usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / input / touchscreen / ucb1400_ts.c
blob3b5b5df04dd686ec77b20d32c16141ce44bc0865
1 /*
2 * Philips UCB1400 touchscreen driver
4 * Author: Nicolas Pitre
5 * Created: September 25, 2006
6 * Copyright: MontaVista Software, Inc.
8 * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
9 * If something doesn't work and it worked before spliting, e-mail me,
10 * dont bother Nicolas please ;-)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
17 * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
18 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/input.h>
26 #include <linux/device.h>
27 #include <linux/interrupt.h>
28 #include <linux/suspend.h>
29 #include <linux/kthread.h>
30 #include <linux/freezer.h>
31 #include <linux/ucb1400.h>
33 static int adcsync;
34 static int ts_delay = 55; /* us */
35 static int ts_delay_pressure; /* us */
37 /* Switch to interrupt mode. */
38 static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
40 ucb1400_reg_write(ac97, UCB_TS_CR,
41 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
42 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
43 UCB_TS_CR_MODE_INT);
47 * Switch to pressure mode, and read pressure. We don't need to wait
48 * here, since both plates are being driven.
50 static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
52 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
53 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
54 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
55 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
56 udelay(ts_delay_pressure);
57 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
61 * Switch to X position mode and measure Y plate. We switch the plate
62 * configuration in pressure mode, then switch to position mode. This
63 * gives a faster response time. Even so, we need to wait about 55us
64 * for things to stabilise.
66 static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
68 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
69 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
70 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
71 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
72 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
73 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
74 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
75 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
76 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
78 udelay(ts_delay);
80 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
84 * Switch to Y position mode and measure X plate. We switch the plate
85 * configuration in pressure mode, then switch to position mode. This
86 * gives a faster response time. Even so, we need to wait about 55us
87 * for things to stabilise.
89 static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
91 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
92 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
93 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
94 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
95 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
96 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
97 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
98 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
99 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
101 udelay(ts_delay);
103 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
107 * Switch to X plate resistance mode. Set MX to ground, PX to
108 * supply. Measure current.
110 static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
112 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
113 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
114 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
115 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
119 * Switch to Y plate resistance mode. Set MY to ground, PY to
120 * supply. Measure current.
122 static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
124 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
125 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
126 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
127 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
130 static inline int ucb1400_ts_pen_up(struct snd_ac97 *ac97)
132 unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
134 return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
137 static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
139 ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
140 ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
141 ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
144 static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
146 ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
149 static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
151 input_report_abs(idev, ABS_X, x);
152 input_report_abs(idev, ABS_Y, y);
153 input_report_abs(idev, ABS_PRESSURE, pressure);
154 input_report_key(idev, BTN_TOUCH, 1);
155 input_sync(idev);
158 static void ucb1400_ts_event_release(struct input_dev *idev)
160 input_report_abs(idev, ABS_PRESSURE, 0);
161 input_report_key(idev, BTN_TOUCH, 0);
162 input_sync(idev);
165 static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
167 unsigned int isr;
169 isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
170 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
171 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
173 if (isr & UCB_IE_TSPX)
174 ucb1400_ts_irq_disable(ucb->ac97);
175 else
176 dev_dbg(&ucb->ts_idev->dev, "ucb1400: unexpected IE_STATUS = %#x\n", isr);
177 enable_irq(ucb->irq);
180 static int ucb1400_ts_thread(void *_ucb)
182 struct ucb1400_ts *ucb = _ucb;
183 struct task_struct *tsk = current;
184 int valid = 0;
185 struct sched_param param = { .sched_priority = 1 };
187 sched_setscheduler(tsk, SCHED_FIFO, &param);
189 set_freezable();
190 while (!kthread_should_stop()) {
191 unsigned int x, y, p;
192 long timeout;
194 ucb->ts_restart = 0;
196 if (ucb->irq_pending) {
197 ucb->irq_pending = 0;
198 ucb1400_handle_pending_irq(ucb);
201 ucb1400_adc_enable(ucb->ac97);
202 x = ucb1400_ts_read_xpos(ucb);
203 y = ucb1400_ts_read_ypos(ucb);
204 p = ucb1400_ts_read_pressure(ucb);
205 ucb1400_adc_disable(ucb->ac97);
207 /* Switch back to interrupt mode. */
208 ucb1400_ts_mode_int(ucb->ac97);
210 msleep(10);
212 if (ucb1400_ts_pen_up(ucb->ac97)) {
213 ucb1400_ts_irq_enable(ucb->ac97);
216 * If we spat out a valid sample set last time,
217 * spit out a "pen off" sample here.
