usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / mtd / nftlmount.c
blobac4092591aea035068e169900b099ca8121c2185
1 /*
2 * NFTL mount code with extensive checks
4 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
5 * Copyright © 2000 Netgem S.A.
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <asm/errno.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/nftl.h>
31 #define SECTORSIZE 512
33 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
34 * various device information of the NFTL partition and Bad Unit Table. Update
35 * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
36 * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
38 static int find_boot_record(struct NFTLrecord *nftl)
40 struct nftl_uci1 h1;
41 unsigned int block, boot_record_count = 0;
42 size_t retlen;
43 u8 buf[SECTORSIZE];
44 struct NFTLMediaHeader *mh = &nftl->MediaHdr;
45 struct mtd_info *mtd = nftl->mbd.mtd;
46 unsigned int i;
48 /* Assume logical EraseSize == physical erasesize for starting the scan.
49 We'll sort it out later if we find a MediaHeader which says otherwise */
50 /* Actually, we won't. The new DiskOnChip driver has already scanned
51 the MediaHeader and adjusted the virtual erasesize it presents in
52 the mtd device accordingly. We could even get rid of
53 nftl->EraseSize if there were any point in doing so. */
54 nftl->EraseSize = nftl->mbd.mtd->erasesize;
55 nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
57 nftl->MediaUnit = BLOCK_NIL;
58 nftl->SpareMediaUnit = BLOCK_NIL;
60 /* search for a valid boot record */
61 for (block = 0; block < nftl->nb_blocks; block++) {
62 int ret;
64 /* Check for ANAND header first. Then can whinge if it's found but later
65 checks fail */
66 ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
67 &retlen, buf);
68 /* We ignore ret in case the ECC of the MediaHeader is invalid
69 (which is apparently acceptable) */
70 if (retlen != SECTORSIZE) {
71 static int warncount = 5;
73 if (warncount) {
74 printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
75 block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
76 if (!--warncount)
77 printk(KERN_WARNING "Further failures for this block will not be printed\n");
79 continue;
82 if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
83 /* ANAND\0 not found. Continue */
84 #if 0
85 printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
86 block * nftl->EraseSize, nftl->mbd.mtd->index);
87 #endif
88 continue;
91 /* To be safer with BIOS, also use erase mark as discriminant */
92 if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
93 SECTORSIZE + 8, 8, &retlen,
94 (char *)&h1) < 0)) {
95 printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
96 block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
97 continue;
100 #if 0 /* Some people seem to have devices without ECC or erase marks
101 on the Media Header blocks. There are enough other sanity
102 checks in here that we can probably do without it.
104 if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
105 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
106 block * nftl->EraseSize, nftl->mbd.mtd->index,
107 le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
108 continue;
111 /* Finally reread to check ECC */
112 if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
113 &retlen, buf) < 0)) {
114 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
115 block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
116 continue;
119 /* Paranoia. Check the ANAND header is still there after the ECC read */
120 if (memcmp(buf, "ANAND", 6)) {
121 printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
122 block * nftl->EraseSize, nftl->mbd.mtd->index);
123 printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
124 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
125 continue;
127 #endif
128 /* OK, we like it. */
130 if (boot_record_count) {
131 /* We've already processed one. So we just check if
132 this one is the same as the first one we found */
133 if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
134 printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
135 nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
136 /* if (debug) Print both side by side */
137 if (boot_record_count < 2) {
138 /* We haven't yet seen two real ones */
139 return -1;
141 continue;
143 if (boot_record_count == 1)
144 nftl->SpareMediaUnit = block;
146 /* Mark this boot record (NFTL MediaHeader) block as reserved */
147 nftl->ReplUnitTable[block] = BLOCK_RESERVED;
150 boot_record_count++;
151 continue;
154 /* This is the first we've seen. Copy the media header structure into place */
155 memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
157 /* Do some sanity checks on it */
158 #if 0
159 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
160 erasesize based on UnitSizeFactor. So the erasesize we read from the mtd
161 device is already correct.
