usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / block / cciss.c
blob486f94ef24d499bfe0d17eb379fe5043a94f36a5
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
51 #include <scsi/sg.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
67 static int cciss_tape_cmds = 6;
68 module_param(cciss_tape_cmds, int, 0644);
69 MODULE_PARM_DESC(cciss_tape_cmds,
70 "number of commands to allocate for tape devices (default: 6)");
71 static int cciss_simple_mode;
72 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_simple_mode,
74 "Use 'simple mode' rather than 'performant mode'");
76 static DEFINE_MUTEX(cciss_mutex);
77 static struct proc_dir_entry *proc_cciss;
79 #include "cciss_cmd.h"
80 #include "cciss.h"
81 #include <linux/cciss_ioctl.h>
83 /* define the PCI info for the cards we can control */
84 static const struct pci_device_id cciss_pci_device_id[] = {
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
92 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
93 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
105 {0,}
108 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110 /* board_id = Subsystem Device ID & Vendor ID
111 * product = Marketing Name for the board
112 * access = Address of the struct of function pointers
114 static struct board_type products[] = {
115 {0x40700E11, "Smart Array 5300", &SA5_access},
116 {0x40800E11, "Smart Array 5i", &SA5B_access},
117 {0x40820E11, "Smart Array 532", &SA5B_access},
118 {0x40830E11, "Smart Array 5312", &SA5B_access},
119 {0x409A0E11, "Smart Array 641", &SA5_access},
120 {0x409B0E11, "Smart Array 642", &SA5_access},
121 {0x409C0E11, "Smart Array 6400", &SA5_access},
122 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
123 {0x40910E11, "Smart Array 6i", &SA5_access},
124 {0x3225103C, "Smart Array P600", &SA5_access},
125 {0x3223103C, "Smart Array P800", &SA5_access},
126 {0x3234103C, "Smart Array P400", &SA5_access},
127 {0x3235103C, "Smart Array P400i", &SA5_access},
128 {0x3211103C, "Smart Array E200i", &SA5_access},
129 {0x3212103C, "Smart Array E200", &SA5_access},
130 {0x3213103C, "Smart Array E200i", &SA5_access},
131 {0x3214103C, "Smart Array E200i", &SA5_access},
132 {0x3215103C, "Smart Array E200i", &SA5_access},
133 {0x3237103C, "Smart Array E500", &SA5_access},
134 {0x3223103C, "Smart Array P800", &SA5_access},
135 {0x3234103C, "Smart Array P400", &SA5_access},
136 {0x323D103C, "Smart Array P700m", &SA5_access},
139 /* How long to wait (in milliseconds) for board to go into simple mode */
140 #define MAX_CONFIG_WAIT 30000
141 #define MAX_IOCTL_CONFIG_WAIT 1000
143 /*define how many times we will try a command because of bus resets */
144 #define MAX_CMD_RETRIES 3
146 #define MAX_CTLR 32
148 /* Originally cciss driver only supports 8 major numbers */
149 #define MAX_CTLR_ORIG 8
151 static ctlr_info_t *hba[MAX_CTLR];
153 static struct task_struct *cciss_scan_thread;
154 static DEFINE_MUTEX(scan_mutex);
155 static LIST_HEAD(scan_q);
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
159 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
160 static int cciss_open(struct block_device *bdev, fmode_t mode);
161 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
162 static int cciss_release(struct gendisk *disk, fmode_t mode);
163 static int do_ioctl(struct block_device *bdev, fmode_t mode,
164 unsigned int cmd, unsigned long arg);
165 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
166 unsigned int cmd, unsigned long arg);
167 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
169 static int cciss_revalidate(struct gendisk *disk);
170 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
171 static int deregister_disk(ctlr_info_t *h, int drv_index,
172 int clear_all, int via_ioctl);
174 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
175 sector_t *total_size, unsigned int *block_size);
176 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
177 sector_t *total_size, unsigned int *block_size);
178 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
179 sector_t total_size,
180 unsigned int block_size, InquiryData_struct *inq_buff,
181 drive_info_struct *drv);
182 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
183 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
184 static void start_io(ctlr_info_t *h);
185 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
186 __u8 page_code, unsigned char scsi3addr[],
187 int cmd_type);
188 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
189 int attempt_retry);
190 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
192 static int add_to_scan_list(struct ctlr_info *h);
193 static int scan_thread(void *data);
194 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
195 static void cciss_hba_release(struct device *dev);
196 static void cciss_device_release(struct device *dev);
197 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
198 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
199 static inline u32 next_command(ctlr_info_t *h);
200 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
201 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
202 u64 *cfg_offset);
203 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
204 unsigned long *memory_bar);
205 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
206 static __devinit int write_driver_ver_to_cfgtable(
207 CfgTable_struct __iomem *cfgtable);
209 /* performant mode helper functions */
210 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
211 int *bucket_map);
212 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214 #ifdef CONFIG_PROC_FS
215 static void cciss_procinit(ctlr_info_t *h);
216 #else
217 static void cciss_procinit(ctlr_info_t *h)
220 #endif /* CONFIG_PROC_FS */
222 #ifdef CONFIG_COMPAT
223 static int cciss_compat_ioctl(struct block_device *, fmode_t,
224 unsigned, unsigned long);
225 #endif
227 static const struct block_device_operations cciss_fops = {
228 .owner = THIS_MODULE,
229 .open = cciss_unlocked_open,
230 .release = cciss_release,
231 .ioctl = do_ioctl,
232 .getgeo = cciss_getgeo,
233 #ifdef CONFIG_COMPAT
234 .compat_ioctl = cciss_compat_ioctl,
235 #endif
236 .revalidate_disk = cciss_revalidate,
239 /* set_performant_mode: Modify the tag for cciss performant
240 * set bit 0 for pull model, bits 3-1 for block fetch
241 * register number
243 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245 if (likely(h->transMethod & CFGTBL_Trans_Performant))
246 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
250 * Enqueuing and dequeuing functions for cmdlists.
252 static inline void addQ(struct list_head *list, CommandList_struct *c)
254 list_add_tail(&c->list, list);
257 static inline void removeQ(CommandList_struct *c)
260 * After kexec/dump some commands might still
261 * be in flight, which the firmware will try
262 * to complete. Resetting the firmware doesn't work
263 * with old fw revisions, so we have to mark
264 * them off as 'stale' to prevent the driver from
265 * falling over.
267 if (WARN_ON(list_empty(&c->list))) {
268 c->cmd_type = CMD_MSG_STALE;
269 return;
272 list_del_init(&c->list);
275 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
276 CommandList_struct *c)
278 unsigned long flags;
279 set_performant_mode(h, c);
280 spin_lock_irqsave(&h->lock, flags);
281 addQ(&h->reqQ, c);
282 h->Qdepth++;
283 if (h->Qdepth > h->maxQsinceinit)
284 h->maxQsinceinit = h->Qdepth;
285 start_io(h);
286 spin_unlock_irqrestore(&h->lock, flags);
289 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
290 int nr_cmds)
292 int i;
294 if (!cmd_sg_list)
295 return;
296 for (i = 0; i < nr_cmds; i++) {
297 kfree(cmd_sg_list[i]);
298 cmd_sg_list[i] = NULL;
300 kfree(cmd_sg_list);
303 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
304 ctlr_info_t *h, int chainsize, int nr_cmds)
306 int j;
307 SGDescriptor_struct **cmd_sg_list;
309 if (chainsize <= 0)
310 return NULL;
312 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
313 if (!cmd_sg_list)
314 return NULL;
316 /* Build up chain blocks for each command */
317 for (j = 0; j < nr_cmds; j++) {
318 /* Need a block of chainsized s/g elements. */
319 cmd_sg_list[j] = kmalloc((chainsize *
320 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
321 if (!cmd_sg_list[j]) {
322 dev_err(&h->pdev->dev, "Cannot get memory "
323 "for s/g chains.\n");
324 goto clean;
327 return cmd_sg_list;
328 clean:
329 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
330 return NULL;
333 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
335 SGDescriptor_struct *chain_sg;
336 u64bit temp64;
338 if (c->Header.SGTotal <= h->max_cmd_sgentries)
339 return;
341 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
342 temp64.val32.lower = chain_sg->Addr.lower;
343 temp64.val32.upper = chain_sg->Addr.upper;
344 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
347 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
348 SGDescriptor_struct *chain_block, int len)
350 SGDescriptor_struct *chain_sg;
351 u64bit temp64;
353 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
354 chain_sg->Ext = CCISS_SG_CHAIN;
355 chain_sg->Len = len;
356 temp64.val = pci_map_single(h->pdev, chain_block, len,
357 PCI_DMA_TODEVICE);
358 chain_sg->Addr.lower = temp64.val32.lower;
359 chain_sg->Addr.upper = temp64.val32.upper;
362 #include "cciss_scsi.c" /* For SCSI tape support */
364 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
365 "UNKNOWN"
367 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
369 #ifdef CONFIG_PROC_FS
372 * Report information about this controller.
374 #define ENG_GIG 1000000000
375 #define ENG_GIG_FACTOR (ENG_GIG/512)
376 #define ENGAGE_SCSI "engage scsi"
378 static void cciss_seq_show_header(struct seq_file *seq)
380 ctlr_info_t *h = seq->private;
382 seq_printf(seq, "%s: HP %s Controller\n"
383 "Board ID: 0x%08lx\n"
384 "Firmware Version: %c%c%c%c\n"
385 "IRQ: %d\n"
386 "Logical drives: %d\n"
387 "Current Q depth: %d\n"
388 "Current # commands on controller: %d\n"
389 "Max Q depth since init: %d\n"
390 "Max # commands on controller since init: %d\n"
391 "Max SG entries since init: %d\n",
392 h->devname,
393 h->product_name,
394 (unsigned long)h->board_id,
395 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
396 h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
397 h->num_luns,
398 h->Qdepth, h->commands_outstanding,
399 h->maxQsinceinit, h->max_outstanding, h->maxSG);
401 #ifdef CONFIG_CISS_SCSI_TAPE
402 cciss_seq_tape_report(seq, h);
403 #endif /* CONFIG_CISS_SCSI_TAPE */
406 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
408 ctlr_info_t *h = seq->private;
409 unsigned long flags;
411 /* prevent displaying bogus info during configuration
412 * or deconfiguration of a logical volume
414 spin_lock_irqsave(&h->lock, flags);
415 if (h->busy_configuring) {
416 spin_unlock_irqrestore(&h->lock, flags);
417 return ERR_PTR(-EBUSY);
419 h->busy_configuring = 1;
420 spin_unlock_irqrestore(&h->lock, flags);
422 if (*pos == 0)
423 cciss_seq_show_header(seq);
425 return pos;
428 static int cciss_seq_show(struct seq_file *seq, void *v)
430 sector_t vol_sz, vol_sz_frac;
431 ctlr_info_t *h = seq->private;
432 unsigned ctlr = h->ctlr;
433 loff_t *pos = v;
434 drive_info_struct *drv = h->drv[*pos];
436 if (*pos > h->highest_lun)
437 return 0;
439 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
440 return 0;
442 if (drv->heads == 0)
443 return 0;
445 vol_sz = drv->nr_blocks;
446 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
447 vol_sz_frac *= 100;
448 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
450 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
451 drv->raid_level = RAID_UNKNOWN;
452 seq_printf(seq, "cciss/c%dd%d:"
453 "\t%4u.%02uGB\tRAID %s\n",
454 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
455 raid_label[drv->raid_level]);
456 return 0;
459 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
461 ctlr_info_t *h = seq->private;
463 if (*pos > h->highest_lun)
464 return NULL;
465 *pos += 1;
467 return pos;
470 static void cciss_seq_stop(struct seq_file *seq, void *v)
472 ctlr_info_t *h = seq->private;
474 /* Only reset h->busy_configuring if we succeeded in setting
475 * it during cciss_seq_start. */
476 if (v == ERR_PTR(-EBUSY))
477 return;
479 h->busy_configuring = 0;
482 static const struct seq_operations cciss_seq_ops = {
483 .start = cciss_seq_start,
484 .show = cciss_seq_show,
485 .next = cciss_seq_next,
486 .stop = cciss_seq_stop,
489 static int cciss_seq_open(struct inode *inode, struct file *file)
491 int ret = seq_open(file, &cciss_seq_ops);
492 struct seq_file *seq = file->private_data;
494 if (!ret)
495 seq->private = PDE(inode)->data;
497 return ret;
500 static ssize_t
501 cciss_proc_write(struct file *file, const char __user *buf,
502 size_t length, loff_t *ppos)
504 int err;
505 char *buffer;
507 #ifndef CONFIG_CISS_SCSI_TAPE
508 return -EINVAL;
509 #endif
511 if (!buf || length > PAGE_SIZE - 1)
512 return -EINVAL;
514 buffer = (char *)__get_free_page(GFP_KERNEL);
515 if (!buffer)
516 return -ENOMEM;
518 err = -EFAULT;
519 if (copy_from_user(buffer, buf, length))
520 goto out;
521 buffer[length] = '\0';
523 #ifdef CONFIG_CISS_SCSI_TAPE
524 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
525 struct seq_file *seq = file->private_data;
526 ctlr_info_t *h = seq->private;
528 err = cciss_engage_scsi(h);
529 if (err == 0)
530 err = length;
531 } else
532 #endif /* CONFIG_CISS_SCSI_TAPE */
533 err = -EINVAL;
534 /* might be nice to have "disengage" too, but it's not
535 safely possible. (only 1 module use count, lock issues.) */
537 out:
538 free_page((unsigned long)buffer);
539 return err;
542 static const struct file_operations cciss_proc_fops = {
543 .owner = THIS_MODULE,
544 .open = cciss_seq_open,
545 .read = seq_read,
546 .llseek = seq_lseek,
547 .release = seq_release,
548 .write = cciss_proc_write,
551 static void __devinit cciss_procinit(ctlr_info_t *h)
553 struct proc_dir_entry *pde;
555 if (proc_cciss == NULL)
556 proc_cciss = proc_mkdir("driver/cciss", NULL);
557 if (!proc_cciss)
558 return;
559 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
560 S_IROTH, proc_cciss,
561 &cciss_proc_fops, h);
563 #endif /* CONFIG_PROC_FS */
565 #define MAX_PRODUCT_NAME_LEN 19
567 #define to_hba(n) container_of(n, struct ctlr_info, dev)
568 #define to_drv(n) container_of(n, drive_info_struct, dev)
570 /* List of controllers which cannot be hard reset on kexec with reset_devices */
571 static u32 unresettable_controller[] = {
572 0x324a103C, /* Smart Array P712m */
573 0x324b103C, /* SmartArray P711m */
574 0x3223103C, /* Smart Array P800 */
575 0x3234103C, /* Smart Array P400 */
576 0x3235103C, /* Smart Array P400i */
577 0x3211103C, /* Smart Array E200i */
578 0x3212103C, /* Smart Array E200 */
579 0x3213103C, /* Smart Array E200i */
580 0x3214103C, /* Smart Array E200i */
581 0x3215103C, /* Smart Array E200i */
582 0x3237103C, /* Smart Array E500 */
583 0x323D103C, /* Smart Array P700m */
584 0x409C0E11, /* Smart Array 6400 */
585 0x409D0E11, /* Smart Array 6400 EM */
588 /* List of controllers which cannot even be soft reset */
589 static u32 soft_unresettable_controller[] = {
590 0x409C0E11, /* Smart Array 6400 */
591 0x409D0E11, /* Smart Array 6400 EM */
594 static int ctlr_is_hard_resettable(u32 board_id)
596 int i;
598 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
599 if (unresettable_controller[i] == board_id)
600 return 0;
601 return 1;
604 static int ctlr_is_soft_resettable(u32 board_id)
606 int i;
608 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
609 if (soft_unresettable_controller[i] == board_id)
610 return 0;
611 return 1;
614 static int ctlr_is_resettable(u32 board_id)
616 return ctlr_is_hard_resettable(board_id) ||
617 ctlr_is_soft_resettable(board_id);
620 static ssize_t host_show_resettable(struct device *dev,
621 struct device_attribute *attr,
622 char *buf)
624 struct ctlr_info *h = to_hba(dev);
626 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
630 static ssize_t host_store_rescan(struct device *dev,
631 struct device_attribute *attr,
632 const char *buf, size_t count)
634 struct ctlr_info *h = to_hba(dev);
636 add_to_scan_list(h);
637 wake_up_process(cciss_scan_thread);
638 wait_for_completion_interruptible(&h->scan_wait);
640 return count;
642 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
644 static ssize_t host_show_transport_mode(struct device *dev,
645 struct device_attribute *attr,
646 char *buf)
648 struct ctlr_info *h = to_hba(dev);
650 return snprintf(buf, 20, "%s\n",
651 h->transMethod & CFGTBL_Trans_Performant ?
