1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/gfp.h>
48 #include <linux/errno.h>
49 #include <linux/export.h>
51 #include <linux/usb/quirks.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_eh.h>
55 #include <scsi/scsi_device.h>
58 #include "transport.h"
63 #include <linux/blkdev.h>
64 #include "../../scsi/sd.h"
67 /***********************************************************************
68 * Data transfer routines
69 ***********************************************************************/
72 * This is subtle, so pay attention:
73 * ---------------------------------
74 * We're very concerned about races with a command abort. Hanging this code
75 * is a sure fire way to hang the kernel. (Note that this discussion applies
76 * only to transactions resulting from a scsi queued-command, since only
77 * these transactions are subject to a scsi abort. Other transactions, such
78 * as those occurring during device-specific initialization, must be handled
79 * by a separate code path.)
81 * The abort function (usb_storage_command_abort() in scsiglue.c) first
82 * sets the machine state and the ABORTING bit in us->dflags to prevent
83 * new URBs from being submitted. It then calls usb_stor_stop_transport()
84 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
85 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
86 * bit is tested to see if the current_sg scatter-gather request needs to be
87 * stopped. The timeout callback routine does much the same thing.
89 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
90 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
91 * called to stop any ongoing requests.
93 * The submit function first verifies that the submitting is allowed
94 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
95 * completes without errors, and only then sets the URB_ACTIVE bit. This
96 * prevents the stop_transport() function from trying to cancel the URB
97 * while the submit call is underway. Next, the submit function must test
98 * the flags to see if an abort or disconnect occurred during the submission
99 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
100 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
101 * is still set). Either way, the function must then wait for the URB to
102 * finish. Note that the URB can still be in progress even after a call to
103 * usb_unlink_urb() returns.
105 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
106 * either the stop_transport() function or the submitting function
107 * is guaranteed to call usb_unlink_urb() for an active URB,
108 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
109 * called more than once or from being called during usb_submit_urb().
112 /* This is the completion handler which will wake us up when an URB
115 static void usb_stor_blocking_completion(struct urb
*urb
)
117 struct completion
*urb_done_ptr
= urb
->context
;
119 complete(urb_done_ptr
);
122 /* This is the common part of the URB message submission code
124 * All URBs from the usb-storage driver involved in handling a queued scsi
125 * command _must_ pass through this function (or something like it) for the
126 * abort mechanisms to work properly.
128 static int usb_stor_msg_common(struct us_data
*us
, int timeout
)
130 struct completion urb_done
;
134 /* don't submit URBs during abort processing */
135 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
138 /* set up data structures for the wakeup system */
139 init_completion(&urb_done
);
141 /* fill the common fields in the URB */
142 us
->current_urb
->context
= &urb_done
;
143 us
->current_urb
->transfer_flags
= 0;
145 /* we assume that if transfer_buffer isn't us->iobuf then it
146 * hasn't been mapped for DMA. Yes, this is clunky, but it's
147 * easier than always having the caller tell us whether the
148 * transfer buffer has already been mapped. */
149 if (us
->current_urb
->transfer_buffer
== us
->iobuf
)
150 us
->current_urb
->transfer_flags
|= URB_NO_TRANSFER_DMA_MAP
;
151 us
->current_urb
->transfer_dma
= us
->iobuf_dma
;
154 status
= usb_submit_urb(us
->current_urb
, GFP_NOIO
);
156 /* something went wrong */
160 /* since the URB has been submitted successfully, it's now okay
162 set_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
164 /* did an abort occur during the submission? */
165 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
167 /* cancel the URB, if it hasn't been cancelled already */
168 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
169 US_DEBUGP("-- cancelling URB\n");
170 usb_unlink_urb(us
->current_urb
);
174 /* wait for the completion of the URB */
175 timeleft
= wait_for_completion_interruptible_timeout(
176 &urb_done
, timeout
? : MAX_SCHEDULE_TIMEOUT
);
178 clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
);
181 US_DEBUGP("%s -- cancelling URB\n",
182 timeleft
== 0 ? "Timeout" : "Signal");
183 usb_kill_urb(us
->current_urb
);
186 /* return the URB status */
187 return us
->current_urb
->status
;
191 * Transfer one control message, with timeouts, and allowing early
192 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
194 int usb_stor_control_msg(struct us_data
*us
, unsigned int pipe
,
195 u8 request
, u8 requesttype
, u16 value
, u16 index
,
196 void *data
, u16 size
, int timeout
)
200 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
201 __func__
, request
, requesttype
,
204 /* fill in the devrequest structure */
205 us
->cr
->bRequestType
= requesttype
;
206 us
->cr
->bRequest
= request
;
207 us
->cr
->wValue
= cpu_to_le16(value
);
208 us
->cr
->wIndex
= cpu_to_le16(index
);
209 us
->cr
->wLength
= cpu_to_le16(size
);
211 /* fill and submit the URB */
212 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
213 (unsigned char*) us
->cr
, data
, size
,
214 usb_stor_blocking_completion
, NULL
);
215 status
= usb_stor_msg_common(us
, timeout
);
217 /* return the actual length of the data transferred if no error */
219 status
= us
->current_urb
->actual_length
;
222 EXPORT_SYMBOL_GPL(usb_stor_control_msg
);
224 /* This is a version of usb_clear_halt() that allows early termination and
225 * doesn't read the status from the device -- this is because some devices
226 * crash their internal firmware when the status is requested after a halt.
228 * A definitive list of these 'bad' devices is too difficult to maintain or
229 * make complete enough to be useful. This problem was first observed on the
230 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
231 * MacOS nor Windows checks the status after clearing a halt.
