2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk
;
37 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
38 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd
*xhci
, void __iomem
*ptr
,
55 u32 mask
, u32 done
, int usec
)
60 result
= xhci_readl(xhci
, ptr
);
61 if (result
== ~(u32
)0) /* card removed */
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd
*xhci
)
82 halted
= xhci_readl(xhci
, &xhci
->op_regs
->status
) & STS_HALT
;
86 cmd
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
88 xhci_writel(xhci
, cmd
, &xhci
->op_regs
->command
);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd
*xhci
)
102 xhci_dbg(xhci
, "// Halt the HC\n");
105 ret
= handshake(xhci
, &xhci
->op_regs
->status
,
106 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
108 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd
*xhci
)
120 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
122 xhci_dbg(xhci
, "// Turn on HC, cmd = 0x%x.\n",
124 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
130 ret
= handshake(xhci
, &xhci
->op_regs
->status
,
131 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
132 if (ret
== -ETIMEDOUT
)
133 xhci_err(xhci
, "Host took too long to start, "
134 "waited %u microseconds.\n",
137 xhci
->xhc_state
&= ~XHCI_STATE_HALTED
;
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd
*xhci
)
154 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
155 if ((state
& STS_HALT
) == 0) {
156 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
160 xhci_dbg(xhci
, "// Reset the HC\n");
161 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
162 command
|= CMD_RESET
;
163 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
165 ret
= handshake(xhci
, &xhci
->op_regs
->command
,
166 CMD_RESET
, 0, 250 * 1000);
170 xhci_dbg(xhci
, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci
, &xhci
->op_regs
->status
, STS_CNR
, 0, 250 * 1000);
179 static int xhci_free_msi(struct xhci_hcd
*xhci
)
183 if (!xhci
->msix_entries
)
186 for (i
= 0; i
< xhci
->msix_count
; i
++)
187 if (xhci
->msix_entries
[i
].vector
)
188 free_irq(xhci
->msix_entries
[i
].vector
,
196 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
199 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
201 ret
= pci_enable_msi(pdev
);
203 xhci_dbg(xhci
, "failed to allocate MSI entry\n");
207 ret
= request_irq(pdev
->irq
, (irq_handler_t
)xhci_msi_irq
,
208 0, "xhci_hcd", xhci_to_hcd(xhci
));
210 xhci_dbg(xhci
, "disable MSI interrupt\n");
211 pci_disable_msi(pdev
);
219 * free all IRQs request
221 static void xhci_free_irq(struct xhci_hcd
*xhci
)
223 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
226 /* return if using legacy interrupt */
227 if (xhci_to_hcd(xhci
)->irq
>= 0)
230 ret
= xhci_free_msi(xhci
);
234 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
242 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
245 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
246 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
249 * calculate number of msi-x vectors supported.
250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 * with max number of interrupters based on the xhci HCSPARAMS1.
252 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 * Add additional 1 vector to ensure always available interrupt.
255 xhci
->msix_count
= min(num_online_cpus() + 1,
256 HCS_MAX_INTRS(xhci
->hcs_params1
));
259 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
261 if (!xhci
->msix_entries
) {
262 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
266 for (i
= 0; i
< xhci
->msix_count
; i
++) {
267 xhci
->msix_entries
[i
].entry
= i
;
268 xhci
->msix_entries
[i
].vector
= 0;
271 ret
= pci_enable_msix(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
273 xhci_dbg(xhci
, "Failed to enable MSI-X\n");
277 for (i
= 0; i
< xhci
->msix_count
; i
++) {
278 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
279 (irq_handler_t
)xhci_msi_irq
,
280 0, "xhci_hcd", xhci_to_hcd(xhci
));
285 hcd
->msix_enabled
= 1;
289 xhci_dbg(xhci
, "disable MSI-X interrupt\n");
291 pci_disable_msix(pdev
);
293 kfree(xhci
->msix_entries
);
294 xhci
->msix_entries
= NULL
;
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
301 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
302 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
306 if (xhci
->msix_entries
) {
307 pci_disable_msix(pdev
);
308 kfree(xhci
->msix_entries
);
309 xhci
->msix_entries
= NULL
;
311 pci_disable_msi(pdev
);
314 hcd
->msix_enabled
= 0;
318 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
322 if (xhci
->msix_entries
) {
323 for (i
= 0; i
< xhci
->msix_count
; i
++)
324 synchronize_irq(xhci
->msix_entries
[i
].vector
);
328 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
330 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
331 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
335 * Some Fresco Logic host controllers advertise MSI, but fail to
336 * generate interrupts. Don't even try to enable MSI.
338 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
341 /* unregister the legacy interrupt */
343 free_irq(hcd
->irq
, hcd
);
346 ret
= xhci_setup_msix(xhci
);
348 /* fall back to msi*/
349 ret
= xhci_setup_msi(xhci
);
352 /* hcd->irq is -1, we have MSI */
356 xhci_err(xhci
, "No msi-x/msi found and no IRQ in BIOS\n");
360 /* fall back to legacy interrupt*/
361 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
362 hcd
->irq_descr
, hcd
);
364 xhci_err(xhci
, "request interrupt %d failed\n",
368 hcd
->irq
= pdev
->irq
;
374 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
379 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
383 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
390 * Initialize memory for HCD and xHC (one-time init).
392 * Program the PAGESIZE register, initialize the device context array, create
393 * device contexts (?), set up a command ring segment (or two?), create event
394 * ring (one for now).
396 int xhci_init(struct usb_hcd
*hcd
)
398 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
401 xhci_dbg(xhci
, "xhci_init\n");
402 spin_lock_init(&xhci
->lock
);
403 if (xhci
->hci_version
== 0x95 && link_quirk
) {
404 xhci_dbg(xhci
, "QUIRK: Not clearing Link TRB chain bits.\n");
405 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
407 xhci_dbg(xhci
, "xHCI doesn't need link TRB QUIRK\n");
409 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
410 xhci_dbg(xhci
, "Finished xhci_init\n");
415 /*-------------------------------------------------------------------------*/
418 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
419 static void xhci_event_ring_work(unsigned long arg
)
424 struct xhci_hcd
*xhci
= (struct xhci_hcd
*) arg
;
427 xhci_dbg(xhci
, "Poll event ring: %lu\n", jiffies
);
429 spin_lock_irqsave(&xhci
->lock
, flags
);
430 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
431 xhci_dbg(xhci
, "op reg status = 0x%x\n", temp
);
432 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
433 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
434 xhci_dbg(xhci
, "HW died, polling stopped.\n");
435 spin_unlock_irqrestore(&xhci
->lock
, flags
);
439 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
440 xhci_dbg(xhci
, "ir_set 0 pending = 0x%x\n", temp
);
441 xhci_dbg(xhci
, "HC error bitmask = 0x%x\n", xhci
->error_bitmask
);
442 xhci
->error_bitmask
= 0;
443 xhci_dbg(xhci
, "Event ring:\n");
444 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
445 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
446 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
447 temp_64
&= ~ERST_PTR_MASK
;
448 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
449 xhci_dbg(xhci
, "Command ring:\n");
450 xhci_debug_segment(xhci
, xhci
->cmd_ring
->deq_seg
);
451 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
452 xhci_dbg_cmd_ptrs(xhci
);
453 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
) {
456 for (j
= 0; j
< 31; ++j
) {
457 xhci_dbg_ep_rings(xhci
, i
, j
, &xhci
->devs
[i
]->eps
[j
]);
460 spin_unlock_irqrestore(&xhci
->lock
, flags
);
463 mod_timer(&xhci
->event_ring_timer
, jiffies
+ POLL_TIMEOUT
* HZ
);
465 xhci_dbg(xhci
, "Quit polling the event ring.\n");
469 static int xhci_run_finished(struct xhci_hcd
*xhci
)
471 if (xhci_start(xhci
)) {
475 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
477 if (xhci
->quirks
& XHCI_NEC_HOST
)
478 xhci_ring_cmd_db(xhci
);
480 xhci_dbg(xhci
, "Finished xhci_run for USB3 roothub\n");
485 * Start the HC after it was halted.
487 * This function is called by the USB core when the HC driver is added.
488 * Its opposite is xhci_stop().
490 * xhci_init() must be called once before this function can be called.
491 * Reset the HC, enable device slot contexts, program DCBAAP, and
492 * set command ring pointer and event ring pointer.
494 * Setup MSI-X vectors and enable interrupts.
496 int xhci_run(struct usb_hcd
*hcd
)
501 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
503 /* Start the xHCI host controller running only after the USB 2.0 roothub
507 hcd
->uses_new_polling
= 1;
508 if (!usb_hcd_is_primary_hcd(hcd
))
509 return xhci_run_finished(xhci
);
511 xhci_dbg(xhci
, "xhci_run\n");
513 ret
= xhci_try_enable_msi(hcd
);
517 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
518 init_timer(&xhci
->event_ring_timer
);
519 xhci
->event_ring_timer
.data
= (unsigned long) xhci
;
520 xhci
->event_ring_timer
.function
= xhci_event_ring_work
;
521 /* Poll the event ring */
522 xhci
->event_ring_timer
.expires
= jiffies
+ POLL_TIMEOUT
* HZ
;
524 xhci_dbg(xhci
, "Setting event ring polling timer\n");
525 add_timer(&xhci
->event_ring_timer
);
528 xhci_dbg(xhci
, "Command ring memory map follows:\n");
529 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
530 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
531 xhci_dbg_cmd_ptrs(xhci
);
533 xhci_dbg(xhci
, "ERST memory map follows:\n");
534 xhci_dbg_erst(xhci
, &xhci
->erst
);
535 xhci_dbg(xhci
, "Event ring:\n");
536 xhci_debug_ring(xhci
, xhci
->event_ring
);
537 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
538 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
539 temp_64
&= ~ERST_PTR_MASK
;
540 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
542 xhci_dbg(xhci
, "// Set the interrupt modulation register\n");
543 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
544 temp
&= ~ER_IRQ_INTERVAL_MASK
;
546 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_control
);
548 /* Set the HCD state before we enable the irqs */
549 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
551 xhci_dbg(xhci
, "// Enable interrupts, cmd = 0x%x.\n",
553 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
555 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
556 xhci_dbg(xhci
, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
557 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
558 xhci_writel(xhci
, ER_IRQ_ENABLE(temp
),
559 &xhci
->ir_set
->irq_pending
);
560 xhci_print_ir_set(xhci
, 0);
562 if (xhci
->quirks
& XHCI_NEC_HOST
)
563 xhci_queue_vendor_command(xhci
, 0, 0, 0,
564 TRB_TYPE(TRB_NEC_GET_FW
));
566 xhci_dbg(xhci
, "Finished xhci_run for USB2 roothub\n");
570 static void xhci_only_stop_hcd(struct usb_hcd
*hcd
)
572 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
574 spin_lock_irq(&xhci
->lock
);
577 /* The shared_hcd is going to be deallocated shortly (the USB core only
578 * calls this function when allocation fails in usb_add_hcd(), or
579 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
581 xhci
->shared_hcd
= NULL
;
582 spin_unlock_irq(&xhci
->lock
);
588 * This function is called by the USB core when the HC driver is removed.
589 * Its opposite is xhci_run().
591 * Disable device contexts, disable IRQs, and quiesce the HC.
592 * Reset the HC, finish any completed transactions, and cleanup memory.
594 void xhci_stop(struct usb_hcd
*hcd
)
597 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
599 if (!usb_hcd_is_primary_hcd(hcd
)) {
600 xhci_only_stop_hcd(xhci
->shared_hcd
);
604 spin_lock_irq(&xhci
->lock
);
605 /* Make sure the xHC is halted for a USB3 roothub
606 * (xhci_stop() could be called as part of failed init).
610 spin_unlock_irq(&xhci
->lock
);
612 xhci_cleanup_msix(xhci
);
614 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
615 /* Tell the event ring poll function not to reschedule */
617 del_timer_sync(&xhci
->event_ring_timer
);
620 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
623 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
624 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
625 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
626 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
627 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
628 &xhci
->ir_set
->irq_pending
);
629 xhci_print_ir_set(xhci
, 0);
631 xhci_dbg(xhci
, "cleaning up memory\n");
632 xhci_mem_cleanup(xhci
);
633 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
634 xhci_readl(xhci
, &xhci
->op_regs
->status
));
638 * Shutdown HC (not bus-specific)
640 * This is called when the machine is rebooting or halting. We assume that the
641 * machine will be powered off, and the HC's internal state will be reset.
642 * Don't bother to free memory.
644 * This will only ever be called with the main usb_hcd (the USB3 roothub).