652 "performant" : "simple");
654 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
656 static ssize_t dev_show_unique_id(struct device *dev,
657 struct device_attribute *attr,
658 char *buf)
660 drive_info_struct *drv = to_drv(dev);
661 struct ctlr_info *h = to_hba(drv->dev.parent);
662 __u8 sn[16];
663 unsigned long flags;
664 int ret = 0;
666 spin_lock_irqsave(&h->lock, flags);
667 if (h->busy_configuring)
668 ret = -EBUSY;
669 else
670 memcpy(sn, drv->serial_no, sizeof(sn));
671 spin_unlock_irqrestore(&h->lock, flags);
673 if (ret)
674 return ret;
675 else
676 return snprintf(buf, 16 * 2 + 2,
677 "%02X%02X%02X%02X%02X%02X%02X%02X"
678 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
679 sn[0], sn[1], sn[2], sn[3],
680 sn[4], sn[5], sn[6], sn[7],
681 sn[8], sn[9], sn[10], sn[11],
682 sn[12], sn[13], sn[14], sn[15]);
684 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
686 static ssize_t dev_show_vendor(struct device *dev,
687 struct device_attribute *attr,
688 char *buf)
690 drive_info_struct *drv = to_drv(dev);
691 struct ctlr_info *h = to_hba(drv->dev.parent);
692 char vendor[VENDOR_LEN + 1];
693 unsigned long flags;
694 int ret = 0;
696 spin_lock_irqsave(&h->lock, flags);
697 if (h->busy_configuring)
698 ret = -EBUSY;
699 else
700 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
701 spin_unlock_irqrestore(&h->lock, flags);
703 if (ret)
704 return ret;
705 else
706 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
708 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
710 static ssize_t dev_show_model(struct device *dev,
711 struct device_attribute *attr,
712 char *buf)
714 drive_info_struct *drv = to_drv(dev);
715 struct ctlr_info *h = to_hba(drv->dev.parent);
716 char model[MODEL_LEN + 1];
717 unsigned long flags;
718 int ret = 0;
720 spin_lock_irqsave(&h->lock, flags);
721 if (h->busy_configuring)
722 ret = -EBUSY;
723 else
724 memcpy(model, drv->model, MODEL_LEN + 1);
725 spin_unlock_irqrestore(&h->lock, flags);
727 if (ret)
728 return ret;
729 else
730 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
732 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
734 static ssize_t dev_show_rev(struct device *dev,
735 struct device_attribute *attr,
736 char *buf)
738 drive_info_struct *drv = to_drv(dev);
739 struct ctlr_info *h = to_hba(drv->dev.parent);
740 char rev[REV_LEN + 1];
741 unsigned long flags;
742 int ret = 0;
744 spin_lock_irqsave(&h->lock, flags);
745 if (h->busy_configuring)
746 ret = -EBUSY;
747 else
748 memcpy(rev, drv->rev, REV_LEN + 1);
749 spin_unlock_irqrestore(&h->lock, flags);
751 if (ret)
752 return ret;
753 else
754 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
756 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
758 static ssize_t cciss_show_lunid(struct device *dev,
759 struct device_attribute *attr, char *buf)
761 drive_info_struct *drv = to_drv(dev);
762 struct ctlr_info *h = to_hba(drv->dev.parent);
763 unsigned long flags;
764 unsigned char lunid[8];
766 spin_lock_irqsave(&h->lock, flags);
767 if (h->busy_configuring) {
768 spin_unlock_irqrestore(&h->lock, flags);
769 return -EBUSY;
771 if (!drv->heads) {
772 spin_unlock_irqrestore(&h->lock, flags);
773 return -ENOTTY;
775 memcpy(lunid, drv->LunID, sizeof(lunid));
776 spin_unlock_irqrestore(&h->lock, flags);
777 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
778 lunid[0], lunid[1], lunid[2], lunid[3],
779 lunid[4], lunid[5], lunid[6], lunid[7]);
781 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
783 static ssize_t cciss_show_raid_level(struct device *dev,
784 struct device_attribute *attr, char *buf)
786 drive_info_struct *drv = to_drv(dev);
787 struct ctlr_info *h = to_hba(drv->dev.parent);
788 int raid;
789 unsigned long flags;
791 spin_lock_irqsave(&h->lock, flags);
792 if (h->busy_configuring) {
793 spin_unlock_irqrestore(&h->lock, flags);
794 return -EBUSY;
796 raid = drv->raid_level;
797 spin_unlock_irqrestore(&h->lock, flags);
798 if (raid < 0 || raid > RAID_UNKNOWN)
799 raid = RAID_UNKNOWN;
801 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
802 raid_label[raid]);
804 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
806 static ssize_t cciss_show_usage_count(struct device *dev,
807 struct device_attribute *attr, char *buf)
809 drive_info_struct *drv = to_drv(dev);
810 struct ctlr_info *h = to_hba(drv->dev.parent);
811 unsigned long flags;
812 int count;
814 spin_lock_irqsave(&h->lock, flags);
815 if (h->busy_configuring) {
816 spin_unlock_irqrestore(&h->lock, flags);
817 return -EBUSY;
819 count = drv->usage_count;
820 spin_unlock_irqrestore(&h->lock, flags);
821 return snprintf(buf, 20, "%d\n", count);
823 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
825 static struct attribute *cciss_host_attrs[] = {
826 &dev_attr_rescan.attr,
827 &dev_attr_resettable.attr,
828 &dev_attr_transport_mode.attr,
829 NULL
832 static struct attribute_group cciss_host_attr_group = {
833 .attrs = cciss_host_attrs,
836 static const struct attribute_group *cciss_host_attr_groups[] = {
837 &cciss_host_attr_group,
838 NULL
841 static struct device_type cciss_host_type = {
842 .name = "cciss_host",
843 .groups = cciss_host_attr_groups,
844 .release = cciss_hba_release,
847 static struct attribute *cciss_dev_attrs[] = {
848 &dev_attr_unique_id.attr,
849 &dev_attr_model.attr,
850 &dev_attr_vendor.attr,
851 &dev_attr_rev.attr,
852 &dev_attr_lunid.attr,
853 &dev_attr_raid_level.attr,
854 &dev_attr_usage_count.attr,
855 NULL
858 static struct attribute_group cciss_dev_attr_group = {
859 .attrs = cciss_dev_attrs,
862 static const struct attribute_group *cciss_dev_attr_groups[] = {
863 &cciss_dev_attr_group,
864 NULL
867 static struct device_type cciss_dev_type = {
868 .name = "cciss_device",
869 .groups = cciss_dev_attr_groups,
870 .release = cciss_device_release,
873 static struct bus_type cciss_bus_type = {
874 .name = "cciss",
878 * cciss_hba_release is called when the reference count
879 * of h->dev goes to zero.
881 static void cciss_hba_release(struct device *dev)
884 * nothing to do, but need this to avoid a warning
885 * about not having a release handler from lib/kref.c.
890 * Initialize sysfs entry for each controller. This sets up and registers
891 * the 'cciss#' directory for each individual controller under
892 * /sys/bus/pci/devices/<dev>/.
894 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
896 device_initialize(&h->dev);
897 h->dev.type = &cciss_host_type;
898 h->dev.bus = &cciss_bus_type;
899 dev_set_name(&h->dev, "%s", h->devname);
900 h->dev.parent = &h->pdev->dev;
902 return device_add(&h->dev);
906 * Remove sysfs entries for an hba.
908 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
910 device_del(&h->dev);
911 put_device(&h->dev); /* final put. */
914 /* cciss_device_release is called when the reference count
915 * of h->drv[x]dev goes to zero.
917 static void cciss_device_release(struct device *dev)
919 drive_info_struct *drv = to_drv(dev);
920 kfree(drv);
924 * Initialize sysfs for each logical drive. This sets up and registers
925 * the 'c#d#' directory for each individual logical drive under
926 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
927 * /sys/block/cciss!c#d# to this entry.
929 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
930 int drv_index)
932 struct device *dev;
934 if (h->drv[drv_index]->device_initialized)
935 return 0;
937 dev = &h->drv[drv_index]->dev;
938 device_initialize(dev);
939 dev->type = &cciss_dev_type;
940 dev->bus = &cciss_bus_type;
941 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
942 dev->parent = &h->dev;
943 h->drv[drv_index]->device_initialized = 1;
944 return device_add(dev);
948 * Remove sysfs entries for a logical drive.
950 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
951 int ctlr_exiting)
953 struct device *dev = &h->drv[drv_index]->dev;
955 /* special case for c*d0, we only destroy it on controller exit */
956 if (drv_index == 0 && !ctlr_exiting)
957 return;
959 device_del(dev);
960 put_device(dev); /* the "final" put. */
961 h->drv[drv_index] = NULL;
965 * For operations that cannot sleep, a command block is allocated at init,
966 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
967 * which ones are free or in use.
969 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
971 CommandList_struct *c;
972 int i;
973 u64bit temp64;
974 dma_addr_t cmd_dma_handle, err_dma_handle;
976 do {
977 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
978 if (i == h->nr_cmds)
979 return NULL;
980 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
981 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
982 c = h->cmd_pool + i;
983 memset(c, 0, sizeof(CommandList_struct));
984 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
985 c->err_info = h->errinfo_pool + i;
986 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
987 err_dma_handle = h->errinfo_pool_dhandle
988 + i * sizeof(ErrorInfo_struct);
989 h->nr_allocs++;
991 c->cmdindex = i;
993 INIT_LIST_HEAD(&c->list);
994 c->busaddr = (__u32) cmd_dma_handle;
995 temp64.val = (__u64) err_dma_handle;
996 c->ErrDesc.Addr.lower = temp64.val32.lower;
997 c->ErrDesc.Addr.upper = temp64.val32.upper;
998 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1000 c->ctlr = h->ctlr;
1001 return c;
1004 /* allocate a command using pci_alloc_consistent, used for ioctls,
1005 * etc., not for the main i/o path.
1007 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009 CommandList_struct *c;
1010 u64bit temp64;
1011 dma_addr_t cmd_dma_handle, err_dma_handle;
1013 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1014 sizeof(CommandList_struct), &cmd_dma_handle);
1015 if (c == NULL)
1016 return NULL;
1017 memset(c, 0, sizeof(CommandList_struct));
1019 c->cmdindex = -1;
1021 c->err_info = (ErrorInfo_struct *)
1022 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1023 &err_dma_handle);
1025 if (c->err_info == NULL) {
1026 pci_free_consistent(h->pdev,
1027 sizeof(CommandList_struct), c, cmd_dma_handle);
1028 return NULL;
1030 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032 INIT_LIST_HEAD(&c->list);
1033 c->busaddr = (__u32) cmd_dma_handle;
1034 temp64.val = (__u64) err_dma_handle;
1035 c->ErrDesc.Addr.lower = temp64.val32.lower;
1036 c->ErrDesc.Addr.upper = temp64.val32.upper;
1037 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039 c->ctlr = h->ctlr;
1040 return c;
1043 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045 int i;
1047 i = c - h->cmd_pool;
1048 clear_bit(i & (BITS_PER_LONG - 1),
1049 h->cmd_pool_bits + (i / BITS_PER_LONG));
1050 h->nr_frees++;
1053 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1055 u64bit temp64;
1057 temp64.val32.lower = c->ErrDesc.Addr.lower;
1058 temp64.val32.upper = c->ErrDesc.Addr.upper;
1059 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1060 c->err_info, (dma_addr_t) temp64.val);
1061 pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1062 (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1065 static inline ctlr_info_t *get_host(struct gendisk *disk)
1067 return disk->queue->queuedata;
1070 static inline drive_info_struct *get_drv(struct gendisk *disk)
1072 return disk->private_data;
1076 * Open. Make sure the device is really there.
1078 static int cciss_open(struct block_device *bdev, fmode_t mode)
1080 ctlr_info_t *h = get_host(bdev->bd_disk);
1081 drive_info_struct *drv = get_drv(bdev->bd_disk);
1083 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1084 if (drv->busy_configuring)
1085 return -EBUSY;
1087 * Root is allowed to open raw volume zero even if it's not configured
1088 * so array config can still work. Root is also allowed to open any
1089 * volume that has a LUN ID, so it can issue IOCTL to reread the
1090 * disk information. I don't think I really like this
1091 * but I'm already using way to many device nodes to claim another one
1092 * for "raw controller".
1094 if (drv->heads == 0) {
1095 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1096 /* if not node 0 make sure it is a partition = 0 */
1097 if (MINOR(bdev->bd_dev) & 0x0f) {
1098 return -ENXIO;
1099 /* if it is, make sure we have a LUN ID */
1100 } else if (memcmp(drv->LunID, CTLR_LUNID,
1101 sizeof(drv->LunID))) {
1102 return -ENXIO;
1105 if (!capable(CAP_SYS_ADMIN))
1106 return -EPERM;
1108 drv->usage_count++;
1109 h->usage_count++;
1110 return 0;
1113 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1115 int ret;
1117 mutex_lock(&cciss_mutex);
1118 ret = cciss_open(bdev, mode);
1119 mutex_unlock(&cciss_mutex);
1121 return ret;
1125 * Close. Sync first.
1127 static int cciss_release(struct gendisk *disk, fmode_t mode)
1129 ctlr_info_t *h;
1130 drive_info_struct *drv;
1132 mutex_lock(&cciss_mutex);
1133 h = get_host(disk);
1134 drv = get_drv(disk);
1135 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1136 drv->usage_count--;
1137 h->usage_count--;
1138 mutex_unlock(&cciss_mutex);
1139 return 0;
1142 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1143 unsigned cmd, unsigned long arg)
1145 int ret;
1146 mutex_lock(&cciss_mutex);
1147 ret = cciss_ioctl(bdev, mode, cmd, arg);
1148 mutex_unlock(&cciss_mutex);
1149 return ret;
1152 #ifdef CONFIG_COMPAT
1154 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1155 unsigned cmd, unsigned long arg);
1156 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1157 unsigned cmd, unsigned long arg);
1159 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1160 unsigned cmd, unsigned long arg)
1162 switch (cmd) {
1163 case CCISS_GETPCIINFO:
1164 case CCISS_GETINTINFO:
1165 case CCISS_SETINTINFO:
1166 case CCISS_GETNODENAME:
1167 case CCISS_SETNODENAME:
1168 case CCISS_GETHEARTBEAT:
1169 case CCISS_GETBUSTYPES:
1170 case CCISS_GETFIRMVER:
1171 case CCISS_GETDRIVVER:
1172 case CCISS_REVALIDVOLS:
1173 case CCISS_DEREGDISK:
1174 case CCISS_REGNEWDISK:
1175 case CCISS_REGNEWD:
1176 case CCISS_RESCANDISK:
1177 case CCISS_GETLUNINFO:
1178 return do_ioctl(bdev, mode, cmd, arg);
1180 case CCISS_PASSTHRU32:
1181 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1182 case CCISS_BIG_PASSTHRU32:
1183 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1185 default:
1186 return -ENOIOCTLCMD;
1190 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1191 unsigned cmd, unsigned long arg)
1193 IOCTL32_Command_struct __user *arg32 =
1194 (IOCTL32_Command_struct __user *) arg;
1195 IOCTL_Command_struct arg64;
1196 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1197 int err;
1198 u32 cp;
1200 err = 0;
1201 err |=
1202 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1203 sizeof(arg64.LUN_info));
1204 err |=
1205 copy_from_user(&arg64.Request, &arg32->Request,
1206 sizeof(arg64.Request));
1207 err |=
1208 copy_from_user(&arg64.error_info, &arg32->error_info,
1209 sizeof(arg64.error_info));
1210 err |= get_user(arg64.buf_size, &arg32->buf_size);
1211 err |= get_user(cp, &arg32->buf);
1212 arg64.buf = compat_ptr(cp);
1213 err |= copy_to_user(p, &arg64, sizeof(arg64));
1215 if (err)
1216 return -EFAULT;
1218 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1219 if (err)
1220 return err;
1221 err |=
1222 copy_in_user(&arg32->error_info, &p->error_info,
1223 sizeof(arg32->error_info));
1224 if (err)
1225 return -EFAULT;
1226 return err;
1229 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1230 unsigned cmd, unsigned long arg)
1232 BIG_IOCTL32_Command_struct __user *arg32 =
1233 (BIG_IOCTL32_Command_struct __user *) arg;
1234 BIG_IOCTL_Command_struct arg64;
1235 BIG_IOCTL_Command_struct __user *p =
1236 compat_alloc_user_space(sizeof(arg64));
1237 int err;
1238 u32 cp;
1240 memset(&arg64, 0, sizeof(arg64));
1241 err = 0;
1242 err |=
1243 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1244 sizeof(arg64.LUN_info));
1245 err |=
1246 copy_from_user(&arg64.Request, &arg32->Request,
1247 sizeof(arg64.Request));
1248 err |=
1249 copy_from_user(&arg64.error_info, &arg32->error_info,
1250 sizeof(arg64.error_info));
1251 err |= get_user(arg64.buf_size, &arg32->buf_size);
1252 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1253 err |= get_user(cp, &arg32->buf);
1254 arg64.buf = compat_ptr(cp);
1255 err |= copy_to_user(p, &arg64, sizeof(arg64));
1257 if (err)
1258 return -EFAULT;
1260 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1261 if (err)
1262 return err;
1263 err |=
1264 copy_in_user(&arg32->error_info, &p->error_info,
1265 sizeof(arg32->error_info));
1266 if (err)
1267 return -EFAULT;
1268 return err;
1270 #endif
1272 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274 drive_info_struct *drv = get_drv(bdev->bd_disk);
1276 if (!drv->cylinders)
1277 return -ENXIO;
1279 geo->heads = drv->heads;
1280 geo->sectors = drv->sectors;
1281 geo->cylinders = drv->cylinders;
1282 return 0;
1285 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1287 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1288 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1289 (void)check_for_unit_attention(h, c);
1292 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1294 cciss_pci_info_struct pciinfo;
1296 if (!argp)
1297 return -EINVAL;
1298 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1299 pciinfo.bus = h->pdev->bus->number;
1300 pciinfo.dev_fn = h->pdev->devfn;
1301 pciinfo.board_id = h->board_id;
1302 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1303 return -EFAULT;
1304 return 0;
1307 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1309 cciss_coalint_struct intinfo;
1311 if (!argp)
1312 return -EINVAL;
1313 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1314 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1315 if (copy_to_user
1316 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1317 return -EFAULT;
1318 return 0;
1321 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1323 cciss_coalint_struct intinfo;
1324 unsigned long flags;
1325 int i;
1327 if (!argp)
1328 return -EINVAL;
1329 if (!capable(CAP_SYS_ADMIN))
1330 return -EPERM;
1331 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1332 return -EFAULT;
1333 if ((intinfo.delay == 0) && (intinfo.count == 0))
1334 return -EINVAL;
1335 spin_lock_irqsave(&h->lock, flags);
1336 /* Update the field, and then ring the doorbell */
1337 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1338 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1339 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1341 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1342 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1343 break;
1344 udelay(1000); /* delay and try again */
1346 spin_unlock_irqrestore(&h->lock, flags);
1347 if (i >= MAX_IOCTL_CONFIG_WAIT)
1348 return -EAGAIN;
1349 return 0;
1352 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1354 NodeName_type NodeName;
1355 int i;
1357 if (!argp)
1358 return -EINVAL;
1359 for (i = 0; i < 16; i++)
1360 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1361 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1362 return -EFAULT;
1363 return 0;
1366 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1368 NodeName_type NodeName;
1369 unsigned long flags;
1370 int i;
1372 if (!argp)
1373 return -EINVAL;
1374 if (!capable(CAP_SYS_ADMIN))
1375 return -EPERM;
1376 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1377 return -EFAULT;
1378 spin_lock_irqsave(&h->lock, flags);
1379 /* Update the field, and then ring the doorbell */
1380 for (i = 0; i < 16; i++)
1381 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1382 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1383 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1384 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1385 break;
1386 udelay(1000); /* delay and try again */
1388 spin_unlock_irqrestore(&h->lock, flags);
1389 if (i >= MAX_IOCTL_CONFIG_WAIT)
1390 return -EAGAIN;
1391 return 0;
1394 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1396 Heartbeat_type heartbeat;
1398 if (!argp)
1399 return -EINVAL;
1400 heartbeat = readl(&h->cfgtable->HeartBeat);
1401 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1402 return -EFAULT;
1403 return 0;
1406 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1408 BusTypes_type BusTypes;
1410 if (!argp)
1411 return -EINVAL;
1412 BusTypes = readl(&h->cfgtable->BusTypes);
1413 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1414 return -EFAULT;
1415 return 0;
1418 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1420 FirmwareVer_type firmware;
1422 if (!argp)
1423 return -EINVAL;
1424 memcpy(firmware, h->firm_ver, 4);
1426 if (copy_to_user
1427 (argp, firmware, sizeof(FirmwareVer_type)))