162 if (mh->UnitSizeFactor == 0) {
163 printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
164 } else if (mh->UnitSizeFactor < 0xfc) {
165 printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
166 mh->UnitSizeFactor);
167 return -1;
168 } else if (mh->UnitSizeFactor != 0xff) {
169 printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
170 mh->UnitSizeFactor);
171 nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
172 nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
174 #endif
175 nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
176 if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
177 printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
178 printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
179 nftl->nb_boot_blocks, nftl->nb_blocks);
180 return -1;
183 nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
184 if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
185 printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
186 printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
187 nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
188 return -1;
191 nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
193 /* If we're not using the last sectors in the device for some reason,
194 reduce nb_blocks accordingly so we forget they're there */
195 nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
197 /* XXX: will be suppressed */
198 nftl->lastEUN = nftl->nb_blocks - 1;
200 /* memory alloc */
201 nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
202 if (!nftl->EUNtable) {
203 printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
204 return -ENOMEM;
207 nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
208 if (!nftl->ReplUnitTable) {
209 kfree(nftl->EUNtable);
210 printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
211 return -ENOMEM;
214 /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
215 for (i = 0; i < nftl->nb_boot_blocks; i++)
216 nftl->ReplUnitTable[i] = BLOCK_RESERVED;
217 /* mark all remaining blocks as potentially containing data */
218 for (; i < nftl->nb_blocks; i++) {
219 nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
222 /* Mark this boot record (NFTL MediaHeader) block as reserved */
223 nftl->ReplUnitTable[block] = BLOCK_RESERVED;
225 /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
226 for (i = 0; i < nftl->nb_blocks; i++) {
227 #if 0
228 The new DiskOnChip driver already scanned the bad block table. Just query it.
229 if ((i & (SECTORSIZE - 1)) == 0) {
230 /* read one sector for every SECTORSIZE of blocks */
231 if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
232 i + SECTORSIZE, SECTORSIZE, &retlen,
233 buf)) < 0) {
234 printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
235 ret);
236 kfree(nftl->ReplUnitTable);
237 kfree(nftl->EUNtable);
238 return -1;
241 /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
242 if (buf[i & (SECTORSIZE - 1)] != 0xff)
243 nftl->ReplUnitTable[i] = BLOCK_RESERVED;
244 #endif
245 if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize))
246 nftl->ReplUnitTable[i] = BLOCK_RESERVED;
249 nftl->MediaUnit = block;
250 boot_record_count++;
252 } /* foreach (block) */
254 return boot_record_count?0:-1;
257 static int memcmpb(void *a, int c, int n)
259 int i;
260 for (i = 0; i < n; i++) {
261 if (c != ((unsigned char *)a)[i])
262 return 1;
264 return 0;
267 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
268 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
269 int check_oob)
271 u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
272 struct mtd_info *mtd = nftl->mbd.mtd;
273 size_t retlen;
274 int i;
276 for (i = 0; i < len; i += SECTORSIZE) {
277 if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
278 return -1;
279 if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
280 return -1;
282 if (check_oob) {
283 if(nftl_read_oob(mtd, address, mtd->oobsize,
284 &retlen, &buf[SECTORSIZE]) < 0)
285 return -1;
286 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
287 return -1;
289 address += SECTORSIZE;
292 return 0;
295 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
296 * Update NFTL metadata. Each erase operation is checked with check_free_sectors
298 * Return: 0 when succeed, -1 on error.
300 * ToDo: 1. Is it necessary to check_free_sector after erasing ??
302 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
304 size_t retlen;
305 unsigned int nb_erases, erase_mark;
306 struct nftl_uci1 uci;
307 struct erase_info *instr = &nftl->instr;
308 struct mtd_info *mtd = nftl->mbd.mtd;
310 /* Read the Unit Control Information #1 for Wear-Leveling */
311 if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
312 8, &retlen, (char *)&uci) < 0)
313 goto default_uci1;
315 erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
316 if (erase_mark != ERASE_MARK) {
317 default_uci1:
318 uci.EraseMark = cpu_to_le16(ERASE_MARK);
319 uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
320 uci.WearInfo = cpu_to_le32(0);
323 memset(instr, 0, sizeof(struct erase_info));
325 /* XXX: use async erase interface, XXX: test return code */
326 instr->mtd = nftl->mbd.mtd;
327 instr->addr = block * nftl->EraseSize;
328 instr->len = nftl->EraseSize;
329 mtd->erase(mtd, instr);
331 if (instr->state == MTD_ERASE_FAILED) {
332 printk("Error while formatting block %d\n", block);
333 goto fail;
336 /* increase and write Wear-Leveling info */
337 nb_erases = le32_to_cpu(uci.WearInfo);
338 nb_erases++;
340 /* wrap (almost impossible with current flash) or free block */
341 if (nb_erases == 0)
342 nb_erases = 1;
344 /* check the "freeness" of Erase Unit before updating metadata
345 * FixMe: is this check really necessary ? since we have check the
346 * return code after the erase operation. */
347 if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
348 goto fail;
350 uci.WearInfo = le32_to_cpu(nb_erases);
351 if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
352 8, 8, &retlen, (char *)&uci) < 0)
353 goto fail;
354 return 0;
355 fail:
356 /* could not format, update the bad block table (caller is responsible
357 for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
358 nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr);
359 return -1;
362 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
363 * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
364 * was being folded when NFTL was interrupted.
