usb: add support for STA2X11 host driver
[zen-stable.git] / net / core / sock.c
blob5c5af9988f941c9ee4eef4769127d3ce21f2f8cd
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/jump_label.h>
115 #include <linux/memcontrol.h>
117 #include <asm/uaccess.h>
118 #include <asm/system.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
132 #include <linux/filter.h>
134 #include <trace/events/sock.h>
136 #ifdef CONFIG_INET
137 #include <net/tcp.h>
138 #endif
140 static DEFINE_MUTEX(proto_list_mutex);
141 static LIST_HEAD(proto_list);
143 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
146 struct proto *proto;
147 int ret = 0;
149 mutex_lock(&proto_list_mutex);
150 list_for_each_entry(proto, &proto_list, node) {
151 if (proto->init_cgroup) {
152 ret = proto->init_cgroup(cgrp, ss);
153 if (ret)
154 goto out;
158 mutex_unlock(&proto_list_mutex);
159 return ret;
160 out:
161 list_for_each_entry_continue_reverse(proto, &proto_list, node)
162 if (proto->destroy_cgroup)
163 proto->destroy_cgroup(cgrp, ss);
164 mutex_unlock(&proto_list_mutex);
165 return ret;
168 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
170 struct proto *proto;
172 mutex_lock(&proto_list_mutex);
173 list_for_each_entry_reverse(proto, &proto_list, node)
174 if (proto->destroy_cgroup)
175 proto->destroy_cgroup(cgrp, ss);
176 mutex_unlock(&proto_list_mutex);
178 #endif
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
184 static struct lock_class_key af_family_keys[AF_MAX];
185 static struct lock_class_key af_family_slock_keys[AF_MAX];
187 struct jump_label_key memcg_socket_limit_enabled;
188 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
195 static const char *const af_family_key_strings[AF_MAX+1] = {
196 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
197 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
198 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
199 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
200 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
201 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
202 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
203 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
204 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
205 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
206 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
207 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
208 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
209 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
211 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
213 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
214 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
215 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
216 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
217 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
218 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
219 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
220 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
221 "slock-27" , "slock-28" , "slock-AF_CAN" ,
222 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
223 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
224 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
225 "slock-AF_NFC" , "slock-AF_MAX"
227 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
229 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
230 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
231 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
232 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
233 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
234 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
235 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
236 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
237 "clock-27" , "clock-28" , "clock-AF_CAN" ,
238 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
239 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
240 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
241 "clock-AF_NFC" , "clock-AF_MAX"
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
248 static struct lock_class_key af_callback_keys[AF_MAX];
250 /* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms. This makes socket queueing behavior and performance
253 * not depend upon such differences.
255 #define _SK_MEM_PACKETS 256
256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
257 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 /* Run time adjustable parameters. */
261 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
266 /* Maximal space eaten by iovec or ancillary data plus some space */
267 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268 EXPORT_SYMBOL(sysctl_optmem_max);
270 #if defined(CONFIG_CGROUPS)
271 #if !defined(CONFIG_NET_CLS_CGROUP)
272 int net_cls_subsys_id = -1;
273 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274 #endif
275 #if !defined(CONFIG_NETPRIO_CGROUP)
276 int net_prio_subsys_id = -1;
277 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278 #endif
279 #endif
281 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
283 struct timeval tv;
285 if (optlen < sizeof(tv))
286 return -EINVAL;
287 if (copy_from_user(&tv, optval, sizeof(tv)))
288 return -EFAULT;
289 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290 return -EDOM;
292 if (tv.tv_sec < 0) {
293 static int warned __read_mostly;
295 *timeo_p = 0;
296 if (warned < 10 && net_ratelimit()) {
297 warned++;
298 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299 "tries to set negative timeout\n",
300 current->comm, task_pid_nr(current));
302 return 0;
304 *timeo_p = MAX_SCHEDULE_TIMEOUT;
305 if (tv.tv_sec == 0 && tv.tv_usec == 0)
306 return 0;
307 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309 return 0;
312 static void sock_warn_obsolete_bsdism(const char *name)
314 static int warned;
315 static char warncomm[TASK_COMM_LEN];
316 if (strcmp(warncomm, current->comm) && warned < 5) {
317 strcpy(warncomm, current->comm);
318 printk(KERN_WARNING "process `%s' is using obsolete "
319 "%s SO_BSDCOMPAT\n", warncomm, name);
320 warned++;
324 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
326 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
328 if (sk->sk_flags & flags) {
329 sk->sk_flags &= ~flags;
330 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331 net_disable_timestamp();
336 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
338 int err;
339 int skb_len;
340 unsigned long flags;
341 struct sk_buff_head *list = &sk->sk_receive_queue;
343 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344 atomic_inc(&sk->sk_drops);
345 trace_sock_rcvqueue_full(sk, skb);
346 return -ENOMEM;
349 err = sk_filter(sk, skb);
350 if (err)
351 return err;
353 if (!sk_rmem_schedule(sk, skb->truesize)) {
354 atomic_inc(&sk->sk_drops);
355 return -ENOBUFS;
358 skb->dev = NULL;
359 skb_set_owner_r(skb, sk);
361 /* Cache the SKB length before we tack it onto the receive
362 * queue. Once it is added it no longer belongs to us and
363 * may be freed by other threads of control pulling packets
364 * from the queue.
366 skb_len = skb->len;
368 /* we escape from rcu protected region, make sure we dont leak
369 * a norefcounted dst
371 skb_dst_force(skb);
373 spin_lock_irqsave(&list->lock, flags);
374 skb->dropcount = atomic_read(&sk->sk_drops);
375 __skb_queue_tail(list, skb);
376 spin_unlock_irqrestore(&list->lock, flags);
378 if (!sock_flag(sk, SOCK_DEAD))
379 sk->sk_data_ready(sk, skb_len);
380 return 0;
382 EXPORT_SYMBOL(sock_queue_rcv_skb);
384 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
386 int rc = NET_RX_SUCCESS;
388 if (sk_filter(sk, skb))
389 goto discard_and_relse;
391 skb->dev = NULL;
393 if (sk_rcvqueues_full(sk, skb)) {
394 atomic_inc(&sk->sk_drops);
395 goto discard_and_relse;
397 if (nested)
398 bh_lock_sock_nested(sk);
399 else
400 bh_lock_sock(sk);
401 if (!sock_owned_by_user(sk)) {
403 * trylock + unlock semantics:
405 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
407 rc = sk_backlog_rcv(sk, skb);
409 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410 } else if (sk_add_backlog(sk, skb)) {
411 bh_unlock_sock(sk);
412 atomic_inc(&sk->sk_drops);
413 goto discard_and_relse;
416 bh_unlock_sock(sk);
417 out:
418 sock_put(sk);
419 return rc;
420 discard_and_relse:
421 kfree_skb(skb);
422 goto out;
424 EXPORT_SYMBOL(sk_receive_skb);
426 void sk_reset_txq(struct sock *sk)
428 sk_tx_queue_clear(sk);
430 EXPORT_SYMBOL(sk_reset_txq);
432 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
434 struct dst_entry *dst = __sk_dst_get(sk);
436 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437 sk_tx_queue_clear(sk);
438 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439 dst_release(dst);
440 return NULL;
443 return dst;
445 EXPORT_SYMBOL(__sk_dst_check);
447 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
449 struct dst_entry *dst = sk_dst_get(sk);
451 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452 sk_dst_reset(sk);
453 dst_release(dst);
454 return NULL;
457 return dst;
459 EXPORT_SYMBOL(sk_dst_check);
461 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
463 int ret = -ENOPROTOOPT;
464 #ifdef CONFIG_NETDEVICES
465 struct net *net = sock_net(sk);
466 char devname[IFNAMSIZ];
467 int index;
469 /* Sorry... */
470 ret = -EPERM;
471 if (!capable(CAP_NET_RAW))
472 goto out;
474 ret = -EINVAL;
475 if (optlen < 0)
476 goto out;
478 /* Bind this socket to a particular device like "eth0",
479 * as specified in the passed interface name. If the
480 * name is "" or the option length is zero the socket
481 * is not bound.