233 * Since many vendors in this space limit their testing to interoperability
234 * with these two OSes, specification violations like this one are common.
236 int usb_stor_clear_halt(struct us_data
*us
, unsigned int pipe
)
239 int endp
= usb_pipeendpoint(pipe
);
241 if (usb_pipein (pipe
))
244 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
245 USB_REQ_CLEAR_FEATURE
, USB_RECIP_ENDPOINT
,
246 USB_ENDPOINT_HALT
, endp
,
250 usb_reset_endpoint(us
->pusb_dev
, endp
);
252 US_DEBUGP("%s: result = %d\n", __func__
, result
);
255 EXPORT_SYMBOL_GPL(usb_stor_clear_halt
);
259 * Interpret the results of a URB transfer
261 * This function prints appropriate debugging messages, clears halts on
262 * non-control endpoints, and translates the status to the corresponding
263 * USB_STOR_XFER_xxx return code.
265 static int interpret_urb_result(struct us_data
*us
, unsigned int pipe
,
266 unsigned int length
, int result
, unsigned int partial
)
268 US_DEBUGP("Status code %d; transferred %u/%u\n",
269 result
, partial
, length
);
272 /* no error code; did we send all the data? */
274 if (partial
!= length
) {
275 US_DEBUGP("-- short transfer\n");
276 return USB_STOR_XFER_SHORT
;
279 US_DEBUGP("-- transfer complete\n");
280 return USB_STOR_XFER_GOOD
;
284 /* for control endpoints, (used by CB[I]) a stall indicates
285 * a failed command */
286 if (usb_pipecontrol(pipe
)) {
287 US_DEBUGP("-- stall on control pipe\n");
288 return USB_STOR_XFER_STALLED
;
291 /* for other sorts of endpoint, clear the stall */
292 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe
);
293 if (usb_stor_clear_halt(us
, pipe
) < 0)
294 return USB_STOR_XFER_ERROR
;
295 return USB_STOR_XFER_STALLED
;
297 /* babble - the device tried to send more than we wanted to read */
299 US_DEBUGP("-- babble\n");
300 return USB_STOR_XFER_LONG
;
302 /* the transfer was cancelled by abort, disconnect, or timeout */
304 US_DEBUGP("-- transfer cancelled\n");
305 return USB_STOR_XFER_ERROR
;
307 /* short scatter-gather read transfer */
309 US_DEBUGP("-- short read transfer\n");
310 return USB_STOR_XFER_SHORT
;
312 /* abort or disconnect in progress */
314 US_DEBUGP("-- abort or disconnect in progress\n");
315 return USB_STOR_XFER_ERROR
;
317 /* the catch-all error case */
319 US_DEBUGP("-- unknown error\n");
320 return USB_STOR_XFER_ERROR
;
325 * Transfer one control message, without timeouts, but allowing early
326 * termination. Return codes are USB_STOR_XFER_xxx.
328 int usb_stor_ctrl_transfer(struct us_data
*us
, unsigned int pipe
,
329 u8 request
, u8 requesttype
, u16 value
, u16 index
,
330 void *data
, u16 size
)
334 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
335 __func__
, request
, requesttype
,
338 /* fill in the devrequest structure */
339 us
->cr
->bRequestType
= requesttype
;
340 us
->cr
->bRequest
= request
;
341 us
->cr
->wValue
= cpu_to_le16(value
);
342 us
->cr
->wIndex
= cpu_to_le16(index
);
343 us
->cr
->wLength
= cpu_to_le16(size
);
345 /* fill and submit the URB */
346 usb_fill_control_urb(us
->current_urb
, us
->pusb_dev
, pipe
,
347 (unsigned char*) us
->cr
, data
, size
,
348 usb_stor_blocking_completion
, NULL
);
349 result
= usb_stor_msg_common(us
, 0);
351 return interpret_urb_result(us
, pipe
, size
, result
,
352 us
->current_urb
->actual_length
);
354 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer
);
357 * Receive one interrupt buffer, without timeouts, but allowing early
358 * termination. Return codes are USB_STOR_XFER_xxx.
360 * This routine always uses us->recv_intr_pipe as the pipe and
361 * us->ep_bInterval as the interrupt interval.
363 static int usb_stor_intr_transfer(struct us_data
*us
, void *buf
,
367 unsigned int pipe
= us
->recv_intr_pipe
;
370 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
372 /* calculate the max packet size */
373 maxp
= usb_maxpacket(us
->pusb_dev
, pipe
, usb_pipeout(pipe
));
377 /* fill and submit the URB */
378 usb_fill_int_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
,
379 maxp
, usb_stor_blocking_completion
, NULL
,
381 result
= usb_stor_msg_common(us
, 0);
383 return interpret_urb_result(us
, pipe
, length
, result
,
384 us
->current_urb
->actual_length
);
388 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
389 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
390 * stalls during the transfer, the halt is automatically cleared.
392 int usb_stor_bulk_transfer_buf(struct us_data
*us
, unsigned int pipe
,
393 void *buf
, unsigned int length
, unsigned int *act_len
)
397 US_DEBUGP("%s: xfer %u bytes\n", __func__
, length
);
399 /* fill and submit the URB */
400 usb_fill_bulk_urb(us
->current_urb
, us
->pusb_dev
, pipe
, buf
, length
,
401 usb_stor_blocking_completion
, NULL
);
402 result
= usb_stor_msg_common(us
, 0);
404 /* store the actual length of the data transferred */
406 *act_len
= us
->current_urb
->actual_length
;
407 return interpret_urb_result(us
, pipe
, length
, result
,
408 us
->current_urb
->actual_length
);
410 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf
);
413 * Transfer a scatter-gather list via bulk transfer
415 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
416 * above, but it uses the usbcore scatter-gather library.