1428 return -EFAULT;
1429 return 0;
1432 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1434 DriverVer_type DriverVer = DRIVER_VERSION;
1436 if (!argp)
1437 return -EINVAL;
1438 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1439 return -EFAULT;
1440 return 0;
1443 static int cciss_getluninfo(ctlr_info_t *h,
1444 struct gendisk *disk, void __user *argp)
1446 LogvolInfo_struct luninfo;
1447 drive_info_struct *drv = get_drv(disk);
1449 if (!argp)
1450 return -EINVAL;
1451 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1452 luninfo.num_opens = drv->usage_count;
1453 luninfo.num_parts = 0;
1454 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1455 return -EFAULT;
1456 return 0;
1459 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1461 IOCTL_Command_struct iocommand;
1462 CommandList_struct *c;
1463 char *buff = NULL;
1464 u64bit temp64;
1465 DECLARE_COMPLETION_ONSTACK(wait);
1467 if (!argp)
1468 return -EINVAL;
1470 if (!capable(CAP_SYS_RAWIO))
1471 return -EPERM;
1473 if (copy_from_user
1474 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1475 return -EFAULT;
1476 if ((iocommand.buf_size < 1) &&
1477 (iocommand.Request.Type.Direction != XFER_NONE)) {
1478 return -EINVAL;
1480 if (iocommand.buf_size > 0) {
1481 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1482 if (buff == NULL)
1483 return -EFAULT;
1485 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1486 /* Copy the data into the buffer we created */
1487 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1488 kfree(buff);
1489 return -EFAULT;
1491 } else {
1492 memset(buff, 0, iocommand.buf_size);
1494 c = cmd_special_alloc(h);
1495 if (!c) {
1496 kfree(buff);
1497 return -ENOMEM;
1499 /* Fill in the command type */
1500 c->cmd_type = CMD_IOCTL_PEND;
1501 /* Fill in Command Header */
1502 c->Header.ReplyQueue = 0; /* unused in simple mode */
1503 if (iocommand.buf_size > 0) { /* buffer to fill */
1504 c->Header.SGList = 1;
1505 c->Header.SGTotal = 1;
1506 } else { /* no buffers to fill */
1507 c->Header.SGList = 0;
1508 c->Header.SGTotal = 0;
1510 c->Header.LUN = iocommand.LUN_info;
1511 /* use the kernel address the cmd block for tag */
1512 c->Header.Tag.lower = c->busaddr;
1514 /* Fill in Request block */
1515 c->Request = iocommand.Request;
1517 /* Fill in the scatter gather information */
1518 if (iocommand.buf_size > 0) {
1519 temp64.val = pci_map_single(h->pdev, buff,
1520 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1521 c->SG[0].Addr.lower = temp64.val32.lower;
1522 c->SG[0].Addr.upper = temp64.val32.upper;
1523 c->SG[0].Len = iocommand.buf_size;
1524 c->SG[0].Ext = 0; /* we are not chaining */
1526 c->waiting = &wait;
1528 enqueue_cmd_and_start_io(h, c);
1529 wait_for_completion(&wait);
1531 /* unlock the buffers from DMA */
1532 temp64.val32.lower = c->SG[0].Addr.lower;
1533 temp64.val32.upper = c->SG[0].Addr.upper;
1534 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1535 PCI_DMA_BIDIRECTIONAL);
1536 check_ioctl_unit_attention(h, c);
1538 /* Copy the error information out */
1539 iocommand.error_info = *(c->err_info);
1540 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1541 kfree(buff);
1542 cmd_special_free(h, c);
1543 return -EFAULT;
1546 if (iocommand.Request.Type.Direction == XFER_READ) {
1547 /* Copy the data out of the buffer we created */
1548 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1549 kfree(buff);
1550 cmd_special_free(h, c);
1551 return -EFAULT;
1554 kfree(buff);
1555 cmd_special_free(h, c);
1556 return 0;
1559 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1561 BIG_IOCTL_Command_struct *ioc;
1562 CommandList_struct *c;
1563 unsigned char **buff = NULL;
1564 int *buff_size = NULL;
1565 u64bit temp64;
1566 BYTE sg_used = 0;
1567 int status = 0;
1568 int i;
1569 DECLARE_COMPLETION_ONSTACK(wait);
1570 __u32 left;
1571 __u32 sz;
1572 BYTE __user *data_ptr;
1574 if (!argp)
1575 return -EINVAL;
1576 if (!capable(CAP_SYS_RAWIO))
1577 return -EPERM;
1578 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1579 if (!ioc) {
1580 status = -ENOMEM;
1581 goto cleanup1;
1583 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1584 status = -EFAULT;
1585 goto cleanup1;
1587 if ((ioc->buf_size < 1) &&
1588 (ioc->Request.Type.Direction != XFER_NONE)) {
1589 status = -EINVAL;
1590 goto cleanup1;
1592 /* Check kmalloc limits using all SGs */
1593 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1594 status = -EINVAL;
1595 goto cleanup1;
1597 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1598 status = -EINVAL;
1599 goto cleanup1;
1601 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1602 if (!buff) {
1603 status = -ENOMEM;
1604 goto cleanup1;
1606 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1607 if (!buff_size) {
1608 status = -ENOMEM;
1609 goto cleanup1;
1611 left = ioc->buf_size;
1612 data_ptr = ioc->buf;
1613 while (left) {
1614 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1615 buff_size[sg_used] = sz;
1616 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1617 if (buff[sg_used] == NULL) {
1618 status = -ENOMEM;
1619 goto cleanup1;
1621 if (ioc->Request.Type.Direction == XFER_WRITE) {
1622 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1623 status = -EFAULT;
1624 goto cleanup1;
1626 } else {
1627 memset(buff[sg_used], 0, sz);
1629 left -= sz;
1630 data_ptr += sz;
1631 sg_used++;
1633 c = cmd_special_alloc(h);
1634 if (!c) {
1635 status = -ENOMEM;
1636 goto cleanup1;
1638 c->cmd_type = CMD_IOCTL_PEND;
1639 c->Header.ReplyQueue = 0;
1640 c->Header.SGList = sg_used;
1641 c->Header.SGTotal = sg_used;
1642 c->Header.LUN = ioc->LUN_info;
1643 c->Header.Tag.lower = c->busaddr;
1645 c->Request = ioc->Request;
1646 for (i = 0; i < sg_used; i++) {
1647 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1648 PCI_DMA_BIDIRECTIONAL);
1649 c->SG[i].Addr.lower = temp64.val32.lower;
1650 c->SG[i].Addr.upper = temp64.val32.upper;
1651 c->SG[i].Len = buff_size[i];
1652 c->SG[i].Ext = 0; /* we are not chaining */
1654 c->waiting = &wait;
1655 enqueue_cmd_and_start_io(h, c);
1656 wait_for_completion(&wait);
1657 /* unlock the buffers from DMA */
1658 for (i = 0; i < sg_used; i++) {
1659 temp64.val32.lower = c->SG[i].Addr.lower;
1660 temp64.val32.upper = c->SG[i].Addr.upper;
1661 pci_unmap_single(h->pdev,
1662 (dma_addr_t) temp64.val, buff_size[i],
1663 PCI_DMA_BIDIRECTIONAL);
1665 check_ioctl_unit_attention(h, c);
1666 /* Copy the error information out */
1667 ioc->error_info = *(c->err_info);
1668 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1669 cmd_special_free(h, c);
1670 status = -EFAULT;
1671 goto cleanup1;
1673 if (ioc->Request.Type.Direction == XFER_READ) {
1674 /* Copy the data out of the buffer we created */
1675 BYTE __user *ptr = ioc->buf;
1676 for (i = 0; i < sg_used; i++) {
1677 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1678 cmd_special_free(h, c);
1679 status = -EFAULT;
1680 goto cleanup1;
1682 ptr += buff_size[i];
1685 cmd_special_free(h, c);
1686 status = 0;
1687 cleanup1:
1688 if (buff) {
1689 for (i = 0; i < sg_used; i++)
1690 kfree(buff[i]);
1691 kfree(buff);
1693 kfree(buff_size);
1694 kfree(ioc);
1695 return status;
1698 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1699 unsigned int cmd, unsigned long arg)
1701 struct gendisk *disk = bdev->bd_disk;
1702 ctlr_info_t *h = get_host(disk);
1703 void __user *argp = (void __user *)arg;
1705 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1706 cmd, arg);
1707 switch (cmd) {
1708 case CCISS_GETPCIINFO:
1709 return cciss_getpciinfo(h, argp);
1710 case CCISS_GETINTINFO:
1711 return cciss_getintinfo(h, argp);
1712 case CCISS_SETINTINFO:
1713 return cciss_setintinfo(h, argp);
1714 case CCISS_GETNODENAME:
1715 return cciss_getnodename(h, argp);
1716 case CCISS_SETNODENAME:
1717 return cciss_setnodename(h, argp);
1718 case CCISS_GETHEARTBEAT:
1719 return cciss_getheartbeat(h, argp);
1720 case CCISS_GETBUSTYPES:
1721 return cciss_getbustypes(h, argp);
1722 case CCISS_GETFIRMVER:
1723 return cciss_getfirmver(h, argp);
1724 case CCISS_GETDRIVVER:
1725 return cciss_getdrivver(h, argp);
1726 case CCISS_DEREGDISK:
1727 case CCISS_REGNEWD:
1728 case CCISS_REVALIDVOLS:
1729 return rebuild_lun_table(h, 0, 1);
1730 case CCISS_GETLUNINFO:
1731 return cciss_getluninfo(h, disk, argp);
1732 case CCISS_PASSTHRU:
1733 return cciss_passthru(h, argp);
1734 case CCISS_BIG_PASSTHRU:
1735 return cciss_bigpassthru(h, argp);
1737 /* scsi_cmd_ioctl handles these, below, though some are not */
1738 /* very meaningful for cciss. SG_IO is the main one people want. */
1740 case SG_GET_VERSION_NUM:
1741 case SG_SET_TIMEOUT:
1742 case SG_GET_TIMEOUT:
1743 case SG_GET_RESERVED_SIZE:
1744 case SG_SET_RESERVED_SIZE:
1745 case SG_EMULATED_HOST:
1746 case SG_IO:
1747 case SCSI_IOCTL_SEND_COMMAND:
1748 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1750 /* scsi_cmd_ioctl would normally handle these, below, but */
1751 /* they aren't a good fit for cciss, as CD-ROMs are */
1752 /* not supported, and we don't have any bus/target/lun */
1753 /* which we present to the kernel. */
1755 case CDROM_SEND_PACKET:
1756 case CDROMCLOSETRAY:
1757 case CDROMEJECT:
1758 case SCSI_IOCTL_GET_IDLUN:
1759 case SCSI_IOCTL_GET_BUS_NUMBER:
1760 default:
1761 return -ENOTTY;
1765 static void cciss_check_queues(ctlr_info_t *h)
1767 int start_queue = h->next_to_run;
1768 int i;
1770 /* check to see if we have maxed out the number of commands that can
1771 * be placed on the queue. If so then exit. We do this check here
1772 * in case the interrupt we serviced was from an ioctl and did not
1773 * free any new commands.
1775 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1776 return;
1778 /* We have room on the queue for more commands. Now we need to queue
1779 * them up. We will also keep track of the next queue to run so
1780 * that every queue gets a chance to be started first.
1782 for (i = 0; i < h->highest_lun + 1; i++) {
1783 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1784 /* make sure the disk has been added and the drive is real
1785 * because this can be called from the middle of init_one.
1787 if (!h->drv[curr_queue])
1788 continue;
1789 if (!(h->drv[curr_queue]->queue) ||
1790 !(h->drv[curr_queue]->heads))
1791 continue;
1792 blk_start_queue(h->gendisk[curr_queue]->queue);
1794 /* check to see if we have maxed out the number of commands
1795 * that can be placed on the queue.
1797 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1798 if (curr_queue == start_queue) {
1799 h->next_to_run =
1800 (start_queue + 1) % (h->highest_lun + 1);
1801 break;
1802 } else {
1803 h->next_to_run = curr_queue;
1804 break;
1810 static void cciss_softirq_done(struct request *rq)
1812 CommandList_struct *c = rq->completion_data;
1813 ctlr_info_t *h = hba[c->ctlr];
1814 SGDescriptor_struct *curr_sg = c->SG;
1815 u64bit temp64;
1816 unsigned long flags;
1817 int i, ddir;
1818 int sg_index = 0;
1820 if (c->Request.Type.Direction == XFER_READ)
1821 ddir = PCI_DMA_FROMDEVICE;
1822 else
1823 ddir = PCI_DMA_TODEVICE;
1825 /* command did not need to be retried */
1826 /* unmap the DMA mapping for all the scatter gather elements */
1827 for (i = 0; i < c->Header.SGList; i++) {
1828 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1829 cciss_unmap_sg_chain_block(h, c);
1830 /* Point to the next block */
1831 curr_sg = h->cmd_sg_list[c->cmdindex];
1832 sg_index = 0;
1834 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1835 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1836 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1837 ddir);
1838 ++sg_index;
1841 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1843 /* set the residual count for pc requests */
1844 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1845 rq->resid_len = c->err_info->ResidualCnt;
1847 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1849 spin_lock_irqsave(&h->lock, flags);
1850 cmd_free(h, c);
1851 cciss_check_queues(h);
1852 spin_unlock_irqrestore(&h->lock, flags);
1855 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1856 unsigned char scsi3addr[], uint32_t log_unit)
1858 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1859 sizeof(h->drv[log_unit]->LunID));
1862 /* This function gets the SCSI vendor, model, and revision of a logical drive
1863 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1864 * they cannot be read.
1866 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1867 char *vendor, char *model, char *rev)
1869 int rc;
1870 InquiryData_struct *inq_buf;
1871 unsigned char scsi3addr[8];
1873 *vendor = '\0';
1874 *model = '\0';
1875 *rev = '\0';
1877 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1878 if (!inq_buf)
1879 return;
1881 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1882 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1883 scsi3addr, TYPE_CMD);
1884 if (rc == IO_OK) {
1885 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1886 vendor[VENDOR_LEN] = '\0';
1887 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1888 model[MODEL_LEN] = '\0';
1889 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1890 rev[REV_LEN] = '\0';
1893 kfree(inq_buf);
1894 return;
1897 /* This function gets the serial number of a logical drive via
1898 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1899 * number cannot be had, for whatever reason, 16 bytes of 0xff
1900 * are returned instead.
1902 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1903 unsigned char *serial_no, int buflen)
1905 #define PAGE_83_INQ_BYTES 64
1906 int rc;
1907 unsigned char *buf;
1908 unsigned char scsi3addr[8];
1910 if (buflen > 16)
1911 buflen = 16;
1912 memset(serial_no, 0xff, buflen);
1913 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1914 if (!buf)
1915 return;
1916 memset(serial_no, 0, buflen);
1917 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1918 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1919 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1920 if (rc == IO_OK)
1921 memcpy(serial_no, &buf[8], buflen);
1922 kfree(buf);
1923 return;
1927 * cciss_add_disk sets up the block device queue for a logical drive
1929 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1930 int drv_index)
1932 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1933 if (!disk->queue)
1934 goto init_queue_failure;
1935 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1936 disk->major = h->major;
1937 disk->first_minor = drv_index << NWD_SHIFT;
1938 disk->fops = &cciss_fops;
1939 if (cciss_create_ld_sysfs_entry(h, drv_index))
1940 goto cleanup_queue;
1941 disk->private_data = h->drv[drv_index];
1942 disk->driverfs_dev = &h->drv[drv_index]->dev;
1944 /* Set up queue information */
1945 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1947 /* This is a hardware imposed limit. */
1948 blk_queue_max_segments(disk->queue, h->maxsgentries);
1950 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1952 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1954 disk->queue->queuedata = h;
1956 blk_queue_logical_block_size(disk->queue,
1957 h->drv[drv_index]->block_size);
1959 /* Make sure all queue data is written out before */
1960 /* setting h->drv[drv_index]->queue, as setting this */
1961 /* allows the interrupt handler to start the queue */
1962 wmb();
1963 h->drv[drv_index]->queue = disk->queue;
1964 add_disk(disk);
1965 return 0;
1967 cleanup_queue:
1968 blk_cleanup_queue(disk->queue);
1969 disk->queue = NULL;
1970 init_queue_failure:
1971 return -1;
1974 /* This function will check the usage_count of the drive to be updated/added.
1975 * If the usage_count is zero and it is a heretofore unknown drive, or,
1976 * the drive's capacity, geometry, or serial number has changed,
1977 * then the drive information will be updated and the disk will be
1978 * re-registered with the kernel. If these conditions don't hold,
1979 * then it will be left alone for the next reboot. The exception to this
1980 * is disk 0 which will always be left registered with the kernel since it
1981 * is also the controller node. Any changes to disk 0 will show up on
1982 * the next reboot.
1984 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1985 int first_time, int via_ioctl)
1987 struct gendisk *disk;
1988 InquiryData_struct *inq_buff = NULL;
1989 unsigned int block_size;
1990 sector_t total_size;
1991 unsigned long flags = 0;
1992 int ret = 0;
1993 drive_info_struct *drvinfo;
1995 /* Get information about the disk and modify the driver structure */
1996 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1997 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1998 if (inq_buff == NULL || drvinfo == NULL)
1999 goto mem_msg;
2001 /* testing to see if 16-byte CDBs are already being used */
2002 if (h->cciss_read == CCISS_READ_16) {
2003 cciss_read_capacity_16(h, drv_index,
2004 &total_size, &block_size);
2006 } else {
2007 cciss_read_capacity(h, drv_index, &total_size, &block_size);
2008 /* if read_capacity returns all F's this volume is >2TB */
2009 /* in size so we switch to 16-byte CDB's for all */
2010 /* read/write ops */
2011 if (total_size == 0xFFFFFFFFULL) {
2012 cciss_read_capacity_16(h, drv_index,
2013 &total_size, &block_size);
2014 h->cciss_read = CCISS_READ_16;
2015 h->cciss_write = CCISS_WRITE_16;
2016 } else {
2017 h->cciss_read = CCISS_READ_10;
2018 h->cciss_write = CCISS_WRITE_10;
2022 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2023 inq_buff, drvinfo);
2024 drvinfo->block_size = block_size;
2025 drvinfo->nr_blocks = total_size + 1;
2027 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2028 drvinfo->model, drvinfo->rev);
2029 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2030 sizeof(drvinfo->serial_no));
2031 /* Save the lunid in case we deregister the disk, below. */
2032 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2033 sizeof(drvinfo->LunID));
2035 /* Is it the same disk we already know, and nothing's changed? */
2036 if (h->drv[drv_index]->raid_level != -1 &&
2037 ((memcmp(drvinfo->serial_no,
2038 h->drv[drv_index]->serial_no, 16) == 0) &&
2039 drvinfo->block_size == h->drv[drv_index]->block_size &&
2040 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2041 drvinfo->heads == h->drv[drv_index]->heads &&
2042 drvinfo->sectors == h->drv[drv_index]->sectors &&
2043 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2044 /* The disk is unchanged, nothing to update */
2045 goto freeret;
2047 /* If we get here it's not the same disk, or something's changed,
2048 * so we need to * deregister it, and re-register it, if it's not
2049 * in use.
2050 * If the disk already exists then deregister it before proceeding
2051 * (unless it's the first disk (for the controller node).
2053 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2054 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2055 spin_lock_irqsave(&h->lock, flags);
2056 h->drv[drv_index]->busy_configuring = 1;
2057 spin_unlock_irqrestore(&h->lock, flags);
2059 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2060 * which keeps the interrupt handler from starting
2061 * the queue.
2063 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2066 /* If the disk is in use return */
2067 if (ret)
2068 goto freeret;
2070 /* Save the new information from cciss_geometry_inquiry
2071 * and serial number inquiry. If the disk was deregistered
2072 * above, then h->drv[drv_index] will be NULL.
2074 if (h->drv[drv_index] == NULL) {
2075 drvinfo->device_initialized = 0;
2076 h->drv[drv_index] = drvinfo;
2077 drvinfo = NULL; /* so it won't be freed below. */
2078 } else {
2079 /* special case for cxd0 */
2080 h->drv[drv_index]->block_size = drvinfo->block_size;
2081 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2082 h->drv[drv_index]->heads = drvinfo->heads;
2083 h->drv[drv_index]->sectors = drvinfo->sectors;
2084 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2085 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2086 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2087 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2088 VENDOR_LEN + 1);
2089 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2090 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2093 ++h->num_luns;
2094 disk = h->gendisk[drv_index];
2095 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2097 /* If it's not disk 0 (drv_index != 0)
2098 * or if it was disk 0, but there was previously
2099 * no actual corresponding configured logical drive
2100 * (raid_leve == -1) then we want to update the
2101 * logical drive's information.