483 if (optlen > IFNAMSIZ - 1)
484 optlen = IFNAMSIZ - 1;
485 memset(devname, 0, sizeof(devname));
487 ret = -EFAULT;
488 if (copy_from_user(devname, optval, optlen))
489 goto out;
491 index = 0;
492 if (devname[0] != '\0') {
493 struct net_device *dev;
495 rcu_read_lock();
496 dev = dev_get_by_name_rcu(net, devname);
497 if (dev)
498 index = dev->ifindex;
499 rcu_read_unlock();
500 ret = -ENODEV;
501 if (!dev)
502 goto out;
505 lock_sock(sk);
506 sk->sk_bound_dev_if = index;
507 sk_dst_reset(sk);
508 release_sock(sk);
510 ret = 0;
512 out:
513 #endif
515 return ret;
518 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
520 if (valbool)
521 sock_set_flag(sk, bit);
522 else
523 sock_reset_flag(sk, bit);
527 * This is meant for all protocols to use and covers goings on
528 * at the socket level. Everything here is generic.
531 int sock_setsockopt(struct socket *sock, int level, int optname,
532 char __user *optval, unsigned int optlen)
534 struct sock *sk = sock->sk;
535 int val;
536 int valbool;
537 struct linger ling;
538 int ret = 0;
541 * Options without arguments
544 if (optname == SO_BINDTODEVICE)
545 return sock_bindtodevice(sk, optval, optlen);
547 if (optlen < sizeof(int))
548 return -EINVAL;
550 if (get_user(val, (int __user *)optval))
551 return -EFAULT;
553 valbool = val ? 1 : 0;
555 lock_sock(sk);
557 switch (optname) {
558 case SO_DEBUG:
559 if (val && !capable(CAP_NET_ADMIN))
560 ret = -EACCES;
561 else
562 sock_valbool_flag(sk, SOCK_DBG, valbool);
563 break;
564 case SO_REUSEADDR:
565 sk->sk_reuse = valbool;
566 break;
567 case SO_TYPE:
568 case SO_PROTOCOL:
569 case SO_DOMAIN:
570 case SO_ERROR:
571 ret = -ENOPROTOOPT;
572 break;
573 case SO_DONTROUTE:
574 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575 break;
576 case SO_BROADCAST:
577 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578 break;
579 case SO_SNDBUF:
580 /* Don't error on this BSD doesn't and if you think
581 about it this is right. Otherwise apps have to
582 play 'guess the biggest size' games. RCVBUF/SNDBUF
583 are treated in BSD as hints */
585 if (val > sysctl_wmem_max)
586 val = sysctl_wmem_max;
587 set_sndbuf:
588 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589 if ((val * 2) < SOCK_MIN_SNDBUF)
590 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591 else
592 sk->sk_sndbuf = val * 2;
595 * Wake up sending tasks if we
596 * upped the value.
598 sk->sk_write_space(sk);
599 break;
601 case SO_SNDBUFFORCE:
602 if (!capable(CAP_NET_ADMIN)) {
603 ret = -EPERM;
604 break;
606 goto set_sndbuf;
608 case SO_RCVBUF:
609 /* Don't error on this BSD doesn't and if you think
610 about it this is right. Otherwise apps have to
611 play 'guess the biggest size' games. RCVBUF/SNDBUF
612 are treated in BSD as hints */
614 if (val > sysctl_rmem_max)
615 val = sysctl_rmem_max;
616 set_rcvbuf:
617 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
619 * We double it on the way in to account for
620 * "struct sk_buff" etc. overhead. Applications
621 * assume that the SO_RCVBUF setting they make will
622 * allow that much actual data to be received on that
623 * socket.
625 * Applications are unaware that "struct sk_buff" and
626 * other overheads allocate from the receive buffer
627 * during socket buffer allocation.
629 * And after considering the possible alternatives,
630 * returning the value we actually used in getsockopt
631 * is the most desirable behavior.
633 if ((val * 2) < SOCK_MIN_RCVBUF)
634 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635 else
636 sk->sk_rcvbuf = val * 2;
637 break;
639 case SO_RCVBUFFORCE:
640 if (!capable(CAP_NET_ADMIN)) {
641 ret = -EPERM;
642 break;
644 goto set_rcvbuf;
646 case SO_KEEPALIVE:
647 #ifdef CONFIG_INET
648 if (sk->sk_protocol == IPPROTO_TCP)
649 tcp_set_keepalive(sk, valbool);
650 #endif
651 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652 break;
654 case SO_OOBINLINE:
655 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656 break;
658 case SO_NO_CHECK:
659 sk->sk_no_check = valbool;
660 break;
662 case SO_PRIORITY:
663 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664 sk->sk_priority = val;
665 else
666 ret = -EPERM;
667 break;
669 case SO_LINGER:
670 if (optlen < sizeof(ling)) {
671 ret = -EINVAL; /* 1003.1g */
672 break;
674 if (copy_from_user(&ling, optval, sizeof(ling))) {
675 ret = -EFAULT;
676 break;
678 if (!ling.l_onoff)
679 sock_reset_flag(sk, SOCK_LINGER);
680 else {
681 #if (BITS_PER_LONG == 32)
682 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684 else
685 #endif
686 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687 sock_set_flag(sk, SOCK_LINGER);
689 break;
691 case SO_BSDCOMPAT:
692 sock_warn_obsolete_bsdism("setsockopt");
693 break;
695 case SO_PASSCRED:
696 if (valbool)
697 set_bit(SOCK_PASSCRED, &sock->flags);
698 else
699 clear_bit(SOCK_PASSCRED, &sock->flags);
700 break;
702 case SO_TIMESTAMP:
703 case SO_TIMESTAMPNS:
704 if (valbool) {
705 if (optname == SO_TIMESTAMP)
706 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707 else
708 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709 sock_set_flag(sk, SOCK_RCVTSTAMP);
710 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711 } else {
712 sock_reset_flag(sk, SOCK_RCVTSTAMP);
713 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
715 break;
717 case SO_TIMESTAMPING:
718 if (val & ~SOF_TIMESTAMPING_MASK) {
719 ret = -EINVAL;
720 break;
722 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723 val & SOF_TIMESTAMPING_TX_HARDWARE);
724 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725 val & SOF_TIMESTAMPING_TX_SOFTWARE);
726 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727 val & SOF_TIMESTAMPING_RX_HARDWARE);
728 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729 sock_enable_timestamp(sk,
730 SOCK_TIMESTAMPING_RX_SOFTWARE);
731 else
732 sock_disable_timestamp(sk,
733 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735 val & SOF_TIMESTAMPING_SOFTWARE);
736 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737 val & SOF_TIMESTAMPING_SYS_HARDWARE);
738 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739 val & SOF_TIMESTAMPING_RAW_HARDWARE);
740 break;
742 case SO_RCVLOWAT:
743 if (val < 0)
744 val = INT_MAX;
745 sk->sk_rcvlowat = val ? : 1;
746 break;
748 case SO_RCVTIMEO:
749 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750 break;
752 case SO_SNDTIMEO:
753 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754 break;
756 case SO_ATTACH_FILTER:
757 ret = -EINVAL;
758 if (optlen == sizeof(struct sock_fprog)) {
759 struct sock_fprog fprog;
761 ret = -EFAULT;
762 if (copy_from_user(&fprog, optval, sizeof(fprog)))
763 break;
765 ret = sk_attach_filter(&fprog, sk);
767 break;
769 case SO_DETACH_FILTER:
770 ret = sk_detach_filter(sk);
771 break;
773 case SO_PASSSEC:
774 if (valbool)
775 set_bit(SOCK_PASSSEC, &sock->flags);