219 if (valid) {
220 ucb1400_ts_event_release(ucb->ts_idev);
221 valid = 0;
224 timeout = MAX_SCHEDULE_TIMEOUT;
225 } else {
226 valid = 1;
227 ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
228 timeout = msecs_to_jiffies(10);
231 wait_event_freezable_timeout(ucb->ts_wait,
232 ucb->irq_pending || ucb->ts_restart ||
233 kthread_should_stop(), timeout);
236 /* Send the "pen off" if we are stopping with the pen still active */
237 if (valid)
238 ucb1400_ts_event_release(ucb->ts_idev);
240 ucb->ts_task = NULL;
241 return 0;
245 * A restriction with interrupts exists when using the ucb1400, as
246 * the codec read/write routines may sleep while waiting for codec
247 * access completion and uses semaphores for access control to the
248 * AC97 bus. A complete codec read cycle could take anywhere from
249 * 60 to 100uSec so we *definitely* don't want to spin inside the
250 * interrupt handler waiting for codec access. So, we handle the
251 * interrupt by scheduling a RT kernel thread to run in process
252 * context instead of interrupt context.
254 static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
256 struct ucb1400_ts *ucb = devid;
258 if (irqnr == ucb->irq) {
259 disable_irq_nosync(ucb->irq);
260 ucb->irq_pending = 1;
261 wake_up(&ucb->ts_wait);
262 return IRQ_HANDLED;
264 return IRQ_NONE;
267 static int ucb1400_ts_open(struct input_dev *idev)
269 struct ucb1400_ts *ucb = input_get_drvdata(idev);
270 int ret = 0;
272 BUG_ON(ucb->ts_task);
274 ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
275 if (IS_ERR(ucb->ts_task)) {
276 ret = PTR_ERR(ucb->ts_task);
277 ucb->ts_task = NULL;
280 return ret;
283 static void ucb1400_ts_close(struct input_dev *idev)
285 struct ucb1400_ts *ucb = input_get_drvdata(idev);
287 if (ucb->ts_task)
288 kthread_stop(ucb->ts_task);
290 ucb1400_ts_irq_disable(ucb->ac97);
291 ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
294 #ifndef NO_IRQ
295 #define NO_IRQ 0
296 #endif
299 * Try to probe our interrupt, rather than relying on lots of
300 * hard-coded machine dependencies.
