usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / net / ethernet / sfc / efx.c
blobd5731f1fe6d67dc3713070ec4e7733f4788cc35a
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
29 #include "mcdi.h"
30 #include "workarounds.h"
32 /**************************************************************************
34 * Type name strings
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
86 #define EFX_MAX_MTU (9 * 1024)
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 static struct workqueue_struct *reset_workqueue;
94 /**************************************************************************
96 * Configurable values
98 *************************************************************************/
101 * Use separate channels for TX and RX events
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
106 * This is only used in MSI-X interrupt mode
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
116 static int napi_weight = 64;
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
123 static unsigned int efx_monitor_interval = 1 * HZ;
125 /* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
132 static unsigned int allow_bad_hwaddr;
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
140 static unsigned int rx_irq_mod_usec = 60;
142 /* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
151 static unsigned int tx_irq_mod_usec = 150;
153 /* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
158 static unsigned int interrupt_mode;
160 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
167 static unsigned int rss_cpus;
168 module_param(rss_cpus, uint, 0444);
169 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
171 static int phy_flash_cfg;
172 module_param(phy_flash_cfg, int, 0644);
173 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
175 static unsigned irq_adapt_low_thresh = 10000;
176 module_param(irq_adapt_low_thresh, uint, 0644);
177 MODULE_PARM_DESC(irq_adapt_low_thresh,
178 "Threshold score for reducing IRQ moderation");
180 static unsigned irq_adapt_high_thresh = 20000;
181 module_param(irq_adapt_high_thresh, uint, 0644);
182 MODULE_PARM_DESC(irq_adapt_high_thresh,
183 "Threshold score for increasing IRQ moderation");
185 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189 module_param(debug, uint, 0);
190 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
192 /**************************************************************************
194 * Utility functions and prototypes
196 *************************************************************************/
198 static void efx_remove_channels(struct efx_nic *efx);
199 static void efx_remove_port(struct efx_nic *efx);
200 static void efx_init_napi(struct efx_nic *efx);
201 static void efx_fini_napi(struct efx_nic *efx);
202 static void efx_fini_napi_channel(struct efx_channel *channel);
203 static void efx_fini_struct(struct efx_nic *efx);
204 static void efx_start_all(struct efx_nic *efx);
205 static void efx_stop_all(struct efx_nic *efx);
207 #define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
211 ASSERT_RTNL(); \
212 } while (0)
214 /**************************************************************************
216 * Event queue processing
218 *************************************************************************/
220 /* Process channel's event queue
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
227 static int efx_process_channel(struct efx_channel *channel, int budget)
229 struct efx_nic *efx = channel->efx;
230 int spent;
232 if (unlikely(efx->reset_pending || !channel->enabled))
233 return 0;
235 spent = efx_nic_process_eventq(channel, budget);
236 if (spent == 0)
237 return 0;
239 /* Deliver last RX packet. */
240 if (channel->rx_pkt) {
241 __efx_rx_packet(channel, channel->rx_pkt,
242 channel->rx_pkt_csummed);
243 channel->rx_pkt = NULL;
246 efx_rx_strategy(channel);
248 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
250 return spent;
253 /* Mark channel as finished processing
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
259 static inline void efx_channel_processed(struct efx_channel *channel)
261 /* The interrupt handler for this channel may set work_pending
262 * as soon as we acknowledge the events we've seen. Make sure
263 * it's cleared before then. */
264 channel->work_pending = false;
265 smp_wmb();
267 efx_nic_eventq_read_ack(channel);
270 /* NAPI poll handler
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
275 static int efx_poll(struct napi_struct *napi, int budget)
277 struct efx_channel *channel =
278 container_of(napi, struct efx_channel, napi_str);
279 struct efx_nic *efx = channel->efx;
280 int spent;
282 netif_vdbg(efx, intr, efx->net_dev,
283 "channel %d NAPI poll executing on CPU %d\n",
284 channel->channel, raw_smp_processor_id());
286 spent = efx_process_channel(channel, budget);
288 if (spent < budget) {
289 if (channel->channel < efx->n_rx_channels &&
290 efx->irq_rx_adaptive &&
291 unlikely(++channel->irq_count == 1000)) {
292 if (unlikely(channel->irq_mod_score <
293 irq_adapt_low_thresh)) {
294 if (channel->irq_moderation > 1) {
295 channel->irq_moderation -= 1;
296 efx->type->push_irq_moderation(channel);
298 } else if (unlikely(channel->irq_mod_score >
299 irq_adapt_high_thresh)) {
300 if (channel->irq_moderation <
301 efx->irq_rx_moderation) {
302 channel->irq_moderation += 1;
303 efx->type->push_irq_moderation(channel);
306 channel->irq_count = 0;
307 channel->irq_mod_score = 0;
310 efx_filter_rfs_expire(channel);
312 /* There is no race here; although napi_disable() will
313 * only wait for napi_complete(), this isn't a problem
314 * since efx_channel_processed() will have no effect if
315 * interrupts have already been disabled.
317 napi_complete(napi);
318 efx_channel_processed(channel);
321 return spent;
324 /* Process the eventq of the specified channel immediately on this CPU
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
330 * This is for use only during a loopback self-test. It must not
331 * deliver any packets up the stack as this can result in deadlock.
333 void efx_process_channel_now(struct efx_channel *channel)
335 struct efx_nic *efx = channel->efx;
337 BUG_ON(channel->channel >= efx->n_channels);
338 BUG_ON(!channel->enabled);
339 BUG_ON(!efx->loopback_selftest);
341 /* Disable interrupts and wait for ISRs to complete */
342 efx_nic_disable_interrupts(efx);
343 if (efx->legacy_irq) {
344 synchronize_irq(efx->legacy_irq);
345 efx->legacy_irq_enabled = false;
347 if (channel->irq)
348 synchronize_irq(channel->irq);
350 /* Wait for any NAPI processing to complete */
351 napi_disable(&channel->napi_str);
353 /* Poll the channel */
354 efx_process_channel(channel, channel->eventq_mask + 1);
356 /* Ack the eventq. This may cause an interrupt to be generated
357 * when they are reenabled */
358 efx_channel_processed(channel);
360 napi_enable(&channel->napi_str);
361 if (efx->legacy_irq)
362 efx->legacy_irq_enabled = true;
363 efx_nic_enable_interrupts(efx);
366 /* Create event queue
367 * Event queue memory allocations are done only once. If the channel
368 * is reset, the memory buffer will be reused; this guards against
369 * errors during channel reset and also simplifies interrupt handling.