776 else
777 clear_bit(SOCK_PASSSEC, &sock->flags);
778 break;
779 case SO_MARK:
780 if (!capable(CAP_NET_ADMIN))
781 ret = -EPERM;
782 else
783 sk->sk_mark = val;
784 break;
786 /* We implement the SO_SNDLOWAT etc to
787 not be settable (1003.1g 5.3) */
788 case SO_RXQ_OVFL:
789 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790 break;
792 case SO_WIFI_STATUS:
793 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794 break;
796 default:
797 ret = -ENOPROTOOPT;
798 break;
800 release_sock(sk);
801 return ret;
803 EXPORT_SYMBOL(sock_setsockopt);
806 void cred_to_ucred(struct pid *pid, const struct cred *cred,
807 struct ucred *ucred)
809 ucred->pid = pid_vnr(pid);
810 ucred->uid = ucred->gid = -1;
811 if (cred) {
812 struct user_namespace *current_ns = current_user_ns();
814 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
815 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
818 EXPORT_SYMBOL_GPL(cred_to_ucred);
820 int sock_getsockopt(struct socket *sock, int level, int optname,
821 char __user *optval, int __user *optlen)
823 struct sock *sk = sock->sk;
825 union {
826 int val;
827 struct linger ling;
828 struct timeval tm;
829 } v;
831 int lv = sizeof(int);
832 int len;
834 if (get_user(len, optlen))
835 return -EFAULT;
836 if (len < 0)
837 return -EINVAL;
839 memset(&v, 0, sizeof(v));
841 switch (optname) {
842 case SO_DEBUG:
843 v.val = sock_flag(sk, SOCK_DBG);
844 break;
846 case SO_DONTROUTE:
847 v.val = sock_flag(sk, SOCK_LOCALROUTE);
848 break;
850 case SO_BROADCAST:
851 v.val = !!sock_flag(sk, SOCK_BROADCAST);
852 break;
854 case SO_SNDBUF:
855 v.val = sk->sk_sndbuf;
856 break;
858 case SO_RCVBUF:
859 v.val = sk->sk_rcvbuf;
860 break;
862 case SO_REUSEADDR:
863 v.val = sk->sk_reuse;
864 break;
866 case SO_KEEPALIVE:
867 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
868 break;
870 case SO_TYPE:
871 v.val = sk->sk_type;
872 break;
874 case SO_PROTOCOL:
875 v.val = sk->sk_protocol;
876 break;
878 case SO_DOMAIN:
879 v.val = sk->sk_family;
880 break;
882 case SO_ERROR:
883 v.val = -sock_error(sk);
884 if (v.val == 0)
885 v.val = xchg(&sk->sk_err_soft, 0);
886 break;
888 case SO_OOBINLINE:
889 v.val = !!sock_flag(sk, SOCK_URGINLINE);
890 break;
892 case SO_NO_CHECK:
893 v.val = sk->sk_no_check;
894 break;
896 case SO_PRIORITY:
897 v.val = sk->sk_priority;
898 break;
900 case SO_LINGER:
901 lv = sizeof(v.ling);
902 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
903 v.ling.l_linger = sk->sk_lingertime / HZ;
904 break;
906 case SO_BSDCOMPAT:
907 sock_warn_obsolete_bsdism("getsockopt");
908 break;
910 case SO_TIMESTAMP:
911 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
912 !sock_flag(sk, SOCK_RCVTSTAMPNS);
913 break;
915 case SO_TIMESTAMPNS:
916 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
917 break;
919 case SO_TIMESTAMPING:
920 v.val = 0;
921 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
922 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
923 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
924 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
925 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
926 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
927 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
928 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
929 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
930 v.val |= SOF_TIMESTAMPING_SOFTWARE;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
932 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
934 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
935 break;
937 case SO_RCVTIMEO:
938 lv = sizeof(struct timeval);
939 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
940 v.tm.tv_sec = 0;
941 v.tm.tv_usec = 0;
942 } else {
943 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
944 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
946 break;
948 case SO_SNDTIMEO:
949 lv = sizeof(struct timeval);
950 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
951 v.tm.tv_sec = 0;
952 v.tm.tv_usec = 0;
953 } else {
954 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
955 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
957 break;
959 case SO_RCVLOWAT:
960 v.val = sk->sk_rcvlowat;
961 break;
963 case SO_SNDLOWAT:
964 v.val = 1;
965 break;
967 case SO_PASSCRED:
968 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
969 break;
971 case SO_PEERCRED:
973 struct ucred peercred;
974 if (len > sizeof(peercred))
975 len = sizeof(peercred);
976 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
977 if (copy_to_user(optval, &peercred, len))
978 return -EFAULT;
979 goto lenout;
982 case SO_PEERNAME:
984 char address[128];
986 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
987 return -ENOTCONN;
988 if (lv < len)
989 return -EINVAL;
990 if (copy_to_user(optval, address, len))
991 return -EFAULT;
992 goto lenout;
995 /* Dubious BSD thing... Probably nobody even uses it, but
996 * the UNIX standard wants it for whatever reason... -DaveM
998 case SO_ACCEPTCONN:
999 v.val = sk->sk_state == TCP_LISTEN;
1000 break;
1002 case SO_PASSSEC:
1003 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1004 break;
1006 case SO_PEERSEC:
1007 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1009 case SO_MARK:
1010 v.val = sk->sk_mark;
1011 break;
1013 case SO_RXQ_OVFL:
1014 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1015 break;
1017 case SO_WIFI_STATUS:
1018 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1019 break;
1021 default:
1022 return -ENOPROTOOPT;
1025 if (len > lv)
1026 len = lv;
1027 if (copy_to_user(optval, &v, len))
1028 return -EFAULT;
1029 lenout:
1030 if (put_user(len, optlen))
1031 return -EFAULT;
1032 return 0;
1036 * Initialize an sk_lock.
1038 * (We also register the sk_lock with the lock validator.)
1040 static inline void sock_lock_init(struct sock *sk)
1042 sock_lock_init_class_and_name(sk,
1043 af_family_slock_key_strings[sk->sk_family],
1044 af_family_slock_keys + sk->sk_family,
1045 af_family_key_strings[sk->sk_family],
1046 af_family_keys + sk->sk_family);
1050 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1051 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1052 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1054 static void sock_copy(struct sock *nsk, const struct sock *osk)
1056 #ifdef CONFIG_SECURITY_NETWORK
1057 void *sptr = nsk->sk_security;
1058 #endif
1059 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1061 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1062 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1064 #ifdef CONFIG_SECURITY_NETWORK
1065 nsk->sk_security = sptr;
1066 security_sk_clone(osk, nsk);
1067 #endif
1071 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1072 * un-modified. Special care is taken when initializing object to zero.