302 static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
304 unsigned long mask, timeout;
306 mask = probe_irq_on();
308 /* Enable the ADC interrupt. */
309 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
310 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
311 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
312 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
314 /* Cause an ADC interrupt. */
315 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
316 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
318 /* Wait for the conversion to complete. */
319 timeout = jiffies + HZ/2;
320 while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
321 UCB_ADC_DAT_VALID)) {
322 cpu_relax();
323 if (time_after(jiffies, timeout)) {
324 printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
325 probe_irq_off(mask);
326 return -ENODEV;
329 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
331 /* Disable and clear interrupt. */
332 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
333 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
334 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
335 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
337 /* Read triggered interrupt. */
338 ucb->irq = probe_irq_off(mask);
339 if (ucb->irq < 0 || ucb->irq == NO_IRQ)
340 return -ENODEV;
342 return 0;
345 static int ucb1400_ts_probe(struct platform_device *dev)
347 int error, x_res, y_res;
348 u16 fcsr;
349 struct ucb1400_ts *ucb = dev->dev.platform_data;
351 ucb->ts_idev = input_allocate_device();
352 if (!ucb->ts_idev) {
353 error = -ENOMEM;
354 goto err;
357 /* Only in case the IRQ line wasn't supplied, try detecting it */
358 if (ucb->irq < 0) {
359 error = ucb1400_ts_detect_irq(ucb);
360 if (error) {
361 printk(KERN_ERR "UCB1400: IRQ probe failed\n");
362 goto err_free_devs;
366 init_waitqueue_head(&ucb->ts_wait);
368 error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
369 "UCB1400", ucb);
370 if (error) {
371 printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
372 ucb->irq, error);
373 goto err_free_devs;
375 printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
377 input_set_drvdata(ucb->ts_idev, ucb);
379 ucb->ts_idev->dev.parent = &dev->dev;
380 ucb->ts_idev->name = "UCB1400 touchscreen interface";
381 ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
382 AC97_VENDOR_ID1);
383 ucb->ts_idev->id.product = ucb->id;
384 ucb->ts_idev->open = ucb1400_ts_open;
385 ucb->ts_idev->close = ucb1400_ts_close;
386 ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
387 ucb->ts_idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
390 * Enable ADC filter to prevent horrible jitter on Colibri.
391 * This also further reduces jitter on boards where ADCSYNC
392 * pin is connected.
394 fcsr = ucb1400_reg_read(ucb->ac97, UCB_FCSR);
395 ucb1400_reg_write(ucb->ac97, UCB_FCSR, fcsr | UCB_FCSR_AVE);
397 ucb1400_adc_enable(ucb->ac97);
398 x_res = ucb1400_ts_read_xres(ucb);
399 y_res = ucb1400_ts_read_yres(ucb);
400 ucb1400_adc_disable(ucb->ac97);
401 printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
403 input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
404 input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
405 input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
407 error = input_register_device(ucb->ts_idev);
408 if (error)
409 goto err_free_irq;
411 return 0;
413 err_free_irq:
414 free_irq(ucb->irq, ucb);
415 err_free_devs:
416 input_free_device(ucb->ts_idev);
417 err:
418 return error;
422 static int ucb1400_ts_remove(struct platform_device *dev)
424 struct ucb1400_ts *ucb = dev->dev.platform_data;
426 free_irq(ucb->irq, ucb);
427 input_unregister_device(ucb->ts_idev);
428 return 0;
431 #ifdef CONFIG_PM
432 static int ucb1400_ts_resume(struct platform_device *dev)
434 struct ucb1400_ts *ucb = dev->dev.platform_data;
436 if (ucb->ts_task) {
438 * Restart the TS thread to ensure the
439 * TS interrupt mode is set up again
440 * after sleep.
442 ucb->ts_restart = 1;
443 wake_up(&ucb->ts_wait);
445 return 0;
447 #else
448 #define ucb1400_ts_resume NULL
449 #endif
451 static struct platform_driver ucb1400_ts_driver = {
452 .probe = ucb1400_ts_probe,
453 .remove = ucb1400_ts_remove,
454 .resume = ucb1400_ts_resume,
455 .driver = {
456 .name = "ucb1400_ts",
460 static int __init ucb1400_ts_init(void)
462 return platform_driver_register(&ucb1400_ts_driver);
465 static void __exit ucb1400_ts_exit(void)
467 platform_driver_unregister(&ucb1400_ts_driver);
470 module_param(adcsync, bool, 0444);
471 MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
473 module_param(ts_delay, int, 0444);
474 MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
475 " position read. Default = 55us.");
477 module_param(ts_delay_pressure, int, 0444);
478 MODULE_PARM_DESC(ts_delay_pressure,
479 "delay between panel setup and pressure read."
480 " Default = 0us.");
482 module_init(ucb1400_ts_init);
483 module_exit(ucb1400_ts_exit);
485 MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
486 MODULE_LICENSE("GPL");