371 static int efx_probe_eventq(struct efx_channel *channel)
373 struct efx_nic *efx = channel->efx;
374 unsigned long entries;
376 netif_dbg(channel->efx, probe, channel->efx->net_dev,
377 "chan %d create event queue\n", channel->channel);
379 /* Build an event queue with room for one event per tx and rx buffer,
380 * plus some extra for link state events and MCDI completions. */
381 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
382 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
383 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
385 return efx_nic_probe_eventq(channel);
388 /* Prepare channel's event queue */
389 static void efx_init_eventq(struct efx_channel *channel)
391 netif_dbg(channel->efx, drv, channel->efx->net_dev,
392 "chan %d init event queue\n", channel->channel);
394 channel->eventq_read_ptr = 0;
396 efx_nic_init_eventq(channel);
399 static void efx_fini_eventq(struct efx_channel *channel)
401 netif_dbg(channel->efx, drv, channel->efx->net_dev,
402 "chan %d fini event queue\n", channel->channel);
404 efx_nic_fini_eventq(channel);
407 static void efx_remove_eventq(struct efx_channel *channel)
409 netif_dbg(channel->efx, drv, channel->efx->net_dev,
410 "chan %d remove event queue\n", channel->channel);
412 efx_nic_remove_eventq(channel);
415 /**************************************************************************
417 * Channel handling
419 *************************************************************************/
421 /* Allocate and initialise a channel structure, optionally copying
422 * parameters (but not resources) from an old channel structure. */
423 static struct efx_channel *
424 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
426 struct efx_channel *channel;
427 struct efx_rx_queue *rx_queue;
428 struct efx_tx_queue *tx_queue;
429 int j;
431 if (old_channel) {
432 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
436 *channel = *old_channel;
438 channel->napi_dev = NULL;
439 memset(&channel->eventq, 0, sizeof(channel->eventq));
441 rx_queue = &channel->rx_queue;
442 rx_queue->buffer = NULL;
443 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
445 for (j = 0; j < EFX_TXQ_TYPES; j++) {
446 tx_queue = &channel->tx_queue[j];
447 if (tx_queue->channel)
448 tx_queue->channel = channel;
449 tx_queue->buffer = NULL;
450 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
452 } else {
453 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
457 channel->efx = efx;
458 channel->channel = i;
460 for (j = 0; j < EFX_TXQ_TYPES; j++) {
461 tx_queue = &channel->tx_queue[j];
462 tx_queue->efx = efx;
463 tx_queue->queue = i * EFX_TXQ_TYPES + j;
464 tx_queue->channel = channel;
468 rx_queue = &channel->rx_queue;
469 rx_queue->efx = efx;
470 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471 (unsigned long)rx_queue);
473 return channel;
476 static int efx_probe_channel(struct efx_channel *channel)
478 struct efx_tx_queue *tx_queue;
479 struct efx_rx_queue *rx_queue;
480 int rc;
482 netif_dbg(channel->efx, probe, channel->efx->net_dev,
483 "creating channel %d\n", channel->channel);
485 rc = efx_probe_eventq(channel);
486 if (rc)
487 goto fail1;
489 efx_for_each_channel_tx_queue(tx_queue, channel) {
490 rc = efx_probe_tx_queue(tx_queue);
491 if (rc)
492 goto fail2;
495 efx_for_each_channel_rx_queue(rx_queue, channel) {
496 rc = efx_probe_rx_queue(rx_queue);
497 if (rc)
498 goto fail3;
501 channel->n_rx_frm_trunc = 0;
503 return 0;
505 fail3:
506 efx_for_each_channel_rx_queue(rx_queue, channel)
507 efx_remove_rx_queue(rx_queue);
508 fail2:
509 efx_for_each_channel_tx_queue(tx_queue, channel)
510 efx_remove_tx_queue(tx_queue);
511 fail1:
512 return rc;
516 static void efx_set_channel_names(struct efx_nic *efx)
518 struct efx_channel *channel;
519 const char *type = "";
520 int number;
522 efx_for_each_channel(channel, efx) {
523 number = channel->channel;
524 if (efx->n_channels > efx->n_rx_channels) {
525 if (channel->channel < efx->n_rx_channels) {
526 type = "-rx";
527 } else {
528 type = "-tx";
529 number -= efx->n_rx_channels;
532 snprintf(efx->channel_name[channel->channel],
533 sizeof(efx->channel_name[0]),
534 "%s%s-%d", efx->name, type, number);
538 static int efx_probe_channels(struct efx_nic *efx)
540 struct efx_channel *channel;
541 int rc;
543 /* Restart special buffer allocation */
544 efx->next_buffer_table = 0;
546 efx_for_each_channel(channel, efx) {
547 rc = efx_probe_channel(channel);
548 if (rc) {
549 netif_err(efx, probe, efx->net_dev,
550 "failed to create channel %d\n",
551 channel->channel);
552 goto fail;
555 efx_set_channel_names(efx);
557 return 0;
559 fail:
560 efx_remove_channels(efx);
561 return rc;
564 /* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
568 static void efx_init_channels(struct efx_nic *efx)
570 struct efx_tx_queue *tx_queue;
571 struct efx_rx_queue *rx_queue;
572 struct efx_channel *channel;
574 /* Calculate the rx buffer allocation parameters required to
575 * support the current MTU, including padding for header
576 * alignment and overruns.
578 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
579 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
580 efx->type->rx_buffer_hash_size +
581 efx->type->rx_buffer_padding);
582 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
583 sizeof(struct efx_rx_page_state));
585 /* Initialise the channels */
586 efx_for_each_channel(channel, efx) {
587 netif_dbg(channel->efx, drv, channel->efx->net_dev,
588 "init chan %d\n", channel->channel);
590 efx_init_eventq(channel);
592 efx_for_each_channel_tx_queue(tx_queue, channel)
593 efx_init_tx_queue(tx_queue);
595 /* The rx buffer allocation strategy is MTU dependent */
596 efx_rx_strategy(channel);
598 efx_for_each_channel_rx_queue(rx_queue, channel)
599 efx_init_rx_queue(rx_queue);
601 WARN_ON(channel->rx_pkt != NULL);
602 efx_rx_strategy(channel);
606 /* This enables event queue processing and packet transmission.