418 static int usb_stor_bulk_transfer_sglist(struct us_data
*us
, unsigned int pipe
,
419 struct scatterlist
*sg
, int num_sg
, unsigned int length
,
420 unsigned int *act_len
)
424 /* don't submit s-g requests during abort processing */
425 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
))
426 return USB_STOR_XFER_ERROR
;
428 /* initialize the scatter-gather request block */
429 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__
,
431 result
= usb_sg_init(&us
->current_sg
, us
->pusb_dev
, pipe
, 0,
432 sg
, num_sg
, length
, GFP_NOIO
);
434 US_DEBUGP("usb_sg_init returned %d\n", result
);
435 return USB_STOR_XFER_ERROR
;
438 /* since the block has been initialized successfully, it's now
439 * okay to cancel it */
440 set_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
442 /* did an abort occur during the submission? */
443 if (test_bit(US_FLIDX_ABORTING
, &us
->dflags
)) {
445 /* cancel the request, if it hasn't been cancelled already */
446 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
447 US_DEBUGP("-- cancelling sg request\n");
448 usb_sg_cancel(&us
->current_sg
);
452 /* wait for the completion of the transfer */
453 usb_sg_wait(&us
->current_sg
);
454 clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
);
456 result
= us
->current_sg
.status
;
458 *act_len
= us
->current_sg
.bytes
;
459 return interpret_urb_result(us
, pipe
, length
, result
,
460 us
->current_sg
.bytes
);
464 * Common used function. Transfer a complete command
465 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
467 int usb_stor_bulk_srb(struct us_data
* us
, unsigned int pipe
,
468 struct scsi_cmnd
* srb
)
470 unsigned int partial
;
471 int result
= usb_stor_bulk_transfer_sglist(us
, pipe
, scsi_sglist(srb
),
472 scsi_sg_count(srb
), scsi_bufflen(srb
),
475 scsi_set_resid(srb
, scsi_bufflen(srb
) - partial
);
478 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb
);
481 * Transfer an entire SCSI command's worth of data payload over the bulk
484 * Note that this uses usb_stor_bulk_transfer_buf() and
485 * usb_stor_bulk_transfer_sglist() to achieve its goals --
486 * this function simply determines whether we're going to use
487 * scatter-gather or not, and acts appropriately.
489 int usb_stor_bulk_transfer_sg(struct us_data
* us
, unsigned int pipe
,
490 void *buf
, unsigned int length_left
, int use_sg
, int *residual
)
493 unsigned int partial
;
495 /* are we scatter-gathering? */
497 /* use the usb core scatter-gather primitives */
498 result
= usb_stor_bulk_transfer_sglist(us
, pipe
,
499 (struct scatterlist
*) buf
, use_sg
,
500 length_left
, &partial
);
501 length_left
-= partial
;
503 /* no scatter-gather, just make the request */
504 result
= usb_stor_bulk_transfer_buf(us
, pipe
, buf
,
505 length_left
, &partial
);
506 length_left
-= partial
;
509 /* store the residual and return the error code */
511 *residual
= length_left
;
514 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg
);
516 /***********************************************************************
518 ***********************************************************************/
520 /* There are so many devices that report the capacity incorrectly,
521 * this routine was written to counteract some of the resulting
524 static void last_sector_hacks(struct us_data
*us
, struct scsi_cmnd
*srb
)
526 struct gendisk
*disk
;
527 struct scsi_disk
*sdkp
;
530 /* To Report "Medium Error: Record Not Found */
531 static unsigned char record_not_found
[18] = {
532 [0] = 0x70, /* current error */
533 [2] = MEDIUM_ERROR
, /* = 0x03 */
534 [7] = 0x0a, /* additional length */
535 [12] = 0x14 /* Record Not Found */
538 /* If last-sector problems can't occur, whether because the
539 * capacity was already decremented or because the device is
540 * known to report the correct capacity, then we don't need
543 if (!us
->use_last_sector_hacks
)
546 /* Was this command a READ(10) or a WRITE(10)? */
547 if (srb
->cmnd
[0] != READ_10
&& srb
->cmnd
[0] != WRITE_10
)
550 /* Did this command access the last sector? */
551 sector
= (srb
->cmnd
[2] << 24) | (srb
->cmnd
[3] << 16) |
552 (srb
->cmnd
[4] << 8) | (srb
->cmnd
[5]);
553 disk
= srb
->request
->rq_disk
;
556 sdkp
= scsi_disk(disk
);
559 if (sector
+ 1 != sdkp
->capacity
)
562 if (srb
->result
== SAM_STAT_GOOD
&& scsi_get_resid(srb
) == 0) {
564 /* The command succeeded. We know this device doesn't
565 * have the last-sector bug, so stop checking it.
567 us
->use_last_sector_hacks
= 0;
570 /* The command failed. Allow up to 3 retries in case this
571 * is some normal sort of failure. After that, assume the
572 * capacity is wrong and we're trying to access the sector
573 * beyond the end. Replace the result code and sense data
574 * with values that will cause the SCSI core to fail the
575 * command immediately, instead of going into an infinite
576 * (or even just a very long) retry loop.
578 if (++us
->last_sector_retries
< 3)
580 srb
->result
= SAM_STAT_CHECK_CONDITION
;
581 memcpy(srb
->sense_buffer
, record_not_found
,
582 sizeof(record_not_found
));
586 /* Don't reset the retry counter for TEST UNIT READY commands,
587 * because they get issued after device resets which might be
588 * caused by a failed last-sector access.