646 void xhci_shutdown(struct usb_hcd
*hcd
)
648 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
650 spin_lock_irq(&xhci
->lock
);
652 spin_unlock_irq(&xhci
->lock
);
654 xhci_cleanup_msix(xhci
);
656 xhci_dbg(xhci
, "xhci_shutdown completed - status = %x\n",
657 xhci_readl(xhci
, &xhci
->op_regs
->status
));
661 static void xhci_save_registers(struct xhci_hcd
*xhci
)
663 xhci
->s3
.command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
664 xhci
->s3
.dev_nt
= xhci_readl(xhci
, &xhci
->op_regs
->dev_notification
);
665 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
666 xhci
->s3
.config_reg
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
667 xhci
->s3
.erst_size
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
668 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
669 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
670 xhci
->s3
.irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
671 xhci
->s3
.irq_control
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
674 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
676 xhci_writel(xhci
, xhci
->s3
.command
, &xhci
->op_regs
->command
);
677 xhci_writel(xhci
, xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
678 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
679 xhci_writel(xhci
, xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
680 xhci_writel(xhci
, xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
681 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
682 xhci_write_64(xhci
, xhci
->s3
.erst_dequeue
, &xhci
->ir_set
->erst_dequeue
);
683 xhci_writel(xhci
, xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
684 xhci_writel(xhci
, xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
687 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
691 /* step 2: initialize command ring buffer */
692 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
693 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
694 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
695 xhci
->cmd_ring
->dequeue
) &
696 (u64
) ~CMD_RING_RSVD_BITS
) |
697 xhci
->cmd_ring
->cycle_state
;
698 xhci_dbg(xhci
, "// Setting command ring address to 0x%llx\n",
699 (long unsigned long) val_64
);
700 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
704 * The whole command ring must be cleared to zero when we suspend the host.
706 * The host doesn't save the command ring pointer in the suspend well, so we
707 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
708 * aligned, because of the reserved bits in the command ring dequeue pointer
709 * register. Therefore, we can't just set the dequeue pointer back in the
710 * middle of the ring (TRBs are 16-byte aligned).
712 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
714 struct xhci_ring
*ring
;
715 struct xhci_segment
*seg
;
717 ring
= xhci
->cmd_ring
;
721 sizeof(union xhci_trb
) * (TRBS_PER_SEGMENT
- 1));
722 seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
&=
723 cpu_to_le32(~TRB_CYCLE
);
725 } while (seg
!= ring
->deq_seg
);
727 /* Reset the software enqueue and dequeue pointers */
728 ring
->deq_seg
= ring
->first_seg
;
729 ring
->dequeue
= ring
->first_seg
->trbs
;
730 ring
->enq_seg
= ring
->deq_seg
;
731 ring
->enqueue
= ring
->dequeue
;
734 * Ring is now zeroed, so the HW should look for change of ownership
735 * when the cycle bit is set to 1.
737 ring
->cycle_state
= 1;
740 * Reset the hardware dequeue pointer.
741 * Yes, this will need to be re-written after resume, but we're paranoid
742 * and want to make sure the hardware doesn't access bogus memory
743 * because, say, the BIOS or an SMI started the host without changing
744 * the command ring pointers.
746 xhci_set_cmd_ring_deq(xhci
);
750 * Stop HC (not bus-specific)
752 * This is called when the machine transition into S3/S4 mode.
755 int xhci_suspend(struct xhci_hcd
*xhci
)
758 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
761 spin_lock_irq(&xhci
->lock
);
762 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
763 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
764 /* step 1: stop endpoint */
765 /* skipped assuming that port suspend has done */
767 /* step 2: clear Run/Stop bit */
768 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
770 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
771 if (handshake(xhci
, &xhci
->op_regs
->status
,
772 STS_HALT
, STS_HALT
, 100*100)) {
773 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
774 spin_unlock_irq(&xhci
->lock
);
777 xhci_clear_command_ring(xhci
);
779 /* step 3: save registers */
780 xhci_save_registers(xhci
);
782 /* step 4: set CSS flag */
783 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
785 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
786 if (handshake(xhci
, &xhci
->op_regs
->status
, STS_SAVE
, 0, 10*100)) {
787 xhci_warn(xhci
, "WARN: xHC CMD_CSS timeout\n");
788 spin_unlock_irq(&xhci
->lock
);
791 spin_unlock_irq(&xhci
->lock
);
793 /* step 5: remove core well power */
794 /* synchronize irq when using MSI-X */
795 xhci_msix_sync_irqs(xhci
);
801 * start xHC (not bus-specific)
803 * This is called when the machine transition from S3/S4 mode.
806 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
808 u32 command
, temp
= 0;
809 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
810 struct usb_hcd
*secondary_hcd
;
813 /* Wait a bit if either of the roothubs need to settle from the
814 * transition into bus suspend.
816 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
818 xhci
->bus_state
[1].next_statechange
))
821 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
822 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
824 spin_lock_irq(&xhci
->lock
);
825 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
829 /* step 1: restore register */
830 xhci_restore_registers(xhci
);
831 /* step 2: initialize command ring buffer */
832 xhci_set_cmd_ring_deq(xhci
);
833 /* step 3: restore state and start state*/
834 /* step 3: set CRS flag */
835 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
837 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
838 if (handshake(xhci
, &xhci
->op_regs
->status
,
839 STS_RESTORE
, 0, 10*100)) {
840 xhci_dbg(xhci
, "WARN: xHC CMD_CSS timeout\n");
841 spin_unlock_irq(&xhci
->lock
);
844 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
847 /* If restore operation fails, re-initialize the HC during resume */
848 if ((temp
& STS_SRE
) || hibernated
) {
849 /* Let the USB core know _both_ roothubs lost power. */
850 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
851 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
853 xhci_dbg(xhci
, "Stop HCD\n");
856 spin_unlock_irq(&xhci
->lock
);
857 xhci_cleanup_msix(xhci
);
859 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
860 /* Tell the event ring poll function not to reschedule */
862 del_timer_sync(&xhci
->event_ring_timer
);
865 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
866 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
867 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
868 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
869 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
870 &xhci
->ir_set
->irq_pending
);
871 xhci_print_ir_set(xhci
, 0);
873 xhci_dbg(xhci
, "cleaning up memory\n");
874 xhci_mem_cleanup(xhci
);
875 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
876 xhci_readl(xhci
, &xhci
->op_regs
->status
));
878 /* USB core calls the PCI reinit and start functions twice:
879 * first with the primary HCD, and then with the secondary HCD.
880 * If we don't do the same, the host will never be started.
882 if (!usb_hcd_is_primary_hcd(hcd
))
885 secondary_hcd
= xhci
->shared_hcd
;
887 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
888 retval
= xhci_init(hcd
->primary_hcd
);
891 xhci_dbg(xhci
, "Start the primary HCD\n");
892 retval
= xhci_run(hcd
->primary_hcd
);
894 xhci_dbg(xhci
, "Start the secondary HCD\n");
895 retval
= xhci_run(secondary_hcd
);
897 hcd
->state
= HC_STATE_SUSPENDED
;
898 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
902 /* step 4: set Run/Stop bit */
903 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
905 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
906 handshake(xhci
, &xhci
->op_regs
->status
, STS_HALT
,
909 /* step 5: walk topology and initialize portsc,
910 * portpmsc and portli
912 /* this is done in bus_resume */
914 /* step 6: restart each of the previously
915 * Running endpoints by ringing their doorbells
918 spin_unlock_irq(&xhci
->lock
);
922 usb_hcd_resume_root_hub(hcd
);
923 usb_hcd_resume_root_hub(xhci
->shared_hcd
);
927 #endif /* CONFIG_PM */
929 /*-------------------------------------------------------------------------*/
932 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
933 * HCDs. Find the index for an endpoint given its descriptor. Use the return
934 * value to right shift 1 for the bitmask.
936 * Index = (epnum * 2) + direction - 1,
937 * where direction = 0 for OUT, 1 for IN.
938 * For control endpoints, the IN index is used (OUT index is unused), so
939 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
941 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
944 if (usb_endpoint_xfer_control(desc
))
945 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
947 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
948 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
952 /* Find the flag for this endpoint (for use in the control context). Use the
953 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
956 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
958 return 1 << (xhci_get_endpoint_index(desc
) + 1);
961 /* Find the flag for this endpoint (for use in the control context). Use the
962 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
965 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
967 return 1 << (ep_index
+ 1);
970 /* Compute the last valid endpoint context index. Basically, this is the
971 * endpoint index plus one. For slot contexts with more than valid endpoint,
972 * we find the most significant bit set in the added contexts flags.
973 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
974 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
976 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
978 return fls(added_ctxs
) - 1;
981 /* Returns 1 if the arguments are OK;
982 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
984 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
985 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
987 struct xhci_hcd
*xhci
;
988 struct xhci_virt_device
*virt_dev
;
990 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
991 printk(KERN_DEBUG
"xHCI %s called with invalid args\n",
996 printk(KERN_DEBUG
"xHCI %s called for root hub\n",
1001 xhci
= hcd_to_xhci(hcd
);
1002 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
1005 if (check_virt_dev
) {
1006 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
1007 printk(KERN_DEBUG
"xHCI %s called with unaddressed "
1012 virt_dev
= xhci
->devs
[udev
->slot_id
];
1013 if (virt_dev
->udev
!= udev
) {
1014 printk(KERN_DEBUG
"xHCI %s called with udev and "
1015 "virt_dev does not match\n", func
);
1023 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1024 struct usb_device
*udev
, struct xhci_command
*command
,
1025 bool ctx_change
, bool must_succeed
);
1028 * Full speed devices may have a max packet size greater than 8 bytes, but the
1029 * USB core doesn't know that until it reads the first 8 bytes of the
1030 * descriptor. If the usb_device's max packet size changes after that point,
1031 * we need to issue an evaluate context command and wait on it.
1033 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1034 unsigned int ep_index
, struct urb
*urb
)
1036 struct xhci_container_ctx
*in_ctx
;
1037 struct xhci_container_ctx
*out_ctx
;
1038 struct xhci_input_control_ctx
*ctrl_ctx
;
1039 struct xhci_ep_ctx
*ep_ctx
;
1040 int max_packet_size
;
1041 int hw_max_packet_size
;
1044 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1045 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1046 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1047 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1048 if (hw_max_packet_size
!= max_packet_size
) {
1049 xhci_dbg(xhci
, "Max Packet Size for ep 0 changed.\n");
1050 xhci_dbg(xhci
, "Max packet size in usb_device = %d\n",
1052 xhci_dbg(xhci
, "Max packet size in xHCI HW = %d\n",
1053 hw_max_packet_size
);
1054 xhci_dbg(xhci
, "Issuing evaluate context command.\n");
1056 /* Set up the modified control endpoint 0 */
1057 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1058 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1059 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1060 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1061 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1062 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1064 /* Set up the input context flags for the command */
1065 /* FIXME: This won't work if a non-default control endpoint
1066 * changes max packet sizes.
1068 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1069 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1070 ctrl_ctx
->drop_flags
= 0;
1072 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1073 xhci_dbg_ctx(xhci
, in_ctx
, ep_index
);
1074 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1075 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1077 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, NULL
,
1080 /* Clean up the input context for later use by bandwidth
1083 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1089 * non-error returns are a promise to giveback() the urb later
1090 * we drop ownership so next owner (or urb unlink) can get it
1092 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1094 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1095 struct xhci_td
*buffer
;
1096 unsigned long flags
;
1098 unsigned int slot_id
, ep_index
;
1099 struct urb_priv
*urb_priv
;
1102 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1103 true, true, __func__
) <= 0)
1106 slot_id
= urb
->dev
->slot_id
;
1107 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1109 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1110 if (!in_interrupt())
1111 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1116 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1117 size
= urb
->number_of_packets
;
1121 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1122 size
* sizeof(struct xhci_td
*), mem_flags
);
1126 buffer
= kzalloc(size
* sizeof(struct xhci_td
), mem_flags
);
1132 for (i
= 0; i
< size
; i
++) {
1133 urb_priv
->td
[i
] = buffer
;
1137 urb_priv
->length
= size
;
1138 urb_priv
->td_cnt
= 0;
1139 urb
->hcpriv
= urb_priv
;
1141 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1142 /* Check to see if the max packet size for the default control
1143 * endpoint changed during FS device enumeration
1145 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1146 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1149 xhci_urb_free_priv(xhci
, urb_priv
);
1155 /* We have a spinlock and interrupts disabled, so we must pass
1156 * atomic context to this function, which may allocate memory.
1158 spin_lock_irqsave(&xhci
->lock
, flags
);
1159 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1161 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1165 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1166 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
1167 spin_lock_irqsave(&xhci
->lock
, flags
);
1168 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1170 if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1171 EP_GETTING_STREAMS
) {
1172 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1173 "is transitioning to using streams.\n");
1175 } else if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1176 EP_GETTING_NO_STREAMS
) {
1177 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1178 "is transitioning to "
1179 "not having streams.\n");
1182 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1187 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1188 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
1189 spin_lock_irqsave(&xhci
->lock
, flags
);
1190 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1192 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1196 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1198 spin_lock_irqsave(&xhci
->lock
, flags
);
1199 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1201 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1205 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1210 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
1211 "non-responsive xHCI host.\n",
1212 urb
->ep
->desc
.bEndpointAddress
, urb
);
1215 xhci_urb_free_priv(xhci
, urb_priv
);
1217 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1221 /* Get the right ring for the given URB.