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
611 static void efx_start_channel(struct efx_channel *channel)
613 struct efx_rx_queue *rx_queue;
615 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
616 "starting chan %d\n", channel->channel);
618 /* The interrupt handler for this channel may set work_pending
619 * as soon as we enable it. Make sure it's cleared before
620 * then. Similarly, make sure it sees the enabled flag set. */
621 channel->work_pending = false;
622 channel->enabled = true;
623 smp_wmb();
625 /* Fill the queues before enabling NAPI */
626 efx_for_each_channel_rx_queue(rx_queue, channel)
627 efx_fast_push_rx_descriptors(rx_queue);
629 napi_enable(&channel->napi_str);
632 /* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
636 static void efx_stop_channel(struct efx_channel *channel)
638 if (!channel->enabled)
639 return;
641 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
642 "stop chan %d\n", channel->channel);
644 channel->enabled = false;
645 napi_disable(&channel->napi_str);
648 static void efx_fini_channels(struct efx_nic *efx)
650 struct efx_channel *channel;
651 struct efx_tx_queue *tx_queue;
652 struct efx_rx_queue *rx_queue;
653 int rc;
655 EFX_ASSERT_RESET_SERIALISED(efx);
656 BUG_ON(efx->port_enabled);
658 rc = efx_nic_flush_queues(efx);
659 if (rc && EFX_WORKAROUND_7803(efx)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
664 netif_err(efx, drv, efx->net_dev,
665 "Resetting to recover from flush failure\n");
666 efx_schedule_reset(efx, RESET_TYPE_ALL);
667 } else if (rc) {
668 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
669 } else {
670 netif_dbg(efx, drv, efx->net_dev,
671 "successfully flushed all queues\n");
674 efx_for_each_channel(channel, efx) {
675 netif_dbg(channel->efx, drv, channel->efx->net_dev,
676 "shut down chan %d\n", channel->channel);
678 efx_for_each_channel_rx_queue(rx_queue, channel)
679 efx_fini_rx_queue(rx_queue);
680 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
681 efx_fini_tx_queue(tx_queue);
682 efx_fini_eventq(channel);
686 static void efx_remove_channel(struct efx_channel *channel)
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
691 netif_dbg(channel->efx, drv, channel->efx->net_dev,
692 "destroy chan %d\n", channel->channel);
694 efx_for_each_channel_rx_queue(rx_queue, channel)
695 efx_remove_rx_queue(rx_queue);
696 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
697 efx_remove_tx_queue(tx_queue);
698 efx_remove_eventq(channel);
701 static void efx_remove_channels(struct efx_nic *efx)
703 struct efx_channel *channel;
705 efx_for_each_channel(channel, efx)
706 efx_remove_channel(channel);
710 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
712 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
713 u32 old_rxq_entries, old_txq_entries;
714 unsigned i;
715 int rc;
717 efx_stop_all(efx);
718 efx_fini_channels(efx);
720 /* Clone channels */
721 memset(other_channel, 0, sizeof(other_channel));
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx_alloc_channel(efx, i, efx->channel[i]);
724 if (!channel) {
725 rc = -ENOMEM;
726 goto out;
728 other_channel[i] = channel;
731 /* Swap entry counts and channel pointers */
732 old_rxq_entries = efx->rxq_entries;
733 old_txq_entries = efx->txq_entries;
734 efx->rxq_entries = rxq_entries;
735 efx->txq_entries = txq_entries;
736 for (i = 0; i < efx->n_channels; i++) {
737 channel = efx->channel[i];
738 efx->channel[i] = other_channel[i];
739 other_channel[i] = channel;
742 rc = efx_probe_channels(efx);
743 if (rc)
744 goto rollback;
746 efx_init_napi(efx);
748 /* Destroy old channels */
749 for (i = 0; i < efx->n_channels; i++) {
750 efx_fini_napi_channel(other_channel[i]);
751 efx_remove_channel(other_channel[i]);
753 out:
754 /* Free unused channel structures */
755 for (i = 0; i < efx->n_channels; i++)
756 kfree(other_channel[i]);
758 efx_init_channels(efx);
759 efx_start_all(efx);
760 return rc;
762 rollback:
763 /* Swap back */
764 efx->rxq_entries = old_rxq_entries;
765 efx->txq_entries = old_txq_entries;
766 for (i = 0; i < efx->n_channels; i++) {
767 channel = efx->channel[i];
768 efx->channel[i] = other_channel[i];
769 other_channel[i] = channel;
771 goto out;
774 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
776 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
779 /**************************************************************************
781 * Port handling
783 **************************************************************************/
785 /* This ensures that the kernel is kept informed (via
786 * netif_carrier_on/off) of the link status, and also maintains the
787 * link status's stop on the port's TX queue.
789 void efx_link_status_changed(struct efx_nic *efx)
791 struct efx_link_state *link_state = &efx->link_state;
793 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
794 * that no events are triggered between unregister_netdev() and the
795 * driver unloading. A more general condition is that NETDEV_CHANGE
796 * can only be generated between NETDEV_UP and NETDEV_DOWN */
797 if (!netif_running(efx->net_dev))
798 return;
800 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
801 efx->n_link_state_changes++;
803 if (link_state->up)
804 netif_carrier_on(efx->net_dev);
805 else
806 netif_carrier_off(efx->net_dev);
809 /* Status message for kernel log */
810 if (link_state->up) {
811 netif_info(efx, link, efx->net_dev,
812 "link up at %uMbps %s-duplex (MTU %d)%s\n",
813 link_state->speed, link_state->fd ? "full" : "half",
814 efx->net_dev->mtu,
815 (efx->promiscuous ? " [PROMISC]" : ""));
816 } else {
817 netif_info(efx, link, efx->net_dev, "link down\n");
822 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
824 efx->link_advertising = advertising;
825 if (advertising) {
826 if (advertising & ADVERTISED_Pause)
827 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
828 else
829 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
830 if (advertising & ADVERTISED_Asym_Pause)
831 efx->wanted_fc ^= EFX_FC_TX;
835 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
837 efx->wanted_fc = wanted_fc;
838 if (efx->link_advertising) {
839 if (wanted_fc & EFX_FC_RX)
840 efx->link_advertising |= (ADVERTISED_Pause |
841 ADVERTISED_Asym_Pause);
842 else
843 efx->link_advertising &= ~(ADVERTISED_Pause |
844 ADVERTISED_Asym_Pause);
845 if (wanted_fc & EFX_FC_TX)
846 efx->link_advertising ^= ADVERTISED_Asym_Pause;
850 static void efx_fini_port(struct efx_nic *efx);
852 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
853 * the MAC appropriately. All other PHY configuration changes are pushed
854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
855 * through efx_monitor().
857 * Callers must hold the mac_lock
859 int __efx_reconfigure_port(struct efx_nic *efx)
861 enum efx_phy_mode phy_mode;
862 int rc;
864 WARN_ON(!mutex_is_locked(&efx->mac_lock));
866 /* Serialise the promiscuous flag with efx_set_multicast_list. */
867 if (efx_dev_registered(efx)) {
868 netif_addr_lock_bh(efx->net_dev);
869 netif_addr_unlock_bh(efx->net_dev);
872 /* Disable PHY transmit in mac level loopbacks */
873 phy_mode = efx->phy_mode;
874 if (LOOPBACK_INTERNAL(efx))
875 efx->phy_mode |= PHY_MODE_TX_DISABLED;
876 else
877 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
879 rc = efx->type->reconfigure_port(efx);
881 if (rc)
882 efx->phy_mode = phy_mode;
884 return rc;
887 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
888 * disabled. */
889 int efx_reconfigure_port(struct efx_nic *efx)
891 int rc;
893 EFX_ASSERT_RESET_SERIALISED(efx);