590 if (srb
->cmnd
[0] != TEST_UNIT_READY
)
591 us
->last_sector_retries
= 0;
594 /* Invoke the transport and basic error-handling/recovery methods
596 * This is used by the protocol layers to actually send the message to
597 * the device and receive the response.
599 void usb_stor_invoke_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
604 /* send the command to the transport layer */
605 scsi_set_resid(srb
, 0);
606 result
= us
->transport(srb
, us
);
608 /* if the command gets aborted by the higher layers, we need to
609 * short-circuit all other processing
611 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
612 US_DEBUGP("-- command was aborted\n");
613 srb
->result
= DID_ABORT
<< 16;
617 /* if there is a transport error, reset and don't auto-sense */
618 if (result
== USB_STOR_TRANSPORT_ERROR
) {
619 US_DEBUGP("-- transport indicates error, resetting\n");
620 srb
->result
= DID_ERROR
<< 16;
624 /* if the transport provided its own sense data, don't auto-sense */
625 if (result
== USB_STOR_TRANSPORT_NO_SENSE
) {
626 srb
->result
= SAM_STAT_CHECK_CONDITION
;
627 last_sector_hacks(us
, srb
);
631 srb
->result
= SAM_STAT_GOOD
;
633 /* Determine if we need to auto-sense
635 * I normally don't use a flag like this, but it's almost impossible
636 * to understand what's going on here if I don't.
641 * If we're running the CB transport, which is incapable
642 * of determining status on its own, we will auto-sense
643 * unless the operation involved a data-in transfer. Devices
644 * can signal most data-in errors by stalling the bulk-in pipe.
646 if ((us
->protocol
== USB_PR_CB
|| us
->protocol
== USB_PR_DPCM_USB
) &&
647 srb
->sc_data_direction
!= DMA_FROM_DEVICE
) {
648 US_DEBUGP("-- CB transport device requiring auto-sense\n");
653 * If we have a failure, we're going to do a REQUEST_SENSE
654 * automatically. Note that we differentiate between a command
655 * "failure" and an "error" in the transport mechanism.
657 if (result
== USB_STOR_TRANSPORT_FAILED
) {
658 US_DEBUGP("-- transport indicates command failure\n");
663 * Determine if this device is SAT by seeing if the
664 * command executed successfully. Otherwise we'll have
665 * to wait for at least one CHECK_CONDITION to determine
668 if (unlikely((srb
->cmnd
[0] == ATA_16
|| srb
->cmnd
[0] == ATA_12
) &&
669 result
== USB_STOR_TRANSPORT_GOOD
&&
670 !(us
->fflags
& US_FL_SANE_SENSE
) &&
671 !(us
->fflags
& US_FL_BAD_SENSE
) &&
672 !(srb
->cmnd
[2] & 0x20))) {
673 US_DEBUGP("-- SAT supported, increasing auto-sense\n");
674 us
->fflags
|= US_FL_SANE_SENSE
;
678 * A short transfer on a command where we don't expect it
679 * is unusual, but it doesn't mean we need to auto-sense.
681 if ((scsi_get_resid(srb
) > 0) &&
682 !((srb
->cmnd
[0] == REQUEST_SENSE
) ||
683 (srb
->cmnd
[0] == INQUIRY
) ||
684 (srb
->cmnd
[0] == MODE_SENSE
) ||
685 (srb
->cmnd
[0] == LOG_SENSE
) ||
686 (srb
->cmnd
[0] == MODE_SENSE_10
))) {
687 US_DEBUGP("-- unexpectedly short transfer\n");
690 /* Now, if we need to do the auto-sense, let's do it */
691 if (need_auto_sense
) {
693 struct scsi_eh_save ses
;
694 int sense_size
= US_SENSE_SIZE
;
695 struct scsi_sense_hdr sshdr
;
699 /* device supports and needs bigger sense buffer */
700 if (us
->fflags
& US_FL_SANE_SENSE
)
703 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
705 scsi_eh_prep_cmnd(srb
, &ses
, NULL
, 0, sense_size
);
707 /* FIXME: we must do the protocol translation here */
708 if (us
->subclass
== USB_SC_RBC
|| us
->subclass
== USB_SC_SCSI
||
709 us
->subclass
== USB_SC_CYP_ATACB
)
714 /* issue the auto-sense command */
715 scsi_set_resid(srb
, 0);
716 temp_result
= us
->transport(us
->srb
, us
);
718 /* let's clean up right away */
719 scsi_eh_restore_cmnd(srb
, &ses
);
721 if (test_bit(US_FLIDX_TIMED_OUT
, &us
->dflags
)) {
722 US_DEBUGP("-- auto-sense aborted\n");
723 srb
->result
= DID_ABORT
<< 16;
725 /* If SANE_SENSE caused this problem, disable it */
726 if (sense_size
!= US_SENSE_SIZE
) {
727 us
->fflags
&= ~US_FL_SANE_SENSE
;
728 us
->fflags
|= US_FL_BAD_SENSE
;
733 /* Some devices claim to support larger sense but fail when
734 * trying to request it. When a transport failure happens
735 * using US_FS_SANE_SENSE, we always retry with a standard
736 * (small) sense request. This fixes some USB GSM modems
738 if (temp_result
== USB_STOR_TRANSPORT_FAILED
&&
739 sense_size
!= US_SENSE_SIZE
) {
740 US_DEBUGP("-- auto-sense failure, retry small sense\n");
741 sense_size
= US_SENSE_SIZE
;
742 us
->fflags
&= ~US_FL_SANE_SENSE
;
743 us
->fflags
|= US_FL_BAD_SENSE
;
748 if (temp_result
!= USB_STOR_TRANSPORT_GOOD
) {
749 US_DEBUGP("-- auto-sense failure\n");
751 /* we skip the reset if this happens to be a
752 * multi-target device, since failure of an
753 * auto-sense is perfectly valid
755 srb
->result
= DID_ERROR
<< 16;
756 if (!(us
->fflags
& US_FL_SCM_MULT_TARG
))
761 /* If the sense data returned is larger than 18-bytes then we
762 * assume this device supports requesting more in the future.