1222 * If the endpoint supports streams, boundary check the URB's stream ID.
1223 * If the endpoint doesn't support streams, return the singular endpoint ring.
1225 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
1228 unsigned int slot_id
;
1229 unsigned int ep_index
;
1230 unsigned int stream_id
;
1231 struct xhci_virt_ep
*ep
;
1233 slot_id
= urb
->dev
->slot_id
;
1234 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1235 stream_id
= urb
->stream_id
;
1236 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1237 /* Common case: no streams */
1238 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
1241 if (stream_id
== 0) {
1243 "WARN: Slot ID %u, ep index %u has streams, "
1244 "but URB has no stream ID.\n",
1249 if (stream_id
< ep
->stream_info
->num_streams
)
1250 return ep
->stream_info
->stream_rings
[stream_id
];
1253 "WARN: Slot ID %u, ep index %u has "
1254 "stream IDs 1 to %u allocated, "
1255 "but stream ID %u is requested.\n",
1257 ep
->stream_info
->num_streams
- 1,
1263 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1264 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1265 * should pick up where it left off in the TD, unless a Set Transfer Ring
1266 * Dequeue Pointer is issued.
1268 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1269 * the ring. Since the ring is a contiguous structure, they can't be physically
1270 * removed. Instead, there are two options:
1272 * 1) If the HC is in the middle of processing the URB to be canceled, we
1273 * simply move the ring's dequeue pointer past those TRBs using the Set
1274 * Transfer Ring Dequeue Pointer command. This will be the common case,
1275 * when drivers timeout on the last submitted URB and attempt to cancel.
1277 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1278 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1279 * HC will need to invalidate the any TRBs it has cached after the stop
1280 * endpoint command, as noted in the xHCI 0.95 errata.
1282 * 3) The TD may have completed by the time the Stop Endpoint Command
1283 * completes, so software needs to handle that case too.
1285 * This function should protect against the TD enqueueing code ringing the
1286 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1287 * It also needs to account for multiple cancellations on happening at the same
1288 * time for the same endpoint.
1290 * Note that this function can be called in any context, or so says
1291 * usb_hcd_unlink_urb()
1293 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1295 unsigned long flags
;
1298 struct xhci_hcd
*xhci
;
1299 struct urb_priv
*urb_priv
;
1301 unsigned int ep_index
;
1302 struct xhci_ring
*ep_ring
;
1303 struct xhci_virt_ep
*ep
;
1305 xhci
= hcd_to_xhci(hcd
);
1306 spin_lock_irqsave(&xhci
->lock
, flags
);
1307 /* Make sure the URB hasn't completed or been unlinked already */
1308 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1309 if (ret
|| !urb
->hcpriv
)
1311 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1312 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1313 xhci_dbg(xhci
, "HW died, freeing TD.\n");
1314 urb_priv
= urb
->hcpriv
;
1315 for (i
= urb_priv
->td_cnt
; i
< urb_priv
->length
; i
++) {
1316 td
= urb_priv
->td
[i
];
1317 if (!list_empty(&td
->td_list
))
1318 list_del_init(&td
->td_list
);
1319 if (!list_empty(&td
->cancelled_td_list
))
1320 list_del_init(&td
->cancelled_td_list
);
1323 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1324 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1325 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1326 xhci_urb_free_priv(xhci
, urb_priv
);
1329 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
1330 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1331 xhci_dbg(xhci
, "Ep 0x%x: URB %p to be canceled on "
1332 "non-responsive xHCI host.\n",
1333 urb
->ep
->desc
.bEndpointAddress
, urb
);
1334 /* Let the stop endpoint command watchdog timer (which set this
1335 * state) finish cleaning up the endpoint TD lists. We must
1336 * have caught it in the middle of dropping a lock and giving
1342 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1343 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
1344 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1350 urb_priv
= urb
->hcpriv
;
1351 i
= urb_priv
->td_cnt
;
1352 if (i
< urb_priv
->length
)
1353 xhci_dbg(xhci
, "Cancel URB %p, dev %s, ep 0x%x, "
1354 "starting at offset 0x%llx\n",
1355 urb
, urb
->dev
->devpath
,
1356 urb
->ep
->desc
.bEndpointAddress
,
1357 (unsigned long long) xhci_trb_virt_to_dma(
1358 urb_priv
->td
[i
]->start_seg
,
1359 urb_priv
->td
[i
]->first_trb
));
1361 for (; i
< urb_priv
->length
; i
++) {
1362 td
= urb_priv
->td
[i
];
1363 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1366 /* Queue a stop endpoint command, but only if this is
1367 * the first cancellation to be handled.
1369 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
1370 ep
->ep_state
|= EP_HALT_PENDING
;
1371 ep
->stop_cmds_pending
++;
1372 ep
->stop_cmd_timer
.expires
= jiffies
+
1373 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1374 add_timer(&ep
->stop_cmd_timer
);
1375 xhci_queue_stop_endpoint(xhci
, urb
->dev
->slot_id
, ep_index
, 0);
1376 xhci_ring_cmd_db(xhci
);
1379 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1383 /* Drop an endpoint from a new bandwidth configuration for this device.
1384 * Only one call to this function is allowed per endpoint before
1385 * check_bandwidth() or reset_bandwidth() must be called.
1386 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1387 * add the endpoint to the schedule with possibly new parameters denoted by a
1388 * different endpoint descriptor in usb_host_endpoint.
1389 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1392 * The USB core will not allow URBs to be queued to an endpoint that is being
1393 * disabled, so there's no need for mutual exclusion to protect
1394 * the xhci->devs[slot_id] structure.
1396 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1397 struct usb_host_endpoint
*ep
)
1399 struct xhci_hcd
*xhci
;
1400 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1401 struct xhci_input_control_ctx
*ctrl_ctx
;
1402 struct xhci_slot_ctx
*slot_ctx
;
1403 unsigned int last_ctx
;
1404 unsigned int ep_index
;
1405 struct xhci_ep_ctx
*ep_ctx
;
1407 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1410 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1413 xhci
= hcd_to_xhci(hcd
);
1414 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1417 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1418 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1419 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1420 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1421 __func__
, drop_flag
);
1425 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1426 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1427 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1428 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1429 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1430 /* If the HC already knows the endpoint is disabled,
1431 * or the HCD has noted it is disabled, ignore this request
1433 if (((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1434 cpu_to_le32(EP_STATE_DISABLED
)) ||
1435 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1436 xhci_get_endpoint_flag(&ep
->desc
)) {
1437 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1442 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1443 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1445 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1446 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1448 last_ctx
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
));
1449 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1450 /* Update the last valid endpoint context, if we deleted the last one */
1451 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) >
1452 LAST_CTX(last_ctx
)) {
1453 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1454 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1456 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1458 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1460 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1461 (unsigned int) ep
->desc
.bEndpointAddress
,
1463 (unsigned int) new_drop_flags
,
1464 (unsigned int) new_add_flags
,
1465 (unsigned int) new_slot_info
);
1469 /* Add an endpoint to a new possible bandwidth configuration for this device.
1470 * Only one call to this function is allowed per endpoint before
1471 * check_bandwidth() or reset_bandwidth() must be called.
1472 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1473 * add the endpoint to the schedule with possibly new parameters denoted by a
1474 * different endpoint descriptor in usb_host_endpoint.
1475 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1478 * The USB core will not allow URBs to be queued to an endpoint until the
1479 * configuration or alt setting is installed in the device, so there's no need
1480 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1482 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1483 struct usb_host_endpoint
*ep
)
1485 struct xhci_hcd
*xhci
;
1486 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1487 unsigned int ep_index
;
1488 struct xhci_ep_ctx
*ep_ctx
;
1489 struct xhci_slot_ctx
*slot_ctx
;
1490 struct xhci_input_control_ctx
*ctrl_ctx
;
1492 unsigned int last_ctx
;
1493 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1494 struct xhci_virt_device
*virt_dev
;
1497 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1499 /* So we won't queue a reset ep command for a root hub */
1503 xhci
= hcd_to_xhci(hcd
);
1504 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1507 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1508 last_ctx
= xhci_last_valid_endpoint(added_ctxs
);
1509 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1510 /* FIXME when we have to issue an evaluate endpoint command to
1511 * deal with ep0 max packet size changing once we get the
1514 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1515 __func__
, added_ctxs
);
1519 virt_dev
= xhci
->devs
[udev
->slot_id
];
1520 in_ctx
= virt_dev
->in_ctx
;
1521 out_ctx
= virt_dev
->out_ctx
;
1522 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1523 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1524 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1526 /* If this endpoint is already in use, and the upper layers are trying
1527 * to add it again without dropping it, reject the addition.
1529 if (virt_dev
->eps
[ep_index
].ring
&&
1530 !(le32_to_cpu(ctrl_ctx
->drop_flags
) &
1531 xhci_get_endpoint_flag(&ep
->desc
))) {
1532 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1533 "without dropping it.\n",
1534 (unsigned int) ep
->desc
.bEndpointAddress
);
1538 /* If the HCD has already noted the endpoint is enabled,
1539 * ignore this request.
1541 if (le32_to_cpu(ctrl_ctx
->add_flags
) &
1542 xhci_get_endpoint_flag(&ep
->desc
)) {
1543 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1549 * Configuration and alternate setting changes must be done in
1550 * process context, not interrupt context (or so documenation
1551 * for usb_set_interface() and usb_set_configuration() claim).
1553 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1554 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1555 __func__
, ep
->desc
.bEndpointAddress
);
1559 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1560 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1562 /* If xhci_endpoint_disable() was called for this endpoint, but the
1563 * xHC hasn't been notified yet through the check_bandwidth() call,
1564 * this re-adds a new state for the endpoint from the new endpoint
1565 * descriptors. We must drop and re-add this endpoint, so we leave the
1568 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1570 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1571 /* Update the last valid endpoint context, if we just added one past */
1572 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) <
1573 LAST_CTX(last_ctx
)) {
1574 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1575 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1577 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1579 /* Store the usb_device pointer for later use */
1582 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1583 (unsigned int) ep
->desc
.bEndpointAddress
,
1585 (unsigned int) new_drop_flags
,
1586 (unsigned int) new_add_flags
,
1587 (unsigned int) new_slot_info
);
1591 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1593 struct xhci_input_control_ctx
*ctrl_ctx
;
1594 struct xhci_ep_ctx
*ep_ctx
;
1595 struct xhci_slot_ctx
*slot_ctx
;
1598 /* When a device's add flag and drop flag are zero, any subsequent
1599 * configure endpoint command will leave that endpoint's state
1600 * untouched. Make sure we don't leave any old state in the input
1601 * endpoint contexts.
1603 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1604 ctrl_ctx
->drop_flags
= 0;
1605 ctrl_ctx
->add_flags
= 0;
1606 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1607 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1608 /* Endpoint 0 is always valid */
1609 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1610 for (i
= 1; i
< 31; ++i
) {
1611 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1612 ep_ctx
->ep_info
= 0;
1613 ep_ctx
->ep_info2
= 0;
1615 ep_ctx
->tx_info
= 0;
1619 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1620 struct usb_device
*udev
, u32
*cmd_status
)
1624 switch (*cmd_status
) {
1626 dev_warn(&udev
->dev
, "Not enough host controller resources "
1627 "for new device state.\n");
1629 /* FIXME: can we allocate more resources for the HC? */
1632 case COMP_2ND_BW_ERR
:
1633 dev_warn(&udev
->dev
, "Not enough bandwidth "
1634 "for new device state.\n");
1636 /* FIXME: can we go back to the old state? */
1639 /* the HCD set up something wrong */
1640 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1642 "and endpoint is not disabled.\n");
1646 dev_warn(&udev
->dev
, "ERROR: Incompatible device for endpoint "
1647 "configure command.\n");
1651 dev_dbg(&udev
->dev
, "Successful Endpoint Configure command\n");
1655 xhci_err(xhci
, "ERROR: unexpected command completion "
1656 "code 0x%x.\n", *cmd_status
);
1663 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1664 struct usb_device
*udev
, u32
*cmd_status
)
1667 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1669 switch (*cmd_status
) {
1671 dev_warn(&udev
->dev
, "WARN: xHCI driver setup invalid evaluate "
1672 "context command.\n");
1676 dev_warn(&udev
->dev
, "WARN: slot not enabled for"
1677 "evaluate context command.\n");
1678 case COMP_CTX_STATE
:
1679 dev_warn(&udev
->dev
, "WARN: invalid context state for "
1680 "evaluate context command.\n");
1681 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1685 dev_warn(&udev
->dev
, "ERROR: Incompatible device for evaluate "
1686 "context command.\n");
1690 /* Max Exit Latency too large error */
1691 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1695 dev_dbg(&udev
->dev
, "Successful evaluate context command\n");
1699 xhci_err(xhci
, "ERROR: unexpected command completion "
1700 "code 0x%x.\n", *cmd_status
);
1707 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1708 struct xhci_container_ctx
*in_ctx
)
1710 struct xhci_input_control_ctx
*ctrl_ctx
;
1711 u32 valid_add_flags
;
1712 u32 valid_drop_flags
;
1714 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1715 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1716 * (bit 1). The default control endpoint is added during the Address
1717 * Device command and is never removed until the slot is disabled.