895 mutex_lock(&efx->mac_lock);
896 rc = __efx_reconfigure_port(efx);
897 mutex_unlock(&efx->mac_lock);
899 return rc;
902 /* Asynchronous work item for changing MAC promiscuity and multicast
903 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
904 * MAC directly. */
905 static void efx_mac_work(struct work_struct *data)
907 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
909 mutex_lock(&efx->mac_lock);
910 if (efx->port_enabled) {
911 efx->type->push_multicast_hash(efx);
912 efx->mac_op->reconfigure(efx);
914 mutex_unlock(&efx->mac_lock);
917 static int efx_probe_port(struct efx_nic *efx)
919 unsigned char *perm_addr;
920 int rc;
922 netif_dbg(efx, probe, efx->net_dev, "create port\n");
924 if (phy_flash_cfg)
925 efx->phy_mode = PHY_MODE_SPECIAL;
927 /* Connect up MAC/PHY operations table */
928 rc = efx->type->probe_port(efx);
929 if (rc)
930 return rc;
932 /* Sanity check MAC address */
933 perm_addr = efx->net_dev->perm_addr;
934 if (is_valid_ether_addr(perm_addr)) {
935 memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
936 } else {
937 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
938 perm_addr);
939 if (!allow_bad_hwaddr) {
940 rc = -EINVAL;
941 goto err;
943 random_ether_addr(efx->net_dev->dev_addr);
944 netif_info(efx, probe, efx->net_dev,
945 "using locally-generated MAC %pM\n",
946 efx->net_dev->dev_addr);
949 return 0;
951 err:
952 efx->type->remove_port(efx);
953 return rc;
956 static int efx_init_port(struct efx_nic *efx)
958 int rc;
960 netif_dbg(efx, drv, efx->net_dev, "init port\n");
962 mutex_lock(&efx->mac_lock);
964 rc = efx->phy_op->init(efx);
965 if (rc)
966 goto fail1;
968 efx->port_initialized = true;
970 /* Reconfigure the MAC before creating dma queues (required for
971 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972 efx->mac_op->reconfigure(efx);
974 /* Ensure the PHY advertises the correct flow control settings */
975 rc = efx->phy_op->reconfigure(efx);
976 if (rc)
977 goto fail2;
979 mutex_unlock(&efx->mac_lock);
980 return 0;
982 fail2:
983 efx->phy_op->fini(efx);
984 fail1:
985 mutex_unlock(&efx->mac_lock);
986 return rc;
989 static void efx_start_port(struct efx_nic *efx)
991 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
992 BUG_ON(efx->port_enabled);
994 mutex_lock(&efx->mac_lock);
995 efx->port_enabled = true;
997 /* efx_mac_work() might have been scheduled after efx_stop_port(),
998 * and then cancelled by efx_flush_all() */
999 efx->type->push_multicast_hash(efx);
1000 efx->mac_op->reconfigure(efx);
1002 mutex_unlock(&efx->mac_lock);
1005 /* Prevent efx_mac_work() and efx_monitor() from working */
1006 static void efx_stop_port(struct efx_nic *efx)
1008 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1010 mutex_lock(&efx->mac_lock);
1011 efx->port_enabled = false;
1012 mutex_unlock(&efx->mac_lock);
1014 /* Serialise against efx_set_multicast_list() */
1015 if (efx_dev_registered(efx)) {
1016 netif_addr_lock_bh(efx->net_dev);
1017 netif_addr_unlock_bh(efx->net_dev);
1021 static void efx_fini_port(struct efx_nic *efx)
1023 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1025 if (!efx->port_initialized)
1026 return;
1028 efx->phy_op->fini(efx);
1029 efx->port_initialized = false;
1031 efx->link_state.up = false;
1032 efx_link_status_changed(efx);
1035 static void efx_remove_port(struct efx_nic *efx)
1037 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1039 efx->type->remove_port(efx);
1042 /**************************************************************************
1044 * NIC handling
1046 **************************************************************************/
1048 /* This configures the PCI device to enable I/O and DMA. */
1049 static int efx_init_io(struct efx_nic *efx)
1051 struct pci_dev *pci_dev = efx->pci_dev;
1052 dma_addr_t dma_mask = efx->type->max_dma_mask;
1053 int rc;
1055 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1057 rc = pci_enable_device(pci_dev);
1058 if (rc) {
1059 netif_err(efx, probe, efx->net_dev,
1060 "failed to enable PCI device\n");
1061 goto fail1;
1064 pci_set_master(pci_dev);
1066 /* Set the PCI DMA mask. Try all possibilities from our
1067 * genuine mask down to 32 bits, because some architectures
1068 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069 * masks event though they reject 46 bit masks.
1071 while (dma_mask > 0x7fffffffUL) {
1072 if (pci_dma_supported(pci_dev, dma_mask) &&
1073 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1074 break;
1075 dma_mask >>= 1;
1077 if (rc) {
1078 netif_err(efx, probe, efx->net_dev,
1079 "could not find a suitable DMA mask\n");
1080 goto fail2;
1082 netif_dbg(efx, probe, efx->net_dev,
1083 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1084 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1085 if (rc) {
1086 /* pci_set_consistent_dma_mask() is not *allowed* to
1087 * fail with a mask that pci_set_dma_mask() accepted,
1088 * but just in case...
1090 netif_err(efx, probe, efx->net_dev,
1091 "failed to set consistent DMA mask\n");
1092 goto fail2;
1095 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1096 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1097 if (rc) {
1098 netif_err(efx, probe, efx->net_dev,
1099 "request for memory BAR failed\n");
1100 rc = -EIO;
1101 goto fail3;
1103 efx->membase = ioremap_nocache(efx->membase_phys,
1104 efx->type->mem_map_size);
1105 if (!efx->membase) {
1106 netif_err(efx, probe, efx->net_dev,
1107 "could not map memory BAR at %llx+%x\n",
1108 (unsigned long long)efx->membase_phys,
1109 efx->type->mem_map_size);
1110 rc = -ENOMEM;
1111 goto fail4;
1113 netif_dbg(efx, probe, efx->net_dev,
1114 "memory BAR at %llx+%x (virtual %p)\n",
1115 (unsigned long long)efx->membase_phys,
1116 efx->type->mem_map_size, efx->membase);
1118 return 0;
1120 fail4:
1121 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1122 fail3:
1123 efx->membase_phys = 0;
1124 fail2:
1125 pci_disable_device(efx->pci_dev);
1126 fail1:
1127 return rc;
1130 static void efx_fini_io(struct efx_nic *efx)
1132 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1134 if (efx->membase) {
1135 iounmap(efx->membase);
1136 efx->membase = NULL;
1139 if (efx->membase_phys) {
1140 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1141 efx->membase_phys = 0;
1144 pci_disable_device(efx->pci_dev);
1147 /* Get number of channels wanted. Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149 static int efx_wanted_channels(void)
1151 cpumask_var_t core_mask;
1152 int count;
1153 int cpu;
1155 if (rss_cpus)
1156 return rss_cpus;
1158 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1159 printk(KERN_WARNING
1160 "sfc: RSS disabled due to allocation failure\n");
1161 return 1;
1164 count = 0;
1165 for_each_online_cpu(cpu) {
1166 if (!cpumask_test_cpu(cpu, core_mask)) {
1167 ++count;
1168 cpumask_or(core_mask, core_mask,
1169 topology_core_cpumask(cpu));
1173 free_cpumask_var(core_mask);
1174 return count;
1177 static int
1178 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1180 #ifdef CONFIG_RFS_ACCEL
1181 int i, rc;
1183 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1184 if (!efx->net_dev->rx_cpu_rmap)
1185 return -ENOMEM;
1186 for (i = 0; i < efx->n_rx_channels; i++) {
1187 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1188 xentries[i].vector);
1189 if (rc) {
1190 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1191 efx->net_dev->rx_cpu_rmap = NULL;
1192 return rc;
1195 #endif
1196 return 0;
1199 /* Probe the number and type of interrupts we are able to obtain, and
1200 * the resulting numbers of channels and RX queues.