763 * The response code must be 70h through 73h inclusive.
765 if (srb
->sense_buffer
[7] > (US_SENSE_SIZE
- 8) &&
766 !(us
->fflags
& US_FL_SANE_SENSE
) &&
767 !(us
->fflags
& US_FL_BAD_SENSE
) &&
768 (srb
->sense_buffer
[0] & 0x7C) == 0x70) {
769 US_DEBUGP("-- SANE_SENSE support enabled\n");
770 us
->fflags
|= US_FL_SANE_SENSE
;
772 /* Indicate to the user that we truncated their sense
773 * because we didn't know it supported larger sense.
775 US_DEBUGP("-- Sense data truncated to %i from %i\n",
777 srb
->sense_buffer
[7] + 8);
778 srb
->sense_buffer
[7] = (US_SENSE_SIZE
- 8);
781 scsi_normalize_sense(srb
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
,
784 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result
);
785 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
786 sshdr
.response_code
, sshdr
.sense_key
,
787 sshdr
.asc
, sshdr
.ascq
);
788 #ifdef CONFIG_USB_STORAGE_DEBUG
789 usb_stor_show_sense(sshdr
.sense_key
, sshdr
.asc
, sshdr
.ascq
);
792 /* set the result so the higher layers expect this data */
793 srb
->result
= SAM_STAT_CHECK_CONDITION
;
795 scdd
= scsi_sense_desc_find(srb
->sense_buffer
,
796 SCSI_SENSE_BUFFERSIZE
, 4);
797 fm_ili
= (scdd
? scdd
[3] : srb
->sense_buffer
[2]) & 0xA0;
799 /* We often get empty sense data. This could indicate that
800 * everything worked or that there was an unspecified
801 * problem. We have to decide which.
803 if (sshdr
.sense_key
== 0 && sshdr
.asc
== 0 && sshdr
.ascq
== 0 &&
805 /* If things are really okay, then let's show that.
806 * Zero out the sense buffer so the higher layers
807 * won't realize we did an unsolicited auto-sense.
809 if (result
== USB_STOR_TRANSPORT_GOOD
) {
810 srb
->result
= SAM_STAT_GOOD
;
811 srb
->sense_buffer
[0] = 0x0;
813 /* If there was a problem, report an unspecified
814 * hardware error to prevent the higher layers from
815 * entering an infinite retry loop.
818 srb
->result
= DID_ERROR
<< 16;
819 if ((sshdr
.response_code
& 0x72) == 0x72)
820 srb
->sense_buffer
[1] = HARDWARE_ERROR
;
822 srb
->sense_buffer
[2] = HARDWARE_ERROR
;
828 * Some devices don't work or return incorrect data the first
829 * time they get a READ(10) command, or for the first READ(10)
830 * after a media change. If the INITIAL_READ10 flag is set,
831 * keep track of whether READ(10) commands succeed. If the
832 * previous one succeeded and this one failed, set the REDO_READ10
833 * flag to force a retry.
835 if (unlikely((us
->fflags
& US_FL_INITIAL_READ10
) &&
836 srb
->cmnd
[0] == READ_10
)) {
837 if (srb
->result
== SAM_STAT_GOOD
) {
838 set_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
);
839 } else if (test_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
)) {
840 clear_bit(US_FLIDX_READ10_WORKED
, &us
->dflags
);
841 set_bit(US_FLIDX_REDO_READ10
, &us
->dflags
);
845 * Next, if the REDO_READ10 flag is set, return a result
846 * code that will cause the SCSI core to retry the READ(10)
847 * command immediately.