1074 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1076 if (offsetof(struct sock, sk_node.next) != 0)
1077 memset(sk, 0, offsetof(struct sock, sk_node.next));
1078 memset(&sk->sk_node.pprev, 0,
1079 size - offsetof(struct sock, sk_node.pprev));
1082 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1084 unsigned long nulls1, nulls2;
1086 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1087 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1088 if (nulls1 > nulls2)
1089 swap(nulls1, nulls2);
1091 if (nulls1 != 0)
1092 memset((char *)sk, 0, nulls1);
1093 memset((char *)sk + nulls1 + sizeof(void *), 0,
1094 nulls2 - nulls1 - sizeof(void *));
1095 memset((char *)sk + nulls2 + sizeof(void *), 0,
1096 size - nulls2 - sizeof(void *));
1098 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1100 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1101 int family)
1103 struct sock *sk;
1104 struct kmem_cache *slab;
1106 slab = prot->slab;
1107 if (slab != NULL) {
1108 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1109 if (!sk)
1110 return sk;
1111 if (priority & __GFP_ZERO) {
1112 if (prot->clear_sk)
1113 prot->clear_sk(sk, prot->obj_size);
1114 else
1115 sk_prot_clear_nulls(sk, prot->obj_size);
1117 } else
1118 sk = kmalloc(prot->obj_size, priority);
1120 if (sk != NULL) {
1121 kmemcheck_annotate_bitfield(sk, flags);
1123 if (security_sk_alloc(sk, family, priority))
1124 goto out_free;
1126 if (!try_module_get(prot->owner))
1127 goto out_free_sec;
1128 sk_tx_queue_clear(sk);
1131 return sk;
1133 out_free_sec:
1134 security_sk_free(sk);
1135 out_free:
1136 if (slab != NULL)
1137 kmem_cache_free(slab, sk);
1138 else
1139 kfree(sk);
1140 return NULL;
1143 static void sk_prot_free(struct proto *prot, struct sock *sk)
1145 struct kmem_cache *slab;
1146 struct module *owner;
1148 owner = prot->owner;
1149 slab = prot->slab;
1151 security_sk_free(sk);
1152 if (slab != NULL)
1153 kmem_cache_free(slab, sk);
1154 else
1155 kfree(sk);
1156 module_put(owner);
1159 #ifdef CONFIG_CGROUPS
1160 void sock_update_classid(struct sock *sk)
1162 u32 classid;
1164 rcu_read_lock(); /* doing current task, which cannot vanish. */
1165 classid = task_cls_classid(current);
1166 rcu_read_unlock();
1167 if (classid && classid != sk->sk_classid)
1168 sk->sk_classid = classid;
1170 EXPORT_SYMBOL(sock_update_classid);
1172 void sock_update_netprioidx(struct sock *sk)
1174 struct cgroup_netprio_state *state;
1175 if (in_interrupt())
1176 return;
1177 rcu_read_lock();
1178 state = task_netprio_state(current);
1179 sk->sk_cgrp_prioidx = state ? state->prioidx : 0;
1180 rcu_read_unlock();
1182 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1183 #endif
1186 * sk_alloc - All socket objects are allocated here
1187 * @net: the applicable net namespace
1188 * @family: protocol family
1189 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1190 * @prot: struct proto associated with this new sock instance
1192 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1193 struct proto *prot)
1195 struct sock *sk;
1197 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1198 if (sk) {
1199 sk->sk_family = family;
1201 * See comment in struct sock definition to understand
1202 * why we need sk_prot_creator -acme
1204 sk->sk_prot = sk->sk_prot_creator = prot;
1205 sock_lock_init(sk);
1206 sock_net_set(sk, get_net(net));
1207 atomic_set(&sk->sk_wmem_alloc, 1);
1209 sock_update_classid(sk);
1210 sock_update_netprioidx(sk);
1213 return sk;
1215 EXPORT_SYMBOL(sk_alloc);
1217 static void __sk_free(struct sock *sk)
1219 struct sk_filter *filter;
1221 if (sk->sk_destruct)
1222 sk->sk_destruct(sk);
1224 filter = rcu_dereference_check(sk->sk_filter,
1225 atomic_read(&sk->sk_wmem_alloc) == 0);
1226 if (filter) {
1227 sk_filter_uncharge(sk, filter);
1228 RCU_INIT_POINTER(sk->sk_filter, NULL);
1231 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1233 if (atomic_read(&sk->sk_omem_alloc))
1234 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1235 __func__, atomic_read(&sk->sk_omem_alloc));
1237 if (sk->sk_peer_cred)
1238 put_cred(sk->sk_peer_cred);
1239 put_pid(sk->sk_peer_pid);
1240 put_net(sock_net(sk));
1241 sk_prot_free(sk->sk_prot_creator, sk);
1244 void sk_free(struct sock *sk)
1247 * We subtract one from sk_wmem_alloc and can know if
1248 * some packets are still in some tx queue.
1249 * If not null, sock_wfree() will call __sk_free(sk) later
1251 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1252 __sk_free(sk);
1254 EXPORT_SYMBOL(sk_free);
1257 * Last sock_put should drop reference to sk->sk_net. It has already
1258 * been dropped in sk_change_net. Taking reference to stopping namespace
1259 * is not an option.
1260 * Take reference to a socket to remove it from hash _alive_ and after that
1261 * destroy it in the context of init_net.
1263 void sk_release_kernel(struct sock *sk)
1265 if (sk == NULL || sk->sk_socket == NULL)
1266 return;
1268 sock_hold(sk);
1269 sock_release(sk->sk_socket);
1270 release_net(sock_net(sk));
1271 sock_net_set(sk, get_net(&init_net));
1272 sock_put(sk);
1274 EXPORT_SYMBOL(sk_release_kernel);
1276 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1278 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1279 sock_update_memcg(newsk);
1283 * sk_clone_lock - clone a socket, and lock its clone
1284 * @sk: the socket to clone
1285 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1287 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1289 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1291 struct sock *newsk;
1293 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1294 if (newsk != NULL) {
1295 struct sk_filter *filter;
1297 sock_copy(newsk, sk);
1299 /* SANITY */
1300 get_net(sock_net(newsk));
1301 sk_node_init(&newsk->sk_node);
1302 sock_lock_init(newsk);
1303 bh_lock_sock(newsk);
1304 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1305 newsk->sk_backlog.len = 0;
1307 atomic_set(&newsk->sk_rmem_alloc, 0);
1309 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1311 atomic_set(&newsk->sk_wmem_alloc, 1);
1312 atomic_set(&newsk->sk_omem_alloc, 0);
1313 skb_queue_head_init(&newsk->sk_receive_queue);
1314 skb_queue_head_init(&newsk->sk_write_queue);
1315 #ifdef CONFIG_NET_DMA
1316 skb_queue_head_init(&newsk->sk_async_wait_queue);
1317 #endif
1319 spin_lock_init(&newsk->sk_dst_lock);
1320 rwlock_init(&newsk->sk_callback_lock);
1321 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1322 af_callback_keys + newsk->sk_family,
1323 af_family_clock_key_strings[newsk->sk_family]);
1325 newsk->sk_dst_cache = NULL;
1326 newsk->sk_wmem_queued = 0;
1327 newsk->sk_forward_alloc = 0;
1328 newsk->sk_send_head = NULL;
1329 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1331 sock_reset_flag(newsk, SOCK_DONE);
1332 skb_queue_head_init(&newsk->sk_error_queue);
1334 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1335 if (filter != NULL)
1336 sk_filter_charge(newsk, filter);
1338 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1339 /* It is still raw copy of parent, so invalidate
1340 * destructor and make plain sk_free() */
1341 newsk->sk_destruct = NULL;
1342 bh_unlock_sock(newsk);
1343 sk_free(newsk);
1344 newsk = NULL;
1345 goto out;
1348 newsk->sk_err = 0;
1349 newsk->sk_priority = 0;
1351 * Before updating sk_refcnt, we must commit prior changes to memory
1352 * (Documentation/RCU/rculist_nulls.txt for details)
1354 smp_wmb();
1355 atomic_set(&newsk->sk_refcnt, 2);
1358 * Increment the counter in the same struct proto as the master
1359 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1360 * is the same as sk->sk_prot->socks, as this field was copied
1361 * with memcpy).
1363 * This _changes_ the previous behaviour, where
1364 * tcp_create_openreq_child always was incrementing the
1365 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1366 * to be taken into account in all callers. -acme
1368 sk_refcnt_debug_inc(newsk);
1369 sk_set_socket(newsk, NULL);
1370 newsk->sk_wq = NULL;
1372 sk_update_clone(sk, newsk);
1374 if (newsk->sk_prot->sockets_allocated)
1375 sk_sockets_allocated_inc(newsk);
1377 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1378 net_enable_timestamp();
1380 out:
1381 return newsk;
1383 EXPORT_SYMBOL_GPL(sk_clone_lock);
1385 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1387 __sk_dst_set(sk, dst);
1388 sk->sk_route_caps = dst->dev->features;
1389 if (sk->sk_route_caps & NETIF_F_GSO)
1390 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1391 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1392 if (sk_can_gso(sk)) {
1393 if (dst->header_len) {
1394 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1395 } else {
1396 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1397 sk->sk_gso_max_size = dst->dev->gso_max_size;
1401 EXPORT_SYMBOL_GPL(sk_setup_caps);
1403 void __init sk_init(void)
1405 if (totalram_pages <= 4096) {
1406 sysctl_wmem_max = 32767;
1407 sysctl_rmem_max = 32767;
1408 sysctl_wmem_default = 32767;
1409 sysctl_rmem_default = 32767;
1410 } else if (totalram_pages >= 131072) {
1411 sysctl_wmem_max = 131071;
1412 sysctl_rmem_max = 131071;
1417 * Simple resource managers for sockets.
1422 * Write buffer destructor automatically called from kfree_skb.