1202 static int efx_probe_interrupts(struct efx_nic *efx)
1204 int max_channels =
1205 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1206 int rc, i;
1208 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1209 struct msix_entry xentries[EFX_MAX_CHANNELS];
1210 int n_channels;
1212 n_channels = efx_wanted_channels();
1213 if (separate_tx_channels)
1214 n_channels *= 2;
1215 n_channels = min(n_channels, max_channels);
1217 for (i = 0; i < n_channels; i++)
1218 xentries[i].entry = i;
1219 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1220 if (rc > 0) {
1221 netif_err(efx, drv, efx->net_dev,
1222 "WARNING: Insufficient MSI-X vectors"
1223 " available (%d < %d).\n", rc, n_channels);
1224 netif_err(efx, drv, efx->net_dev,
1225 "WARNING: Performance may be reduced.\n");
1226 EFX_BUG_ON_PARANOID(rc >= n_channels);
1227 n_channels = rc;
1228 rc = pci_enable_msix(efx->pci_dev, xentries,
1229 n_channels);
1232 if (rc == 0) {
1233 efx->n_channels = n_channels;
1234 if (separate_tx_channels) {
1235 efx->n_tx_channels =
1236 max(efx->n_channels / 2, 1U);
1237 efx->n_rx_channels =
1238 max(efx->n_channels -
1239 efx->n_tx_channels, 1U);
1240 } else {
1241 efx->n_tx_channels = efx->n_channels;
1242 efx->n_rx_channels = efx->n_channels;
1244 rc = efx_init_rx_cpu_rmap(efx, xentries);
1245 if (rc) {
1246 pci_disable_msix(efx->pci_dev);
1247 return rc;
1249 for (i = 0; i < n_channels; i++)
1250 efx_get_channel(efx, i)->irq =
1251 xentries[i].vector;
1252 } else {
1253 /* Fall back to single channel MSI */
1254 efx->interrupt_mode = EFX_INT_MODE_MSI;
1255 netif_err(efx, drv, efx->net_dev,
1256 "could not enable MSI-X\n");
1260 /* Try single interrupt MSI */
1261 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1262 efx->n_channels = 1;
1263 efx->n_rx_channels = 1;
1264 efx->n_tx_channels = 1;
1265 rc = pci_enable_msi(efx->pci_dev);
1266 if (rc == 0) {
1267 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1268 } else {
1269 netif_err(efx, drv, efx->net_dev,
1270 "could not enable MSI\n");
1271 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1275 /* Assume legacy interrupts */
1276 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1277 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1278 efx->n_rx_channels = 1;
1279 efx->n_tx_channels = 1;
1280 efx->legacy_irq = efx->pci_dev->irq;
1283 return 0;
1286 static void efx_remove_interrupts(struct efx_nic *efx)
1288 struct efx_channel *channel;
1290 /* Remove MSI/MSI-X interrupts */
1291 efx_for_each_channel(channel, efx)
1292 channel->irq = 0;
1293 pci_disable_msi(efx->pci_dev);
1294 pci_disable_msix(efx->pci_dev);
1296 /* Remove legacy interrupt */
1297 efx->legacy_irq = 0;
1300 static void efx_set_channels(struct efx_nic *efx)
1302 struct efx_channel *channel;
1303 struct efx_tx_queue *tx_queue;
1305 efx->tx_channel_offset =
1306 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1308 /* We need to adjust the TX queue numbers if we have separate
1309 * RX-only and TX-only channels.
1311 efx_for_each_channel(channel, efx) {
1312 efx_for_each_channel_tx_queue(tx_queue, channel)
1313 tx_queue->queue -= (efx->tx_channel_offset *
1314 EFX_TXQ_TYPES);
1318 static int efx_probe_nic(struct efx_nic *efx)
1320 size_t i;
1321 int rc;
1323 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1325 /* Carry out hardware-type specific initialisation */
1326 rc = efx->type->probe(efx);
1327 if (rc)
1328 return rc;
1330 /* Determine the number of channels and queues by trying to hook
1331 * in MSI-X interrupts. */
1332 rc = efx_probe_interrupts(efx);
1333 if (rc)
1334 goto fail;
1336 if (efx->n_channels > 1)
1337 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1338 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1339 efx->rx_indir_table[i] = i % efx->n_rx_channels;
1341 efx_set_channels(efx);
1342 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1343 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1345 /* Initialise the interrupt moderation settings */
1346 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1347 true);
1349 return 0;
1351 fail:
1352 efx->type->remove(efx);
1353 return rc;
1356 static void efx_remove_nic(struct efx_nic *efx)
1358 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1360 efx_remove_interrupts(efx);
1361 efx->type->remove(efx);
1364 /**************************************************************************
1366 * NIC startup/shutdown
1368 *************************************************************************/
1370 static int efx_probe_all(struct efx_nic *efx)
1372 int rc;
1374 rc = efx_probe_nic(efx);
1375 if (rc) {
1376 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1377 goto fail1;
1380 rc = efx_probe_port(efx);
1381 if (rc) {
1382 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1383 goto fail2;
1386 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1387 rc = efx_probe_channels(efx);
1388 if (rc)
1389 goto fail3;
1391 rc = efx_probe_filters(efx);
1392 if (rc) {
1393 netif_err(efx, probe, efx->net_dev,
1394 "failed to create filter tables\n");
1395 goto fail4;
1398 return 0;
1400 fail4:
1401 efx_remove_channels(efx);
1402 fail3:
1403 efx_remove_port(efx);
1404 fail2:
1405 efx_remove_nic(efx);
1406 fail1:
1407 return rc;
1410 /* Called after previous invocation(s) of efx_stop_all, restarts the
1411 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1412 * and ensures that the port is scheduled to be reconfigured.
1413 * This function is safe to call multiple times when the NIC is in any
1414 * state. */
1415 static void efx_start_all(struct efx_nic *efx)
1417 struct efx_channel *channel;
1419 EFX_ASSERT_RESET_SERIALISED(efx);
1421 /* Check that it is appropriate to restart the interface. All
1422 * of these flags are safe to read under just the rtnl lock */
1423 if (efx->port_enabled)
1424 return;
1425 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1426 return;
1427 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1428 return;
1430 /* Mark the port as enabled so port reconfigurations can start, then
1431 * restart the transmit interface early so the watchdog timer stops */
1432 efx_start_port(efx);
1434 if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1435 netif_tx_wake_all_queues(efx->net_dev);
1437 efx_for_each_channel(channel, efx)
1438 efx_start_channel(channel);
1440 if (efx->legacy_irq)
1441 efx->legacy_irq_enabled = true;
1442 efx_nic_enable_interrupts(efx);
1444 /* Switch to event based MCDI completions after enabling interrupts.
1445 * If a reset has been scheduled, then we need to stay in polled mode.
1446 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1447 * reset_pending [modified from an atomic context], we instead guarantee
1448 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1449 efx_mcdi_mode_event(efx);
1450 if (efx->reset_pending)
1451 efx_mcdi_mode_poll(efx);
1453 /* Start the hardware monitor if there is one. Otherwise (we're link
1454 * event driven), we have to poll the PHY because after an event queue
1455 * flush, we could have a missed a link state change */
1456 if (efx->type->monitor != NULL) {
1457 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1458 efx_monitor_interval);
1459 } else {
1460 mutex_lock(&efx->mac_lock);
1461 if (efx->phy_op->poll(efx))
1462 efx_link_status_changed(efx);
1463 mutex_unlock(&efx->mac_lock);
1466 efx->type->start_stats(efx);
1469 /* Flush all delayed work. Should only be called when no more delayed work
1470 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1471 * since we're holding the rtnl_lock at this point. */
1472 static void efx_flush_all(struct efx_nic *efx)
1474 /* Make sure the hardware monitor is stopped */
1475 cancel_delayed_work_sync(&efx->monitor_work);
1476 /* Stop scheduled port reconfigurations */
1477 cancel_work_sync(&efx->mac_work);
1480 /* Quiesce hardware and software without bringing the link down.