849 if (test_bit(US_FLIDX_REDO_READ10
, &us
->dflags
)) {
850 clear_bit(US_FLIDX_REDO_READ10
, &us
->dflags
);
851 srb
->result
= DID_IMM_RETRY
<< 16;
852 srb
->sense_buffer
[0] = 0;
856 /* Did we transfer less than the minimum amount required? */
857 if ((srb
->result
== SAM_STAT_GOOD
|| srb
->sense_buffer
[2] == 0) &&
858 scsi_bufflen(srb
) - scsi_get_resid(srb
) < srb
->underflow
)
859 srb
->result
= DID_ERROR
<< 16;
861 last_sector_hacks(us
, srb
);
864 /* Error and abort processing: try to resynchronize with the device
865 * by issuing a port reset. If that fails, try a class-specific
869 /* Set the RESETTING bit, and clear the ABORTING bit so that
870 * the reset may proceed. */
871 scsi_lock(us_to_host(us
));
872 set_bit(US_FLIDX_RESETTING
, &us
->dflags
);
873 clear_bit(US_FLIDX_ABORTING
, &us
->dflags
);
874 scsi_unlock(us_to_host(us
));
876 /* We must release the device lock because the pre_reset routine
877 * will want to acquire it. */
878 mutex_unlock(&us
->dev_mutex
);
879 result
= usb_stor_port_reset(us
);
880 mutex_lock(&us
->dev_mutex
);
883 scsi_lock(us_to_host(us
));
884 usb_stor_report_device_reset(us
);
885 scsi_unlock(us_to_host(us
));
886 us
->transport_reset(us
);
888 clear_bit(US_FLIDX_RESETTING
, &us
->dflags
);
889 last_sector_hacks(us
, srb
);
892 /* Stop the current URB transfer */
893 void usb_stor_stop_transport(struct us_data
*us
)
895 US_DEBUGP("%s called\n", __func__
);
897 /* If the state machine is blocked waiting for an URB,
898 * let's wake it up. The test_and_clear_bit() call
899 * guarantees that if a URB has just been submitted,
900 * it won't be cancelled more than once. */
901 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE
, &us
->dflags
)) {
902 US_DEBUGP("-- cancelling URB\n");
903 usb_unlink_urb(us
->current_urb
);
906 /* If we are waiting for a scatter-gather operation, cancel it. */
907 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE
, &us
->dflags
)) {
908 US_DEBUGP("-- cancelling sg request\n");
909 usb_sg_cancel(&us
->current_sg
);
914 * Control/Bulk and Control/Bulk/Interrupt transport
917 int usb_stor_CB_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
919 unsigned int transfer_length
= scsi_bufflen(srb
);
920 unsigned int pipe
= 0;
924 /* let's send the command via the control pipe */
925 result
= usb_stor_ctrl_transfer(us
, us
->send_ctrl_pipe
,
927 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
, 0,
928 us
->ifnum
, srb
->cmnd
, srb
->cmd_len
);
930 /* check the return code for the command */
931 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result
);
933 /* if we stalled the command, it means command failed */
934 if (result
== USB_STOR_XFER_STALLED
) {
935 return USB_STOR_TRANSPORT_FAILED
;
938 /* Uh oh... serious problem here */
939 if (result
!= USB_STOR_XFER_GOOD
) {
940 return USB_STOR_TRANSPORT_ERROR
;
944 /* transfer the data payload for this command, if one exists*/
945 if (transfer_length
) {
946 pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
947 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
948 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
949 US_DEBUGP("CBI data stage result is 0x%x\n", result
);
951 /* if we stalled the data transfer it means command failed */
952 if (result
== USB_STOR_XFER_STALLED
)
953 return USB_STOR_TRANSPORT_FAILED
;
954 if (result
> USB_STOR_XFER_STALLED
)
955 return USB_STOR_TRANSPORT_ERROR
;
960 /* NOTE: CB does not have a status stage. Silly, I know. So
961 * we have to catch this at a higher level.
963 if (us
->protocol
!= USB_PR_CBI
)
964 return USB_STOR_TRANSPORT_GOOD
;
966 result
= usb_stor_intr_transfer(us
, us
->iobuf
, 2);
967 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
968 us
->iobuf
[0], us
->iobuf
[1]);
969 if (result
!= USB_STOR_XFER_GOOD
)
970 return USB_STOR_TRANSPORT_ERROR
;
972 /* UFI gives us ASC and ASCQ, like a request sense
974 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
975 * devices, so we ignore the information for those commands. Note
976 * that this means we could be ignoring a real error on these
977 * commands, but that can't be helped.
979 if (us
->subclass
== USB_SC_UFI
) {
980 if (srb
->cmnd
[0] == REQUEST_SENSE
||
981 srb
->cmnd
[0] == INQUIRY
)
982 return USB_STOR_TRANSPORT_GOOD
;
985 return USB_STOR_TRANSPORT_GOOD
;
988 /* If not UFI, we interpret the data as a result code
989 * The first byte should always be a 0x0.
991 * Some bogus devices don't follow that rule. They stuff the ASC
992 * into the first byte -- so if it's non-zero, call it a failure.
995 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
1001 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
1002 switch (us
->iobuf
[1] & 0x0F) {
1004 return USB_STOR_TRANSPORT_GOOD
;
1008 return USB_STOR_TRANSPORT_ERROR
;
1010 /* the CBI spec requires that the bulk pipe must be cleared
1011 * following any data-in/out command failure (section 2.4.3.1.3)
1015 usb_stor_clear_halt(us
, pipe
);
1016 return USB_STOR_TRANSPORT_FAILED
;
1018 EXPORT_SYMBOL_GPL(usb_stor_CB_transport
);
1021 * Bulk only transport
1024 /* Determine what the maximum LUN supported is */
1025 int usb_stor_Bulk_max_lun(struct us_data
*us
)
1029 /* issue the command */
1031 result
= usb_stor_control_msg(us
, us
->recv_ctrl_pipe
,
1032 US_BULK_GET_MAX_LUN
,
1033 USB_DIR_IN
| USB_TYPE_CLASS
|
1034 USB_RECIP_INTERFACE
,
1035 0, us
->ifnum
, us
->iobuf
, 1, 10*HZ
);
1037 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
1038 result
, us
->iobuf
[0]);
1040 /* if we have a successful request, return the result */
1042 return us
->iobuf
[0];
1045 * Some devices don't like GetMaxLUN. They may STALL the control
1046 * pipe, they may return a zero-length result, they may do nothing at
1047 * all and timeout, or they may fail in even more bizarrely creative
1048 * ways. In these cases the best approach is to use the default
1049 * value: only one LUN.