1719 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1720 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1722 /* Use hweight32 to count the number of ones in the add flags, or
1723 * number of endpoints added. Don't count endpoints that are changed
1724 * (both added and dropped).
1726 return hweight32(valid_add_flags
) -
1727 hweight32(valid_add_flags
& valid_drop_flags
);
1730 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1731 struct xhci_container_ctx
*in_ctx
)
1733 struct xhci_input_control_ctx
*ctrl_ctx
;
1734 u32 valid_add_flags
;
1735 u32 valid_drop_flags
;
1737 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1738 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1739 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1741 return hweight32(valid_drop_flags
) -
1742 hweight32(valid_add_flags
& valid_drop_flags
);
1746 * We need to reserve the new number of endpoints before the configure endpoint
1747 * command completes. We can't subtract the dropped endpoints from the number
1748 * of active endpoints until the command completes because we can oversubscribe
1749 * the host in this case:
1751 * - the first configure endpoint command drops more endpoints than it adds
1752 * - a second configure endpoint command that adds more endpoints is queued
1753 * - the first configure endpoint command fails, so the config is unchanged
1754 * - the second command may succeed, even though there isn't enough resources
1756 * Must be called with xhci->lock held.
1758 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
1759 struct xhci_container_ctx
*in_ctx
)
1763 added_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1764 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
1765 xhci_dbg(xhci
, "Not enough ep ctxs: "
1766 "%u active, need to add %u, limit is %u.\n",
1767 xhci
->num_active_eps
, added_eps
,
1768 xhci
->limit_active_eps
);
1771 xhci
->num_active_eps
+= added_eps
;
1772 xhci_dbg(xhci
, "Adding %u ep ctxs, %u now active.\n", added_eps
,
1773 xhci
->num_active_eps
);
1778 * The configure endpoint was failed by the xHC for some other reason, so we
1779 * need to revert the resources that failed configuration would have used.
1781 * Must be called with xhci->lock held.
1783 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
1784 struct xhci_container_ctx
*in_ctx
)
1788 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1789 xhci
->num_active_eps
-= num_failed_eps
;
1790 xhci_dbg(xhci
, "Removing %u failed ep ctxs, %u now active.\n",
1792 xhci
->num_active_eps
);
1796 * Now that the command has completed, clean up the active endpoint count by
1797 * subtracting out the endpoints that were dropped (but not changed).
1799 * Must be called with xhci->lock held.
1801 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
1802 struct xhci_container_ctx
*in_ctx
)
1804 u32 num_dropped_eps
;
1806 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, in_ctx
);
1807 xhci
->num_active_eps
-= num_dropped_eps
;
1808 if (num_dropped_eps
)
1809 xhci_dbg(xhci
, "Removing %u dropped ep ctxs, %u now active.\n",
1811 xhci
->num_active_eps
);
1814 unsigned int xhci_get_block_size(struct usb_device
*udev
)
1816 switch (udev
->speed
) {
1818 case USB_SPEED_FULL
:
1820 case USB_SPEED_HIGH
:
1822 case USB_SPEED_SUPER
:
1824 case USB_SPEED_UNKNOWN
:
1825 case USB_SPEED_WIRELESS
:
1827 /* Should never happen */
1832 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
1834 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
1836 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
1841 /* If we are changing a LS/FS device under a HS hub,
1842 * make sure (if we are activating a new TT) that the HS bus has enough
1843 * bandwidth for this new TT.
1845 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
1846 struct xhci_virt_device
*virt_dev
,
1849 struct xhci_interval_bw_table
*bw_table
;
1850 struct xhci_tt_bw_info
*tt_info
;
1852 /* Find the bandwidth table for the root port this TT is attached to. */
1853 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
1854 tt_info
= virt_dev
->tt_info
;
1855 /* If this TT already had active endpoints, the bandwidth for this TT
1856 * has already been added. Removing all periodic endpoints (and thus
1857 * making the TT enactive) will only decrease the bandwidth used.
1861 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
1862 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
1866 /* Not sure why we would have no new active endpoints...
1868 * Maybe because of an Evaluate Context change for a hub update or a
1869 * control endpoint 0 max packet size change?
1870 * FIXME: skip the bandwidth calculation in that case.
1875 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
1876 struct xhci_virt_device
*virt_dev
)
1878 unsigned int bw_reserved
;
1880 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
1881 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
1884 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
1885 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
1892 * This algorithm is a very conservative estimate of the worst-case scheduling
1893 * scenario for any one interval. The hardware dynamically schedules the
1894 * packets, so we can't tell which microframe could be the limiting factor in
1895 * the bandwidth scheduling. This only takes into account periodic endpoints.
1897 * Obviously, we can't solve an NP complete problem to find the minimum worst
1898 * case scenario. Instead, we come up with an estimate that is no less than
1899 * the worst case bandwidth used for any one microframe, but may be an
1902 * We walk the requirements for each endpoint by interval, starting with the
1903 * smallest interval, and place packets in the schedule where there is only one
1904 * possible way to schedule packets for that interval. In order to simplify
1905 * this algorithm, we record the largest max packet size for each interval, and
1906 * assume all packets will be that size.
1908 * For interval 0, we obviously must schedule all packets for each interval.
1909 * The bandwidth for interval 0 is just the amount of data to be transmitted
1910 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1911 * the number of packets).
1913 * For interval 1, we have two possible microframes to schedule those packets
1914 * in. For this algorithm, if we can schedule the same number of packets for
1915 * each possible scheduling opportunity (each microframe), we will do so. The
1916 * remaining number of packets will be saved to be transmitted in the gaps in
1917 * the next interval's scheduling sequence.
1919 * As we move those remaining packets to be scheduled with interval 2 packets,
1920 * we have to double the number of remaining packets to transmit. This is
1921 * because the intervals are actually powers of 2, and we would be transmitting
1922 * the previous interval's packets twice in this interval. We also have to be
1923 * sure that when we look at the largest max packet size for this interval, we
1924 * also look at the largest max packet size for the remaining packets and take
1925 * the greater of the two.
1927 * The algorithm continues to evenly distribute packets in each scheduling
1928 * opportunity, and push the remaining packets out, until we get to the last
1929 * interval. Then those packets and their associated overhead are just added
1930 * to the bandwidth used.
1932 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
1933 struct xhci_virt_device
*virt_dev
,
1936 unsigned int bw_reserved
;
1937 unsigned int max_bandwidth
;
1938 unsigned int bw_used
;
1939 unsigned int block_size
;
1940 struct xhci_interval_bw_table
*bw_table
;
1941 unsigned int packet_size
= 0;
1942 unsigned int overhead
= 0;
1943 unsigned int packets_transmitted
= 0;
1944 unsigned int packets_remaining
= 0;
1947 if (virt_dev
->udev
->speed
== USB_SPEED_SUPER
)
1948 return xhci_check_ss_bw(xhci
, virt_dev
);
1950 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
1951 max_bandwidth
= HS_BW_LIMIT
;
1952 /* Convert percent of bus BW reserved to blocks reserved */
1953 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
1955 max_bandwidth
= FS_BW_LIMIT
;
1956 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
1959 bw_table
= virt_dev
->bw_table
;
1960 /* We need to translate the max packet size and max ESIT payloads into
1961 * the units the hardware uses.
1963 block_size
= xhci_get_block_size(virt_dev
->udev
);
1965 /* If we are manipulating a LS/FS device under a HS hub, double check
1966 * that the HS bus has enough bandwidth if we are activing a new TT.
1968 if (virt_dev
->tt_info
) {
1969 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
1970 virt_dev
->real_port
);
1971 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
1972 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
1973 "newly activated TT.\n");
1976 xhci_dbg(xhci
, "Recalculating BW for TT slot %u port %u\n",
1977 virt_dev
->tt_info
->slot_id
,
1978 virt_dev
->tt_info
->ttport
);
1980 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
1981 virt_dev
->real_port
);
1984 /* Add in how much bandwidth will be used for interval zero, or the
1985 * rounded max ESIT payload + number of packets * largest overhead.
1987 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
1988 bw_table
->interval_bw
[0].num_packets
*
1989 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
1991 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
1992 unsigned int bw_added
;
1993 unsigned int largest_mps
;
1994 unsigned int interval_overhead
;
1997 * How many packets could we transmit in this interval?
1998 * If packets didn't fit in the previous interval, we will need
1999 * to transmit that many packets twice within this interval.
2001 packets_remaining
= 2 * packets_remaining
+
2002 bw_table
->interval_bw
[i
].num_packets
;
2004 /* Find the largest max packet size of this or the previous
2007 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
2010 struct xhci_virt_ep
*virt_ep
;
2011 struct list_head
*ep_entry
;
2013 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2014 virt_ep
= list_entry(ep_entry
,
2015 struct xhci_virt_ep
, bw_endpoint_list
);
2016 /* Convert to blocks, rounding up */
2017 largest_mps
= DIV_ROUND_UP(
2018 virt_ep
->bw_info
.max_packet_size
,
2021 if (largest_mps
> packet_size
)
2022 packet_size
= largest_mps
;
2024 /* Use the larger overhead of this or the previous interval. */
2025 interval_overhead
= xhci_get_largest_overhead(
2026 &bw_table
->interval_bw
[i
]);
2027 if (interval_overhead
> overhead
)
2028 overhead
= interval_overhead
;
2030 /* How many packets can we evenly distribute across
2031 * (1 << (i + 1)) possible scheduling opportunities?
2033 packets_transmitted
= packets_remaining
>> (i
+ 1);
2035 /* Add in the bandwidth used for those scheduled packets */
2036 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2038 /* How many packets do we have remaining to transmit? */
2039 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2041 /* What largest max packet size should those packets have? */
2042 /* If we've transmitted all packets, don't carry over the
2043 * largest packet size.
2045 if (packets_remaining
== 0) {
2048 } else if (packets_transmitted
> 0) {
2049 /* Otherwise if we do have remaining packets, and we've
2050 * scheduled some packets in this interval, take the
2051 * largest max packet size from endpoints with this
2054 packet_size
= largest_mps
;
2055 overhead
= interval_overhead
;
2057 /* Otherwise carry over packet_size and overhead from the last
2058 * time we had a remainder.
2060 bw_used
+= bw_added
;
2061 if (bw_used
> max_bandwidth
) {
2062 xhci_warn(xhci
, "Not enough bandwidth. "
2063 "Proposed: %u, Max: %u\n",
2064 bw_used
, max_bandwidth
);
2069 * Ok, we know we have some packets left over after even-handedly
2070 * scheduling interval 15. We don't know which microframes they will
2071 * fit into, so we over-schedule and say they will be scheduled every
2074 if (packets_remaining
> 0)
2075 bw_used
+= overhead
+ packet_size
;
2077 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2078 unsigned int port_index
= virt_dev
->real_port
- 1;
2080 /* OK, we're manipulating a HS device attached to a
2081 * root port bandwidth domain. Include the number of active TTs
2082 * in the bandwidth used.
2084 bw_used
+= TT_HS_OVERHEAD
*
2085 xhci
->rh_bw
[port_index
].num_active_tts
;
2088 xhci_dbg(xhci
, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2089 "Available: %u " "percent\n",
2090 bw_used
, max_bandwidth
, bw_reserved
,
2091 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2094 bw_used
+= bw_reserved
;
2095 if (bw_used
> max_bandwidth
) {
2096 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2097 bw_used
, max_bandwidth
);
2101 bw_table
->bw_used
= bw_used
;
2105 static bool xhci_is_async_ep(unsigned int ep_type
)
2107 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2108 ep_type
!= ISOC_IN_EP
&&
2109 ep_type
!= INT_IN_EP
);
2112 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2114 return (ep_type
== ISOC_IN_EP
|| ep_type
!= INT_IN_EP
);
2117 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2119 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2121 if (ep_bw
->ep_interval
== 0)
2122 return SS_OVERHEAD_BURST
+
2123 (ep_bw
->mult
* ep_bw
->num_packets
*
2124 (SS_OVERHEAD
+ mps
));
2125 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2126 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2127 1 << ep_bw
->ep_interval
);
2131 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2132 struct xhci_bw_info
*ep_bw
,
2133 struct xhci_interval_bw_table
*bw_table
,
2134 struct usb_device
*udev
,
2135 struct xhci_virt_ep
*virt_ep
,
2136 struct xhci_tt_bw_info
*tt_info
)
2138 struct xhci_interval_bw
*interval_bw
;
2139 int normalized_interval
;
2141 if (xhci_is_async_ep(ep_bw
->type
))
2144 if (udev
->speed
== USB_SPEED_SUPER
) {
2145 if (xhci_is_sync_in_ep(ep_bw
->type
))
2146 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2147 xhci_get_ss_bw_consumed(ep_bw
);
2149 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2150 xhci_get_ss_bw_consumed(ep_bw
);
2154 /* SuperSpeed endpoints never get added to intervals in the table, so
2155 * this check is only valid for HS/FS/LS devices.