366 * The check_free_sectors in this function is necessary. There is a possible
367 * situation that after writing the Data area, the Block Control Information is
368 * not updated according (due to power failure or something) which leaves the block
369 * in an inconsistent state. So we have to check if a block is really FREE in this
370 * case. */
371 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
373 struct mtd_info *mtd = nftl->mbd.mtd;
374 unsigned int block, i, status;
375 struct nftl_bci bci;
376 int sectors_per_block;
377 size_t retlen;
379 sectors_per_block = nftl->EraseSize / SECTORSIZE;
380 block = first_block;
381 for (;;) {
382 for (i = 0; i < sectors_per_block; i++) {
383 if (nftl_read_oob(mtd,
384 block * nftl->EraseSize + i * SECTORSIZE,
385 8, &retlen, (char *)&bci) < 0)
386 status = SECTOR_IGNORE;
387 else
388 status = bci.Status | bci.Status1;
390 switch(status) {
391 case SECTOR_FREE:
392 /* verify that the sector is really free. If not, mark
393 as ignore */
394 if (memcmpb(&bci, 0xff, 8) != 0 ||
395 check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
396 SECTORSIZE, 0) != 0) {
397 printk("Incorrect free sector %d in block %d: "
398 "marking it as ignored\n",
399 i, block);
401 /* sector not free actually : mark it as SECTOR_IGNORE */
402 bci.Status = SECTOR_IGNORE;
403 bci.Status1 = SECTOR_IGNORE;
404 nftl_write_oob(mtd, block *
405 nftl->EraseSize +
406 i * SECTORSIZE, 8,
407 &retlen, (char *)&bci);
409 break;
410 default:
411 break;
415 /* proceed to next Erase Unit on the chain */
416 block = nftl->ReplUnitTable[block];
417 if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
418 printk("incorrect ReplUnitTable[] : %d\n", block);
419 if (block == BLOCK_NIL || block >= nftl->nb_blocks)
420 break;
424 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
425 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
427 unsigned int length = 0, block = first_block;
429 for (;;) {
430 length++;
431 /* avoid infinite loops, although this is guaranteed not to
432 happen because of the previous checks */
433 if (length >= nftl->nb_blocks) {
434 printk("nftl: length too long %d !\n", length);
435 break;
438 block = nftl->ReplUnitTable[block];
439 if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
440 printk("incorrect ReplUnitTable[] : %d\n", block);
441 if (block == BLOCK_NIL || block >= nftl->nb_blocks)
442 break;
444 return length;
447 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
448 * Virtual Unit Chain, i.e. all the units are disconnected.
450 * It is not strictly correct to begin from the first block of the chain because
451 * if we stop the code, we may see again a valid chain if there was a first_block
452 * flag in a block inside it. But is it really a problem ?
454 * FixMe: Figure out what the last statement means. What if power failure when we are
455 * in the for (;;) loop formatting blocks ??
457 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
459 unsigned int block = first_block, block1;
461 printk("Formatting chain at block %d\n", first_block);
463 for (;;) {
464 block1 = nftl->ReplUnitTable[block];
466 printk("Formatting block %d\n", block);
467 if (NFTL_formatblock(nftl, block) < 0) {
468 /* cannot format !!!! Mark it as Bad Unit */
469 nftl->ReplUnitTable[block] = BLOCK_RESERVED;
470 } else {
471 nftl->ReplUnitTable[block] = BLOCK_FREE;
474 /* goto next block on the chain */
475 block = block1;
477 if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
478 printk("incorrect ReplUnitTable[] : %d\n", block);
479 if (block == BLOCK_NIL || block >= nftl->nb_blocks)
480 break;
484 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
485 * totally free (only 0xff).