1054 int usb_stor_Bulk_transport(struct scsi_cmnd
*srb
, struct us_data
*us
)
1056 struct bulk_cb_wrap
*bcb
= (struct bulk_cb_wrap
*) us
->iobuf
;
1057 struct bulk_cs_wrap
*bcs
= (struct bulk_cs_wrap
*) us
->iobuf
;
1058 unsigned int transfer_length
= scsi_bufflen(srb
);
1059 unsigned int residue
;
1062 unsigned int cswlen
;
1063 unsigned int cbwlen
= US_BULK_CB_WRAP_LEN
;
1065 /* Take care of BULK32 devices; set extra byte to 0 */
1066 if (unlikely(us
->fflags
& US_FL_BULK32
)) {
1071 /* set up the command wrapper */
1072 bcb
->Signature
= cpu_to_le32(US_BULK_CB_SIGN
);
1073 bcb
->DataTransferLength
= cpu_to_le32(transfer_length
);
1074 bcb
->Flags
= srb
->sc_data_direction
== DMA_FROM_DEVICE
? 1 << 7 : 0;
1075 bcb
->Tag
= ++us
->tag
;
1076 bcb
->Lun
= srb
->device
->lun
;
1077 if (us
->fflags
& US_FL_SCM_MULT_TARG
)
1078 bcb
->Lun
|= srb
->device
->id
<< 4;
1079 bcb
->Length
= srb
->cmd_len
;
1081 /* copy the command payload */
1082 memset(bcb
->CDB
, 0, sizeof(bcb
->CDB
));
1083 memcpy(bcb
->CDB
, srb
->cmnd
, bcb
->Length
);
1085 /* send it to out endpoint */
1086 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1087 le32_to_cpu(bcb
->Signature
), bcb
->Tag
,
1088 le32_to_cpu(bcb
->DataTransferLength
), bcb
->Flags
,
1089 (bcb
->Lun
>> 4), (bcb
->Lun
& 0x0F),
1091 result
= usb_stor_bulk_transfer_buf(us
, us
->send_bulk_pipe
,
1093 US_DEBUGP("Bulk command transfer result=%d\n", result
);
1094 if (result
!= USB_STOR_XFER_GOOD
)
1095 return USB_STOR_TRANSPORT_ERROR
;
1098 /* send/receive data payload, if there is any */
1100 /* Some USB-IDE converter chips need a 100us delay between the
1101 * command phase and the data phase. Some devices need a little
1102 * more than that, probably because of clock rate inaccuracies. */
1103 if (unlikely(us
->fflags
& US_FL_GO_SLOW
))
1106 if (transfer_length
) {
1107 unsigned int pipe
= srb
->sc_data_direction
== DMA_FROM_DEVICE
?
1108 us
->recv_bulk_pipe
: us
->send_bulk_pipe
;
1109 result
= usb_stor_bulk_srb(us
, pipe
, srb
);
1110 US_DEBUGP("Bulk data transfer result 0x%x\n", result
);
1111 if (result
== USB_STOR_XFER_ERROR
)
1112 return USB_STOR_TRANSPORT_ERROR
;
1114 /* If the device tried to send back more data than the
1115 * amount requested, the spec requires us to transfer
1116 * the CSW anyway. Since there's no point retrying the
1117 * the command, we'll return fake sense data indicating
1118 * Illegal Request, Invalid Field in CDB.
1120 if (result
== USB_STOR_XFER_LONG
)
1124 /* See flow chart on pg 15 of the Bulk Only Transport spec for
1125 * an explanation of how this code works.
1128 /* get CSW for device status */
1129 US_DEBUGP("Attempting to get CSW...\n");
1130 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1131 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1133 /* Some broken devices add unnecessary zero-length packets to the
1134 * end of their data transfers. Such packets show up as 0-length
1135 * CSWs. If we encounter such a thing, try to read the CSW again.
1137 if (result
== USB_STOR_XFER_SHORT
&& cswlen
== 0) {
1138 US_DEBUGP("Received 0-length CSW; retrying...\n");
1139 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1140 bcs
, US_BULK_CS_WRAP_LEN
, &cswlen
);
1143 /* did the attempt to read the CSW fail? */
1144 if (result
== USB_STOR_XFER_STALLED
) {
1146 /* get the status again */
1147 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1148 result
= usb_stor_bulk_transfer_buf(us
, us
->recv_bulk_pipe
,
1149 bcs
, US_BULK_CS_WRAP_LEN
, NULL
);
1152 /* if we still have a failure at this point, we're in trouble */
1153 US_DEBUGP("Bulk status result = %d\n", result
);
1154 if (result
!= USB_STOR_XFER_GOOD
)
1155 return USB_STOR_TRANSPORT_ERROR
;
1157 /* check bulk status */
1158 residue
= le32_to_cpu(bcs
->Residue
);
1159 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1160 le32_to_cpu(bcs
->Signature
), bcs
->Tag
,
1161 residue
, bcs
->Status
);
1162 if (!(bcs
->Tag
== us
->tag
|| (us
->fflags
& US_FL_BULK_IGNORE_TAG
)) ||
1163 bcs
->Status
> US_BULK_STAT_PHASE
) {
1164 US_DEBUGP("Bulk logical error\n");
1165 return USB_STOR_TRANSPORT_ERROR
;
1168 /* Some broken devices report odd signatures, so we do not check them
1169 * for validity against the spec. We store the first one we see,
1170 * and check subsequent transfers for validity against this signature.