2157 if (list_empty(&virt_ep
->bw_endpoint_list
))
2159 /* For LS/FS devices, we need to translate the interval expressed in
2160 * microframes to frames.
2162 if (udev
->speed
== USB_SPEED_HIGH
)
2163 normalized_interval
= ep_bw
->ep_interval
;
2165 normalized_interval
= ep_bw
->ep_interval
- 3;
2167 if (normalized_interval
== 0)
2168 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2169 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2170 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2171 switch (udev
->speed
) {
2173 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2175 case USB_SPEED_FULL
:
2176 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2178 case USB_SPEED_HIGH
:
2179 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2181 case USB_SPEED_SUPER
:
2182 case USB_SPEED_UNKNOWN
:
2183 case USB_SPEED_WIRELESS
:
2184 /* Should never happen because only LS/FS/HS endpoints will get
2185 * added to the endpoint list.
2190 tt_info
->active_eps
-= 1;
2191 list_del_init(&virt_ep
->bw_endpoint_list
);
2194 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2195 struct xhci_bw_info
*ep_bw
,
2196 struct xhci_interval_bw_table
*bw_table
,
2197 struct usb_device
*udev
,
2198 struct xhci_virt_ep
*virt_ep
,
2199 struct xhci_tt_bw_info
*tt_info
)
2201 struct xhci_interval_bw
*interval_bw
;
2202 struct xhci_virt_ep
*smaller_ep
;
2203 int normalized_interval
;
2205 if (xhci_is_async_ep(ep_bw
->type
))
2208 if (udev
->speed
== USB_SPEED_SUPER
) {
2209 if (xhci_is_sync_in_ep(ep_bw
->type
))
2210 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2211 xhci_get_ss_bw_consumed(ep_bw
);
2213 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2214 xhci_get_ss_bw_consumed(ep_bw
);
2218 /* For LS/FS devices, we need to translate the interval expressed in
2219 * microframes to frames.
2221 if (udev
->speed
== USB_SPEED_HIGH
)
2222 normalized_interval
= ep_bw
->ep_interval
;
2224 normalized_interval
= ep_bw
->ep_interval
- 3;
2226 if (normalized_interval
== 0)
2227 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2228 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2229 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2230 switch (udev
->speed
) {
2232 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2234 case USB_SPEED_FULL
:
2235 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2237 case USB_SPEED_HIGH
:
2238 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2240 case USB_SPEED_SUPER
:
2241 case USB_SPEED_UNKNOWN
:
2242 case USB_SPEED_WIRELESS
:
2243 /* Should never happen because only LS/FS/HS endpoints will get
2244 * added to the endpoint list.
2250 tt_info
->active_eps
+= 1;
2251 /* Insert the endpoint into the list, largest max packet size first. */
2252 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2254 if (ep_bw
->max_packet_size
>=
2255 smaller_ep
->bw_info
.max_packet_size
) {
2256 /* Add the new ep before the smaller endpoint */
2257 list_add_tail(&virt_ep
->bw_endpoint_list
,
2258 &smaller_ep
->bw_endpoint_list
);
2262 /* Add the new endpoint at the end of the list. */
2263 list_add_tail(&virt_ep
->bw_endpoint_list
,
2264 &interval_bw
->endpoints
);
2267 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2268 struct xhci_virt_device
*virt_dev
,
2271 struct xhci_root_port_bw_info
*rh_bw_info
;
2272 if (!virt_dev
->tt_info
)
2275 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2276 if (old_active_eps
== 0 &&
2277 virt_dev
->tt_info
->active_eps
!= 0) {
2278 rh_bw_info
->num_active_tts
+= 1;
2279 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2280 } else if (old_active_eps
!= 0 &&
2281 virt_dev
->tt_info
->active_eps
== 0) {
2282 rh_bw_info
->num_active_tts
-= 1;
2283 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2287 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2288 struct xhci_virt_device
*virt_dev
,
2289 struct xhci_container_ctx
*in_ctx
)
2291 struct xhci_bw_info ep_bw_info
[31];
2293 struct xhci_input_control_ctx
*ctrl_ctx
;
2294 int old_active_eps
= 0;
2296 if (virt_dev
->tt_info
)
2297 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2299 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2301 for (i
= 0; i
< 31; i
++) {
2302 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2305 /* Make a copy of the BW info in case we need to revert this */
2306 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2307 sizeof(ep_bw_info
[i
]));
2308 /* Drop the endpoint from the interval table if the endpoint is
2309 * being dropped or changed.
2311 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2312 xhci_drop_ep_from_interval_table(xhci
,
2313 &virt_dev
->eps
[i
].bw_info
,
2319 /* Overwrite the information stored in the endpoints' bw_info */
2320 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2321 for (i
= 0; i
< 31; i
++) {
2322 /* Add any changed or added endpoints to the interval table */
2323 if (EP_IS_ADDED(ctrl_ctx
, i
))
2324 xhci_add_ep_to_interval_table(xhci
,
2325 &virt_dev
->eps
[i
].bw_info
,
2332 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2333 /* Ok, this fits in the bandwidth we have.
2334 * Update the number of active TTs.
2336 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2340 /* We don't have enough bandwidth for this, revert the stored info. */
2341 for (i
= 0; i
< 31; i
++) {
2342 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2345 /* Drop the new copies of any added or changed endpoints from
2346 * the interval table.
2348 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2349 xhci_drop_ep_from_interval_table(xhci
,
2350 &virt_dev
->eps
[i
].bw_info
,
2356 /* Revert the endpoint back to its old information */
2357 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2358 sizeof(ep_bw_info
[i
]));
2359 /* Add any changed or dropped endpoints back into the table */
2360 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2361 xhci_add_ep_to_interval_table(xhci
,
2362 &virt_dev
->eps
[i
].bw_info
,
2372 /* Issue a configure endpoint command or evaluate context command
2373 * and wait for it to finish.
2375 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2376 struct usb_device
*udev
,
2377 struct xhci_command
*command
,
2378 bool ctx_change
, bool must_succeed
)
2382 unsigned long flags
;
2383 struct xhci_container_ctx
*in_ctx
;
2384 struct completion
*cmd_completion
;
2386 struct xhci_virt_device
*virt_dev
;
2388 spin_lock_irqsave(&xhci
->lock
, flags
);
2389 virt_dev
= xhci
->devs
[udev
->slot_id
];
2392 in_ctx
= command
->in_ctx
;
2394 in_ctx
= virt_dev
->in_ctx
;
2396 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2397 xhci_reserve_host_resources(xhci
, in_ctx
)) {
2398 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2399 xhci_warn(xhci
, "Not enough host resources, "
2400 "active endpoint contexts = %u\n",
2401 xhci
->num_active_eps
);
2404 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2405 xhci_reserve_bandwidth(xhci
, virt_dev
, in_ctx
)) {
2406 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2407 xhci_free_host_resources(xhci
, in_ctx
);
2408 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2409 xhci_warn(xhci
, "Not enough bandwidth\n");
2414 cmd_completion
= command
->completion
;
2415 cmd_status
= &command
->status
;
2416 command
->command_trb
= xhci
->cmd_ring
->enqueue
;
2418 /* Enqueue pointer can be left pointing to the link TRB,
2419 * we must handle that
2421 if (TRB_TYPE_LINK_LE32(command
->command_trb
->link
.control
))
2422 command
->command_trb
=
2423 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
2425 list_add_tail(&command
->cmd_list
, &virt_dev
->cmd_list
);
2427 cmd_completion
= &virt_dev
->cmd_completion
;
2428 cmd_status
= &virt_dev
->cmd_status
;
2430 init_completion(cmd_completion
);
2433 ret
= xhci_queue_configure_endpoint(xhci
, in_ctx
->dma
,
2434 udev
->slot_id
, must_succeed
);
2436 ret
= xhci_queue_evaluate_context(xhci
, in_ctx
->dma
,
2440 list_del(&command
->cmd_list
);
2441 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2442 xhci_free_host_resources(xhci
, in_ctx
);
2443 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2444 xhci_dbg(xhci
, "FIXME allocate a new ring segment\n");
2447 xhci_ring_cmd_db(xhci
);
2448 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2450 /* Wait for the configure endpoint command to complete */
2451 timeleft
= wait_for_completion_interruptible_timeout(
2453 USB_CTRL_SET_TIMEOUT
);
2454 if (timeleft
<= 0) {
2455 xhci_warn(xhci
, "%s while waiting for %s command\n",
2456 timeleft
== 0 ? "Timeout" : "Signal",
2458 "configure endpoint" :
2459 "evaluate context");
2460 /* FIXME cancel the configure endpoint command */
2465 ret
= xhci_configure_endpoint_result(xhci
, udev
, cmd_status
);
2467 ret
= xhci_evaluate_context_result(xhci
, udev
, cmd_status
);
2469 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2470 spin_lock_irqsave(&xhci
->lock
, flags
);
2471 /* If the command failed, remove the reserved resources.
2472 * Otherwise, clean up the estimate to include dropped eps.
2475 xhci_free_host_resources(xhci
, in_ctx
);
2477 xhci_finish_resource_reservation(xhci
, in_ctx
);
2478 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2483 /* Called after one or more calls to xhci_add_endpoint() or
2484 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2485 * to call xhci_reset_bandwidth().
2487 * Since we are in the middle of changing either configuration or
2488 * installing a new alt setting, the USB core won't allow URBs to be
2489 * enqueued for any endpoint on the old config or interface. Nothing
2490 * else should be touching the xhci->devs[slot_id] structure, so we
2491 * don't need to take the xhci->lock for manipulating that.
2493 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2497 struct xhci_hcd
*xhci
;
2498 struct xhci_virt_device
*virt_dev
;
2499 struct xhci_input_control_ctx
*ctrl_ctx
;
2500 struct xhci_slot_ctx
*slot_ctx
;
2502 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2505 xhci
= hcd_to_xhci(hcd
);
2506 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
2509 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2510 virt_dev
= xhci
->devs
[udev
->slot_id
];
2512 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2513 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
2514 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2515 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2516 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2518 /* Don't issue the command if there's no endpoints to update. */
2519 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2520 ctrl_ctx
->drop_flags
== 0)
2523 xhci_dbg(xhci
, "New Input Control Context:\n");
2524 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2525 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2526 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2528 ret
= xhci_configure_endpoint(xhci
, udev
, NULL
,
2531 /* Callee should call reset_bandwidth() */
2535 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2536 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2537 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2539 /* Free any rings that were dropped, but not changed. */
2540 for (i
= 1; i
< 31; ++i
) {
2541 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2542 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1))))
2543 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2545 xhci_zero_in_ctx(xhci
, virt_dev
);
2547 * Install any rings for completely new endpoints or changed endpoints,
2548 * and free or cache any old rings from changed endpoints.
2550 for (i
= 1; i
< 31; ++i
) {
2551 if (!virt_dev
->eps
[i
].new_ring
)
2553 /* Only cache or free the old ring if it exists.
2554 * It may not if this is the first add of an endpoint.
2556 if (virt_dev
->eps
[i
].ring
) {
2557 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2559 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2560 virt_dev
->eps
[i
].new_ring
= NULL
;
2566 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2568 struct xhci_hcd
*xhci
;
2569 struct xhci_virt_device
*virt_dev
;
2572 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2575 xhci
= hcd_to_xhci(hcd
);
2577 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2578 virt_dev
= xhci
->devs
[udev
->slot_id
];
2579 /* Free any rings allocated for added endpoints */
2580 for (i
= 0; i
< 31; ++i
) {
2581 if (virt_dev
->eps
[i
].new_ring
) {
2582 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2583 virt_dev
->eps
[i
].new_ring
= NULL
;
2586 xhci_zero_in_ctx(xhci
, virt_dev
);
2589 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2590 struct xhci_container_ctx
*in_ctx
,
2591 struct xhci_container_ctx
*out_ctx
,
2592 u32 add_flags
, u32 drop_flags
)
2594 struct xhci_input_control_ctx
*ctrl_ctx
;
2595 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2596 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2597 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2598 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2599 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2601 xhci_dbg(xhci
, "Input Context:\n");
2602 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2605 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2606 unsigned int slot_id
, unsigned int ep_index
,
2607 struct xhci_dequeue_state
*deq_state
)
2609 struct xhci_container_ctx
*in_ctx
;
2610 struct xhci_ep_ctx
*ep_ctx
;
2614 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2615 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2616 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2617 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2618 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2619 deq_state
->new_deq_ptr
);
2621 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2622 "reset ep command\n");
2623 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2624 deq_state
->new_deq_seg
,
2625 deq_state
->new_deq_ptr
);
2628 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2630 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2631 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2632 xhci
->devs
[slot_id
]->out_ctx
, added_ctxs
, added_ctxs
);
2635 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2636 struct usb_device
*udev
, unsigned int ep_index
)
2638 struct xhci_dequeue_state deq_state
;
2639 struct xhci_virt_ep
*ep
;
2641 xhci_dbg(xhci
, "Cleaning up stalled endpoint ring\n");
2642 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2643 /* We need to move the HW's dequeue pointer past this TD,
2644 * or it will attempt to resend it on the next doorbell ring.