2103 if (drv_index || first_time) {
2104 if (cciss_add_disk(h, disk, drv_index) != 0) {
2105 cciss_free_gendisk(h, drv_index);
2106 cciss_free_drive_info(h, drv_index);
2107 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2108 drv_index);
2109 --h->num_luns;
2113 freeret:
2114 kfree(inq_buff);
2115 kfree(drvinfo);
2116 return;
2117 mem_msg:
2118 dev_err(&h->pdev->dev, "out of memory\n");
2119 goto freeret;
2122 /* This function will find the first index of the controllers drive array
2123 * that has a null drv pointer and allocate the drive info struct and
2124 * will return that index This is where new drives will be added.
2125 * If the index to be returned is greater than the highest_lun index for
2126 * the controller then highest_lun is set * to this new index.
2127 * If there are no available indexes or if tha allocation fails, then -1
2128 * is returned. * "controller_node" is used to know if this is a real
2129 * logical drive, or just the controller node, which determines if this
2130 * counts towards highest_lun.
2132 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2134 int i;
2135 drive_info_struct *drv;
2137 /* Search for an empty slot for our drive info */
2138 for (i = 0; i < CISS_MAX_LUN; i++) {
2140 /* if not cxd0 case, and it's occupied, skip it. */
2141 if (h->drv[i] && i != 0)
2142 continue;
2144 * If it's cxd0 case, and drv is alloc'ed already, and a
2145 * disk is configured there, skip it.
2147 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2148 continue;
2151 * We've found an empty slot. Update highest_lun
2152 * provided this isn't just the fake cxd0 controller node.
2154 if (i > h->highest_lun && !controller_node)
2155 h->highest_lun = i;
2157 /* If adding a real disk at cxd0, and it's already alloc'ed */
2158 if (i == 0 && h->drv[i] != NULL)
2159 return i;
2162 * Found an empty slot, not already alloc'ed. Allocate it.
2163 * Mark it with raid_level == -1, so we know it's new later on.
2165 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2166 if (!drv)
2167 return -1;
2168 drv->raid_level = -1; /* so we know it's new */
2169 h->drv[i] = drv;
2170 return i;
2172 return -1;
2175 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2177 kfree(h->drv[drv_index]);
2178 h->drv[drv_index] = NULL;
2181 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2183 put_disk(h->gendisk[drv_index]);
2184 h->gendisk[drv_index] = NULL;
2187 /* cciss_add_gendisk finds a free hba[]->drv structure
2188 * and allocates a gendisk if needed, and sets the lunid
2189 * in the drvinfo structure. It returns the index into
2190 * the ->drv[] array, or -1 if none are free.
2191 * is_controller_node indicates whether highest_lun should
2192 * count this disk, or if it's only being added to provide
2193 * a means to talk to the controller in case no logical
2194 * drives have yet been configured.
2196 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2197 int controller_node)
2199 int drv_index;
2201 drv_index = cciss_alloc_drive_info(h, controller_node);
2202 if (drv_index == -1)
2203 return -1;
2205 /*Check if the gendisk needs to be allocated */
2206 if (!h->gendisk[drv_index]) {
2207 h->gendisk[drv_index] =
2208 alloc_disk(1 << NWD_SHIFT);
2209 if (!h->gendisk[drv_index]) {
2210 dev_err(&h->pdev->dev,
2211 "could not allocate a new disk %d\n",
2212 drv_index);
2213 goto err_free_drive_info;
2216 memcpy(h->drv[drv_index]->LunID, lunid,
2217 sizeof(h->drv[drv_index]->LunID));
2218 if (cciss_create_ld_sysfs_entry(h, drv_index))
2219 goto err_free_disk;
2220 /* Don't need to mark this busy because nobody */
2221 /* else knows about this disk yet to contend */
2222 /* for access to it. */
2223 h->drv[drv_index]->busy_configuring = 0;
2224 wmb();
2225 return drv_index;
2227 err_free_disk:
2228 cciss_free_gendisk(h, drv_index);
2229 err_free_drive_info:
2230 cciss_free_drive_info(h, drv_index);
2231 return -1;
2234 /* This is for the special case of a controller which
2235 * has no logical drives. In this case, we still need
2236 * to register a disk so the controller can be accessed
2237 * by the Array Config Utility.
2239 static void cciss_add_controller_node(ctlr_info_t *h)
2241 struct gendisk *disk;
2242 int drv_index;
2244 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2245 return;
2247 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2248 if (drv_index == -1)
2249 goto error;
2250 h->drv[drv_index]->block_size = 512;
2251 h->drv[drv_index]->nr_blocks = 0;
2252 h->drv[drv_index]->heads = 0;
2253 h->drv[drv_index]->sectors = 0;
2254 h->drv[drv_index]->cylinders = 0;
2255 h->drv[drv_index]->raid_level = -1;
2256 memset(h->drv[drv_index]->serial_no, 0, 16);
2257 disk = h->gendisk[drv_index];
2258 if (cciss_add_disk(h, disk, drv_index) == 0)
2259 return;
2260 cciss_free_gendisk(h, drv_index);
2261 cciss_free_drive_info(h, drv_index);
2262 error:
2263 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2264 return;
2267 /* This function will add and remove logical drives from the Logical
2268 * drive array of the controller and maintain persistency of ordering
2269 * so that mount points are preserved until the next reboot. This allows
2270 * for the removal of logical drives in the middle of the drive array
2271 * without a re-ordering of those drives.
2272 * INPUT
2273 * h = The controller to perform the operations on
2275 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2276 int via_ioctl)
2278 int num_luns;
2279 ReportLunData_struct *ld_buff = NULL;
2280 int return_code;
2281 int listlength = 0;
2282 int i;
2283 int drv_found;
2284 int drv_index = 0;
2285 unsigned char lunid[8] = CTLR_LUNID;
2286 unsigned long flags;
2288 if (!capable(CAP_SYS_RAWIO))
2289 return -EPERM;
2291 /* Set busy_configuring flag for this operation */
2292 spin_lock_irqsave(&h->lock, flags);
2293 if (h->busy_configuring) {
2294 spin_unlock_irqrestore(&h->lock, flags);
2295 return -EBUSY;
2297 h->busy_configuring = 1;
2298 spin_unlock_irqrestore(&h->lock, flags);
2300 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2301 if (ld_buff == NULL)
2302 goto mem_msg;
2304 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2305 sizeof(ReportLunData_struct),
2306 0, CTLR_LUNID, TYPE_CMD);
2308 if (return_code == IO_OK)
2309 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2310 else { /* reading number of logical volumes failed */
2311 dev_warn(&h->pdev->dev,
2312 "report logical volume command failed\n");
2313 listlength = 0;
2314 goto freeret;
2317 num_luns = listlength / 8; /* 8 bytes per entry */
2318 if (num_luns > CISS_MAX_LUN) {
2319 num_luns = CISS_MAX_LUN;
2320 dev_warn(&h->pdev->dev, "more luns configured"
2321 " on controller than can be handled by"
2322 " this driver.\n");
2325 if (num_luns == 0)
2326 cciss_add_controller_node(h);
2328 /* Compare controller drive array to driver's drive array
2329 * to see if any drives are missing on the controller due
2330 * to action of Array Config Utility (user deletes drive)
2331 * and deregister logical drives which have disappeared.
2333 for (i = 0; i <= h->highest_lun; i++) {
2334 int j;
2335 drv_found = 0;
2337 /* skip holes in the array from already deleted drives */
2338 if (h->drv[i] == NULL)
2339 continue;
2341 for (j = 0; j < num_luns; j++) {
2342 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2343 if (memcmp(h->drv[i]->LunID, lunid,
2344 sizeof(lunid)) == 0) {
2345 drv_found = 1;
2346 break;
2349 if (!drv_found) {
2350 /* Deregister it from the OS, it's gone. */
2351 spin_lock_irqsave(&h->lock, flags);
2352 h->drv[i]->busy_configuring = 1;
2353 spin_unlock_irqrestore(&h->lock, flags);
2354 return_code = deregister_disk(h, i, 1, via_ioctl);
2355 if (h->drv[i] != NULL)
2356 h->drv[i]->busy_configuring = 0;
2360 /* Compare controller drive array to driver's drive array.
2361 * Check for updates in the drive information and any new drives
2362 * on the controller due to ACU adding logical drives, or changing
2363 * a logical drive's size, etc. Reregister any new/changed drives
2365 for (i = 0; i < num_luns; i++) {
2366 int j;
2368 drv_found = 0;
2370 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2371 /* Find if the LUN is already in the drive array
2372 * of the driver. If so then update its info
2373 * if not in use. If it does not exist then find
2374 * the first free index and add it.
2376 for (j = 0; j <= h->highest_lun; j++) {
2377 if (h->drv[j] != NULL &&
2378 memcmp(h->drv[j]->LunID, lunid,
2379 sizeof(h->drv[j]->LunID)) == 0) {
2380 drv_index = j;
2381 drv_found = 1;
2382 break;
2386 /* check if the drive was found already in the array */
2387 if (!drv_found) {
2388 drv_index = cciss_add_gendisk(h, lunid, 0);
2389 if (drv_index == -1)
2390 goto freeret;
2392 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2393 } /* end for */
2395 freeret:
2396 kfree(ld_buff);
2397 h->busy_configuring = 0;
2398 /* We return -1 here to tell the ACU that we have registered/updated
2399 * all of the drives that we can and to keep it from calling us
2400 * additional times.
2402 return -1;
2403 mem_msg:
2404 dev_err(&h->pdev->dev, "out of memory\n");
2405 h->busy_configuring = 0;
2406 goto freeret;
2409 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2411 /* zero out the disk size info */
2412 drive_info->nr_blocks = 0;
2413 drive_info->block_size = 0;
2414 drive_info->heads = 0;
2415 drive_info->sectors = 0;
2416 drive_info->cylinders = 0;
2417 drive_info->raid_level = -1;
2418 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2419 memset(drive_info->model, 0, sizeof(drive_info->model));
2420 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2421 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2423 * don't clear the LUNID though, we need to remember which
2424 * one this one is.
2428 /* This function will deregister the disk and it's queue from the
2429 * kernel. It must be called with the controller lock held and the
2430 * drv structures busy_configuring flag set. It's parameters are:
2432 * disk = This is the disk to be deregistered
2433 * drv = This is the drive_info_struct associated with the disk to be
2434 * deregistered. It contains information about the disk used
2435 * by the driver.
2436 * clear_all = This flag determines whether or not the disk information
2437 * is going to be completely cleared out and the highest_lun
2438 * reset. Sometimes we want to clear out information about
2439 * the disk in preparation for re-adding it. In this case
2440 * the highest_lun should be left unchanged and the LunID
2441 * should not be cleared.
2442 * via_ioctl
2443 * This indicates whether we've reached this path via ioctl.
2444 * This affects the maximum usage count allowed for c0d0 to be messed with.
2445 * If this path is reached via ioctl(), then the max_usage_count will
2446 * be 1, as the process calling ioctl() has got to have the device open.
2447 * If we get here via sysfs, then the max usage count will be zero.
2449 static int deregister_disk(ctlr_info_t *h, int drv_index,
2450 int clear_all, int via_ioctl)
2452 int i;
2453 struct gendisk *disk;
2454 drive_info_struct *drv;
2455 int recalculate_highest_lun;
2457 if (!capable(CAP_SYS_RAWIO))
2458 return -EPERM;
2460 drv = h->drv[drv_index];
2461 disk = h->gendisk[drv_index];
2463 /* make sure logical volume is NOT is use */
2464 if (clear_all || (h->gendisk[0] == disk)) {
2465 if (drv->usage_count > via_ioctl)
2466 return -EBUSY;
2467 } else if (drv->usage_count > 0)
2468 return -EBUSY;
2470 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2472 /* invalidate the devices and deregister the disk. If it is disk
2473 * zero do not deregister it but just zero out it's values. This
2474 * allows us to delete disk zero but keep the controller registered.
2476 if (h->gendisk[0] != disk) {
2477 struct request_queue *q = disk->queue;
2478 if (disk->flags & GENHD_FL_UP) {
2479 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2480 del_gendisk(disk);
2482 if (q)
2483 blk_cleanup_queue(q);
2484 /* If clear_all is set then we are deleting the logical
2485 * drive, not just refreshing its info. For drives
2486 * other than disk 0 we will call put_disk. We do not
2487 * do this for disk 0 as we need it to be able to
2488 * configure the controller.
2490 if (clear_all){
2491 /* This isn't pretty, but we need to find the
2492 * disk in our array and NULL our the pointer.
2493 * This is so that we will call alloc_disk if
2494 * this index is used again later.
2496 for (i=0; i < CISS_MAX_LUN; i++){
2497 if (h->gendisk[i] == disk) {
2498 h->gendisk[i] = NULL;
2499 break;
2502 put_disk(disk);
2504 } else {
2505 set_capacity(disk, 0);
2506 cciss_clear_drive_info(drv);
2509 --h->num_luns;
2511 /* if it was the last disk, find the new hightest lun */
2512 if (clear_all && recalculate_highest_lun) {
2513 int newhighest = -1;
2514 for (i = 0; i <= h->highest_lun; i++) {
2515 /* if the disk has size > 0, it is available */
2516 if (h->drv[i] && h->drv[i]->heads)
2517 newhighest = i;
2519 h->highest_lun = newhighest;
2521 return 0;
2524 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2525 size_t size, __u8 page_code, unsigned char *scsi3addr,
2526 int cmd_type)
2528 u64bit buff_dma_handle;
2529 int status = IO_OK;
2531 c->cmd_type = CMD_IOCTL_PEND;
2532 c->Header.ReplyQueue = 0;
2533 if (buff != NULL) {
2534 c->Header.SGList = 1;
2535 c->Header.SGTotal = 1;
2536 } else {
2537 c->Header.SGList = 0;
2538 c->Header.SGTotal = 0;
2540 c->Header.Tag.lower = c->busaddr;
2541 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2543 c->Request.Type.Type = cmd_type;
2544 if (cmd_type == TYPE_CMD) {
2545 switch (cmd) {
2546 case CISS_INQUIRY:
2547 /* are we trying to read a vital product page */
2548 if (page_code != 0) {
2549 c->Request.CDB[1] = 0x01;
2550 c->Request.CDB[2] = page_code;
2552 c->Request.CDBLen = 6;
2553 c->Request.Type.Attribute = ATTR_SIMPLE;
2554 c->Request.Type.Direction = XFER_READ;
2555 c->Request.Timeout = 0;
2556 c->Request.CDB[0] = CISS_INQUIRY;
2557 c->Request.CDB[4] = size & 0xFF;
2558 break;
2559 case CISS_REPORT_LOG:
2560 case CISS_REPORT_PHYS:
2561 /* Talking to controller so It's a physical command
2562 mode = 00 target = 0. Nothing to write.
2564 c->Request.CDBLen = 12;
2565 c->Request.Type.Attribute = ATTR_SIMPLE;
2566 c->Request.Type.Direction = XFER_READ;
2567 c->Request.Timeout = 0;
2568 c->Request.CDB[0] = cmd;
2569 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2570 c->Request.CDB[7] = (size >> 16) & 0xFF;
2571 c->Request.CDB[8] = (size >> 8) & 0xFF;
2572 c->Request.CDB[9] = size & 0xFF;
2573 break;
2575 case CCISS_READ_CAPACITY:
2576 c->Request.CDBLen = 10;
2577 c->Request.Type.Attribute = ATTR_SIMPLE;
2578 c->Request.Type.Direction = XFER_READ;
2579 c->Request.Timeout = 0;
2580 c->Request.CDB[0] = cmd;
2581 break;
2582 case CCISS_READ_CAPACITY_16:
2583 c->Request.CDBLen = 16;
2584 c->Request.Type.Attribute = ATTR_SIMPLE;
2585 c->Request.Type.Direction = XFER_READ;
2586 c->Request.Timeout = 0;
2587 c->Request.CDB[0] = cmd;
2588 c->Request.CDB[1] = 0x10;
2589 c->Request.CDB[10] = (size >> 24) & 0xFF;
2590 c->Request.CDB[11] = (size >> 16) & 0xFF;
2591 c->Request.CDB[12] = (size >> 8) & 0xFF;
2592 c->Request.CDB[13] = size & 0xFF;
2593 c->Request.Timeout = 0;
2594 c->Request.CDB[0] = cmd;
2595 break;
2596 case CCISS_CACHE_FLUSH:
2597 c->Request.CDBLen = 12;
2598 c->Request.Type.Attribute = ATTR_SIMPLE;
2599 c->Request.Type.Direction = XFER_WRITE;
2600 c->Request.Timeout = 0;
2601 c->Request.CDB[0] = BMIC_WRITE;
2602 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2603 break;
2604 case TEST_UNIT_READY:
2605 c->Request.CDBLen = 6;
2606 c->Request.Type.Attribute = ATTR_SIMPLE;
2607 c->Request.Type.Direction = XFER_NONE;
2608 c->Request.Timeout = 0;
2609 break;
2610 default:
2611 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2612 return IO_ERROR;
2614 } else if (cmd_type == TYPE_MSG) {
2615 switch (cmd) {
2616 case CCISS_ABORT_MSG:
2617 c->Request.CDBLen = 12;
2618 c->Request.Type.Attribute = ATTR_SIMPLE;
2619 c->Request.Type.Direction = XFER_WRITE;
2620 c->Request.Timeout = 0;
2621 c->Request.CDB[0] = cmd; /* abort */
2622 c->Request.CDB[1] = 0; /* abort a command */
2623 /* buff contains the tag of the command to abort */
2624 memcpy(&c->Request.CDB[4], buff, 8);
2625 break;
2626 case CCISS_RESET_MSG:
2627 c->Request.CDBLen = 16;
2628 c->Request.Type.Attribute = ATTR_SIMPLE;
2629 c->Request.Type.Direction = XFER_NONE;
2630 c->Request.Timeout = 0;
2631 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2632 c->Request.CDB[0] = cmd; /* reset */
2633 c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2634 break;
2635 case CCISS_NOOP_MSG:
2636 c->Request.CDBLen = 1;
2637 c->Request.Type.Attribute = ATTR_SIMPLE;
2638 c->Request.Type.Direction = XFER_WRITE;
2639 c->Request.Timeout = 0;
2640 c->Request.CDB[0] = cmd;
2641 break;
2642 default:
2643 dev_warn(&h->pdev->dev,
2644 "unknown message type %d\n", cmd);
2645 return IO_ERROR;
2647 } else {
2648 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2649 return IO_ERROR;
2651 /* Fill in the scatter gather information */
2652 if (size > 0) {
2653 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2654 buff, size,
2655 PCI_DMA_BIDIRECTIONAL);
2656 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2657 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2658 c->SG[0].Len = size;
2659 c->SG[0].Ext = 0; /* we are not chaining */
2661 return status;
2664 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2665 u8 reset_type)
2667 CommandList_struct *c;
2668 int return_status;
2670 c = cmd_alloc(h);
2671 if (!c)
2672 return -ENOMEM;
2673 return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2674 CTLR_LUNID, TYPE_MSG);
2675 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2676 if (return_status != IO_OK) {
2677 cmd_special_free(h, c);
2678 return return_status;
2680 c->waiting = NULL;
2681 enqueue_cmd_and_start_io(h, c);
2682 /* Don't wait for completion, the reset won't complete. Don't free
2683 * the command either. This is the last command we will send before
2684 * re-initializing everything, so it doesn't matter and won't leak.
