retval)
4021 goto error;
4023 xhci_dbg(xhci, "Resetting HCD\n");
4024 /* Reset the internal HC memory state and registers. */
4025 retval = xhci_reset(xhci);
4026 if (retval)
4027 goto error;
4028 xhci_dbg(xhci, "Reset complete\n");
4030 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4031 if (HCC_64BIT_ADDR(temp)) {
4032 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4033 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4034 } else {
4035 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4038 xhci_dbg(xhci, "Calling HCD init\n");
4039 /* Initialize HCD and host controller data structures. */
4040 retval = xhci_init(hcd);
4041 if (retval)
4042 goto error;
4043 xhci_dbg(xhci, "Called HCD init\n");
4044 return 0;
4045 error:
4046 kfree(xhci);
4047 return retval;
4050 MODULE_DESCRIPTION(DRIVER_DESC);
4051 MODULE_AUTHOR(DRIVER_AUTHOR);
4052 MODULE_LICENSE("GPL");
4054 static int __init xhci_hcd_init(void)
4056 int retval;
4058 retval = xhci_register_pci();
4059 if (retval < 0) {
4060 printk(KERN_DEBUG "Problem registering PCI driver.");
4061 return retval;
4064 * Check the compiler generated sizes of structures that must be laid
4065 * out in specific ways for hardware access.
4067 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4068 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4069 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4070 /* xhci_device_control has eight fields, and also
4071 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4073 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4074 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4075 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4076 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4077 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4078 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4079 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4080 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4081 return 0;
4083 module_init(xhci_hcd_init);
4085 static void __exit xhci_hcd_cleanup(void)
4087 xhci_unregister_pci();
4089 module_exit(xhci_hcd_cleanup);