2646 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2647 ep_index
, ep
->stopped_stream
, ep
->stopped_td
,
2650 /* HW with the reset endpoint quirk will use the saved dequeue state to
2651 * issue a configure endpoint command later.
2653 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2654 xhci_dbg(xhci
, "Queueing new dequeue state\n");
2655 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2656 ep_index
, ep
->stopped_stream
, &deq_state
);
2658 /* Better hope no one uses the input context between now and the
2659 * reset endpoint completion!
2660 * XXX: No idea how this hardware will react when stream rings
2663 xhci_dbg(xhci
, "Setting up input context for "
2664 "configure endpoint command\n");
2665 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2666 ep_index
, &deq_state
);
2670 /* Deal with stalled endpoints. The core should have sent the control message
2671 * to clear the halt condition. However, we need to make the xHCI hardware
2672 * reset its sequence number, since a device will expect a sequence number of
2673 * zero after the halt condition is cleared.
2674 * Context: in_interrupt
2676 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2677 struct usb_host_endpoint
*ep
)
2679 struct xhci_hcd
*xhci
;
2680 struct usb_device
*udev
;
2681 unsigned int ep_index
;
2682 unsigned long flags
;
2684 struct xhci_virt_ep
*virt_ep
;
2686 xhci
= hcd_to_xhci(hcd
);
2687 udev
= (struct usb_device
*) ep
->hcpriv
;
2688 /* Called with a root hub endpoint (or an endpoint that wasn't added
2689 * with xhci_add_endpoint()
2693 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2694 virt_ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2695 if (!virt_ep
->stopped_td
) {
2696 xhci_dbg(xhci
, "Endpoint 0x%x not halted, refusing to reset.\n",
2697 ep
->desc
.bEndpointAddress
);
2700 if (usb_endpoint_xfer_control(&ep
->desc
)) {
2701 xhci_dbg(xhci
, "Control endpoint stall already handled.\n");
2705 xhci_dbg(xhci
, "Queueing reset endpoint command\n");
2706 spin_lock_irqsave(&xhci
->lock
, flags
);
2707 ret
= xhci_queue_reset_ep(xhci
, udev
->slot_id
, ep_index
);
2709 * Can't change the ring dequeue pointer until it's transitioned to the
2710 * stopped state, which is only upon a successful reset endpoint
2711 * command. Better hope that last command worked!
2714 xhci_cleanup_stalled_ring(xhci
, udev
, ep_index
);
2715 kfree(virt_ep
->stopped_td
);
2716 xhci_ring_cmd_db(xhci
);
2718 virt_ep
->stopped_td
= NULL
;
2719 virt_ep
->stopped_trb
= NULL
;
2720 virt_ep
->stopped_stream
= 0;
2721 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2724 xhci_warn(xhci
, "FIXME allocate a new ring segment\n");
2727 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
2728 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
2729 unsigned int slot_id
)
2732 unsigned int ep_index
;
2733 unsigned int ep_state
;
2737 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
2740 if (ep
->ss_ep_comp
.bmAttributes
== 0) {
2741 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
2742 " descriptor for ep 0x%x does not support streams\n",
2743 ep
->desc
.bEndpointAddress
);
2747 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2748 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2749 if (ep_state
& EP_HAS_STREAMS
||
2750 ep_state
& EP_GETTING_STREAMS
) {
2751 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
2752 "already has streams set up.\n",
2753 ep
->desc
.bEndpointAddress
);
2754 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
2755 "dynamic stream context array reallocation.\n");
2758 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
2759 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
2760 "endpoint 0x%x; URBs are pending.\n",
2761 ep
->desc
.bEndpointAddress
);
2767 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
2768 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
2770 unsigned int max_streams
;
2772 /* The stream context array size must be a power of two */
2773 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
2775 * Find out how many primary stream array entries the host controller
2776 * supports. Later we may use secondary stream arrays (similar to 2nd
2777 * level page entries), but that's an optional feature for xHCI host
2778 * controllers. xHCs must support at least 4 stream IDs.
2780 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
2781 if (*num_stream_ctxs
> max_streams
) {
2782 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
2784 *num_stream_ctxs
= max_streams
;
2785 *num_streams
= max_streams
;
2789 /* Returns an error code if one of the endpoint already has streams.
2790 * This does not change any data structures, it only checks and gathers
2793 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
2794 struct usb_device
*udev
,
2795 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2796 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
2798 unsigned int max_streams
;
2799 unsigned int endpoint_flag
;
2803 for (i
= 0; i
< num_eps
; i
++) {
2804 ret
= xhci_check_streams_endpoint(xhci
, udev
,
2805 eps
[i
], udev
->slot_id
);
2809 max_streams
= usb_ss_max_streams(&eps
[i
]->ss_ep_comp
);
2810 if (max_streams
< (*num_streams
- 1)) {
2811 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
2812 eps
[i
]->desc
.bEndpointAddress
,
2814 *num_streams
= max_streams
+1;
2817 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
2818 if (*changed_ep_bitmask
& endpoint_flag
)
2820 *changed_ep_bitmask
|= endpoint_flag
;
2825 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
2826 struct usb_device
*udev
,
2827 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
2829 u32 changed_ep_bitmask
= 0;
2830 unsigned int slot_id
;
2831 unsigned int ep_index
;
2832 unsigned int ep_state
;
2835 slot_id
= udev
->slot_id
;
2836 if (!xhci
->devs
[slot_id
])
2839 for (i
= 0; i
< num_eps
; i
++) {
2840 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2841 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2842 /* Are streams already being freed for the endpoint? */
2843 if (ep_state
& EP_GETTING_NO_STREAMS
) {
2844 xhci_warn(xhci
, "WARN Can't disable streams for "
2846 "streams are being disabled already.",
2847 eps
[i
]->desc
.bEndpointAddress
);
2850 /* Are there actually any streams to free? */
2851 if (!(ep_state
& EP_HAS_STREAMS
) &&
2852 !(ep_state
& EP_GETTING_STREAMS
)) {
2853 xhci_warn(xhci
, "WARN Can't disable streams for "
2855 "streams are already disabled!",
2856 eps
[i
]->desc
.bEndpointAddress
);
2857 xhci_warn(xhci
, "WARN xhci_free_streams() called "
2858 "with non-streams endpoint\n");
2861 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
2863 return changed_ep_bitmask
;
2867 * The USB device drivers use this function (though the HCD interface in USB
2868 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2869 * coordinate mass storage command queueing across multiple endpoints (basically
2870 * a stream ID == a task ID).
2872 * Setting up streams involves allocating the same size stream context array
2873 * for each endpoint and issuing a configure endpoint command for all endpoints.
2875 * Don't allow the call to succeed if one endpoint only supports one stream
2876 * (which means it doesn't support streams at all).
2878 * Drivers may get less stream IDs than they asked for, if the host controller
2879 * hardware or endpoints claim they can't support the number of requested
2882 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
2883 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2884 unsigned int num_streams
, gfp_t mem_flags
)
2887 struct xhci_hcd
*xhci
;
2888 struct xhci_virt_device
*vdev
;
2889 struct xhci_command
*config_cmd
;
2890 unsigned int ep_index
;
2891 unsigned int num_stream_ctxs
;
2892 unsigned long flags
;
2893 u32 changed_ep_bitmask
= 0;
2898 /* Add one to the number of streams requested to account for
2899 * stream 0 that is reserved for xHCI usage.
2902 xhci
= hcd_to_xhci(hcd
);
2903 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
2906 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
2908 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
2912 /* Check to make sure all endpoints are not already configured for
2913 * streams. While we're at it, find the maximum number of streams that
2914 * all the endpoints will support and check for duplicate endpoints.
2916 spin_lock_irqsave(&xhci
->lock
, flags
);
2917 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
2918 num_eps
, &num_streams
, &changed_ep_bitmask
);
2920 xhci_free_command(xhci
, config_cmd
);
2921 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2924 if (num_streams
<= 1) {
2925 xhci_warn(xhci
, "WARN: endpoints can't handle "
2926 "more than one stream.\n");
2927 xhci_free_command(xhci
, config_cmd
);
2928 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2931 vdev
= xhci
->devs
[udev
->slot_id
];
2932 /* Mark each endpoint as being in transition, so
2933 * xhci_urb_enqueue() will reject all URBs.
2935 for (i
= 0; i
< num_eps
; i
++) {
2936 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2937 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
2939 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2941 /* Setup internal data structures and allocate HW data structures for
2942 * streams (but don't install the HW structures in the input context
2943 * until we're sure all memory allocation succeeded).
2945 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
2946 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
2947 num_stream_ctxs
, num_streams
);
2949 for (i
= 0; i
< num_eps
; i
++) {
2950 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2951 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
2953 num_streams
, mem_flags
);
2954 if (!vdev
->eps
[ep_index
].stream_info
)
2956 /* Set maxPstreams in endpoint context and update deq ptr to
2957 * point to stream context array. FIXME
2961 /* Set up the input context for a configure endpoint command. */
2962 for (i
= 0; i
< num_eps
; i
++) {
2963 struct xhci_ep_ctx
*ep_ctx
;
2965 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2966 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
2968 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
2969 vdev
->out_ctx
, ep_index
);
2970 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
2971 vdev
->eps
[ep_index
].stream_info
);
2973 /* Tell the HW to drop its old copy of the endpoint context info
2974 * and add the updated copy from the input context.
2976 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
2977 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
2979 /* Issue and wait for the configure endpoint command */
2980 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
2983 /* xHC rejected the configure endpoint command for some reason, so we
2984 * leave the old ring intact and free our internal streams data
2990 spin_lock_irqsave(&xhci
->lock
, flags
);
2991 for (i
= 0; i
< num_eps
; i
++) {
2992 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2993 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
2994 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
2995 udev
->slot_id
, ep_index
);
2996 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
2998 xhci_free_command(xhci
, config_cmd
);
2999 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3001 /* Subtract 1 for stream 0, which drivers can't use */
3002 return num_streams
- 1;
3005 /* If it didn't work, free the streams! */
3006 for (i
= 0; i
< num_eps
; i
++) {
3007 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3008 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3009 vdev
->eps
[ep_index
].stream_info
= NULL
;
3010 /* FIXME Unset maxPstreams in endpoint context and
3011 * update deq ptr to point to normal string ring.
3013 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3014 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3015 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3017 xhci_free_command(xhci
, config_cmd
);
3021 /* Transition the endpoint from using streams to being a "normal" endpoint
3024 * Modify the endpoint context state, submit a configure endpoint command,
3025 * and free all endpoint rings for streams if that completes successfully.
3027 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3028 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3032 struct xhci_hcd
*xhci
;
3033 struct xhci_virt_device
*vdev
;
3034 struct xhci_command
*command
;
3035 unsigned int ep_index
;
3036 unsigned long flags
;
3037 u32 changed_ep_bitmask
;
3039 xhci
= hcd_to_xhci(hcd
);
3040 vdev
= xhci
->devs
[udev
->slot_id
];
3042 /* Set up a configure endpoint command to remove the streams rings */
3043 spin_lock_irqsave(&xhci
->lock
, flags
);
3044 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3045 udev
, eps
, num_eps
);
3046 if (changed_ep_bitmask
== 0) {
3047 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3051 /* Use the xhci_command structure from the first endpoint. We may have
3052 * allocated too many, but the driver may call xhci_free_streams() for
3053 * each endpoint it grouped into one call to xhci_alloc_streams().
3055 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3056 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3057 for (i
= 0; i
< num_eps
; i
++) {
3058 struct xhci_ep_ctx
*ep_ctx
;
3060 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3061 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3062 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3063 EP_GETTING_NO_STREAMS
;
3065 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3066 vdev
->out_ctx
, ep_index
);
3067 xhci_setup_no_streams_ep_input_ctx(xhci
, ep_ctx
,
3068 &vdev
->eps
[ep_index
]);
3070 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3071 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
3072 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3074 /* Issue and wait for the configure endpoint command,
3075 * which must succeed.
3077 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3080 /* xHC rejected the configure endpoint command for some reason, so we
3081 * leave the streams rings intact.