2686 return 0;
2689 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2691 switch (c->err_info->ScsiStatus) {
2692 case SAM_STAT_GOOD:
2693 return IO_OK;
2694 case SAM_STAT_CHECK_CONDITION:
2695 switch (0xf & c->err_info->SenseInfo[2]) {
2696 case 0: return IO_OK; /* no sense */
2697 case 1: return IO_OK; /* recovered error */
2698 default:
2699 if (check_for_unit_attention(h, c))
2700 return IO_NEEDS_RETRY;
2701 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2702 "check condition, sense key = 0x%02x\n",
2703 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2705 break;
2706 default:
2707 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2708 "scsi status = 0x%02x\n",
2709 c->Request.CDB[0], c->err_info->ScsiStatus);
2710 break;
2712 return IO_ERROR;
2715 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2717 int return_status = IO_OK;
2719 if (c->err_info->CommandStatus == CMD_SUCCESS)
2720 return IO_OK;
2722 switch (c->err_info->CommandStatus) {
2723 case CMD_TARGET_STATUS:
2724 return_status = check_target_status(h, c);
2725 break;
2726 case CMD_DATA_UNDERRUN:
2727 case CMD_DATA_OVERRUN:
2728 /* expected for inquiry and report lun commands */
2729 break;
2730 case CMD_INVALID:
2731 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2732 "reported invalid\n", c->Request.CDB[0]);
2733 return_status = IO_ERROR;
2734 break;
2735 case CMD_PROTOCOL_ERR:
2736 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2737 "protocol error\n", c->Request.CDB[0]);
2738 return_status = IO_ERROR;
2739 break;
2740 case CMD_HARDWARE_ERR:
2741 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2742 " hardware error\n", c->Request.CDB[0]);
2743 return_status = IO_ERROR;
2744 break;
2745 case CMD_CONNECTION_LOST:
2746 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2747 "connection lost\n", c->Request.CDB[0]);
2748 return_status = IO_ERROR;
2749 break;
2750 case CMD_ABORTED:
2751 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2752 "aborted\n", c->Request.CDB[0]);
2753 return_status = IO_ERROR;
2754 break;
2755 case CMD_ABORT_FAILED:
2756 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2757 "abort failed\n", c->Request.CDB[0]);
2758 return_status = IO_ERROR;
2759 break;
2760 case CMD_UNSOLICITED_ABORT:
2761 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2762 c->Request.CDB[0]);
2763 return_status = IO_NEEDS_RETRY;
2764 break;
2765 case CMD_UNABORTABLE:
2766 dev_warn(&h->pdev->dev, "cmd unabortable\n");
2767 return_status = IO_ERROR;
2768 break;
2769 default:
2770 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2771 "unknown status %x\n", c->Request.CDB[0],
2772 c->err_info->CommandStatus);
2773 return_status = IO_ERROR;
2775 return return_status;
2778 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2779 int attempt_retry)
2781 DECLARE_COMPLETION_ONSTACK(wait);
2782 u64bit buff_dma_handle;
2783 int return_status = IO_OK;
2785 resend_cmd2:
2786 c->waiting = &wait;
2787 enqueue_cmd_and_start_io(h, c);
2789 wait_for_completion(&wait);
2791 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2792 goto command_done;
2794 return_status = process_sendcmd_error(h, c);
2796 if (return_status == IO_NEEDS_RETRY &&
2797 c->retry_count < MAX_CMD_RETRIES) {
2798 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2799 c->Request.CDB[0]);
2800 c->retry_count++;
2801 /* erase the old error information */
2802 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2803 return_status = IO_OK;
2804 INIT_COMPLETION(wait);
2805 goto resend_cmd2;
2808 command_done:
2809 /* unlock the buffers from DMA */
2810 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2811 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2812 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2813 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2814 return return_status;
2817 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2818 __u8 page_code, unsigned char scsi3addr[],
2819 int cmd_type)
2821 CommandList_struct *c;
2822 int return_status;
2824 c = cmd_special_alloc(h);
2825 if (!c)
2826 return -ENOMEM;
2827 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2828 scsi3addr, cmd_type);
2829 if (return_status == IO_OK)
2830 return_status = sendcmd_withirq_core(h, c, 1);
2832 cmd_special_free(h, c);
2833 return return_status;
2836 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2837 sector_t total_size,
2838 unsigned int block_size,
2839 InquiryData_struct *inq_buff,
2840 drive_info_struct *drv)
2842 int return_code;
2843 unsigned long t;
2844 unsigned char scsi3addr[8];
2846 memset(inq_buff, 0, sizeof(InquiryData_struct));
2847 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2848 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2849 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2850 if (return_code == IO_OK) {
2851 if (inq_buff->data_byte[8] == 0xFF) {
2852 dev_warn(&h->pdev->dev,
2853 "reading geometry failed, volume "
2854 "does not support reading geometry\n");
2855 drv->heads = 255;
2856 drv->sectors = 32; /* Sectors per track */
2857 drv->cylinders = total_size + 1;
2858 drv->raid_level = RAID_UNKNOWN;
2859 } else {
2860 drv->heads = inq_buff->data_byte[6];
2861 drv->sectors = inq_buff->data_byte[7];
2862 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2863 drv->cylinders += inq_buff->data_byte[5];
2864 drv->raid_level = inq_buff->data_byte[8];
2866 drv->block_size = block_size;
2867 drv->nr_blocks = total_size + 1;
2868 t = drv->heads * drv->sectors;
2869 if (t > 1) {
2870 sector_t real_size = total_size + 1;
2871 unsigned long rem = sector_div(real_size, t);
2872 if (rem)
2873 real_size++;
2874 drv->cylinders = real_size;
2876 } else { /* Get geometry failed */
2877 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2881 static void
2882 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2883 unsigned int *block_size)
2885 ReadCapdata_struct *buf;
2886 int return_code;
2887 unsigned char scsi3addr[8];
2889 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2890 if (!buf) {
2891 dev_warn(&h->pdev->dev, "out of memory\n");
2892 return;
2895 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2896 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2897 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2898 if (return_code == IO_OK) {
2899 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2900 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2901 } else { /* read capacity command failed */
2902 dev_warn(&h->pdev->dev, "read capacity failed\n");
2903 *total_size = 0;
2904 *block_size = BLOCK_SIZE;
2906 kfree(buf);
2909 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2910 sector_t *total_size, unsigned int *block_size)
2912 ReadCapdata_struct_16 *buf;
2913 int return_code;
2914 unsigned char scsi3addr[8];
2916 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2917 if (!buf) {
2918 dev_warn(&h->pdev->dev, "out of memory\n");
2919 return;
2922 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2923 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2924 buf, sizeof(ReadCapdata_struct_16),
2925 0, scsi3addr, TYPE_CMD);
2926 if (return_code == IO_OK) {
2927 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2928 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2929 } else { /* read capacity command failed */
2930 dev_warn(&h->pdev->dev, "read capacity failed\n");
2931 *total_size = 0;
2932 *block_size = BLOCK_SIZE;
2934 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2935 (unsigned long long)*total_size+1, *block_size);
2936 kfree(buf);
2939 static int cciss_revalidate(struct gendisk *disk)
2941 ctlr_info_t *h = get_host(disk);
2942 drive_info_struct *drv = get_drv(disk);
2943 int logvol;
2944 int FOUND = 0;
2945 unsigned int block_size;
2946 sector_t total_size;
2947 InquiryData_struct *inq_buff = NULL;
2949 for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2950 if (!h->drv[logvol])
2951 continue;
2952 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2953 sizeof(drv->LunID)) == 0) {
2954 FOUND = 1;
2955 break;
2959 if (!FOUND)
2960 return 1;
2962 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2963 if (inq_buff == NULL) {
2964 dev_warn(&h->pdev->dev, "out of memory\n");
2965 return 1;
2967 if (h->cciss_read == CCISS_READ_10) {
2968 cciss_read_capacity(h, logvol,
2969 &total_size, &block_size);
2970 } else {
2971 cciss_read_capacity_16(h, logvol,
2972 &total_size, &block_size);
2974 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2975 inq_buff, drv);
2977 blk_queue_logical_block_size(drv->queue, drv->block_size);
2978 set_capacity(disk, drv->nr_blocks);
2980 kfree(inq_buff);
2981 return 0;
2985 * Map (physical) PCI mem into (virtual) kernel space
2987 static void __iomem *remap_pci_mem(ulong base, ulong size)
2989 ulong page_base = ((ulong) base) & PAGE_MASK;
2990 ulong page_offs = ((ulong) base) - page_base;
2991 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2993 return page_remapped ? (page_remapped + page_offs) : NULL;
2997 * Takes jobs of the Q and sends them to the hardware, then puts it on
2998 * the Q to wait for completion.
3000 static void start_io(ctlr_info_t *h)
3002 CommandList_struct *c;
3004 while (!list_empty(&h->reqQ)) {
3005 c = list_entry(h->reqQ.next, CommandList_struct, list);
3006 /* can't do anything if fifo is full */
3007 if ((h->access.fifo_full(h))) {
3008 dev_warn(&h->pdev->dev, "fifo full\n");
3009 break;
3012 /* Get the first entry from the Request Q */
3013 removeQ(c);
3014 h->Qdepth--;
3016 /* Tell the controller execute command */
3017 h->access.submit_command(h, c);
3019 /* Put job onto the completed Q */
3020 addQ(&h->cmpQ, c);
3024 /* Assumes that h->lock is held. */
3025 /* Zeros out the error record and then resends the command back */
3026 /* to the controller */
3027 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3029 /* erase the old error information */
3030 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3032 /* add it to software queue and then send it to the controller */
3033 addQ(&h->reqQ, c);
3034 h->Qdepth++;
3035 if (h->Qdepth > h->maxQsinceinit)
3036 h->maxQsinceinit = h->Qdepth;
3038 start_io(h);
3041 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3042 unsigned int msg_byte, unsigned int host_byte,
3043 unsigned int driver_byte)
3045 /* inverse of macros in scsi.h */
3046 return (scsi_status_byte & 0xff) |
3047 ((msg_byte & 0xff) << 8) |
3048 ((host_byte & 0xff) << 16) |
3049 ((driver_byte & 0xff) << 24);
3052 static inline int evaluate_target_status(ctlr_info_t *h,
3053 CommandList_struct *cmd, int *retry_cmd)
3055 unsigned char sense_key;
3056 unsigned char status_byte, msg_byte, host_byte, driver_byte;
3057 int error_value;
3059 *retry_cmd = 0;
3060 /* If we get in here, it means we got "target status", that is, scsi status */
3061 status_byte = cmd->err_info->ScsiStatus;
3062 driver_byte = DRIVER_OK;
3063 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3065 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3066 host_byte = DID_PASSTHROUGH;
3067 else
3068 host_byte = DID_OK;
3070 error_value = make_status_bytes(status_byte, msg_byte,
3071 host_byte, driver_byte);
3073 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3074 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3075 dev_warn(&h->pdev->dev, "cmd %p "
3076 "has SCSI Status 0x%x\n",
3077 cmd, cmd->err_info->ScsiStatus);
3078 return error_value;
3081 /* check the sense key */
3082 sense_key = 0xf & cmd->err_info->SenseInfo[2];
3083 /* no status or recovered error */
3084 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3085 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3086 error_value = 0;
3088 if (check_for_unit_attention(h, cmd)) {
3089 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3090 return 0;
3093 /* Not SG_IO or similar? */
3094 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3095 if (error_value != 0)
3096 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3097 " sense key = 0x%x\n", cmd, sense_key);
3098 return error_value;
3101 /* SG_IO or similar, copy sense data back */
3102 if (cmd->rq->sense) {
3103 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3104 cmd->rq->sense_len = cmd->err_info->SenseLen;
3105 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3106 cmd->rq->sense_len);
3107 } else
3108 cmd->rq->sense_len = 0;
3110 return error_value;
3113 /* checks the status of the job and calls complete buffers to mark all
3114 * buffers for the completed job. Note that this function does not need
3115 * to hold the hba/queue lock.
3117 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3118 int timeout)
3120 int retry_cmd = 0;
3121 struct request *rq = cmd->rq;
3123 rq->errors = 0;
3125 if (timeout)
3126 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3128 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3129 goto after_error_processing;
3131 switch (cmd->err_info->CommandStatus) {
3132 case CMD_TARGET_STATUS:
3133 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3134 break;
3135 case CMD_DATA_UNDERRUN:
3136 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3137 dev_warn(&h->pdev->dev, "cmd %p has"
3138 " completed with data underrun "
3139 "reported\n", cmd);
3140 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3142 break;
3143 case CMD_DATA_OVERRUN:
3144 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3145 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3146 " completed with data overrun "
3147 "reported\n", cmd);
3148 break;
3149 case CMD_INVALID:
3150 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3151 "reported invalid\n", cmd);
3152 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3153 cmd->err_info->CommandStatus, DRIVER_OK,
3154 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3155 DID_PASSTHROUGH : DID_ERROR);
3156 break;
3157 case CMD_PROTOCOL_ERR:
3158 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3159 "protocol error\n", cmd);
3160 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3161 cmd->err_info->CommandStatus, DRIVER_OK,
3162 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3163 DID_PASSTHROUGH : DID_ERROR);
3164 break;
3165 case CMD_HARDWARE_ERR:
3166 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3167 " hardware error\n", cmd);
3168 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3169 cmd->err_info->CommandStatus, DRIVER_OK,
3170 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3171 DID_PASSTHROUGH : DID_ERROR);
3172 break;
3173 case CMD_CONNECTION_LOST:
3174 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3175 "connection lost\n", cmd);
3176 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3177 cmd->err_info->CommandStatus, DRIVER_OK,
3178 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3179 DID_PASSTHROUGH : DID_ERROR);
3180 break;
3181 case CMD_ABORTED:
3182 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3183 "aborted\n", cmd);
3184 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3185 cmd->err_info->CommandStatus, DRIVER_OK,
3186 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3187 DID_PASSTHROUGH : DID_ABORT);
3188 break;
3189 case CMD_ABORT_FAILED:
3190 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3191 "abort failed\n", cmd);
3192 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3193 cmd->err_info->CommandStatus, DRIVER_OK,
3194 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3195 DID_PASSTHROUGH : DID_ERROR);
3196 break;
3197 case CMD_UNSOLICITED_ABORT:
3198 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3199 "abort %p\n", h->ctlr, cmd);
3200 if (cmd->retry_count < MAX_CMD_RETRIES) {
3201 retry_cmd = 1;
3202 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3203 cmd->retry_count++;
3204 } else
3205 dev_warn(&h->pdev->dev,
3206 "%p retried too many times\n", cmd);
3207 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3208 cmd->err_info->CommandStatus, DRIVER_OK,
3209 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3210 DID_PASSTHROUGH : DID_ABORT);
3211 break;
3212 case CMD_TIMEOUT:
3213 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3214 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3215 cmd->err_info->CommandStatus, DRIVER_OK,
3216 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3217 DID_PASSTHROUGH : DID_ERROR);
3218 break;
3219 case CMD_UNABORTABLE:
3220 dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3221 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3222 cmd->err_info->CommandStatus, DRIVER_OK,
3223 cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3224 DID_PASSTHROUGH : DID_ERROR);
3225 break;
3226 default:
3227 dev_warn(&h->pdev->dev, "cmd %p returned "
3228 "unknown status %x\n", cmd,
3229 cmd->err_info->CommandStatus);
3230 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3231 cmd->err_info->CommandStatus, DRIVER_OK,
3232 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3233 DID_PASSTHROUGH : DID_ERROR);
3236 after_error_processing:
3238 /* We need to return this command */
3239 if (retry_cmd) {
3240 resend_cciss_cmd(h, cmd);
3241 return;
3243 cmd->rq->completion_data = cmd;
3244 blk_complete_request(cmd->rq);
3247 static inline u32 cciss_tag_contains_index(u32 tag)
3249 #define DIRECT_LOOKUP_BIT 0x10
3250 return tag & DIRECT_LOOKUP_BIT;
3253 static inline u32 cciss_tag_to_index(u32 tag)
3255 #define DIRECT_LOOKUP_SHIFT 5
3256 return tag >> DIRECT_LOOKUP_SHIFT;
3259 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3261 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3262 #define CCISS_SIMPLE_ERROR_BITS 0x03
3263 if (likely(h->transMethod & CFGTBL_Trans_Performant))
3264 return tag & ~CCISS_PERF_ERROR_BITS;
3265 return tag & ~CCISS_SIMPLE_ERROR_BITS;
3268 static inline void cciss_mark_tag_indexed(u32 *tag)
3270 *tag |= DIRECT_LOOKUP_BIT;
3273 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3275 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3279 * Get a request and submit it to the controller.