1424 void sock_wfree(struct sk_buff *skb)
1426 struct sock *sk = skb->sk;
1427 unsigned int len = skb->truesize;
1429 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1431 * Keep a reference on sk_wmem_alloc, this will be released
1432 * after sk_write_space() call
1434 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1435 sk->sk_write_space(sk);
1436 len = 1;
1439 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1440 * could not do because of in-flight packets
1442 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1443 __sk_free(sk);
1445 EXPORT_SYMBOL(sock_wfree);
1448 * Read buffer destructor automatically called from kfree_skb.
1450 void sock_rfree(struct sk_buff *skb)
1452 struct sock *sk = skb->sk;
1453 unsigned int len = skb->truesize;
1455 atomic_sub(len, &sk->sk_rmem_alloc);
1456 sk_mem_uncharge(sk, len);
1458 EXPORT_SYMBOL(sock_rfree);
1461 int sock_i_uid(struct sock *sk)
1463 int uid;
1465 read_lock_bh(&sk->sk_callback_lock);
1466 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1467 read_unlock_bh(&sk->sk_callback_lock);
1468 return uid;
1470 EXPORT_SYMBOL(sock_i_uid);
1472 unsigned long sock_i_ino(struct sock *sk)
1474 unsigned long ino;
1476 read_lock_bh(&sk->sk_callback_lock);
1477 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1478 read_unlock_bh(&sk->sk_callback_lock);
1479 return ino;
1481 EXPORT_SYMBOL(sock_i_ino);
1484 * Allocate a skb from the socket's send buffer.
1486 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1487 gfp_t priority)
1489 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1490 struct sk_buff *skb = alloc_skb(size, priority);
1491 if (skb) {
1492 skb_set_owner_w(skb, sk);
1493 return skb;
1496 return NULL;
1498 EXPORT_SYMBOL(sock_wmalloc);
1501 * Allocate a skb from the socket's receive buffer.
1503 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1504 gfp_t priority)
1506 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1507 struct sk_buff *skb = alloc_skb(size, priority);
1508 if (skb) {
1509 skb_set_owner_r(skb, sk);
1510 return skb;
1513 return NULL;
1517 * Allocate a memory block from the socket's option memory buffer.
1519 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1521 if ((unsigned)size <= sysctl_optmem_max &&
1522 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1523 void *mem;
1524 /* First do the add, to avoid the race if kmalloc
1525 * might sleep.
1527 atomic_add(size, &sk->sk_omem_alloc);
1528 mem = kmalloc(size, priority);
1529 if (mem)
1530 return mem;
1531 atomic_sub(size, &sk->sk_omem_alloc);
1533 return NULL;
1535 EXPORT_SYMBOL(sock_kmalloc);
1538 * Free an option memory block.
1540 void sock_kfree_s(struct sock *sk, void *mem, int size)
1542 kfree(mem);
1543 atomic_sub(size, &sk->sk_omem_alloc);
1545 EXPORT_SYMBOL(sock_kfree_s);
1547 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1548 I think, these locks should be removed for datagram sockets.
1550 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1552 DEFINE_WAIT(wait);
1554 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1555 for (;;) {
1556 if (!timeo)
1557 break;
1558 if (signal_pending(current))
1559 break;
1560 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1561 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1562 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1563 break;
1564 if (sk->sk_shutdown & SEND_SHUTDOWN)
1565 break;
1566 if (sk->sk_err)
1567 break;
1568 timeo = schedule_timeout(timeo);
1570 finish_wait(sk_sleep(sk), &wait);
1571 return timeo;
1576 * Generic send/receive buffer handlers
1579 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1580 unsigned long data_len, int noblock,
1581 int *errcode)
1583 struct sk_buff *skb;
1584 gfp_t gfp_mask;
1585 long timeo;
1586 int err;
1588 gfp_mask = sk->sk_allocation;
1589 if (gfp_mask & __GFP_WAIT)
1590 gfp_mask |= __GFP_REPEAT;
1592 timeo = sock_sndtimeo(sk, noblock);
1593 while (1) {
1594 err = sock_error(sk);
1595 if (err != 0)
1596 goto failure;
1598 err = -EPIPE;
1599 if (sk->sk_shutdown & SEND_SHUTDOWN)
1600 goto failure;
1602 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1603 skb = alloc_skb(header_len, gfp_mask);
1604 if (skb) {
1605 int npages;
1606 int i;
1608 /* No pages, we're done... */
1609 if (!data_len)
1610 break;
1612 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1613 skb->truesize += data_len;
1614 skb_shinfo(skb)->nr_frags = npages;
1615 for (i = 0; i < npages; i++) {
1616 struct page *page;
1618 page = alloc_pages(sk->sk_allocation, 0);
1619 if (!page) {
1620 err = -ENOBUFS;
1621 skb_shinfo(skb)->nr_frags = i;
1622 kfree_skb(skb);
1623 goto failure;
1626 __skb_fill_page_desc(skb, i,
1627 page, 0,
1628 (data_len >= PAGE_SIZE ?
1629 PAGE_SIZE :
1630 data_len));
1631 data_len -= PAGE_SIZE;
1634 /* Full success... */
1635 break;
1637 err = -ENOBUFS;
1638 goto failure;
1640 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1641 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1642 err = -EAGAIN;
1643 if (!timeo)
1644 goto failure;
1645 if (signal_pending(current))
1646 goto interrupted;
1647 timeo = sock_wait_for_wmem(sk, timeo);
1650 skb_set_owner_w(skb, sk);
1651 return skb;
1653 interrupted:
1654 err = sock_intr_errno(timeo);
1655 failure:
1656 *errcode = err;
1657 return NULL;
1659 EXPORT_SYMBOL(sock_alloc_send_pskb);
1661 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1662 int noblock, int *errcode)
1664 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1666 EXPORT_SYMBOL(sock_alloc_send_skb);
1668 static void __lock_sock(struct sock *sk)
1669 __releases(&sk->sk_lock.slock)
1670 __acquires(&sk->sk_lock.slock)
1672 DEFINE_WAIT(wait);
1674 for (;;) {
1675 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1676 TASK_UNINTERRUPTIBLE);
1677 spin_unlock_bh(&sk->sk_lock.slock);
1678 schedule();
1679 spin_lock_bh(&sk->sk_lock.slock);
1680 if (!sock_owned_by_user(sk))
1681 break;
1683 finish_wait(&sk->sk_lock.wq, &wait);
1686 static void __release_sock(struct sock *sk)
1687 __releases(&sk->sk_lock.slock)
1688 __acquires(&sk->sk_lock.slock)
1690 struct sk_buff *skb = sk->sk_backlog.head;
1692 do {
1693 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1694 bh_unlock_sock(sk);
1696 do {
1697 struct sk_buff *next = skb->next;
1699 WARN_ON_ONCE(skb_dst_is_noref(skb));
1700 skb->next = NULL;
1701 sk_backlog_rcv(sk, skb);
1704 * We are in process context here with softirqs
1705 * disabled, use cond_resched_softirq() to preempt.
1706 * This is safe to do because we've taken the backlog
1707 * queue private:
1709 cond_resched_softirq();
1711 skb = next;
1712 } while (skb != NULL);
1714 bh_lock_sock(sk);
1715 } while ((skb = sk->sk_backlog.head) != NULL);
1718 * Doing the zeroing here guarantee we can not loop forever
1719 * while a wild producer attempts to flood us.
1721 sk->sk_backlog.len = 0;
1725 * sk_wait_data - wait for data to arrive at sk_receive_queue
1726 * @sk: sock to wait on
1727 * @timeo: for how long
1729 * Now socket state including sk->sk_err is changed only under lock,
1730 * hence we may omit checks after joining wait queue.
1731 * We check receive queue before schedule() only as optimization;
1732 * it is very likely that release_sock() added new data.
1734 int sk_wait_data(struct sock *sk, long *timeo)
1736 int rc;
1737 DEFINE_WAIT(wait);
1739 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1740 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1741 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1742 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1743 finish_wait(sk_sleep(sk), &wait);
1744 return rc;
1746 EXPORT_SYMBOL(sk_wait_data);
1749 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1750 * @sk: socket
1751 * @size: memory size to allocate
1752 * @kind: allocation type
1754 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1755 * rmem allocation. This function assumes that protocols which have
1756 * memory_pressure use sk_wmem_queued as write buffer accounting.