3086 spin_lock_irqsave(&xhci
->lock
, flags
);
3087 for (i
= 0; i
< num_eps
; i
++) {
3088 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3089 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3090 vdev
->eps
[ep_index
].stream_info
= NULL
;
3091 /* FIXME Unset maxPstreams in endpoint context and
3092 * update deq ptr to point to normal string ring.
3094 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3095 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3097 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3103 * Deletes endpoint resources for endpoints that were active before a Reset
3104 * Device command, or a Disable Slot command. The Reset Device command leaves
3105 * the control endpoint intact, whereas the Disable Slot command deletes it.
3107 * Must be called with xhci->lock held.
3109 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3110 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3113 unsigned int num_dropped_eps
= 0;
3114 unsigned int drop_flags
= 0;
3116 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3117 if (virt_dev
->eps
[i
].ring
) {
3118 drop_flags
|= 1 << i
;
3122 xhci
->num_active_eps
-= num_dropped_eps
;
3123 if (num_dropped_eps
)
3124 xhci_dbg(xhci
, "Dropped %u ep ctxs, flags = 0x%x, "
3126 num_dropped_eps
, drop_flags
,
3127 xhci
->num_active_eps
);
3131 * This submits a Reset Device Command, which will set the device state to 0,
3132 * set the device address to 0, and disable all the endpoints except the default
3133 * control endpoint. The USB core should come back and call
3134 * xhci_address_device(), and then re-set up the configuration. If this is
3135 * called because of a usb_reset_and_verify_device(), then the old alternate
3136 * settings will be re-installed through the normal bandwidth allocation
3139 * Wait for the Reset Device command to finish. Remove all structures
3140 * associated with the endpoints that were disabled. Clear the input device
3141 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3143 * If the virt_dev to be reset does not exist or does not match the udev,
3144 * it means the device is lost, possibly due to the xHC restore error and
3145 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3146 * re-allocate the device.
3148 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3151 unsigned long flags
;
3152 struct xhci_hcd
*xhci
;
3153 unsigned int slot_id
;
3154 struct xhci_virt_device
*virt_dev
;
3155 struct xhci_command
*reset_device_cmd
;
3157 int last_freed_endpoint
;
3158 struct xhci_slot_ctx
*slot_ctx
;
3159 int old_active_eps
= 0;
3161 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3164 xhci
= hcd_to_xhci(hcd
);
3165 slot_id
= udev
->slot_id
;
3166 virt_dev
= xhci
->devs
[slot_id
];
3168 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3169 "not exist. Re-allocate the device\n", slot_id
);
3170 ret
= xhci_alloc_dev(hcd
, udev
);
3177 if (virt_dev
->udev
!= udev
) {
3178 /* If the virt_dev and the udev does not match, this virt_dev
3179 * may belong to another udev.
3180 * Re-allocate the device.
3182 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3183 "not match the udev. Re-allocate the device\n",
3185 ret
= xhci_alloc_dev(hcd
, udev
);
3192 /* If device is not setup, there is no point in resetting it */
3193 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3194 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3195 SLOT_STATE_DISABLED
)
3198 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3199 /* Allocate the command structure that holds the struct completion.
3200 * Assume we're in process context, since the normal device reset
3201 * process has to wait for the device anyway. Storage devices are
3202 * reset as part of error handling, so use GFP_NOIO instead of
3205 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3206 if (!reset_device_cmd
) {
3207 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3211 /* Attempt to submit the Reset Device command to the command ring */
3212 spin_lock_irqsave(&xhci
->lock
, flags
);
3213 reset_device_cmd
->command_trb
= xhci
->cmd_ring
->enqueue
;
3215 /* Enqueue pointer can be left pointing to the link TRB,
3216 * we must handle that
3218 if (TRB_TYPE_LINK_LE32(reset_device_cmd
->command_trb
->link
.control
))
3219 reset_device_cmd
->command_trb
=
3220 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
3222 list_add_tail(&reset_device_cmd
->cmd_list
, &virt_dev
->cmd_list
);
3223 ret
= xhci_queue_reset_device(xhci
, slot_id
);
3225 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3226 list_del(&reset_device_cmd
->cmd_list
);
3227 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3228 goto command_cleanup
;
3230 xhci_ring_cmd_db(xhci
);
3231 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3233 /* Wait for the Reset Device command to finish */
3234 timeleft
= wait_for_completion_interruptible_timeout(
3235 reset_device_cmd
->completion
,
3236 USB_CTRL_SET_TIMEOUT
);
3237 if (timeleft
<= 0) {
3238 xhci_warn(xhci
, "%s while waiting for reset device command\n",
3239 timeleft
== 0 ? "Timeout" : "Signal");
3240 spin_lock_irqsave(&xhci
->lock
, flags
);
3241 /* The timeout might have raced with the event ring handler, so
3242 * only delete from the list if the item isn't poisoned.
3244 if (reset_device_cmd
->cmd_list
.next
!= LIST_POISON1
)
3245 list_del(&reset_device_cmd
->cmd_list
);
3246 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3248 goto command_cleanup
;
3251 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3252 * unless we tried to reset a slot ID that wasn't enabled,
3253 * or the device wasn't in the addressed or configured state.
3255 ret
= reset_device_cmd
->status
;
3257 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
3258 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
3259 xhci_info(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3261 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3262 xhci_info(xhci
, "Not freeing device rings.\n");
3263 /* Don't treat this as an error. May change my mind later. */
3265 goto command_cleanup
;
3267 xhci_dbg(xhci
, "Successful reset device command.\n");
3270 if (xhci_is_vendor_info_code(xhci
, ret
))
3272 xhci_warn(xhci
, "Unknown completion code %u for "
3273 "reset device command.\n", ret
);
3275 goto command_cleanup
;
3278 /* Free up host controller endpoint resources */
3279 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3280 spin_lock_irqsave(&xhci
->lock
, flags
);
3281 /* Don't delete the default control endpoint resources */
3282 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3283 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3286 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3287 last_freed_endpoint
= 1;
3288 for (i
= 1; i
< 31; ++i
) {
3289 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3291 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3292 xhci_free_stream_info(xhci
, ep
->stream_info
);
3293 ep
->stream_info
= NULL
;
3294 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3298 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3299 last_freed_endpoint
= i
;
3301 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3302 xhci_drop_ep_from_interval_table(xhci
,
3303 &virt_dev
->eps
[i
].bw_info
,
3308 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3310 /* If necessary, update the number of active TTs on this root port */
3311 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3313 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3314 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3318 xhci_free_command(xhci
, reset_device_cmd
);
3323 * At this point, the struct usb_device is about to go away, the device has
3324 * disconnected, and all traffic has been stopped and the endpoints have been
3325 * disabled. Free any HC data structures associated with that device.
3327 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3329 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3330 struct xhci_virt_device
*virt_dev
;
3331 unsigned long flags
;
3335 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3336 /* If the host is halted due to driver unload, we still need to free the
3339 if (ret
<= 0 && ret
!= -ENODEV
)
3342 virt_dev
= xhci
->devs
[udev
->slot_id
];
3344 /* Stop any wayward timer functions (which may grab the lock) */
3345 for (i
= 0; i
< 31; ++i
) {
3346 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
3347 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3350 if (udev
->usb2_hw_lpm_enabled
) {
3351 xhci_set_usb2_hardware_lpm(hcd
, udev
, 0);
3352 udev
->usb2_hw_lpm_enabled
= 0;
3355 spin_lock_irqsave(&xhci
->lock
, flags
);
3356 /* Don't disable the slot if the host controller is dead. */
3357 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
3358 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3359 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3360 xhci_free_virt_device(xhci
, udev
->slot_id
);
3361 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3365 if (xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
)) {
3366 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3367 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3370 xhci_ring_cmd_db(xhci
);
3371 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3373 * Event command completion handler will free any data structures
3374 * associated with the slot. XXX Can free sleep?
3379 * Checks if we have enough host controller resources for the default control
3382 * Must be called with xhci->lock held.
3384 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3386 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3387 xhci_dbg(xhci
, "Not enough ep ctxs: "
3388 "%u active, need to add 1, limit is %u.\n",
3389 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3392 xhci
->num_active_eps
+= 1;
3393 xhci_dbg(xhci
, "Adding 1 ep ctx, %u now active.\n",
3394 xhci
->num_active_eps
);
3400 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3401 * timed out, or allocating memory failed. Returns 1 on success.
3403 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3405 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3406 unsigned long flags
;
3410 spin_lock_irqsave(&xhci
->lock
, flags
);
3411 ret
= xhci_queue_slot_control(xhci
, TRB_ENABLE_SLOT
, 0);
3413 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3414 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3417 xhci_ring_cmd_db(xhci
);
3418 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3420 /* XXX: how much time for xHC slot assignment? */
3421 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3422 USB_CTRL_SET_TIMEOUT
);
3423 if (timeleft
<= 0) {
3424 xhci_warn(xhci
, "%s while waiting for a slot\n",
3425 timeleft
== 0 ? "Timeout" : "Signal");
3426 /* FIXME cancel the enable slot request */
3430 if (!xhci
->slot_id
) {
3431 xhci_err(xhci
, "Error while assigning device slot ID\n");
3435 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3436 spin_lock_irqsave(&xhci
->lock
, flags
);
3437 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3439 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3440 xhci_warn(xhci
, "Not enough host resources, "
3441 "active endpoint contexts = %u\n",
3442 xhci
->num_active_eps
);
3445 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3447 /* Use GFP_NOIO, since this function can be called from
3448 * xhci_discover_or_reset_device(), which may be called as part of
3449 * mass storage driver error handling.
3451 if (!xhci_alloc_virt_device(xhci
, xhci
->slot_id
, udev
, GFP_NOIO
)) {
3452 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3455 udev
->slot_id
= xhci
->slot_id
;
3456 /* Is this a LS or FS device under a HS hub? */
3457 /* Hub or peripherial? */
3461 /* Disable slot, if we can do it without mem alloc */
3462 spin_lock_irqsave(&xhci
->lock
, flags
);
3463 if (!xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
))
3464 xhci_ring_cmd_db(xhci
);
3465 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3470 * Issue an Address Device command (which will issue a SetAddress request to
3472 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3473 * we should only issue and wait on one address command at the same time.
3475 * We add one to the device address issued by the hardware because the USB core
3476 * uses address 1 for the root hubs (even though they're not really devices).
3478 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3480 unsigned long flags
;
3482 struct xhci_virt_device
*virt_dev
;
3484 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3485 struct xhci_slot_ctx
*slot_ctx
;
3486 struct xhci_input_control_ctx
*ctrl_ctx
;
3489 if (!udev
->slot_id
) {
3490 xhci_dbg(xhci
, "Bad Slot ID %d\n", udev
->slot_id
);
3494 virt_dev
= xhci
->devs
[udev
->slot_id
];
3496 if (WARN_ON(!virt_dev
)) {
3498 * In plug/unplug torture test with an NEC controller,
3499 * a zero-dereference was observed once due to virt_dev = 0.
3500 * Print useful debug rather than crash if it is observed again!
3502 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3507 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3509 * If this is the first Set Address since device plug-in or
3510 * virt_device realloaction after a resume with an xHCI power loss,
3511 * then set up the slot context.
3513 if (!slot_ctx
->dev_info
)
3514 xhci_setup_addressable_virt_dev(xhci
, udev
);
3515 /* Otherwise, update the control endpoint ring enqueue pointer. */
3517 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3518 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
3519 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
3520 ctrl_ctx
->drop_flags
= 0;
3522 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3523 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3525 spin_lock_irqsave(&xhci
->lock
, flags
);
3526 ret
= xhci_queue_address_device(xhci
, virt_dev
->in_ctx
->dma
,
3529 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3530 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3533 xhci_ring_cmd_db(xhci
);
3534 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3536 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3537 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3538 USB_CTRL_SET_TIMEOUT
);
3539 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3540 * the SetAddress() "recovery interval" required by USB and aborting the
3541 * command on a timeout.
3543 if (timeleft
<= 0) {
3544 xhci_warn(xhci
, "%s while waiting for address device command\n",
3545 timeleft
== 0 ? "Timeout" : "Signal");
3546 /* FIXME cancel the address device command */
3550 switch (virt_dev
->cmd_status
) {
3551 case COMP_CTX_STATE
:
3553 xhci_err(xhci
, "Setup ERROR: address device command for slot %d.\n",
3558 dev_warn(&udev
->dev
, "Device not responding to set address.\n");
3562 dev_warn(&udev
->dev
, "ERROR: Incompatible device for address "
3563 "device command.\n");
3567 xhci_dbg(xhci
, "Successful Address Device command\n");
3570 xhci_err(xhci
, "ERROR: unexpected command completion "
3571 "code 0x%x.\n", virt_dev
->cmd_status
);
3572 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3573 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3580 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3581 xhci_dbg(xhci
, "Op regs DCBAA ptr = %#016llx\n", temp_64
);
3582 xhci_dbg(xhci
, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3584 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3585 (unsigned long long)
3586 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3587 xhci_dbg(xhci
, "Output Context DMA address = %#08llx\n",
3588 (unsigned long long)virt_dev
->out_ctx
->dma
);
3589 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3590 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3591 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3592 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3594 * USB core uses address 1 for the roothubs, so we add one to the
3595 * address given back to us by the HC.