3281 static void do_cciss_request(struct request_queue *q)
3283 ctlr_info_t *h = q->queuedata;
3284 CommandList_struct *c;
3285 sector_t start_blk;
3286 int seg;
3287 struct request *creq;
3288 u64bit temp64;
3289 struct scatterlist *tmp_sg;
3290 SGDescriptor_struct *curr_sg;
3291 drive_info_struct *drv;
3292 int i, dir;
3293 int sg_index = 0;
3294 int chained = 0;
3296 queue:
3297 creq = blk_peek_request(q);
3298 if (!creq)
3299 goto startio;
3301 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3303 c = cmd_alloc(h);
3304 if (!c)
3305 goto full;
3307 blk_start_request(creq);
3309 tmp_sg = h->scatter_list[c->cmdindex];
3310 spin_unlock_irq(q->queue_lock);
3312 c->cmd_type = CMD_RWREQ;
3313 c->rq = creq;
3315 /* fill in the request */
3316 drv = creq->rq_disk->private_data;
3317 c->Header.ReplyQueue = 0; /* unused in simple mode */
3318 /* got command from pool, so use the command block index instead */
3319 /* for direct lookups. */
3320 /* The first 2 bits are reserved for controller error reporting. */
3321 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3322 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3323 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3324 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3325 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3326 c->Request.Type.Attribute = ATTR_SIMPLE;
3327 c->Request.Type.Direction =
3328 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3329 c->Request.Timeout = 0; /* Don't time out */
3330 c->Request.CDB[0] =
3331 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3332 start_blk = blk_rq_pos(creq);
3333 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3334 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3335 sg_init_table(tmp_sg, h->maxsgentries);
3336 seg = blk_rq_map_sg(q, creq, tmp_sg);
3338 /* get the DMA records for the setup */
3339 if (c->Request.Type.Direction == XFER_READ)
3340 dir = PCI_DMA_FROMDEVICE;
3341 else
3342 dir = PCI_DMA_TODEVICE;
3344 curr_sg = c->SG;
3345 sg_index = 0;
3346 chained = 0;
3348 for (i = 0; i < seg; i++) {
3349 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3350 !chained && ((seg - i) > 1)) {
3351 /* Point to next chain block. */
3352 curr_sg = h->cmd_sg_list[c->cmdindex];
3353 sg_index = 0;
3354 chained = 1;
3356 curr_sg[sg_index].Len = tmp_sg[i].length;
3357 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3358 tmp_sg[i].offset,
3359 tmp_sg[i].length, dir);
3360 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3361 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3362 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3363 ++sg_index;
3365 if (chained)
3366 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3367 (seg - (h->max_cmd_sgentries - 1)) *
3368 sizeof(SGDescriptor_struct));
3370 /* track how many SG entries we are using */
3371 if (seg > h->maxSG)
3372 h->maxSG = seg;
3374 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3375 "chained[%d]\n",
3376 blk_rq_sectors(creq), seg, chained);
3378 c->Header.SGTotal = seg + chained;
3379 if (seg <= h->max_cmd_sgentries)
3380 c->Header.SGList = c->Header.SGTotal;
3381 else
3382 c->Header.SGList = h->max_cmd_sgentries;
3383 set_performant_mode(h, c);
3385 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3386 if(h->cciss_read == CCISS_READ_10) {
3387 c->Request.CDB[1] = 0;
3388 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3389 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3390 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3391 c->Request.CDB[5] = start_blk & 0xff;
3392 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3393 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3394 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3395 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3396 } else {
3397 u32 upper32 = upper_32_bits(start_blk);
3399 c->Request.CDBLen = 16;
3400 c->Request.CDB[1]= 0;
3401 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3402 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3403 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3404 c->Request.CDB[5]= upper32 & 0xff;
3405 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3406 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3407 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3408 c->Request.CDB[9]= start_blk & 0xff;
3409 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3410 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3411 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3412 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3413 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3415 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3416 c->Request.CDBLen = creq->cmd_len;
3417 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3418 } else {
3419 dev_warn(&h->pdev->dev, "bad request type %d\n",
3420 creq->cmd_type);
3421 BUG();
3424 spin_lock_irq(q->queue_lock);
3426 addQ(&h->reqQ, c);
3427 h->Qdepth++;
3428 if (h->Qdepth > h->maxQsinceinit)
3429 h->maxQsinceinit = h->Qdepth;
3431 goto queue;
3432 full:
3433 blk_stop_queue(q);
3434 startio:
3435 /* We will already have the driver lock here so not need
3436 * to lock it.
3438 start_io(h);
3441 static inline unsigned long get_next_completion(ctlr_info_t *h)
3443 return h->access.command_completed(h);
3446 static inline int interrupt_pending(ctlr_info_t *h)
3448 return h->access.intr_pending(h);
3451 static inline long interrupt_not_for_us(ctlr_info_t *h)
3453 return ((h->access.intr_pending(h) == 0) ||
3454 (h->interrupts_enabled == 0));
3457 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3458 u32 raw_tag)
3460 if (unlikely(tag_index >= h->nr_cmds)) {
3461 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3462 return 1;
3464 return 0;
3467 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3468 u32 raw_tag)
3470 removeQ(c);
3471 if (likely(c->cmd_type == CMD_RWREQ))
3472 complete_command(h, c, 0);
3473 else if (c->cmd_type == CMD_IOCTL_PEND)
3474 complete(c->waiting);
3475 #ifdef CONFIG_CISS_SCSI_TAPE
3476 else if (c->cmd_type == CMD_SCSI)
3477 complete_scsi_command(c, 0, raw_tag);
3478 #endif
3481 static inline u32 next_command(ctlr_info_t *h)
3483 u32 a;
3485 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3486 return h->access.command_completed(h);
3488 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3489 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3490 (h->reply_pool_head)++;
3491 h->commands_outstanding--;
3492 } else {
3493 a = FIFO_EMPTY;
3495 /* Check for wraparound */
3496 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3497 h->reply_pool_head = h->reply_pool;
3498 h->reply_pool_wraparound ^= 1;
3500 return a;
3503 /* process completion of an indexed ("direct lookup") command */
3504 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3506 u32 tag_index;
3507 CommandList_struct *c;
3509 tag_index = cciss_tag_to_index(raw_tag);
3510 if (bad_tag(h, tag_index, raw_tag))
3511 return next_command(h);
3512 c = h->cmd_pool + tag_index;
3513 finish_cmd(h, c, raw_tag);
3514 return next_command(h);
3517 /* process completion of a non-indexed command */
3518 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3520 CommandList_struct *c = NULL;
3521 __u32 busaddr_masked, tag_masked;
3523 tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3524 list_for_each_entry(c, &h->cmpQ, list) {
3525 busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3526 if (busaddr_masked == tag_masked) {
3527 finish_cmd(h, c, raw_tag);
3528 return next_command(h);
3531 bad_tag(h, h->nr_cmds + 1, raw_tag);
3532 return next_command(h);
3535 /* Some controllers, like p400, will give us one interrupt
3536 * after a soft reset, even if we turned interrupts off.
3537 * Only need to check for this in the cciss_xxx_discard_completions
3538 * functions.
3540 static int ignore_bogus_interrupt(ctlr_info_t *h)
3542 if (likely(!reset_devices))
3543 return 0;
3545 if (likely(h->interrupts_enabled))
3546 return 0;
3548 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3549 "(known firmware bug.) Ignoring.\n");
3551 return 1;
3554 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3556 ctlr_info_t *h = dev_id;
3557 unsigned long flags;
3558 u32 raw_tag;
3560 if (ignore_bogus_interrupt(h))
3561 return IRQ_NONE;
3563 if (interrupt_not_for_us(h))
3564 return IRQ_NONE;
3565 spin_lock_irqsave(&h->lock, flags);
3566 while (interrupt_pending(h)) {
3567 raw_tag = get_next_completion(h);
3568 while (raw_tag != FIFO_EMPTY)
3569 raw_tag = next_command(h);
3571 spin_unlock_irqrestore(&h->lock, flags);
3572 return IRQ_HANDLED;
3575 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3577 ctlr_info_t *h = dev_id;
3578 unsigned long flags;
3579 u32 raw_tag;
3581 if (ignore_bogus_interrupt(h))
3582 return IRQ_NONE;
3584 spin_lock_irqsave(&h->lock, flags);
3585 raw_tag = get_next_completion(h);
3586 while (raw_tag != FIFO_EMPTY)
3587 raw_tag = next_command(h);
3588 spin_unlock_irqrestore(&h->lock, flags);
3589 return IRQ_HANDLED;
3592 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3594 ctlr_info_t *h = dev_id;
3595 unsigned long flags;
3596 u32 raw_tag;
3598 if (interrupt_not_for_us(h))
3599 return IRQ_NONE;
3600 spin_lock_irqsave(&h->lock, flags);
3601 while (interrupt_pending(h)) {
3602 raw_tag = get_next_completion(h);
3603 while (raw_tag != FIFO_EMPTY) {
3604 if (cciss_tag_contains_index(raw_tag))
3605 raw_tag = process_indexed_cmd(h, raw_tag);
3606 else
3607 raw_tag = process_nonindexed_cmd(h, raw_tag);
3610 spin_unlock_irqrestore(&h->lock, flags);
3611 return IRQ_HANDLED;
3614 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3615 * check the interrupt pending register because it is not set.
3617 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3619 ctlr_info_t *h = dev_id;
3620 unsigned long flags;
3621 u32 raw_tag;
3623 spin_lock_irqsave(&h->lock, flags);
3624 raw_tag = get_next_completion(h);
3625 while (raw_tag != FIFO_EMPTY) {
3626 if (cciss_tag_contains_index(raw_tag))
3627 raw_tag = process_indexed_cmd(h, raw_tag);
3628 else
3629 raw_tag = process_nonindexed_cmd(h, raw_tag);
3631 spin_unlock_irqrestore(&h->lock, flags);
3632 return IRQ_HANDLED;
3636 * add_to_scan_list() - add controller to rescan queue
3637 * @h: Pointer to the controller.
3639 * Adds the controller to the rescan queue if not already on the queue.
3641 * returns 1 if added to the queue, 0 if skipped (could be on the
3642 * queue already, or the controller could be initializing or shutting
3643 * down).
3645 static int add_to_scan_list(struct ctlr_info *h)
3647 struct ctlr_info *test_h;
3648 int found = 0;
3649 int ret = 0;
3651 if (h->busy_initializing)
3652 return 0;
3654 if (!mutex_trylock(&h->busy_shutting_down))
3655 return 0;
3657 mutex_lock(&scan_mutex);
3658 list_for_each_entry(test_h, &scan_q, scan_list) {
3659 if (test_h == h) {
3660 found = 1;
3661 break;
3664 if (!found && !h->busy_scanning) {
3665 INIT_COMPLETION(h->scan_wait);
3666 list_add_tail(&h->scan_list, &scan_q);
3667 ret = 1;
3669 mutex_unlock(&scan_mutex);
3670 mutex_unlock(&h->busy_shutting_down);
3672 return ret;
3676 * remove_from_scan_list() - remove controller from rescan queue
3677 * @h: Pointer to the controller.
3679 * Removes the controller from the rescan queue if present. Blocks if
3680 * the controller is currently conducting a rescan. The controller
3681 * can be in one of three states:
3682 * 1. Doesn't need a scan
3683 * 2. On the scan list, but not scanning yet (we remove it)
3684 * 3. Busy scanning (and not on the list). In this case we want to wait for
3685 * the scan to complete to make sure the scanning thread for this
3686 * controller is completely idle.
3688 static void remove_from_scan_list(struct ctlr_info *h)
3690 struct ctlr_info *test_h, *tmp_h;
3692 mutex_lock(&scan_mutex);
3693 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3694 if (test_h == h) { /* state 2. */
3695 list_del(&h->scan_list);
3696 complete_all(&h->scan_wait);
3697 mutex_unlock(&scan_mutex);
3698 return;
3701 if (h->busy_scanning) { /* state 3. */
3702 mutex_unlock(&scan_mutex);
3703 wait_for_completion(&h->scan_wait);
3704 } else { /* state 1, nothing to do. */
3705 mutex_unlock(&scan_mutex);
3710 * scan_thread() - kernel thread used to rescan controllers
3711 * @data: Ignored.
3713 * A kernel thread used scan for drive topology changes on
3714 * controllers. The thread processes only one controller at a time
3715 * using a queue. Controllers are added to the queue using
3716 * add_to_scan_list() and removed from the queue either after done
3717 * processing or using remove_from_scan_list().
3719 * returns 0.
3721 static int scan_thread(void *data)
3723 struct ctlr_info *h;
3725 while (1) {
3726 set_current_state(TASK_INTERRUPTIBLE);
3727 schedule();
3728 if (kthread_should_stop())
3729 break;
3731 while (1) {
3732 mutex_lock(&scan_mutex);
3733 if (list_empty(&scan_q)) {
3734 mutex_unlock(&scan_mutex);
3735 break;
3738 h = list_entry(scan_q.next,
3739 struct ctlr_info,
3740 scan_list);
3741 list_del(&h->scan_list);
3742 h->busy_scanning = 1;
3743 mutex_unlock(&scan_mutex);
3745 rebuild_lun_table(h, 0, 0);
3746 complete_all(&h->scan_wait);
3747 mutex_lock(&scan_mutex);
3748 h->busy_scanning = 0;
3749 mutex_unlock(&scan_mutex);
3753 return 0;
3756 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3758 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3759 return 0;
3761 switch (c->err_info->SenseInfo[12]) {
3762 case STATE_CHANGED:
3763 dev_warn(&h->pdev->dev, "a state change "
3764 "detected, command retried\n");
3765 return 1;
3766 break;
3767 case LUN_FAILED:
3768 dev_warn(&h->pdev->dev, "LUN failure "
3769 "detected, action required\n");
3770 return 1;
3771 break;
3772 case REPORT_LUNS_CHANGED:
3773 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3775 * Here, we could call add_to_scan_list and wake up the scan thread,
3776 * except that it's quite likely that we will get more than one
3777 * REPORT_LUNS_CHANGED condition in quick succession, which means
3778 * that those which occur after the first one will likely happen
3779 * *during* the scan_thread's rescan. And the rescan code is not
3780 * robust enough to restart in the middle, undoing what it has already
3781 * done, and it's not clear that it's even possible to do this, since
3782 * part of what it does is notify the block layer, which starts
3783 * doing it's own i/o to read partition tables and so on, and the
3784 * driver doesn't have visibility to know what might need undoing.
3785 * In any event, if possible, it is horribly complicated to get right
3786 * so we just don't do it for now.
3788 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3790 return 1;
3791 break;
3792 case POWER_OR_RESET:
3793 dev_warn(&h->pdev->dev,
3794 "a power on or device reset detected\n");
3795 return 1;
3796 break;
3797 case UNIT_ATTENTION_CLEARED:
3798 dev_warn(&h->pdev->dev,
3799 "unit attention cleared by another initiator\n");
3800 return 1;
3801 break;
3802 default:
3803 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3804 return 1;
3809 * We cannot read the structure directly, for portability we must use
3810 * the io functions.
3811 * This is for debug only.
3813 static void print_cfg_table(ctlr_info_t *h)
3815 int i;
3816 char temp_name[17];
3817 CfgTable_struct *tb = h->cfgtable;
3819 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3820 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3821 for (i = 0; i < 4; i++)
3822 temp_name[i] = readb(&(tb->Signature[i]));
3823 temp_name[4] = '\0';
3824 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3825 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3826 readl(&(tb->SpecValence)));
3827 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3828 readl(&(tb->TransportSupport)));
3829 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3830 readl(&(tb->TransportActive)));
3831 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3832 readl(&(tb->HostWrite.TransportRequest)));
3833 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3834 readl(&(tb->HostWrite.CoalIntDelay)));
3835 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3836 readl(&(tb->HostWrite.CoalIntCount)));
3837 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3838 readl(&(tb->CmdsOutMax)));
3839 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3840 readl(&(tb->BusTypes)));
3841 for (i = 0; i < 16; i++)
3842 temp_name[i] = readb(&(tb->ServerName[i]));
3843 temp_name[16] = '\0';
3844 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3845 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3846 readl(&(tb->HeartBeat)));
3849 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3851 int i, offset, mem_type, bar_type;
3852 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3853 return 0;
3854 offset = 0;
3855 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3856 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3857 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3858 offset += 4;
3859 else {
3860 mem_type = pci_resource_flags(pdev, i) &
3861 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3862 switch (mem_type) {
3863 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3864 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3865 offset += 4; /* 32 bit */
3866 break;
3867 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3868 offset += 8;
3869 break;
3870 default: /* reserved in PCI 2.2 */
3871 dev_warn(&pdev->dev,
3872 "Base address is invalid\n");
3873 return -1;
3874 break;
3877 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3878 return i + 1;
3880 return -1;
3883 /* Fill in bucket_map[], given nsgs (the max number of
3884 * scatter gather elements supported) and bucket[],
3885 * which is an array of 8 integers. The bucket[] array
3886 * contains 8 different DMA transfer sizes (in 16
3887 * byte increments) which the controller uses to fetch
3888 * commands. This function fills in bucket_map[], which
3889 * maps a given number of scatter gather elements to one of
3890 * the 8 DMA transfer sizes. The point of it is to allow the
3891 * controller to only do as much DMA as needed to fetch the
3892 * command, with the DMA transfer size encoded in the lower
3893 * bits of the command address.
3895 static void calc_bucket_map(int bucket[], int num_buckets,
3896 int nsgs, int *bucket_map)
3898 int i, j, b, size;
3900 /* even a command with 0 SGs requires 4 blocks */
3901 #define MINIMUM_TRANSFER_BLOCKS 4
3902 #define NUM_BUCKETS 8
3903 /* Note, bucket_map must have nsgs+1 entries. */
3904 for (i = 0; i <= nsgs; i++) {
3905 /* Compute size of a command with i SG entries */
3906 size = i + MINIMUM_TRANSFER_BLOCKS;
3907 b = num_buckets; /* Assume the biggest bucket */
3908 /* Find the bucket that is just big enough */
3909 for (j = 0; j < 8; j++) {
3910 if (bucket[j] >= size) {
3911 b = j;
3912 break;
3915 /* for a command with i SG entries, use bucket b. */
3916 bucket_map[i] = b;
3920 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3922 int i;
3924 /* under certain very rare conditions, this can take awhile.
3925 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3926 * as we enter this code.) */
3927 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3928 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3929 break;
3930 usleep_range(10000, 20000);
3934 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3935 u32 use_short_tags)
3937 /* This is a bit complicated. There are 8 registers on
3938 * the controller which we write to to tell it 8 different
3939 * sizes of commands which there may be. It's a way of
3940 * reducing the DMA done to fetch each command. Encoded into
3941 * each command's tag are 3 bits which communicate to the controller
3942 * which of the eight sizes that command fits within. The size of
3943 * each command depends on how many scatter gather entries there are.
3944 * Each SG entry requires 16 bytes. The eight registers are programmed
3945 * with the number of 16-byte blocks a command of that size requires.
3946 * The smallest command possible requires 5 such 16 byte blocks.
3947 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3948 * blocks. Note, this only extends to the SG entries contained
3949 * within the command block, and does not extend to chained blocks
3950 * of SG elements. bft[] contains the eight values we write to
3951 * the registers. They are not evenly distributed, but have more
3952 * sizes for small commands, and fewer sizes for larger commands.
3954 __u32 trans_offset;
3955 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3957 * 5 = 1 s/g entry or 4k
3958 * 6 = 2 s/g entry or 8k
3959 * 8 = 4 s/g entry or 16k
3960 * 10 = 6 s/g entry or 24k
3962 unsigned long register_value;
3963 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3965 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3967 /* Controller spec: zero out this buffer. */
3968 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3969 h->reply_pool_head = h->reply_pool;
3971 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3972 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3973 h->blockFetchTable);
3974 writel(bft[0], &h->transtable->BlockFetch0);
3975 writel(bft[1], &h->transtable->BlockFetch1);
3976 writel(bft[2], &h->transtable->BlockFetch2);
3977 writel(bft[3], &h->transtable->BlockFetch3);
3978 writel(bft[4], &h->transtable->BlockFetch4);
3979 writel(bft[5], &h->transtable->BlockFetch5);
3980 writel(bft[6], &h->transtable->BlockFetch6);
3981 writel(bft[7], &h->transtable->BlockFetch7);
3983 /* size of controller ring buffer */
3984 writel(h->max_commands, &h->transtable->RepQSize);
3985 writel(1, &h->transtable->RepQCount);
3986 writel(0, &h->transtable->RepQCtrAddrLow32);
3987 writel(0, &h->transtable->RepQCtrAddrHigh32);
3988 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3989 writel(0, &h->transtable->RepQAddr0High32);
3990 writel(CFGTBL_Trans_Performant | use_short_tags,
3991 &(h->cfgtable->HostWrite.TransportRequest));
3993 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3994 cciss_wait_for_mode_change_ack(h);
3995 register_value = readl(&(h->cfgtable->TransportActive));
3996 if (!(register_value & CFGTBL_Trans_Performant))
3997 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3998 " performant mode\n");
4001 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4003 __u32 trans_support;
4005 if (cciss_simple_mode)
4006 return;
4008 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4009 /* Attempt to put controller into performant mode if supported */
4010 /* Does board support performant mode? */
4011 trans_support = readl(&(h->cfgtable->TransportSupport));
4012 if (!(trans_support & PERFORMANT_MODE))
4013 return;
4015 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4016 /* Performant mode demands commands on a 32 byte boundary
4017 * pci_alloc_consistent aligns on page boundarys already.