1758 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1760 struct proto *prot = sk->sk_prot;
1761 int amt = sk_mem_pages(size);
1762 long allocated;
1763 int parent_status = UNDER_LIMIT;
1765 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1767 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1769 /* Under limit. */
1770 if (parent_status == UNDER_LIMIT &&
1771 allocated <= sk_prot_mem_limits(sk, 0)) {
1772 sk_leave_memory_pressure(sk);
1773 return 1;
1776 /* Under pressure. (we or our parents) */
1777 if ((parent_status > SOFT_LIMIT) ||
1778 allocated > sk_prot_mem_limits(sk, 1))
1779 sk_enter_memory_pressure(sk);
1781 /* Over hard limit (we or our parents) */
1782 if ((parent_status == OVER_LIMIT) ||
1783 (allocated > sk_prot_mem_limits(sk, 2)))
1784 goto suppress_allocation;
1786 /* guarantee minimum buffer size under pressure */
1787 if (kind == SK_MEM_RECV) {
1788 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1789 return 1;
1791 } else { /* SK_MEM_SEND */
1792 if (sk->sk_type == SOCK_STREAM) {
1793 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1794 return 1;
1795 } else if (atomic_read(&sk->sk_wmem_alloc) <
1796 prot->sysctl_wmem[0])
1797 return 1;
1800 if (sk_has_memory_pressure(sk)) {
1801 int alloc;
1803 if (!sk_under_memory_pressure(sk))
1804 return 1;
1805 alloc = sk_sockets_allocated_read_positive(sk);
1806 if (sk_prot_mem_limits(sk, 2) > alloc *
1807 sk_mem_pages(sk->sk_wmem_queued +
1808 atomic_read(&sk->sk_rmem_alloc) +
1809 sk->sk_forward_alloc))
1810 return 1;
1813 suppress_allocation:
1815 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1816 sk_stream_moderate_sndbuf(sk);
1818 /* Fail only if socket is _under_ its sndbuf.
1819 * In this case we cannot block, so that we have to fail.
1821 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1822 return 1;
1825 trace_sock_exceed_buf_limit(sk, prot, allocated);
1827 /* Alas. Undo changes. */
1828 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1830 sk_memory_allocated_sub(sk, amt, parent_status);
1832 return 0;
1834 EXPORT_SYMBOL(__sk_mem_schedule);
1837 * __sk_reclaim - reclaim memory_allocated
1838 * @sk: socket
1840 void __sk_mem_reclaim(struct sock *sk)
1842 sk_memory_allocated_sub(sk,
1843 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT, 0);
1844 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1846 if (sk_under_memory_pressure(sk) &&
1847 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1848 sk_leave_memory_pressure(sk);
1850 EXPORT_SYMBOL(__sk_mem_reclaim);
1854 * Set of default routines for initialising struct proto_ops when
1855 * the protocol does not support a particular function. In certain
1856 * cases where it makes no sense for a protocol to have a "do nothing"
1857 * function, some default processing is provided.
1860 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1862 return -EOPNOTSUPP;
1864 EXPORT_SYMBOL(sock_no_bind);
1866 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1867 int len, int flags)
1869 return -EOPNOTSUPP;
1871 EXPORT_SYMBOL(sock_no_connect);
1873 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1875 return -EOPNOTSUPP;
1877 EXPORT_SYMBOL(sock_no_socketpair);
1879 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1881 return -EOPNOTSUPP;
1883 EXPORT_SYMBOL(sock_no_accept);
1885 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1886 int *len, int peer)
1888 return -EOPNOTSUPP;
1890 EXPORT_SYMBOL(sock_no_getname);
1892 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1894 return 0;
1896 EXPORT_SYMBOL(sock_no_poll);
1898 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1900 return -EOPNOTSUPP;
1902 EXPORT_SYMBOL(sock_no_ioctl);
1904 int sock_no_listen(struct socket *sock, int backlog)
1906 return -EOPNOTSUPP;
1908 EXPORT_SYMBOL(sock_no_listen);
1910 int sock_no_shutdown(struct socket *sock, int how)
1912 return -EOPNOTSUPP;
1914 EXPORT_SYMBOL(sock_no_shutdown);
1916 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1917 char __user *optval, unsigned int optlen)
1919 return -EOPNOTSUPP;
1921 EXPORT_SYMBOL(sock_no_setsockopt);
1923 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1924 char __user *optval, int __user *optlen)
1926 return -EOPNOTSUPP;
1928 EXPORT_SYMBOL(sock_no_getsockopt);
1930 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1931 size_t len)
1933 return -EOPNOTSUPP;
1935 EXPORT_SYMBOL(sock_no_sendmsg);
1937 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1938 size_t len, int flags)
1940 return -EOPNOTSUPP;
1942 EXPORT_SYMBOL(sock_no_recvmsg);
1944 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1946 /* Mirror missing mmap method error code */
1947 return -ENODEV;
1949 EXPORT_SYMBOL(sock_no_mmap);
1951 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1953 ssize_t res;
1954 struct msghdr msg = {.msg_flags = flags};
1955 struct kvec iov;
1956 char *kaddr = kmap(page);
1957 iov.iov_base = kaddr + offset;
1958 iov.iov_len = size;
1959 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1960 kunmap(page);
1961 return res;
1963 EXPORT_SYMBOL(sock_no_sendpage);
1966 * Default Socket Callbacks
1969 static void sock_def_wakeup(struct sock *sk)
1971 struct socket_wq *wq;
1973 rcu_read_lock();
1974 wq = rcu_dereference(sk->sk_wq);
1975 if (wq_has_sleeper(wq))
1976 wake_up_interruptible_all(&wq->wait);
1977 rcu_read_unlock();
1980 static void sock_def_error_report(struct sock *sk)
1982 struct socket_wq *wq;
1984 rcu_read_lock();
1985 wq = rcu_dereference(sk->sk_wq);
1986 if (wq_has_sleeper(wq))
1987 wake_up_interruptible_poll(&wq->wait, POLLERR);
1988 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1989 rcu_read_unlock();
1992 static void sock_def_readable(struct sock *sk, int len)
1994 struct socket_wq *wq;
1996 rcu_read_lock();
1997 wq = rcu_dereference(sk->sk_wq);
1998 if (wq_has_sleeper(wq))
1999 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2000 POLLRDNORM | POLLRDBAND);
2001 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2002 rcu_read_unlock();
2005 static void sock_def_write_space(struct sock *sk)
2007 struct socket_wq *wq;
2009 rcu_read_lock();
2011 /* Do not wake up a writer until he can make "significant"
2012 * progress. --DaveM
2014 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2015 wq = rcu_dereference(sk->sk_wq);
2016 if (wq_has_sleeper(wq))
2017 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2018 POLLWRNORM | POLLWRBAND);
2020 /* Should agree with poll, otherwise some programs break */
2021 if (sock_writeable(sk))
2022 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2025 rcu_read_unlock();
2028 static void sock_def_destruct(struct sock *sk)
2030 kfree(sk->sk_protinfo);
2033 void sk_send_sigurg(struct sock *sk)
2035 if (sk->sk_socket && sk->sk_socket->file)
2036 if (send_sigurg(&sk->sk_socket->file->f_owner))
2037 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2039 EXPORT_SYMBOL(sk_send_sigurg);
2041 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2042 unsigned long expires)
2044 if (!mod_timer(timer, expires))
2045 sock_hold(sk);
2047 EXPORT_SYMBOL(sk_reset_timer);
2049 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2051 if (timer_pending(timer) && del_timer(timer))
2052 __sock_put(sk);
2054 EXPORT_SYMBOL(sk_stop_timer);
2056 void sock_init_data(struct socket *sock, struct sock *sk)
2058 skb_queue_head_init(&sk->sk_receive_queue);
2059 skb_queue_head_init(&sk->sk_write_queue);
2060 skb_queue_head_init(&sk->sk_error_queue);