3597 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3598 /* Use kernel assigned address for devices; store xHC assigned
3599 * address locally. */
3600 virt_dev
->address
= (le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
)
3602 /* Zero the input context control for later use */
3603 ctrl_ctx
->add_flags
= 0;
3604 ctrl_ctx
->drop_flags
= 0;
3606 xhci_dbg(xhci
, "Internal device address = %d\n", virt_dev
->address
);
3611 #ifdef CONFIG_USB_SUSPEND
3613 /* BESL to HIRD Encoding array for USB2 LPM */
3614 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3615 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3617 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3618 static int xhci_calculate_hird_besl(int u2del
, bool use_besl
)
3623 for (hird
= 0; hird
< 16; hird
++) {
3624 if (xhci_besl_encoding
[hird
] >= u2del
)
3631 hird
= (u2del
- 51) / 75 + 1;
3640 static int xhci_usb2_software_lpm_test(struct usb_hcd
*hcd
,
3641 struct usb_device
*udev
)
3643 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3644 struct dev_info
*dev_info
;
3645 __le32 __iomem
**port_array
;
3646 __le32 __iomem
*addr
, *pm_addr
;
3648 unsigned int port_num
;
3649 unsigned long flags
;
3653 if (hcd
->speed
== HCD_USB3
|| !xhci
->sw_lpm_support
||
3657 /* we only support lpm for non-hub device connected to root hub yet */
3658 if (!udev
->parent
|| udev
->parent
->parent
||
3659 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
3662 spin_lock_irqsave(&xhci
->lock
, flags
);
3664 /* Look for devices in lpm_failed_devs list */
3665 dev_id
= le16_to_cpu(udev
->descriptor
.idVendor
) << 16 |
3666 le16_to_cpu(udev
->descriptor
.idProduct
);
3667 list_for_each_entry(dev_info
, &xhci
->lpm_failed_devs
, list
) {
3668 if (dev_info
->dev_id
== dev_id
) {
3674 port_array
= xhci
->usb2_ports
;
3675 port_num
= udev
->portnum
- 1;
3677 if (port_num
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
3678 xhci_dbg(xhci
, "invalid port number %d\n", udev
->portnum
);
3684 * Test USB 2.0 software LPM.
3685 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3686 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3687 * in the June 2011 errata release.
3689 xhci_dbg(xhci
, "test port %d software LPM\n", port_num
);
3691 * Set L1 Device Slot and HIRD/BESL.
3692 * Check device's USB 2.0 extension descriptor to determine whether
3693 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3695 pm_addr
= port_array
[port_num
] + 1;
3696 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
3697 if (le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
) & (1 << 2))
3698 hird
= xhci_calculate_hird_besl(u2del
, 1);
3700 hird
= xhci_calculate_hird_besl(u2del
, 0);
3702 temp
= PORT_L1DS(udev
->slot_id
) | PORT_HIRD(hird
);
3703 xhci_writel(xhci
, temp
, pm_addr
);
3705 /* Set port link state to U2(L1) */
3706 addr
= port_array
[port_num
];
3707 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U2
);
3710 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3712 spin_lock_irqsave(&xhci
->lock
, flags
);
3714 /* Check L1 Status */
3715 ret
= handshake(xhci
, pm_addr
, PORT_L1S_MASK
, PORT_L1S_SUCCESS
, 125);
3716 if (ret
!= -ETIMEDOUT
) {
3717 /* enter L1 successfully */
3718 temp
= xhci_readl(xhci
, addr
);
3719 xhci_dbg(xhci
, "port %d entered L1 state, port status 0x%x\n",
3723 temp
= xhci_readl(xhci
, pm_addr
);
3724 xhci_dbg(xhci
, "port %d software lpm failed, L1 status %d\n",
3725 port_num
, temp
& PORT_L1S_MASK
);
3729 /* Resume the port */
3730 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U0
);
3732 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3734 spin_lock_irqsave(&xhci
->lock
, flags
);
3737 xhci_test_and_clear_bit(xhci
, port_array
, port_num
, PORT_PLC
);
3739 /* Check PORTSC to make sure the device is in the right state */
3741 temp
= xhci_readl(xhci
, addr
);
3742 xhci_dbg(xhci
, "resumed port %d status 0x%x\n", port_num
, temp
);
3743 if (!(temp
& PORT_CONNECT
) || !(temp
& PORT_PE
) ||
3744 (temp
& PORT_PLS_MASK
) != XDEV_U0
) {
3745 xhci_dbg(xhci
, "port L1 resume fail\n");
3751 /* Insert dev to lpm_failed_devs list */
3752 xhci_warn(xhci
, "device LPM test failed, may disconnect and "
3754 dev_info
= kzalloc(sizeof(struct dev_info
), GFP_ATOMIC
);
3759 dev_info
->dev_id
= dev_id
;
3760 INIT_LIST_HEAD(&dev_info
->list
);
3761 list_add(&dev_info
->list
, &xhci
->lpm_failed_devs
);
3763 xhci_ring_device(xhci
, udev
->slot_id
);
3767 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3771 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
3772 struct usb_device
*udev
, int enable
)
3774 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3775 __le32 __iomem
**port_array
;
3776 __le32 __iomem
*pm_addr
;
3778 unsigned int port_num
;
3779 unsigned long flags
;
3782 if (hcd
->speed
== HCD_USB3
|| !xhci
->hw_lpm_support
||
3786 if (!udev
->parent
|| udev
->parent
->parent
||
3787 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
3790 if (udev
->usb2_hw_lpm_capable
!= 1)
3793 spin_lock_irqsave(&xhci
->lock
, flags
);
3795 port_array
= xhci
->usb2_ports
;
3796 port_num
= udev
->portnum
- 1;
3797 pm_addr
= port_array
[port_num
] + 1;
3798 temp
= xhci_readl(xhci
, pm_addr
);
3800 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
3801 enable
? "enable" : "disable", port_num
);
3803 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
3804 if (le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
) & (1 << 2))
3805 hird
= xhci_calculate_hird_besl(u2del
, 1);
3807 hird
= xhci_calculate_hird_besl(u2del
, 0);
3810 temp
&= ~PORT_HIRD_MASK
;
3811 temp
|= PORT_HIRD(hird
) | PORT_RWE
;
3812 xhci_writel(xhci
, temp
, pm_addr
);
3813 temp
= xhci_readl(xhci
, pm_addr
);
3815 xhci_writel(xhci
, temp
, pm_addr
);
3817 temp
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
);
3818 xhci_writel(xhci
, temp
, pm_addr
);
3821 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3825 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3827 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3830 ret
= xhci_usb2_software_lpm_test(hcd
, udev
);
3832 xhci_dbg(xhci
, "software LPM test succeed\n");
3833 if (xhci
->hw_lpm_support
== 1) {
3834 udev
->usb2_hw_lpm_capable
= 1;
3835 ret
= xhci_set_usb2_hardware_lpm(hcd
, udev
, 1);
3837 udev
->usb2_hw_lpm_enabled
= 1;
3846 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
3847 struct usb_device
*udev
, int enable
)
3852 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3857 #endif /* CONFIG_USB_SUSPEND */
3859 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3860 * internal data structures for the device.
3862 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
3863 struct usb_tt
*tt
, gfp_t mem_flags
)
3865 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3866 struct xhci_virt_device
*vdev
;
3867 struct xhci_command
*config_cmd
;
3868 struct xhci_input_control_ctx
*ctrl_ctx
;
3869 struct xhci_slot_ctx
*slot_ctx
;
3870 unsigned long flags
;
3871 unsigned think_time
;
3874 /* Ignore root hubs */
3878 vdev
= xhci
->devs
[hdev
->slot_id
];
3880 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
3883 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3885 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3889 spin_lock_irqsave(&xhci
->lock
, flags
);
3890 if (hdev
->speed
== USB_SPEED_HIGH
&&
3891 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
3892 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
3893 xhci_free_command(xhci
, config_cmd
);
3894 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3898 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
3899 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
3900 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
3901 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
3902 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
3904 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
3905 if (xhci
->hci_version
> 0x95) {
3906 xhci_dbg(xhci
, "xHCI version %x needs hub "
3907 "TT think time and number of ports\n",
3908 (unsigned int) xhci
->hci_version
);
3909 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
3910 /* Set TT think time - convert from ns to FS bit times.
3911 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3912 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3914 * xHCI 1.0: this field shall be 0 if the device is not a
3917 think_time
= tt
->think_time
;
3918 if (think_time
!= 0)
3919 think_time
= (think_time
/ 666) - 1;
3920 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
3921 slot_ctx
->tt_info
|=
3922 cpu_to_le32(TT_THINK_TIME(think_time
));
3924 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
3925 "TT think time or number of ports\n",
3926 (unsigned int) xhci
->hci_version
);
3928 slot_ctx
->dev_state
= 0;
3929 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3931 xhci_dbg(xhci
, "Set up %s for hub device.\n",
3932 (xhci
->hci_version
> 0x95) ?
3933 "configure endpoint" : "evaluate context");
3934 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
3935 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
3937 /* Issue and wait for the configure endpoint or
3938 * evaluate context command.
3940 if (xhci
->hci_version
> 0x95)
3941 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
3944 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
3947 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
3948 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
3950 xhci_free_command(xhci
, config_cmd
);
3954 int xhci_get_frame(struct usb_hcd
*hcd
)
3956 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3957 /* EHCI mods by the periodic size. Why? */
3958 return xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
) >> 3;
3961 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
3963 struct xhci_hcd
*xhci
;
3964 struct device
*dev
= hcd
->self
.controller
;
3968 hcd
->self
.sg_tablesize
= TRBS_PER_SEGMENT
- 2;
3970 if (usb_hcd_is_primary_hcd(hcd
)) {
3971 xhci
= kzalloc(sizeof(struct xhci_hcd
), GFP_KERNEL
);
3974 *((struct xhci_hcd
**) hcd
->hcd_priv
) = xhci
;
3975 xhci
->main_hcd
= hcd
;
3976 /* Mark the first roothub as being USB 2.0.
3977 * The xHCI driver will register the USB 3.0 roothub.
3979 hcd
->speed
= HCD_USB2
;
3980 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
3982 * USB 2.0 roothub under xHCI has an integrated TT,
3983 * (rate matching hub) as opposed to having an OHCI/UHCI
3984 * companion controller.
3988 /* xHCI private pointer was set in xhci_pci_probe for the second
3989 * registered roothub.
3991 xhci
= hcd_to_xhci(hcd
);
3992 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
3993 if (HCC_64BIT_ADDR(temp
)) {
3994 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
3995 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
3997 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
4002 xhci
->cap_regs
= hcd
->regs
;
4003 xhci
->op_regs
= hcd
->regs
+
4004 HC_LENGTH(xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
));
4005 xhci
->run_regs
= hcd
->regs
+
4006 (xhci_readl(xhci
, &xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
4007 /* Cache read-only capability registers */
4008 xhci
->hcs_params1
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
);
4009 xhci
->hcs_params2
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params2
);
4010 xhci
->hcs_params3
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params3
);
4011 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
);
4012 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
4013 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4014 xhci_print_registers(xhci
);
4016 get_quirks(dev
, xhci
);
4018 /* Make sure the HC is halted. */
4019 retval
= xhci_halt(xhci
);
4023 xhci_dbg(xhci
, "Resetting HCD\n");
4024 /* Reset the internal HC memory state and registers. */
4025 retval
= xhci_reset(xhci
);
4028 xhci_dbg(xhci
, "Reset complete\n");
4030 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4031 if (HCC_64BIT_ADDR(temp
)) {
4032 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4033 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
4035 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
4038 xhci_dbg(xhci
, "Calling HCD init\n");
4039 /* Initialize HCD and host controller data structures. */
4040 retval
= xhci_init(hcd
);
4043 xhci_dbg(xhci
, "Called HCD init\n");
4050 MODULE_DESCRIPTION(DRIVER_DESC
);
4051 MODULE_AUTHOR(DRIVER_AUTHOR
);
4052 MODULE_LICENSE("GPL");
4054 static int __init
xhci_hcd_init(void)
4058 retval
= xhci_register_pci();
4060 printk(KERN_DEBUG
"Problem registering PCI driver.");
4064 * Check the compiler generated sizes of structures that must be laid
4065 * out in specific ways for hardware access.
4067 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4068 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
4069 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
4070 /* xhci_device_control has eight fields, and also
4071 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4073 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
4074 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
4075 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
4076 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 7*32/8);
4077 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
4078 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4079 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
4080 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4083 module_init(xhci_hcd_init
);
4085 static void __exit
xhci_hcd_cleanup(void)
4087 xhci_unregister_pci();
4089 module_exit(xhci_hcd_cleanup
);