1481 * Safe to call multiple times, when the nic and interface is in any
1482 * state. The caller is guaranteed to subsequently be in a position
1483 * to modify any hardware and software state they see fit without
1484 * taking locks. */
1485 static void efx_stop_all(struct efx_nic *efx)
1487 struct efx_channel *channel;
1489 EFX_ASSERT_RESET_SERIALISED(efx);
1491 /* port_enabled can be read safely under the rtnl lock */
1492 if (!efx->port_enabled)
1493 return;
1495 efx->type->stop_stats(efx);
1497 /* Switch to MCDI polling on Siena before disabling interrupts */
1498 efx_mcdi_mode_poll(efx);
1500 /* Disable interrupts and wait for ISR to complete */
1501 efx_nic_disable_interrupts(efx);
1502 if (efx->legacy_irq) {
1503 synchronize_irq(efx->legacy_irq);
1504 efx->legacy_irq_enabled = false;
1506 efx_for_each_channel(channel, efx) {
1507 if (channel->irq)
1508 synchronize_irq(channel->irq);
1511 /* Stop all NAPI processing and synchronous rx refills */
1512 efx_for_each_channel(channel, efx)
1513 efx_stop_channel(channel);
1515 /* Stop all asynchronous port reconfigurations. Since all
1516 * event processing has already been stopped, there is no
1517 * window to loose phy events */
1518 efx_stop_port(efx);
1520 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1521 efx_flush_all(efx);
1523 /* Stop the kernel transmit interface late, so the watchdog
1524 * timer isn't ticking over the flush */
1525 if (efx_dev_registered(efx)) {
1526 netif_tx_stop_all_queues(efx->net_dev);
1527 netif_tx_lock_bh(efx->net_dev);
1528 netif_tx_unlock_bh(efx->net_dev);
1532 static void efx_remove_all(struct efx_nic *efx)
1534 efx_remove_filters(efx);
1535 efx_remove_channels(efx);
1536 efx_remove_port(efx);
1537 efx_remove_nic(efx);
1540 /**************************************************************************
1542 * Interrupt moderation
1544 **************************************************************************/
1546 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
1548 if (usecs == 0)
1549 return 0;
1550 if (usecs < resolution)
1551 return 1; /* never round down to 0 */
1552 return usecs / resolution;
1555 /* Set interrupt moderation parameters */
1556 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1557 unsigned int rx_usecs, bool rx_adaptive,
1558 bool rx_may_override_tx)
1560 struct efx_channel *channel;
1561 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1562 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1564 EFX_ASSERT_RESET_SERIALISED(efx);
1566 if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX)
1567 return -EINVAL;
1569 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1570 !rx_may_override_tx) {
1571 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1572 "RX and TX IRQ moderation must be equal\n");
1573 return -EINVAL;
1576 efx->irq_rx_adaptive = rx_adaptive;
1577 efx->irq_rx_moderation = rx_ticks;
1578 efx_for_each_channel(channel, efx) {
1579 if (efx_channel_has_rx_queue(channel))
1580 channel->irq_moderation = rx_ticks;
1581 else if (efx_channel_has_tx_queues(channel))
1582 channel->irq_moderation = tx_ticks;
1585 return 0;
1588 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1589 unsigned int *rx_usecs, bool *rx_adaptive)
1591 *rx_adaptive = efx->irq_rx_adaptive;
1592 *rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;
1594 /* If channels are shared between RX and TX, so is IRQ
1595 * moderation. Otherwise, IRQ moderation is the same for all
1596 * TX channels and is not adaptive.
1598 if (efx->tx_channel_offset == 0)
1599 *tx_usecs = *rx_usecs;
1600 else
1601 *tx_usecs =
1602 efx->channel[efx->tx_channel_offset]->irq_moderation *
1603 EFX_IRQ_MOD_RESOLUTION;
1606 /**************************************************************************
1608 * Hardware monitor
1610 **************************************************************************/
1612 /* Run periodically off the general workqueue */
1613 static void efx_monitor(struct work_struct *data)
1615 struct efx_nic *efx = container_of(data, struct efx_nic,
1616 monitor_work.work);
1618 netif_vdbg(efx, timer, efx->net_dev,
1619 "hardware monitor executing on CPU %d\n",
1620 raw_smp_processor_id());
1621 BUG_ON(efx->type->monitor == NULL);
1623 /* If the mac_lock is already held then it is likely a port
1624 * reconfiguration is already in place, which will likely do
1625 * most of the work of monitor() anyway. */
1626 if (mutex_trylock(&efx->mac_lock)) {
1627 if (efx->port_enabled)
1628 efx->type->monitor(efx);
1629 mutex_unlock(&efx->mac_lock);
1632 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1633 efx_monitor_interval);
1636 /**************************************************************************
1638 * ioctls
1640 *************************************************************************/
1642 /* Net device ioctl
1643 * Context: process, rtnl_lock() held.
1645 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1647 struct efx_nic *efx = netdev_priv(net_dev);
1648 struct mii_ioctl_data *data = if_mii(ifr);
1650 EFX_ASSERT_RESET_SERIALISED(efx);
1652 /* Convert phy_id from older PRTAD/DEVAD format */
1653 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1654 (data->phy_id & 0xfc00) == 0x0400)
1655 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1657 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1660 /**************************************************************************
1662 * NAPI interface
1664 **************************************************************************/
1666 static void efx_init_napi(struct efx_nic *efx)
1668 struct efx_channel *channel;
1670 efx_for_each_channel(channel, efx) {
1671 channel->napi_dev = efx->net_dev;
1672 netif_napi_add(channel->napi_dev, &channel->napi_str,
1673 efx_poll, napi_weight);
1677 static void efx_fini_napi_channel(struct efx_channel *channel)
1679 if (channel->napi_dev)
1680 netif_napi_del(&channel->napi_str);
1681 channel->napi_dev = NULL;
1684 static void efx_fini_napi(struct efx_nic *efx)
1686 struct efx_channel *channel;
1688 efx_for_each_channel(channel, efx)
1689 efx_fini_napi_channel(channel);
1692 /**************************************************************************
1694 * Kernel netpoll interface
1696 *************************************************************************/
1698 #ifdef CONFIG_NET_POLL_CONTROLLER
1700 /* Although in the common case interrupts will be disabled, this is not
1701 * guaranteed. However, all our work happens inside the NAPI callback,
1702 * so no locking is required.