4018 * Just need to check if divisible by 32
4020 if ((sizeof(CommandList_struct) % 32) != 0) {
4021 dev_warn(&h->pdev->dev, "%s %d %s\n",
4022 "cciss info: command size[",
4023 (int)sizeof(CommandList_struct),
4024 "] not divisible by 32, no performant mode..\n");
4025 return;
4028 /* Performant mode ring buffer and supporting data structures */
4029 h->reply_pool = (__u64 *)pci_alloc_consistent(
4030 h->pdev, h->max_commands * sizeof(__u64),
4031 &(h->reply_pool_dhandle));
4033 /* Need a block fetch table for performant mode */
4034 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4035 sizeof(__u32)), GFP_KERNEL);
4037 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4038 goto clean_up;
4040 cciss_enter_performant_mode(h,
4041 trans_support & CFGTBL_Trans_use_short_tags);
4043 /* Change the access methods to the performant access methods */
4044 h->access = SA5_performant_access;
4045 h->transMethod = CFGTBL_Trans_Performant;
4047 return;
4048 clean_up:
4049 kfree(h->blockFetchTable);
4050 if (h->reply_pool)
4051 pci_free_consistent(h->pdev,
4052 h->max_commands * sizeof(__u64),
4053 h->reply_pool,
4054 h->reply_pool_dhandle);
4055 return;
4057 } /* cciss_put_controller_into_performant_mode */
4059 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4060 * controllers that are capable. If not, we use IO-APIC mode.
4063 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4065 #ifdef CONFIG_PCI_MSI
4066 int err;
4067 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4068 {0, 2}, {0, 3}
4071 /* Some boards advertise MSI but don't really support it */
4072 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4073 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4074 goto default_int_mode;
4076 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4077 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4078 if (!err) {
4079 h->intr[0] = cciss_msix_entries[0].vector;
4080 h->intr[1] = cciss_msix_entries[1].vector;
4081 h->intr[2] = cciss_msix_entries[2].vector;
4082 h->intr[3] = cciss_msix_entries[3].vector;
4083 h->msix_vector = 1;
4084 return;
4086 if (err > 0) {
4087 dev_warn(&h->pdev->dev,
4088 "only %d MSI-X vectors available\n", err);
4089 goto default_int_mode;
4090 } else {
4091 dev_warn(&h->pdev->dev,
4092 "MSI-X init failed %d\n", err);
4093 goto default_int_mode;
4096 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4097 if (!pci_enable_msi(h->pdev))
4098 h->msi_vector = 1;
4099 else
4100 dev_warn(&h->pdev->dev, "MSI init failed\n");
4102 default_int_mode:
4103 #endif /* CONFIG_PCI_MSI */
4104 /* if we get here we're going to use the default interrupt mode */
4105 h->intr[h->intr_mode] = h->pdev->irq;
4106 return;
4109 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4111 int i;
4112 u32 subsystem_vendor_id, subsystem_device_id;
4114 subsystem_vendor_id = pdev->subsystem_vendor;
4115 subsystem_device_id = pdev->subsystem_device;
4116 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4117 subsystem_vendor_id;
4119 for (i = 0; i < ARRAY_SIZE(products); i++)
4120 if (*board_id == products[i].board_id)
4121 return i;
4122 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4123 *board_id);
4124 return -ENODEV;
4127 static inline bool cciss_board_disabled(ctlr_info_t *h)
4129 u16 command;
4131 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4132 return ((command & PCI_COMMAND_MEMORY) == 0);
4135 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4136 unsigned long *memory_bar)
4138 int i;
4140 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4141 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4142 /* addressing mode bits already removed */
4143 *memory_bar = pci_resource_start(pdev, i);
4144 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4145 *memory_bar);
4146 return 0;
4148 dev_warn(&pdev->dev, "no memory BAR found\n");
4149 return -ENODEV;
4152 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4153 void __iomem *vaddr, int wait_for_ready)
4154 #define BOARD_READY 1
4155 #define BOARD_NOT_READY 0
4157 int i, iterations;
4158 u32 scratchpad;
4160 if (wait_for_ready)
4161 iterations = CCISS_BOARD_READY_ITERATIONS;
4162 else
4163 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4165 for (i = 0; i < iterations; i++) {
4166 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4167 if (wait_for_ready) {
4168 if (scratchpad == CCISS_FIRMWARE_READY)
4169 return 0;
4170 } else {
4171 if (scratchpad != CCISS_FIRMWARE_READY)
4172 return 0;
4174 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4176 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4177 return -ENODEV;
4180 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4181 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4182 u64 *cfg_offset)
4184 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4185 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4186 *cfg_base_addr &= (u32) 0x0000ffff;
4187 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4188 if (*cfg_base_addr_index == -1) {
4189 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4190 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4191 return -ENODEV;
4193 return 0;
4196 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4198 u64 cfg_offset;
4199 u32 cfg_base_addr;
4200 u64 cfg_base_addr_index;
4201 u32 trans_offset;
4202 int rc;
4204 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4205 &cfg_base_addr_index, &cfg_offset);
4206 if (rc)
4207 return rc;
4208 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4209 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4210 if (!h->cfgtable)
4211 return -ENOMEM;
4212 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4213 if (rc)
4214 return rc;
4215 /* Find performant mode table. */
4216 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4217 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4218 cfg_base_addr_index)+cfg_offset+trans_offset,
4219 sizeof(*h->transtable));
4220 if (!h->transtable)
4221 return -ENOMEM;
4222 return 0;
4225 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4227 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4229 /* Limit commands in memory limited kdump scenario. */
4230 if (reset_devices && h->max_commands > 32)
4231 h->max_commands = 32;
4233 if (h->max_commands < 16) {
4234 dev_warn(&h->pdev->dev, "Controller reports "
4235 "max supported commands of %d, an obvious lie. "
4236 "Using 16. Ensure that firmware is up to date.\n",
4237 h->max_commands);
4238 h->max_commands = 16;
4242 /* Interrogate the hardware for some limits:
4243 * max commands, max SG elements without chaining, and with chaining,
4244 * SG chain block size, etc.
4246 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4248 cciss_get_max_perf_mode_cmds(h);
4249 h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4250 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4252 * Limit in-command s/g elements to 32 save dma'able memory.
4253 * Howvever spec says if 0, use 31
4255 h->max_cmd_sgentries = 31;
4256 if (h->maxsgentries > 512) {
4257 h->max_cmd_sgentries = 32;
4258 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4259 h->maxsgentries--; /* save one for chain pointer */
4260 } else {
4261 h->maxsgentries = 31; /* default to traditional values */
4262 h->chainsize = 0;
4266 static inline bool CISS_signature_present(ctlr_info_t *h)
4268 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4269 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4270 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4271 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4272 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4273 return false;
4275 return true;
4278 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4279 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4281 #ifdef CONFIG_X86
4282 u32 prefetch;
4284 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4285 prefetch |= 0x100;
4286 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4287 #endif
4290 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4291 * in a prefetch beyond physical memory.
4293 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4295 u32 dma_prefetch;
4296 __u32 dma_refetch;
4298 if (h->board_id != 0x3225103C)
4299 return;
4300 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4301 dma_prefetch |= 0x8000;
4302 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4303 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4304 dma_refetch |= 0x1;
4305 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4308 static int __devinit cciss_pci_init(ctlr_info_t *h)
4310 int prod_index, err;
4312 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4313 if (prod_index < 0)
4314 return -ENODEV;
4315 h->product_name = products[prod_index].product_name;
4316 h->access = *(products[prod_index].access);
4318 if (cciss_board_disabled(h)) {
4319 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4320 return -ENODEV;
4322 err = pci_enable_device(h->pdev);
4323 if (err) {
4324 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4325 return err;
4328 err = pci_request_regions(h->pdev, "cciss");
4329 if (err) {
4330 dev_warn(&h->pdev->dev,
4331 "Cannot obtain PCI resources, aborting\n");
4332 return err;
4335 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4336 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4338 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4339 * else we use the IO-APIC interrupt assigned to us by system ROM.
4341 cciss_interrupt_mode(h);
4342 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4343 if (err)
4344 goto err_out_free_res;
4345 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4346 if (!h->vaddr) {
4347 err = -ENOMEM;
4348 goto err_out_free_res;
4350 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4351 if (err)
4352 goto err_out_free_res;
4353 err = cciss_find_cfgtables(h);
4354 if (err)
4355 goto err_out_free_res;
4356 print_cfg_table(h);
4357 cciss_find_board_params(h);
4359 if (!CISS_signature_present(h)) {
4360 err = -ENODEV;
4361 goto err_out_free_res;
4363 cciss_enable_scsi_prefetch(h);
4364 cciss_p600_dma_prefetch_quirk(h);
4365 err = cciss_enter_simple_mode(h);
4366 if (err)
4367 goto err_out_free_res;
4368 cciss_put_controller_into_performant_mode(h);
4369 return 0;
4371 err_out_free_res:
4373 * Deliberately omit pci_disable_device(): it does something nasty to
4374 * Smart Array controllers that pci_enable_device does not undo
4376 if (h->transtable)
4377 iounmap(h->transtable);
4378 if (h->cfgtable)
4379 iounmap(h->cfgtable);
4380 if (h->vaddr)
4381 iounmap(h->vaddr);
4382 pci_release_regions(h->pdev);
4383 return err;
4386 /* Function to find the first free pointer into our hba[] array
4387 * Returns -1 if no free entries are left.
4389 static int alloc_cciss_hba(struct pci_dev *pdev)
4391 int i;
4393 for (i = 0; i < MAX_CTLR; i++) {
4394 if (!hba[i]) {
4395 ctlr_info_t *h;
4397 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4398 if (!h)
4399 goto Enomem;
4400 hba[i] = h;
4401 return i;
4404 dev_warn(&pdev->dev, "This driver supports a maximum"
4405 " of %d controllers.\n", MAX_CTLR);
4406 return -1;
4407 Enomem:
4408 dev_warn(&pdev->dev, "out of memory.\n");
4409 return -1;
4412 static void free_hba(ctlr_info_t *h)
4414 int i;
4416 hba[h->ctlr] = NULL;
4417 for (i = 0; i < h->highest_lun + 1; i++)
4418 if (h->gendisk[i] != NULL)
4419 put_disk(h->gendisk[i]);
4420 kfree(h);
4423 /* Send a message CDB to the firmware. */
4424 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4426 typedef struct {
4427 CommandListHeader_struct CommandHeader;
4428 RequestBlock_struct Request;
4429 ErrDescriptor_struct ErrorDescriptor;
4430 } Command;
4431 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4432 Command *cmd;
4433 dma_addr_t paddr64;
4434 uint32_t paddr32, tag;
4435 void __iomem *vaddr;
4436 int i, err;
4438 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4439 if (vaddr == NULL)
4440 return -ENOMEM;
4442 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4443 CCISS commands, so they must be allocated from the lower 4GiB of
4444 memory. */
4445 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4446 if (err) {
4447 iounmap(vaddr);
4448 return -ENOMEM;
4451 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4452 if (cmd == NULL) {
4453 iounmap(vaddr);
4454 return -ENOMEM;
4457 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4458 although there's no guarantee, we assume that the address is at
4459 least 4-byte aligned (most likely, it's page-aligned). */
4460 paddr32 = paddr64;
4462 cmd->CommandHeader.ReplyQueue = 0;
4463 cmd->CommandHeader.SGList = 0;
4464 cmd->CommandHeader.SGTotal = 0;
4465 cmd->CommandHeader.Tag.lower = paddr32;
4466 cmd->CommandHeader.Tag.upper = 0;
4467 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4469 cmd->Request.CDBLen = 16;
4470 cmd->Request.Type.Type = TYPE_MSG;
4471 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4472 cmd->Request.Type.Direction = XFER_NONE;
4473 cmd->Request.Timeout = 0; /* Don't time out */
4474 cmd->Request.CDB[0] = opcode;
4475 cmd->Request.CDB[1] = type;
4476 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4478 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4479 cmd->ErrorDescriptor.Addr.upper = 0;
4480 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4482 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4484 for (i = 0; i < 10; i++) {
4485 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4486 if ((tag & ~3) == paddr32)
4487 break;
4488 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4491 iounmap(vaddr);
4493 /* we leak the DMA buffer here ... no choice since the controller could
4494 still complete the command. */
4495 if (i == 10) {
4496 dev_err(&pdev->dev,
4497 "controller message %02x:%02x timed out\n",
4498 opcode, type);
4499 return -ETIMEDOUT;
4502 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4504 if (tag & 2) {
4505 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4506 opcode, type);
4507 return -EIO;
4510 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4511 opcode, type);
4512 return 0;
4515 #define cciss_noop(p) cciss_message(p, 3, 0)
4517 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4518 void * __iomem vaddr, u32 use_doorbell)
4520 u16 pmcsr;
4521 int pos;
4523 if (use_doorbell) {
4524 /* For everything after the P600, the PCI power state method
4525 * of resetting the controller doesn't work, so we have this
4526 * other way using the doorbell register.
4528 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4529 writel(use_doorbell, vaddr + SA5_DOORBELL);
4530 } else { /* Try to do it the PCI power state way */
4532 /* Quoting from the Open CISS Specification: "The Power
4533 * Management Control/Status Register (CSR) controls the power
4534 * state of the device. The normal operating state is D0,
4535 * CSR=00h. The software off state is D3, CSR=03h. To reset
4536 * the controller, place the interface device in D3 then to D0,
4537 * this causes a secondary PCI reset which will reset the
4538 * controller." */
4540 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4541 if (pos == 0) {
4542 dev_err(&pdev->dev,
4543 "cciss_controller_hard_reset: "
4544 "PCI PM not supported\n");
4545 return -ENODEV;
4547 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4548 /* enter the D3hot power management state */
4549 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4550 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4551 pmcsr |= PCI_D3hot;
4552 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4554 msleep(500);
4556 /* enter the D0 power management state */
4557 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4558 pmcsr |= PCI_D0;
4559 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4562 * The P600 requires a small delay when changing states.
4563 * Otherwise we may think the board did not reset and we bail.
4564 * This for kdump only and is particular to the P600.
4566 msleep(500);
4568 return 0;
4571 static __devinit void init_driver_version(char *driver_version, int len)
4573 memset(driver_version, 0, len);
4574 strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4577 static __devinit int write_driver_ver_to_cfgtable(
4578 CfgTable_struct __iomem *cfgtable)
4580 char *driver_version;
4581 int i, size = sizeof(cfgtable->driver_version);
4583 driver_version = kmalloc(size, GFP_KERNEL);
4584 if (!driver_version)
4585 return -ENOMEM;
4587 init_driver_version(driver_version, size);
4588 for (i = 0; i < size; i++)
4589 writeb(driver_version[i], &cfgtable->driver_version[i]);
4590 kfree(driver_version);
4591 return 0;
4594 static __devinit void read_driver_ver_from_cfgtable(
4595 CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4597 int i;
4599 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4600 driver_ver[i] = readb(&cfgtable->driver_version[i]);
4603 static __devinit int controller_reset_failed(
4604 CfgTable_struct __iomem *cfgtable)
4607 char *driver_ver, *old_driver_ver;
4608 int rc, size = sizeof(cfgtable->driver_version);
4610 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4611 if (!old_driver_ver)
4612 return -ENOMEM;
4613 driver_ver = old_driver_ver + size;
4615 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4616 * should have been changed, otherwise we know the reset failed.
4618 init_driver_version(old_driver_ver, size);
4619 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4620 rc = !memcmp(driver_ver, old_driver_ver, size);
4621 kfree(old_driver_ver);
4622 return rc;
4625 /* This does a hard reset of the controller using PCI power management
4626 * states or using the doorbell register. */
4627 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4629 u64 cfg_offset;
4630 u32 cfg_base_addr;
4631 u64 cfg_base_addr_index;
4632 void __iomem *vaddr;
4633 unsigned long paddr;
4634 u32 misc_fw_support;
4635 int rc;
4636 CfgTable_struct __iomem *cfgtable;
4637 u32 use_doorbell;
4638 u32 board_id;
4639 u16 command_register;
4641 /* For controllers as old a the p600, this is very nearly
4642 * the same thing as
4644 * pci_save_state(pci_dev);
4645 * pci_set_power_state(pci_dev, PCI_D3hot);
4646 * pci_set_power_state(pci_dev, PCI_D0);
4647 * pci_restore_state(pci_dev);
4649 * For controllers newer than the P600, the pci power state
4650 * method of resetting doesn't work so we have another way
4651 * using the doorbell register.
4654 /* Exclude 640x boards. These are two pci devices in one slot
4655 * which share a battery backed cache module. One controls the
4656 * cache, the other accesses the cache through the one that controls
4657 * it. If we reset the one controlling the cache, the other will
4658 * likely not be happy. Just forbid resetting this conjoined mess.
4660 cciss_lookup_board_id(pdev, &board_id);
4661 if (!ctlr_is_resettable(board_id)) {
4662 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4663 "due to shared cache module.");
4664 return -ENODEV;
4667 /* if controller is soft- but not hard resettable... */
4668 if (!ctlr_is_hard_resettable(board_id))
4669 return -ENOTSUPP; /* try soft reset later. */
4671 /* Save the PCI command register */
4672 pci_read_config_word(pdev, 4, &command_register);
4673 /* Turn the board off. This is so that later pci_restore_state()
4674 * won't turn the board on before the rest of config space is ready.
4676 pci_disable_device(pdev);
4677 pci_save_state(pdev);
4679 /* find the first memory BAR, so we can find the cfg table */
4680 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4681 if (rc)
4682 return rc;
4683 vaddr = remap_pci_mem(paddr, 0x250);
4684 if (!vaddr)
4685 return -ENOMEM;
4687 /* find cfgtable in order to check if reset via doorbell is supported */
4688 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4689 &cfg_base_addr_index, &cfg_offset);
4690 if (rc)
4691 goto unmap_vaddr;
4692 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4693 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4694 if (!cfgtable) {
4695 rc = -ENOMEM;
4696 goto unmap_vaddr;
4698 rc = write_driver_ver_to_cfgtable(cfgtable);
4699 if (rc)
4700 goto unmap_vaddr;
4702 /* If reset via doorbell register is supported, use that.
4703 * There are two such methods. Favor the newest method.