2061 #ifdef CONFIG_NET_DMA
2062 skb_queue_head_init(&sk->sk_async_wait_queue);
2063 #endif
2065 sk->sk_send_head = NULL;
2067 init_timer(&sk->sk_timer);
2069 sk->sk_allocation = GFP_KERNEL;
2070 sk->sk_rcvbuf = sysctl_rmem_default;
2071 sk->sk_sndbuf = sysctl_wmem_default;
2072 sk->sk_state = TCP_CLOSE;
2073 sk_set_socket(sk, sock);
2075 sock_set_flag(sk, SOCK_ZAPPED);
2077 if (sock) {
2078 sk->sk_type = sock->type;
2079 sk->sk_wq = sock->wq;
2080 sock->sk = sk;
2081 } else
2082 sk->sk_wq = NULL;
2084 spin_lock_init(&sk->sk_dst_lock);
2085 rwlock_init(&sk->sk_callback_lock);
2086 lockdep_set_class_and_name(&sk->sk_callback_lock,
2087 af_callback_keys + sk->sk_family,
2088 af_family_clock_key_strings[sk->sk_family]);
2090 sk->sk_state_change = sock_def_wakeup;
2091 sk->sk_data_ready = sock_def_readable;
2092 sk->sk_write_space = sock_def_write_space;
2093 sk->sk_error_report = sock_def_error_report;
2094 sk->sk_destruct = sock_def_destruct;
2096 sk->sk_sndmsg_page = NULL;
2097 sk->sk_sndmsg_off = 0;
2099 sk->sk_peer_pid = NULL;
2100 sk->sk_peer_cred = NULL;
2101 sk->sk_write_pending = 0;
2102 sk->sk_rcvlowat = 1;
2103 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2104 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2106 sk->sk_stamp = ktime_set(-1L, 0);
2109 * Before updating sk_refcnt, we must commit prior changes to memory
2110 * (Documentation/RCU/rculist_nulls.txt for details)
2112 smp_wmb();
2113 atomic_set(&sk->sk_refcnt, 1);
2114 atomic_set(&sk->sk_drops, 0);
2116 EXPORT_SYMBOL(sock_init_data);
2118 void lock_sock_nested(struct sock *sk, int subclass)
2120 might_sleep();
2121 spin_lock_bh(&sk->sk_lock.slock);
2122 if (sk->sk_lock.owned)
2123 __lock_sock(sk);
2124 sk->sk_lock.owned = 1;
2125 spin_unlock(&sk->sk_lock.slock);
2127 * The sk_lock has mutex_lock() semantics here:
2129 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2130 local_bh_enable();
2132 EXPORT_SYMBOL(lock_sock_nested);
2134 void release_sock(struct sock *sk)
2137 * The sk_lock has mutex_unlock() semantics:
2139 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2141 spin_lock_bh(&sk->sk_lock.slock);
2142 if (sk->sk_backlog.tail)
2143 __release_sock(sk);
2144 sk->sk_lock.owned = 0;
2145 if (waitqueue_active(&sk->sk_lock.wq))
2146 wake_up(&sk->sk_lock.wq);
2147 spin_unlock_bh(&sk->sk_lock.slock);
2149 EXPORT_SYMBOL(release_sock);
2152 * lock_sock_fast - fast version of lock_sock
2153 * @sk: socket
2155 * This version should be used for very small section, where process wont block
2156 * return false if fast path is taken
2157 * sk_lock.slock locked, owned = 0, BH disabled
2158 * return true if slow path is taken
2159 * sk_lock.slock unlocked, owned = 1, BH enabled
2161 bool lock_sock_fast(struct sock *sk)
2163 might_sleep();
2164 spin_lock_bh(&sk->sk_lock.slock);
2166 if (!sk->sk_lock.owned)
2168 * Note : We must disable BH
2170 return false;
2172 __lock_sock(sk);
2173 sk->sk_lock.owned = 1;
2174 spin_unlock(&sk->sk_lock.slock);
2176 * The sk_lock has mutex_lock() semantics here:
2178 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2179 local_bh_enable();
2180 return true;
2182 EXPORT_SYMBOL(lock_sock_fast);
2184 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2186 struct timeval tv;
2187 if (!sock_flag(sk, SOCK_TIMESTAMP))
2188 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2189 tv = ktime_to_timeval(sk->sk_stamp);
2190 if (tv.tv_sec == -1)
2191 return -ENOENT;
2192 if (tv.tv_sec == 0) {
2193 sk->sk_stamp = ktime_get_real();
2194 tv = ktime_to_timeval(sk->sk_stamp);
2196 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2198 EXPORT_SYMBOL(sock_get_timestamp);
2200 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2202 struct timespec ts;
2203 if (!sock_flag(sk, SOCK_TIMESTAMP))
2204 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2205 ts = ktime_to_timespec(sk->sk_stamp);
2206 if (ts.tv_sec == -1)
2207 return -ENOENT;
2208 if (ts.tv_sec == 0) {
2209 sk->sk_stamp = ktime_get_real();
2210 ts = ktime_to_timespec(sk->sk_stamp);
2212 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2214 EXPORT_SYMBOL(sock_get_timestampns);
2216 void sock_enable_timestamp(struct sock *sk, int flag)
2218 if (!sock_flag(sk, flag)) {
2219 unsigned long previous_flags = sk->sk_flags;
2221 sock_set_flag(sk, flag);
2223 * we just set one of the two flags which require net
2224 * time stamping, but time stamping might have been on
2225 * already because of the other one
2227 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2228 net_enable_timestamp();
2233 * Get a socket option on an socket.
2235 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2236 * asynchronous errors should be reported by getsockopt. We assume
2237 * this means if you specify SO_ERROR (otherwise whats the point of it).
2239 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2240 char __user *optval, int __user *optlen)
2242 struct sock *sk = sock->sk;
2244 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2246 EXPORT_SYMBOL(sock_common_getsockopt);
2248 #ifdef CONFIG_COMPAT
2249 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2250 char __user *optval, int __user *optlen)
2252 struct sock *sk = sock->sk;
2254 if (sk->sk_prot->compat_getsockopt != NULL)
2255 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2256 optval, optlen);
2257 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2259 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2260 #endif
2262 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2263 struct msghdr *msg, size_t size, int flags)
2265 struct sock *sk = sock->sk;
2266 int addr_len = 0;
2267 int err;
2269 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2270 flags & ~MSG_DONTWAIT, &addr_len);
2271 if (err >= 0)
2272 msg->msg_namelen = addr_len;
2273 return err;
2275 EXPORT_SYMBOL(sock_common_recvmsg);
2278 * Set socket options on an inet socket.
2280 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2281 char __user *optval, unsigned int optlen)
2283 struct sock *sk = sock->sk;
2285 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2287 EXPORT_SYMBOL(sock_common_setsockopt);
2289 #ifdef CONFIG_COMPAT
2290 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2291 char __user *optval, unsigned int optlen)
2293 struct sock *sk = sock->sk;
2295 if (sk->sk_prot->compat_setsockopt != NULL)
2296 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2297 optval, optlen);
2298 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2300 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2301 #endif
2303 void sk_common_release(struct sock *sk)
2305 if (sk->sk_prot->destroy)
2306 sk->sk_prot->destroy(sk);
2309 * Observation: when sock_common_release is called, processes have
2310 * no access to socket. But net still has.
2311 * Step one, detach it from networking:
2313 * A. Remove from hash tables.
2316 sk->sk_prot->unhash(sk);
2319 * In this point socket cannot receive new packets, but it is possible
2320 * that some packets are in flight because some CPU runs receiver and
2321 * did hash table lookup before we unhashed socket. They will achieve
2322 * receive queue and will be purged by socket destructor.
2324 * Also we still have packets pending on receive queue and probably,
2325 * our own packets waiting in device queues. sock_destroy will drain
2326 * receive queue, but transmitted packets will delay socket destruction
2327 * until the last reference will be released.