487 * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
488 * following criteria:
489 * 1. */
490 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
492 struct mtd_info *mtd = nftl->mbd.mtd;
493 struct nftl_uci1 h1;
494 unsigned int erase_mark;
495 size_t retlen;
497 /* check erase mark. */
498 if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
499 &retlen, (char *)&h1) < 0)
500 return -1;
502 erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
503 if (erase_mark != ERASE_MARK) {
504 /* if no erase mark, the block must be totally free. This is
505 possible in two cases : empty filesystem or interrupted erase (very unlikely) */
506 if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
507 return -1;
509 /* free block : write erase mark */
510 h1.EraseMark = cpu_to_le16(ERASE_MARK);
511 h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
512 h1.WearInfo = cpu_to_le32(0);
513 if (nftl_write_oob(mtd,
514 block * nftl->EraseSize + SECTORSIZE + 8, 8,
515 &retlen, (char *)&h1) < 0)
516 return -1;
517 } else {
518 #if 0
519 /* if erase mark present, need to skip it when doing check */
520 for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
521 /* check free sector */
522 if (check_free_sectors (nftl, block * nftl->EraseSize + i,
523 SECTORSIZE, 0) != 0)
524 return -1;
526 if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
527 16, &retlen, buf) < 0)
528 return -1;
529 if (i == SECTORSIZE) {
530 /* skip erase mark */
531 if (memcmpb(buf, 0xff, 8))
532 return -1;
533 } else {
534 if (memcmpb(buf, 0xff, 16))
535 return -1;
538 #endif
541 return 0;
544 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
545 * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
546 * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
547 * for some reason. A clean up/check of the VUC is necessary in this case.
549 * WARNING: return 0 if read error
551 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
553 struct mtd_info *mtd = nftl->mbd.mtd;
554 struct nftl_uci2 uci;
555 size_t retlen;
557 if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
558 8, &retlen, (char *)&uci) < 0)
559 return 0;
561 return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
564 int NFTL_mount(struct NFTLrecord *s)
566 int i;
567 unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
568 unsigned int block, first_block, is_first_block;
569 int chain_length, do_format_chain;
570 struct nftl_uci0 h0;
571 struct nftl_uci1 h1;
572 struct mtd_info *mtd = s->mbd.mtd;
573 size_t retlen;
575 /* search for NFTL MediaHeader and Spare NFTL Media Header */
576 if (find_boot_record(s) < 0) {
577 printk("Could not find valid boot record\n");
578 return -1;
581 /* init the logical to physical table */
582 for (i = 0; i < s->nb_blocks; i++) {
583 s->EUNtable[i] = BLOCK_NIL;
586 /* first pass : explore each block chain */
587 first_logical_block = 0;
588 for (first_block = 0; first_block < s->nb_blocks; first_block++) {
589 /* if the block was not already explored, we can look at it */
590 if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
591 block = first_block;
592 chain_length = 0;
593 do_format_chain = 0;
595 for (;;) {
596 /* read the block header. If error, we format the chain */
597 if (nftl_read_oob(mtd,
598 block * s->EraseSize + 8, 8,
599 &retlen, (char *)&h0) < 0 ||
600 nftl_read_oob(mtd,
601 block * s->EraseSize +
602 SECTORSIZE + 8, 8,
603 &retlen, (char *)&h1) < 0) {
604 s->ReplUnitTable[block] = BLOCK_NIL;
605 do_format_chain = 1;
606 break;
609 logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
610 rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
611 nb_erases = le32_to_cpu (h1.WearInfo);
612 erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
614 is_first_block = !(logical_block >> 15);
615 logical_block = logical_block & 0x7fff;
617 /* invalid/free block test */
618 if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
619 if (chain_length == 0) {
620 /* if not currently in a chain, we can handle it safely */
621 if (check_and_mark_free_block(s, block) < 0) {
622 /* not really free: format it */
623 printk("Formatting block %d\n", block);
624 if (NFTL_formatblock(s, block) < 0) {
625 /* could not format: reserve the block */
626 s->ReplUnitTable[block] = BLOCK_RESERVED;
627 } else {
628 s->ReplUnitTable[block] = BLOCK_FREE;
630 } else {
631 /* free block: mark it */
632 s->ReplUnitTable[block] = BLOCK_FREE;
634 /* directly examine the next block. */
635 goto examine_ReplUnitTable;
636 } else {
637 /* the block was in a chain : this is bad. We
638 must format all the chain */
639 printk("Block %d: free but referenced in chain %d\n",
640 block, first_block);