4705 misc_fw_support = readl(&cfgtable->misc_fw_support);
4706 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4707 if (use_doorbell) {
4708 use_doorbell = DOORBELL_CTLR_RESET2;
4709 } else {
4710 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4711 if (use_doorbell) {
4712 dev_warn(&pdev->dev, "Controller claims that "
4713 "'Bit 2 doorbell reset' is "
4714 "supported, but not 'bit 5 doorbell reset'. "
4715 "Firmware update is recommended.\n");
4716 rc = -ENOTSUPP; /* use the soft reset */
4717 goto unmap_cfgtable;
4721 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4722 if (rc)
4723 goto unmap_cfgtable;
4724 pci_restore_state(pdev);
4725 rc = pci_enable_device(pdev);
4726 if (rc) {
4727 dev_warn(&pdev->dev, "failed to enable device.\n");
4728 goto unmap_cfgtable;
4730 pci_write_config_word(pdev, 4, command_register);
4732 /* Some devices (notably the HP Smart Array 5i Controller)
4733 need a little pause here */
4734 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4736 /* Wait for board to become not ready, then ready. */
4737 dev_info(&pdev->dev, "Waiting for board to reset.\n");
4738 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4739 if (rc) {
4740 dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4741 " Will try soft reset.\n");
4742 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4743 goto unmap_cfgtable;
4745 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4746 if (rc) {
4747 dev_warn(&pdev->dev,
4748 "failed waiting for board to become ready "
4749 "after hard reset\n");
4750 goto unmap_cfgtable;
4753 rc = controller_reset_failed(vaddr);
4754 if (rc < 0)
4755 goto unmap_cfgtable;
4756 if (rc) {
4757 dev_warn(&pdev->dev, "Unable to successfully hard reset "
4758 "controller. Will try soft reset.\n");
4759 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4760 } else {
4761 dev_info(&pdev->dev, "Board ready after hard reset.\n");
4764 unmap_cfgtable:
4765 iounmap(cfgtable);
4767 unmap_vaddr:
4768 iounmap(vaddr);
4769 return rc;
4772 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4774 int rc, i;
4776 if (!reset_devices)
4777 return 0;
4779 /* Reset the controller with a PCI power-cycle or via doorbell */
4780 rc = cciss_kdump_hard_reset_controller(pdev);
4782 /* -ENOTSUPP here means we cannot reset the controller
4783 * but it's already (and still) up and running in
4784 * "performant mode". Or, it might be 640x, which can't reset
4785 * due to concerns about shared bbwc between 6402/6404 pair.
4787 if (rc == -ENOTSUPP)
4788 return rc; /* just try to do the kdump anyhow. */
4789 if (rc)
4790 return -ENODEV;
4792 /* Now try to get the controller to respond to a no-op */
4793 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4794 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4795 if (cciss_noop(pdev) == 0)
4796 break;
4797 else
4798 dev_warn(&pdev->dev, "no-op failed%s\n",
4799 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4800 "; re-trying" : ""));
4801 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4803 return 0;
4806 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4808 h->cmd_pool_bits = kmalloc(
4809 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4810 sizeof(unsigned long), GFP_KERNEL);
4811 h->cmd_pool = pci_alloc_consistent(h->pdev,
4812 h->nr_cmds * sizeof(CommandList_struct),
4813 &(h->cmd_pool_dhandle));
4814 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4815 h->nr_cmds * sizeof(ErrorInfo_struct),
4816 &(h->errinfo_pool_dhandle));
4817 if ((h->cmd_pool_bits == NULL)
4818 || (h->cmd_pool == NULL)
4819 || (h->errinfo_pool == NULL)) {
4820 dev_err(&h->pdev->dev, "out of memory");
4821 return -ENOMEM;
4823 return 0;
4826 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4828 int i;
4830 /* zero it, so that on free we need not know how many were alloc'ed */
4831 h->scatter_list = kzalloc(h->max_commands *
4832 sizeof(struct scatterlist *), GFP_KERNEL);
4833 if (!h->scatter_list)
4834 return -ENOMEM;
4836 for (i = 0; i < h->nr_cmds; i++) {
4837 h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4838 h->maxsgentries, GFP_KERNEL);
4839 if (h->scatter_list[i] == NULL) {
4840 dev_err(&h->pdev->dev, "could not allocate "
4841 "s/g lists\n");
4842 return -ENOMEM;
4845 return 0;
4848 static void cciss_free_scatterlists(ctlr_info_t *h)
4850 int i;
4852 if (h->scatter_list) {
4853 for (i = 0; i < h->nr_cmds; i++)
4854 kfree(h->scatter_list[i]);
4855 kfree(h->scatter_list);
4859 static void cciss_free_cmd_pool(ctlr_info_t *h)
4861 kfree(h->cmd_pool_bits);
4862 if (h->cmd_pool)
4863 pci_free_consistent(h->pdev,
4864 h->nr_cmds * sizeof(CommandList_struct),
4865 h->cmd_pool, h->cmd_pool_dhandle);
4866 if (h->errinfo_pool)
4867 pci_free_consistent(h->pdev,
4868 h->nr_cmds * sizeof(ErrorInfo_struct),
4869 h->errinfo_pool, h->errinfo_pool_dhandle);
4872 static int cciss_request_irq(ctlr_info_t *h,
4873 irqreturn_t (*msixhandler)(int, void *),
4874 irqreturn_t (*intxhandler)(int, void *))
4876 if (h->msix_vector || h->msi_vector) {
4877 if (!request_irq(h->intr[h->intr_mode], msixhandler,
4878 IRQF_DISABLED, h->devname, h))
4879 return 0;
4880 dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4881 " for %s\n", h->intr[h->intr_mode],
4882 h->devname);
4883 return -1;
4886 if (!request_irq(h->intr[h->intr_mode], intxhandler,
4887 IRQF_DISABLED, h->devname, h))
4888 return 0;
4889 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4890 h->intr[h->intr_mode], h->devname);
4891 return -1;
4894 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4896 if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4897 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4898 return -EIO;
4901 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4902 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4903 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4904 return -1;
4907 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4908 if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4909 dev_warn(&h->pdev->dev, "Board failed to become ready "
4910 "after soft reset.\n");
4911 return -1;
4914 return 0;
4917 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4919 int ctlr = h->ctlr;
4921 free_irq(h->intr[h->intr_mode], h);
4922 #ifdef CONFIG_PCI_MSI
4923 if (h->msix_vector)
4924 pci_disable_msix(h->pdev);
4925 else if (h->msi_vector)
4926 pci_disable_msi(h->pdev);
4927 #endif /* CONFIG_PCI_MSI */
4928 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4929 cciss_free_scatterlists(h);
4930 cciss_free_cmd_pool(h);
4931 kfree(h->blockFetchTable);
4932 if (h->reply_pool)
4933 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4934 h->reply_pool, h->reply_pool_dhandle);
4935 if (h->transtable)
4936 iounmap(h->transtable);
4937 if (h->cfgtable)
4938 iounmap(h->cfgtable);
4939 if (h->vaddr)
4940 iounmap(h->vaddr);
4941 unregister_blkdev(h->major, h->devname);
4942 cciss_destroy_hba_sysfs_entry(h);
4943 pci_release_regions(h->pdev);
4944 kfree(h);
4945 hba[ctlr] = NULL;
4949 * This is it. Find all the controllers and register them. I really hate
4950 * stealing all these major device numbers.
4951 * returns the number of block devices registered.
4953 static int __devinit cciss_init_one(struct pci_dev *pdev,
4954 const struct pci_device_id *ent)
4956 int i;
4957 int j = 0;
4958 int rc;
4959 int try_soft_reset = 0;
4960 int dac, return_code;
4961 InquiryData_struct *inq_buff;
4962 ctlr_info_t *h;
4963 unsigned long flags;
4965 rc = cciss_init_reset_devices(pdev);
4966 if (rc) {
4967 if (rc != -ENOTSUPP)
4968 return rc;
4969 /* If the reset fails in a particular way (it has no way to do
4970 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4971 * a soft reset once we get the controller configured up to the
4972 * point that it can accept a command.
4974 try_soft_reset = 1;
4975 rc = 0;
4978 reinit_after_soft_reset:
4980 i = alloc_cciss_hba(pdev);
4981 if (i < 0)
4982 return -1;
4984 h = hba[i];
4985 h->pdev = pdev;
4986 h->busy_initializing = 1;
4987 h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4988 INIT_LIST_HEAD(&h->cmpQ);
4989 INIT_LIST_HEAD(&h->reqQ);
4990 mutex_init(&h->busy_shutting_down);
4992 if (cciss_pci_init(h) != 0)
4993 goto clean_no_release_regions;
4995 sprintf(h->devname, "cciss%d", i);
4996 h->ctlr = i;
4998 if (cciss_tape_cmds < 2)
4999 cciss_tape_cmds = 2;
5000 if (cciss_tape_cmds > 16)
5001 cciss_tape_cmds = 16;
5003 init_completion(&h->scan_wait);
5005 if (cciss_create_hba_sysfs_entry(h))
5006 goto clean0;
5008 /* configure PCI DMA stuff */
5009 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5010 dac = 1;
5011 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5012 dac = 0;
5013 else {
5014 dev_err(&h->pdev->dev, "no suitable DMA available\n");
5015 goto clean1;
5019 * register with the major number, or get a dynamic major number
5020 * by passing 0 as argument. This is done for greater than
5021 * 8 controller support.
5023 if (i < MAX_CTLR_ORIG)
5024 h->major = COMPAQ_CISS_MAJOR + i;
5025 rc = register_blkdev(h->major, h->devname);
5026 if (rc == -EBUSY || rc == -EINVAL) {
5027 dev_err(&h->pdev->dev,
5028 "Unable to get major number %d for %s "
5029 "on hba %d\n", h->major, h->devname, i);
5030 goto clean1;
5031 } else {
5032 if (i >= MAX_CTLR_ORIG)
5033 h->major = rc;
5036 /* make sure the board interrupts are off */
5037 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5038 rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5039 if (rc)
5040 goto clean2;
5042 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5043 h->devname, pdev->device, pci_name(pdev),
5044 h->intr[h->intr_mode], dac ? "" : " not");
5046 if (cciss_allocate_cmd_pool(h))
5047 goto clean4;
5049 if (cciss_allocate_scatterlists(h))
5050 goto clean4;
5052 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5053 h->chainsize, h->nr_cmds);
5054 if (!h->cmd_sg_list && h->chainsize > 0)
5055 goto clean4;
5057 spin_lock_init(&h->lock);
5059 /* Initialize the pdev driver private data.
5060 have it point to h. */
5061 pci_set_drvdata(pdev, h);
5062 /* command and error info recs zeroed out before
5063 they are used */
5064 memset(h->cmd_pool_bits, 0,
5065 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
5066 * sizeof(unsigned long));
5068 h->num_luns = 0;
5069 h->highest_lun = -1;
5070 for (j = 0; j < CISS_MAX_LUN; j++) {
5071 h->drv[j] = NULL;
5072 h->gendisk[j] = NULL;
5075 /* At this point, the controller is ready to take commands.
5076 * Now, if reset_devices and the hard reset didn't work, try
5077 * the soft reset and see if that works.
5079 if (try_soft_reset) {
5081 /* This is kind of gross. We may or may not get a completion
5082 * from the soft reset command, and if we do, then the value
5083 * from the fifo may or may not be valid. So, we wait 10 secs
5084 * after the reset throwing away any completions we get during
5085 * that time. Unregister the interrupt handler and register
5086 * fake ones to scoop up any residual completions.
5088 spin_lock_irqsave(&h->lock, flags);
5089 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5090 spin_unlock_irqrestore(&h->lock, flags);
5091 free_irq(h->intr[h->intr_mode], h);
5092 rc = cciss_request_irq(h, cciss_msix_discard_completions,
5093 cciss_intx_discard_completions);
5094 if (rc) {
5095 dev_warn(&h->pdev->dev, "Failed to request_irq after "
5096 "soft reset.\n");
5097 goto clean4;
5100 rc = cciss_kdump_soft_reset(h);
5101 if (rc) {
5102 dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5103 goto clean4;
5106 dev_info(&h->pdev->dev, "Board READY.\n");
5107 dev_info(&h->pdev->dev,
5108 "Waiting for stale completions to drain.\n");
5109 h->access.set_intr_mask(h, CCISS_INTR_ON);
5110 msleep(10000);
5111 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5113 rc = controller_reset_failed(h->cfgtable);
5114 if (rc)
5115 dev_info(&h->pdev->dev,
5116 "Soft reset appears to have failed.\n");
5118 /* since the controller's reset, we have to go back and re-init
5119 * everything. Easiest to just forget what we've done and do it
5120 * all over again.
5122 cciss_undo_allocations_after_kdump_soft_reset(h);
5123 try_soft_reset = 0;
5124 if (rc)
5125 /* don't go to clean4, we already unallocated */
5126 return -ENODEV;
5128 goto reinit_after_soft_reset;
5131 cciss_scsi_setup(h);
5133 /* Turn the interrupts on so we can service requests */
5134 h->access.set_intr_mask(h, CCISS_INTR_ON);
5136 /* Get the firmware version */
5137 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5138 if (inq_buff == NULL) {
5139 dev_err(&h->pdev->dev, "out of memory\n");
5140 goto clean4;
5143 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5144 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5145 if (return_code == IO_OK) {
5146 h->firm_ver[0] = inq_buff->data_byte[32];
5147 h->firm_ver[1] = inq_buff->data_byte[33];
5148 h->firm_ver[2] = inq_buff->data_byte[34];
5149 h->firm_ver[3] = inq_buff->data_byte[35];
5150 } else { /* send command failed */
5151 dev_warn(&h->pdev->dev, "unable to determine firmware"
5152 " version of controller\n");
5154 kfree(inq_buff);
5156 cciss_procinit(h);
5158 h->cciss_max_sectors = 8192;
5160 rebuild_lun_table(h, 1, 0);
5161 h->busy_initializing = 0;
5162 return 1;
5164 clean4:
5165 cciss_free_cmd_pool(h);
5166 cciss_free_scatterlists(h);
5167 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5168 free_irq(h->intr[h->intr_mode], h);
5169 clean2:
5170 unregister_blkdev(h->major, h->devname);
5171 clean1:
5172 cciss_destroy_hba_sysfs_entry(h);
5173 clean0:
5174 pci_release_regions(pdev);
5175 clean_no_release_regions:
5176 h->busy_initializing = 0;
5179 * Deliberately omit pci_disable_device(): it does something nasty to
5180 * Smart Array controllers that pci_enable_device does not undo
5182 pci_set_drvdata(pdev, NULL);
5183 free_hba(h);
5184 return -1;
5187 static void cciss_shutdown(struct pci_dev *pdev)
5189 ctlr_info_t *h;
5190 char *flush_buf;
5191 int return_code;
5193 h = pci_get_drvdata(pdev);
5194 flush_buf = kzalloc(4, GFP_KERNEL);
5195 if (!flush_buf) {
5196 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5197 return;
5199 /* write all data in the battery backed cache to disk */
5200 memset(flush_buf, 0, 4);
5201 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5202 4, 0, CTLR_LUNID, TYPE_CMD);
5203 kfree(flush_buf);
5204 if (return_code != IO_OK)
5205 dev_warn(&h->pdev->dev, "Error flushing cache\n");
5206 h->access.set_intr_mask(h, CCISS_INTR_OFF);
5207 free_irq(h->intr[h->intr_mode], h);
5210 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5212 u32 trans_support;
5214 trans_support = readl(&(h->cfgtable->TransportSupport));
5215 if (!(trans_support & SIMPLE_MODE))
5216 return -ENOTSUPP;
5218 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5219 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5220 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5221 cciss_wait_for_mode_change_ack(h);
5222 print_cfg_table(h);
5223 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5224 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5225 return -ENODEV;
5227 h->transMethod = CFGTBL_Trans_Simple;
5228 return 0;
5232 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5234 ctlr_info_t *h;
5235 int i, j;
5237 if (pci_get_drvdata(pdev) == NULL) {
5238 dev_err(&pdev->dev, "Unable to remove device\n");
5239 return;
5242 h = pci_get_drvdata(pdev);
5243 i = h->ctlr;
5244 if (hba[i] == NULL) {
5245 dev_err(&pdev->dev, "device appears to already be removed\n");
5246 return;
5249 mutex_lock(&h->busy_shutting_down);
5251 remove_from_scan_list(h);
5252 remove_proc_entry(h->devname, proc_cciss);
5253 unregister_blkdev(h->major, h->devname);
5255 /* remove it from the disk list */
5256 for (j = 0; j < CISS_MAX_LUN; j++) {
5257 struct gendisk *disk = h->gendisk[j];
5258 if (disk) {
5259 struct request_queue *q = disk->queue;
5261 if (disk->flags & GENHD_FL_UP) {
5262 cciss_destroy_ld_sysfs_entry(h, j, 1);
5263 del_gendisk(disk);
5265 if (q)
5266 blk_cleanup_queue(q);
5270 #ifdef CONFIG_CISS_SCSI_TAPE
5271 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5272 #endif
5274 cciss_shutdown(pdev);
5276 #ifdef CONFIG_PCI_MSI
5277 if (h->msix_vector)
5278 pci_disable_msix(h->pdev);
5279 else if (h->msi_vector)
5280 pci_disable_msi(h->pdev);
5281 #endif /* CONFIG_PCI_MSI */
5283 iounmap(h->transtable);
5284 iounmap(h->cfgtable);
5285 iounmap(h->vaddr);
5287 cciss_free_cmd_pool(h);
5288 /* Free up sg elements */
5289 for (j = 0; j < h->nr_cmds; j++)
5290 kfree(h->scatter_list[j]);
5291 kfree(h->scatter_list);
5292 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5293 kfree(h->blockFetchTable);
5294 if (h->reply_pool)
5295 pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5296 h->reply_pool, h->reply_pool_dhandle);
5298 * Deliberately omit pci_disable_device(): it does something nasty to
5299 * Smart Array controllers that pci_enable_device does not undo
5301 pci_release_regions(pdev);
5302 pci_set_drvdata(pdev, NULL);
5303 cciss_destroy_hba_sysfs_entry(h);
5304 mutex_unlock(&h->busy_shutting_down);
5305 free_hba(h);
5308 static struct pci_driver cciss_pci_driver = {
5309 .name = "cciss",
5310 .probe = cciss_init_one,
5311 .remove = __devexit_p(cciss_remove_one),
5312 .id_table = cciss_pci_device_id, /* id_table */
5313 .shutdown = cciss_shutdown,
5317 * This is it. Register the PCI driver information for the cards we control
5318 * the OS will call our registered routines when it finds one of our cards.
5320 static int __init cciss_init(void)
5322 int err;
5325 * The hardware requires that commands are aligned on a 64-bit
5326 * boundary. Given that we use pci_alloc_consistent() to allocate an
5327 * array of them, the size must be a multiple of 8 bytes.
5329 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5330 printk(KERN_INFO DRIVER_NAME "\n");
5332 err = bus_register(&cciss_bus_type);
5333 if (err)
5334 return err;
5336 /* Start the scan thread */
5337 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5338 if (IS_ERR(cciss_scan_thread)) {
5339 err = PTR_ERR(cciss_scan_thread);
5340 goto err_bus_unregister;
5343 /* Register for our PCI devices */
5344 err = pci_register_driver(&cciss_pci_driver);
5345 if (err)
5346 goto err_thread_stop;
5348 return err;
5350 err_thread_stop:
5351 kthread_stop(cciss_scan_thread);
5352 err_bus_unregister:
5353 bus_unregister(&cciss_bus_type);
5355 return err;
5358 static void __exit cciss_cleanup(void)
5360 int i;
5362 pci_unregister_driver(&cciss_pci_driver);
5363 /* double check that all controller entrys have been removed */
5364 for (i = 0; i < MAX_CTLR; i++) {
5365 if (hba[i] != NULL) {
5366 dev_warn(&hba[i]->pdev->dev,
5367 "had to remove controller\n");
5368 cciss_remove_one(hba[i]->pdev);
5371 kthread_stop(cciss_scan_thread);
5372 if (proc_cciss)
5373 remove_proc_entry("driver/cciss", NULL);
5374 bus_unregister(&cciss_bus_type);
5377 module_init(cciss_init);
5378 module_exit(cciss_cleanup);