2330 sock_orphan(sk);
2332 xfrm_sk_free_policy(sk);
2334 sk_refcnt_debug_release(sk);
2335 sock_put(sk);
2337 EXPORT_SYMBOL(sk_common_release);
2339 #ifdef CONFIG_PROC_FS
2340 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2341 struct prot_inuse {
2342 int val[PROTO_INUSE_NR];
2345 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2347 #ifdef CONFIG_NET_NS
2348 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2350 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2352 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2354 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2356 int cpu, idx = prot->inuse_idx;
2357 int res = 0;
2359 for_each_possible_cpu(cpu)
2360 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2362 return res >= 0 ? res : 0;
2364 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2366 static int __net_init sock_inuse_init_net(struct net *net)
2368 net->core.inuse = alloc_percpu(struct prot_inuse);
2369 return net->core.inuse ? 0 : -ENOMEM;
2372 static void __net_exit sock_inuse_exit_net(struct net *net)
2374 free_percpu(net->core.inuse);
2377 static struct pernet_operations net_inuse_ops = {
2378 .init = sock_inuse_init_net,
2379 .exit = sock_inuse_exit_net,
2382 static __init int net_inuse_init(void)
2384 if (register_pernet_subsys(&net_inuse_ops))
2385 panic("Cannot initialize net inuse counters");
2387 return 0;
2390 core_initcall(net_inuse_init);
2391 #else
2392 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2394 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2396 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2398 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2400 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2402 int cpu, idx = prot->inuse_idx;
2403 int res = 0;
2405 for_each_possible_cpu(cpu)
2406 res += per_cpu(prot_inuse, cpu).val[idx];
2408 return res >= 0 ? res : 0;
2410 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2411 #endif
2413 static void assign_proto_idx(struct proto *prot)
2415 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2417 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2418 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2419 return;
2422 set_bit(prot->inuse_idx, proto_inuse_idx);
2425 static void release_proto_idx(struct proto *prot)
2427 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2428 clear_bit(prot->inuse_idx, proto_inuse_idx);
2430 #else
2431 static inline void assign_proto_idx(struct proto *prot)
2435 static inline void release_proto_idx(struct proto *prot)
2438 #endif
2440 int proto_register(struct proto *prot, int alloc_slab)
2442 if (alloc_slab) {
2443 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2444 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2445 NULL);
2447 if (prot->slab == NULL) {
2448 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2449 prot->name);
2450 goto out;
2453 if (prot->rsk_prot != NULL) {
2454 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2455 if (prot->rsk_prot->slab_name == NULL)
2456 goto out_free_sock_slab;
2458 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2459 prot->rsk_prot->obj_size, 0,
2460 SLAB_HWCACHE_ALIGN, NULL);
2462 if (prot->rsk_prot->slab == NULL) {
2463 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2464 prot->name);
2465 goto out_free_request_sock_slab_name;
2469 if (prot->twsk_prot != NULL) {
2470 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2472 if (prot->twsk_prot->twsk_slab_name == NULL)
2473 goto out_free_request_sock_slab;
2475 prot->twsk_prot->twsk_slab =
2476 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2477 prot->twsk_prot->twsk_obj_size,
2479 SLAB_HWCACHE_ALIGN |
2480 prot->slab_flags,
2481 NULL);
2482 if (prot->twsk_prot->twsk_slab == NULL)
2483 goto out_free_timewait_sock_slab_name;
2487 mutex_lock(&proto_list_mutex);
2488 list_add(&prot->node, &proto_list);
2489 assign_proto_idx(prot);
2490 mutex_unlock(&proto_list_mutex);
2491 return 0;
2493 out_free_timewait_sock_slab_name:
2494 kfree(prot->twsk_prot->twsk_slab_name);
2495 out_free_request_sock_slab:
2496 if (prot->rsk_prot && prot->rsk_prot->slab) {
2497 kmem_cache_destroy(prot->rsk_prot->slab);
2498 prot->rsk_prot->slab = NULL;
2500 out_free_request_sock_slab_name:
2501 if (prot->rsk_prot)
2502 kfree(prot->rsk_prot->slab_name);
2503 out_free_sock_slab:
2504 kmem_cache_destroy(prot->slab);
2505 prot->slab = NULL;
2506 out:
2507 return -ENOBUFS;
2509 EXPORT_SYMBOL(proto_register);
2511 void proto_unregister(struct proto *prot)
2513 mutex_lock(&proto_list_mutex);
2514 release_proto_idx(prot);
2515 list_del(&prot->node);
2516 mutex_unlock(&proto_list_mutex);
2518 if (prot->slab != NULL) {
2519 kmem_cache_destroy(prot->slab);
2520 prot->slab = NULL;
2523 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2524 kmem_cache_destroy(prot->rsk_prot->slab);
2525 kfree(prot->rsk_prot->slab_name);
2526 prot->rsk_prot->slab = NULL;
2529 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2530 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2531 kfree(prot->twsk_prot->twsk_slab_name);
2532 prot->twsk_prot->twsk_slab = NULL;
2535 EXPORT_SYMBOL(proto_unregister);
2537 #ifdef CONFIG_PROC_FS
2538 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2539 __acquires(proto_list_mutex)
2541 mutex_lock(&proto_list_mutex);
2542 return seq_list_start_head(&proto_list, *pos);
2545 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2547 return seq_list_next(v, &proto_list, pos);
2550 static void proto_seq_stop(struct seq_file *seq, void *v)
2551 __releases(proto_list_mutex)
2553 mutex_unlock(&proto_list_mutex);
2556 static char proto_method_implemented(const void *method)
2558 return method == NULL ? 'n' : 'y';
2560 static long sock_prot_memory_allocated(struct proto *proto)
2562 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2565 static char *sock_prot_memory_pressure(struct proto *proto)
2567 return proto->memory_pressure != NULL ?
2568 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2571 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2574 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2575 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2576 proto->name,
2577 proto->obj_size,
2578 sock_prot_inuse_get(seq_file_net(seq), proto),
2579 sock_prot_memory_allocated(proto),
2580 sock_prot_memory_pressure(proto),
2581 proto->max_header,
2582 proto->slab == NULL ? "no" : "yes",
2583 module_name(proto->owner),
2584 proto_method_implemented(proto->close),
2585 proto_method_implemented(proto->connect),
2586 proto_method_implemented(proto->disconnect),
2587 proto_method_implemented(proto->accept),
2588 proto_method_implemented(proto->ioctl),
2589 proto_method_implemented(proto->init),
2590 proto_method_implemented(proto->destroy),
2591 proto_method_implemented(proto->shutdown),
2592 proto_method_implemented(proto->setsockopt),
2593 proto_method_implemented(proto->getsockopt),
2594 proto_method_implemented(proto->sendmsg),
2595 proto_method_implemented(proto->recvmsg),
2596 proto_method_implemented(proto->sendpage),
2597 proto_method_implemented(proto->bind),
2598 proto_method_implemented(proto->backlog_rcv),
2599 proto_method_implemented(proto->hash),
2600 proto_method_implemented(proto->unhash),
2601 proto_method_implemented(proto->get_port),
2602 proto_method_implemented(proto->enter_memory_pressure));
2605 static int proto_seq_show(struct seq_file *seq, void *v)
2607 if (v == &proto_list)
2608 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2609 "protocol",
2610 "size",
2611 "sockets",
2612 "memory",
2613 "press",
2614 "maxhdr",
2615 "slab",
2616 "module",
2617 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2618 else
2619 proto_seq_printf(seq, list_entry(v, struct proto, node));
2620 return 0;
2623 static const struct seq_operations proto_seq_ops = {
2624 .start = proto_seq_start,
2625 .next = proto_seq_next,
2626 .stop = proto_seq_stop,
2627 .show = proto_seq_show,
2630 static int proto_seq_open(struct inode *inode, struct file *file)
2632 return seq_open_net(inode, file, &proto_seq_ops,
2633 sizeof(struct seq_net_private));
2636 static const struct file_operations proto_seq_fops = {
2637 .owner = THIS_MODULE,
2638 .open = proto_seq_open,
2639 .read = seq_read,
2640 .llseek = seq_lseek,
2641 .release = seq_release_net,
2644 static __net_init int proto_init_net(struct net *net)
2646 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2647 return -ENOMEM;
2649 return 0;
2652 static __net_exit void proto_exit_net(struct net *net)
2654 proc_net_remove(net, "protocols");
2658 static __net_initdata struct pernet_operations proto_net_ops = {
2659 .init = proto_init_net,
2660 .exit = proto_exit_net,
2663 static int __init proto_init(void)
2665 return register_pernet_subsys(&proto_net_ops);
2668 subsys_initcall(proto_init);
2670 #endif /* PROC_FS */