1704 static void efx_netpoll(struct net_device *net_dev)
1706 struct efx_nic *efx = netdev_priv(net_dev);
1707 struct efx_channel *channel;
1709 efx_for_each_channel(channel, efx)
1710 efx_schedule_channel(channel);
1713 #endif
1715 /**************************************************************************
1717 * Kernel net device interface
1719 *************************************************************************/
1721 /* Context: process, rtnl_lock() held. */
1722 static int efx_net_open(struct net_device *net_dev)
1724 struct efx_nic *efx = netdev_priv(net_dev);
1725 EFX_ASSERT_RESET_SERIALISED(efx);
1727 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1728 raw_smp_processor_id());
1730 if (efx->state == STATE_DISABLED)
1731 return -EIO;
1732 if (efx->phy_mode & PHY_MODE_SPECIAL)
1733 return -EBUSY;
1734 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1735 return -EIO;
1737 /* Notify the kernel of the link state polled during driver load,
1738 * before the monitor starts running */
1739 efx_link_status_changed(efx);
1741 efx_start_all(efx);
1742 return 0;
1745 /* Context: process, rtnl_lock() held.
1746 * Note that the kernel will ignore our return code; this method
1747 * should really be a void.
1749 static int efx_net_stop(struct net_device *net_dev)
1751 struct efx_nic *efx = netdev_priv(net_dev);
1753 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1754 raw_smp_processor_id());
1756 if (efx->state != STATE_DISABLED) {
1757 /* Stop the device and flush all the channels */
1758 efx_stop_all(efx);
1759 efx_fini_channels(efx);
1760 efx_init_channels(efx);
1763 return 0;
1766 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1767 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1769 struct efx_nic *efx = netdev_priv(net_dev);
1770 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1772 spin_lock_bh(&efx->stats_lock);
1773 efx->type->update_stats(efx);
1774 spin_unlock_bh(&efx->stats_lock);
1776 stats->rx_packets = mac_stats->rx_packets;
1777 stats->tx_packets = mac_stats->tx_packets;
1778 stats->rx_bytes = mac_stats->rx_bytes;
1779 stats->tx_bytes = mac_stats->tx_bytes;
1780 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1781 stats->multicast = mac_stats->rx_multicast;
1782 stats->collisions = mac_stats->tx_collision;
1783 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1784 mac_stats->rx_length_error);
1785 stats->rx_crc_errors = mac_stats->rx_bad;
1786 stats->rx_frame_errors = mac_stats->rx_align_error;
1787 stats->rx_fifo_errors = mac_stats->rx_overflow;
1788 stats->rx_missed_errors = mac_stats->rx_missed;
1789 stats->tx_window_errors = mac_stats->tx_late_collision;
1791 stats->rx_errors = (stats->rx_length_errors +
1792 stats->rx_crc_errors +
1793 stats->rx_frame_errors +
1794 mac_stats->rx_symbol_error);
1795 stats->tx_errors = (stats->tx_window_errors +
1796 mac_stats->tx_bad);
1798 return stats;
1801 /* Context: netif_tx_lock held, BHs disabled. */
1802 static void efx_watchdog(struct net_device *net_dev)
1804 struct efx_nic *efx = netdev_priv(net_dev);
1806 netif_err(efx, tx_err, efx->net_dev,
1807 "TX stuck with port_enabled=%d: resetting channels\n",
1808 efx->port_enabled);
1810 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1814 /* Context: process, rtnl_lock() held. */
1815 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1817 struct efx_nic *efx = netdev_priv(net_dev);
1818 int rc = 0;
1820 EFX_ASSERT_RESET_SERIALISED(efx);
1822 if (new_mtu > EFX_MAX_MTU)
1823 return -EINVAL;
1825 efx_stop_all(efx);
1827 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1829 efx_fini_channels(efx);
1831 mutex_lock(&efx->mac_lock);
1832 /* Reconfigure the MAC before enabling the dma queues so that
1833 * the RX buffers don't overflow */
1834 net_dev->mtu = new_mtu;
1835 efx->mac_op->reconfigure(efx);
1836 mutex_unlock(&efx->mac_lock);
1838 efx_init_channels(efx);
1840 efx_start_all(efx);
1841 return rc;
1844 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1846 struct efx_nic *efx = netdev_priv(net_dev);
1847 struct sockaddr *addr = data;
1848 char *new_addr = addr->sa_data;
1850 EFX_ASSERT_RESET_SERIALISED(efx);
1852 if (!is_valid_ether_addr(new_addr)) {
1853 netif_err(efx, drv, efx->net_dev,
1854 "invalid ethernet MAC address requested: %pM\n",
1855 new_addr);
1856 return -EINVAL;
1859 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1861 /* Reconfigure the MAC */
1862 mutex_lock(&efx->mac_lock);
1863 efx->mac_op->reconfigure(efx);
1864 mutex_unlock(&efx->mac_lock);
1866 return 0;
1869 /* Context: netif_addr_lock held, BHs disabled. */
1870 static void efx_set_multicast_list(struct net_device *net_dev)
1872 struct efx_nic *efx = netdev_priv(net_dev);
1873 struct netdev_hw_addr *ha;
1874 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1875 u32 crc;
1876 int bit;
1878 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1880 /* Build multicast hash table */
1881 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1882 memset(mc_hash, 0xff, sizeof(*mc_hash));
1883 } else {
1884 memset(mc_hash, 0x00, sizeof(*mc_hash));
1885 netdev_for_each_mc_addr(ha, net_dev) {
1886 crc = ether_crc_le(ETH_ALEN, ha->addr);
1887 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1888 set_bit_le(bit, mc_hash->byte);
1891 /* Broadcast packets go through the multicast hash filter.
1892 * ether_crc_le() of the broadcast address is 0xbe2612ff
1893 * so we always add bit 0xff to the mask.