641 s->ReplUnitTable[block] = BLOCK_NIL;
642 do_format_chain = 1;
643 break;
647 /* we accept only first blocks here */
648 if (chain_length == 0) {
649 /* this block is not the first block in chain :
650 ignore it, it will be included in a chain
651 later, or marked as not explored */
652 if (!is_first_block)
653 goto examine_ReplUnitTable;
654 first_logical_block = logical_block;
655 } else {
656 if (logical_block != first_logical_block) {
657 printk("Block %d: incorrect logical block: %d expected: %d\n",
658 block, logical_block, first_logical_block);
659 /* the chain is incorrect : we must format it,
660 but we need to read it completely */
661 do_format_chain = 1;
663 if (is_first_block) {
664 /* we accept that a block is marked as first
665 block while being last block in a chain
666 only if the chain is being folded */
667 if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
668 rep_block != 0xffff) {
669 printk("Block %d: incorrectly marked as first block in chain\n",
670 block);
671 /* the chain is incorrect : we must format it,
672 but we need to read it completely */
673 do_format_chain = 1;
674 } else {
675 printk("Block %d: folding in progress - ignoring first block flag\n",
676 block);
680 chain_length++;
681 if (rep_block == 0xffff) {
682 /* no more blocks after */
683 s->ReplUnitTable[block] = BLOCK_NIL;
684 break;
685 } else if (rep_block >= s->nb_blocks) {
686 printk("Block %d: referencing invalid block %d\n",
687 block, rep_block);
688 do_format_chain = 1;
689 s->ReplUnitTable[block] = BLOCK_NIL;
690 break;
691 } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
692 /* same problem as previous 'is_first_block' test:
693 we accept that the last block of a chain has
694 the first_block flag set if folding is in
695 progress. We handle here the case where the
696 last block appeared first */
697 if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
698 s->EUNtable[first_logical_block] == rep_block &&
699 get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
700 /* EUNtable[] will be set after */
701 printk("Block %d: folding in progress - ignoring first block flag\n",
702 rep_block);
703 s->ReplUnitTable[block] = rep_block;
704 s->EUNtable[first_logical_block] = BLOCK_NIL;
705 } else {
706 printk("Block %d: referencing block %d already in another chain\n",
707 block, rep_block);
708 /* XXX: should handle correctly fold in progress chains */
709 do_format_chain = 1;
710 s->ReplUnitTable[block] = BLOCK_NIL;
712 break;
713 } else {
714 /* this is OK */
715 s->ReplUnitTable[block] = rep_block;
716 block = rep_block;
720 /* the chain was completely explored. Now we can decide
721 what to do with it */
722 if (do_format_chain) {
723 /* invalid chain : format it */
724 format_chain(s, first_block);
725 } else {
726 unsigned int first_block1, chain_to_format, chain_length1;
727 int fold_mark;
729 /* valid chain : get foldmark */
730 fold_mark = get_fold_mark(s, first_block);
731 if (fold_mark == 0) {
732 /* cannot get foldmark : format the chain */
733 printk("Could read foldmark at block %d\n", first_block);
734 format_chain(s, first_block);
735 } else {
736 if (fold_mark == FOLD_MARK_IN_PROGRESS)
737 check_sectors_in_chain(s, first_block);
739 /* now handle the case where we find two chains at the
740 same virtual address : we select the longer one,
741 because the shorter one is the one which was being
742 folded if the folding was not done in place */
743 first_block1 = s->EUNtable[first_logical_block];
744 if (first_block1 != BLOCK_NIL) {
745 /* XXX: what to do if same length ? */
746 chain_length1 = calc_chain_length(s, first_block1);
747 printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
748 first_block1, chain_length1, first_block, chain_length);
750 if (chain_length >= chain_length1) {
751 chain_to_format = first_block1;
752 s->EUNtable[first_logical_block] = first_block;
753 } else {
754 chain_to_format = first_block;
756 format_chain(s, chain_to_format);
757 } else {
758 s->EUNtable[first_logical_block] = first_block;
763 examine_ReplUnitTable:;
766 /* second pass to format unreferenced blocks and init free block count */
767 s->numfreeEUNs = 0;
768 s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
770 for (block = 0; block < s->nb_blocks; block++) {
771 if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
772 printk("Unreferenced block %d, formatting it\n", block);
773 if (NFTL_formatblock(s, block) < 0)
774 s->ReplUnitTable[block] = BLOCK_RESERVED;
775 else
776 s->ReplUnitTable[block] = BLOCK_FREE;
778 if (s->ReplUnitTable[block] == BLOCK_FREE) {
779 s->numfreeEUNs++;
780 s->LastFreeEUN = block;
784 return 0;