1172 if (!us
->bcs_signature
) {
1173 us
->bcs_signature
= bcs
->Signature
;
1174 if (us
->bcs_signature
!= cpu_to_le32(US_BULK_CS_SIGN
))
1175 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1176 le32_to_cpu(us
->bcs_signature
));
1177 } else if (bcs
->Signature
!= us
->bcs_signature
) {
1178 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1179 le32_to_cpu(bcs
->Signature
),
1180 le32_to_cpu(us
->bcs_signature
));
1181 return USB_STOR_TRANSPORT_ERROR
;
1184 /* try to compute the actual residue, based on how much data
1185 * was really transferred and what the device tells us */
1186 if (residue
&& !(us
->fflags
& US_FL_IGNORE_RESIDUE
)) {
1188 /* Heuristically detect devices that generate bogus residues
1189 * by seeing what happens with INQUIRY and READ CAPACITY
1192 if (bcs
->Status
== US_BULK_STAT_OK
&&
1193 scsi_get_resid(srb
) == 0 &&
1194 ((srb
->cmnd
[0] == INQUIRY
&&
1195 transfer_length
== 36) ||
1196 (srb
->cmnd
[0] == READ_CAPACITY
&&
1197 transfer_length
== 8))) {
1198 us
->fflags
|= US_FL_IGNORE_RESIDUE
;
1201 residue
= min(residue
, transfer_length
);
1202 scsi_set_resid(srb
, max(scsi_get_resid(srb
),
1207 /* based on the status code, we report good or bad */
1208 switch (bcs
->Status
) {
1209 case US_BULK_STAT_OK
:
1210 /* device babbled -- return fake sense data */
1212 memcpy(srb
->sense_buffer
,
1213 usb_stor_sense_invalidCDB
,
1214 sizeof(usb_stor_sense_invalidCDB
));
1215 return USB_STOR_TRANSPORT_NO_SENSE
;
1218 /* command good -- note that data could be short */
1219 return USB_STOR_TRANSPORT_GOOD
;
1221 case US_BULK_STAT_FAIL
:
1222 /* command failed */
1223 return USB_STOR_TRANSPORT_FAILED
;
1225 case US_BULK_STAT_PHASE
:
1226 /* phase error -- note that a transport reset will be
1227 * invoked by the invoke_transport() function
1229 return USB_STOR_TRANSPORT_ERROR
;
1232 /* we should never get here, but if we do, we're in trouble */
1233 return USB_STOR_TRANSPORT_ERROR
;
1235 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport
);
1237 /***********************************************************************
1239 ***********************************************************************/
1241 /* This is the common part of the device reset code.
1243 * It's handy that every transport mechanism uses the control endpoint for
1246 * Basically, we send a reset with a 5-second timeout, so we don't get
1247 * jammed attempting to do the reset.
1249 static int usb_stor_reset_common(struct us_data
*us
,
1250 u8 request
, u8 requesttype
,
1251 u16 value
, u16 index
, void *data
, u16 size
)
1256 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1257 US_DEBUGP("No reset during disconnect\n");
1261 result
= usb_stor_control_msg(us
, us
->send_ctrl_pipe
,
1262 request
, requesttype
, value
, index
, data
, size
,
1265 US_DEBUGP("Soft reset failed: %d\n", result
);
1269 /* Give the device some time to recover from the reset,
1270 * but don't delay disconnect processing. */
1271 wait_event_interruptible_timeout(us
->delay_wait
,
1272 test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
),
1274 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1275 US_DEBUGP("Reset interrupted by disconnect\n");
1279 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1280 result
= usb_stor_clear_halt(us
, us
->recv_bulk_pipe
);
1282 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1283 result2
= usb_stor_clear_halt(us
, us
->send_bulk_pipe
);
1285 /* return a result code based on the result of the clear-halts */
1289 US_DEBUGP("Soft reset failed\n");
1291 US_DEBUGP("Soft reset done\n");
1295 /* This issues a CB[I] Reset to the device in question
1297 #define CB_RESET_CMD_SIZE 12
1299 int usb_stor_CB_reset(struct us_data
*us
)
1301 US_DEBUGP("%s called\n", __func__
);
1303 memset(us
->iobuf
, 0xFF, CB_RESET_CMD_SIZE
);
1304 us
->iobuf
[0] = SEND_DIAGNOSTIC
;
1306 return usb_stor_reset_common(us
, US_CBI_ADSC
,
1307 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1308 0, us
->ifnum
, us
->iobuf
, CB_RESET_CMD_SIZE
);
1310 EXPORT_SYMBOL_GPL(usb_stor_CB_reset
);
1312 /* This issues a Bulk-only Reset to the device in question, including
1313 * clearing the subsequent endpoint halts that may occur.
1315 int usb_stor_Bulk_reset(struct us_data
*us
)
1317 US_DEBUGP("%s called\n", __func__
);
1319 return usb_stor_reset_common(us
, US_BULK_RESET_REQUEST
,
1320 USB_TYPE_CLASS
| USB_RECIP_INTERFACE
,
1321 0, us
->ifnum
, NULL
, 0);
1323 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset
);
1325 /* Issue a USB port reset to the device. The caller must not hold
1328 int usb_stor_port_reset(struct us_data
*us
)
1332 /*for these devices we must use the class specific method */
1333 if (us
->pusb_dev
->quirks
& USB_QUIRK_RESET_MORPHS
)
1336 result
= usb_lock_device_for_reset(us
->pusb_dev
, us
->pusb_intf
);
1338 US_DEBUGP("unable to lock device for reset: %d\n", result
);
1340 /* Were we disconnected while waiting for the lock? */
1341 if (test_bit(US_FLIDX_DISCONNECTING
, &us
->dflags
)) {
1343 US_DEBUGP("No reset during disconnect\n");
1345 result
= usb_reset_device(us
->pusb_dev
);
1346 US_DEBUGP("usb_reset_device returns %d\n",
1349 usb_unlock_device(us
->pusb_dev
);