1895 set_bit_le(0xff, mc_hash->byte);
1898 if (efx->port_enabled)
1899 queue_work(efx->workqueue, &efx->mac_work);
1900 /* Otherwise efx_start_port() will do this */
1903 static int efx_set_features(struct net_device *net_dev, u32 data)
1905 struct efx_nic *efx = netdev_priv(net_dev);
1907 /* If disabling RX n-tuple filtering, clear existing filters */
1908 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1909 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1911 return 0;
1914 static const struct net_device_ops efx_netdev_ops = {
1915 .ndo_open = efx_net_open,
1916 .ndo_stop = efx_net_stop,
1917 .ndo_get_stats64 = efx_net_stats,
1918 .ndo_tx_timeout = efx_watchdog,
1919 .ndo_start_xmit = efx_hard_start_xmit,
1920 .ndo_validate_addr = eth_validate_addr,
1921 .ndo_do_ioctl = efx_ioctl,
1922 .ndo_change_mtu = efx_change_mtu,
1923 .ndo_set_mac_address = efx_set_mac_address,
1924 .ndo_set_rx_mode = efx_set_multicast_list,
1925 .ndo_set_features = efx_set_features,
1926 #ifdef CONFIG_NET_POLL_CONTROLLER
1927 .ndo_poll_controller = efx_netpoll,
1928 #endif
1929 .ndo_setup_tc = efx_setup_tc,
1930 #ifdef CONFIG_RFS_ACCEL
1931 .ndo_rx_flow_steer = efx_filter_rfs,
1932 #endif
1935 static void efx_update_name(struct efx_nic *efx)
1937 strcpy(efx->name, efx->net_dev->name);
1938 efx_mtd_rename(efx);
1939 efx_set_channel_names(efx);
1942 static int efx_netdev_event(struct notifier_block *this,
1943 unsigned long event, void *ptr)
1945 struct net_device *net_dev = ptr;
1947 if (net_dev->netdev_ops == &efx_netdev_ops &&
1948 event == NETDEV_CHANGENAME)
1949 efx_update_name(netdev_priv(net_dev));
1951 return NOTIFY_DONE;
1954 static struct notifier_block efx_netdev_notifier = {
1955 .notifier_call = efx_netdev_event,
1958 static ssize_t
1959 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1961 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1962 return sprintf(buf, "%d\n", efx->phy_type);
1964 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1966 static int efx_register_netdev(struct efx_nic *efx)
1968 struct net_device *net_dev = efx->net_dev;
1969 struct efx_channel *channel;
1970 int rc;
1972 net_dev->watchdog_timeo = 5 * HZ;
1973 net_dev->irq = efx->pci_dev->irq;
1974 net_dev->netdev_ops = &efx_netdev_ops;
1975 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1977 /* Clear MAC statistics */
1978 efx->mac_op->update_stats(efx);
1979 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1981 rtnl_lock();
1983 rc = dev_alloc_name(net_dev, net_dev->name);
1984 if (rc < 0)
1985 goto fail_locked;
1986 efx_update_name(efx);
1988 rc = register_netdevice(net_dev);
1989 if (rc)
1990 goto fail_locked;
1992 efx_for_each_channel(channel, efx) {
1993 struct efx_tx_queue *tx_queue;
1994 efx_for_each_channel_tx_queue(tx_queue, channel)
1995 efx_init_tx_queue_core_txq(tx_queue);
1998 /* Always start with carrier off; PHY events will detect the link */
1999 netif_carrier_off(efx->net_dev);
2001 rtnl_unlock();
2003 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2004 if (rc) {
2005 netif_err(efx, drv, efx->net_dev,
2006 "failed to init net dev attributes\n");
2007 goto fail_registered;
2010 return 0;
2012 fail_locked:
2013 rtnl_unlock();
2014 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2015 return rc;
2017 fail_registered:
2018 unregister_netdev(net_dev);
2019 return rc;
2022 static void efx_unregister_netdev(struct efx_nic *efx)
2024 struct efx_channel *channel;
2025 struct efx_tx_queue *tx_queue;
2027 if (!efx->net_dev)
2028 return;
2030 BUG_ON(netdev_priv(efx->net_dev) != efx);
2032 /* Free up any skbs still remaining. This has to happen before
2033 * we try to unregister the netdev as running their destructors
2034 * may be needed to get the device ref. count to 0. */
2035 efx_for_each_channel(channel, efx) {
2036 efx_for_each_channel_tx_queue(tx_queue, channel)
2037 efx_release_tx_buffers(tx_queue);
2040 if (efx_dev_registered(efx)) {
2041 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2042 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2043 unregister_netdev(efx->net_dev);
2047 /**************************************************************************
2049 * Device reset and suspend
2051 **************************************************************************/
2053 /* Tears down the entire software state and most of the hardware state
2054 * before reset. */
2055 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2057 EFX_ASSERT_RESET_SERIALISED(efx);
2059 efx_stop_all(efx);
2060 mutex_lock(&efx->mac_lock);
2062 efx_fini_channels(efx);
2063 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2064 efx->phy_op->fini(efx);
2065 efx->type->fini(efx);
2068 /* This function will always ensure that the locks acquired in
2069 * efx_reset_down() are released. A failure return code indicates
2070 * that we were unable to reinitialise the hardware, and the
2071 * driver should be disabled. If ok is false, then the rx and tx
2072 * engines are not restarted, pending a RESET_DISABLE. */
2073 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2075 int rc;
2077 EFX_ASSERT_RESET_SERIALISED(efx);
2079 rc = efx->type->init(efx);
2080 if (rc) {
2081 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2082 goto fail;
2085 if (!ok)
2086 goto fail;
2088 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2089 rc = efx->phy_op->init(efx);
2090 if (rc)
2091 goto fail;
2092 if (efx->phy_op->reconfigure(efx))
2093 netif_err(efx, drv, efx->net_dev,
2094 "could not restore PHY settings\n");
2097 efx->mac_op->reconfigure(efx);
2099 efx_init_channels(efx);
2100 efx_restore_filters(efx);
2102 mutex_unlock(&efx->mac_lock);
2104 efx_start_all(efx);
2106 return 0;
2108 fail:
2109 efx->port_initialized = false;
2111 mutex_unlock(&efx->mac_lock);
2113 return rc;
2116 /* Reset the NIC using the specified method. Note that the reset may
2117 * fail, in which case the card will be left in an unusable state.
2119 * Caller must hold the rtnl_lock.
2121 int efx_reset(struct efx_nic *efx, enum reset_type method)
2123 int rc, rc2;
2124 bool disabled;
2126 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2127 RESET_TYPE(method));
2129 netif_device_detach(efx->net_dev);
2130 efx_reset_down(efx, method);
2132 rc = efx->type->reset(efx, method);
2133 if (rc) {
2134 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2135 goto out;
2138 /* Clear flags for the scopes we covered. We assume the NIC and
2139 * driver are now quiescent so that there is no race here.
2141 efx->reset_pending &= -(1 << (method + 1));
2143 /* Reinitialise bus-mastering, which may have been turned off before
2144 * the reset was scheduled. This is still appropriate, even in the
2145 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2146 * can respond to requests. */
2147 pci_set_master(efx->pci_dev);
2149 out:
2150 /* Leave device stopped if necessary */
2151 disabled = rc || method == RESET_TYPE_DISABLE;
2152 rc2 = efx_reset_up(efx, method, !disabled);
2153 if (rc2) {
2154 disabled = true;
2155 if (!rc)
2156 rc = rc2;
2159 if (disabled) {
2160 dev_close(efx->net_dev);
2161 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2162 efx->state = STATE_DISABLED;
2163 } else {
2164 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2165 netif_device_attach(efx->net_dev);
2167 return rc;
2170 /* The worker thread exists so that code that cannot sleep can
2171 * schedule a reset for later.
2173 static void efx_reset_work(struct work_struct *data)
2175 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2176 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2178 if (!pending)
2179 return;
2181 /* If we're not RUNNING then don't reset. Leave the reset_pending
2182 * flags set so that efx_pci_probe_main will be retried */
2183 if (efx->state != STATE_RUNNING) {
2184 netif_info(efx, drv, efx->net_dev,
2185 "scheduled reset quenched. NIC not RUNNING\n");
2186 return;
2189 rtnl_lock();
2190 (void)efx_reset(efx, fls(pending) - 1);
2191 rtnl_unlock();
2194 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2196 enum reset_type method;
2198 switch (type) {
2199 case RESET_TYPE_INVISIBLE:
2200 case RESET_TYPE_ALL:
2201 case RESET_TYPE_WORLD:
2202 case RESET_TYPE_DISABLE:
2203 method = type;
2204 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2205 RESET_TYPE(method));
2206 break;
2207 default:
2208 method = efx->type->map_reset_reason(type);
2209 netif_dbg(efx, drv, efx->net_dev,
2210 "scheduling %s reset for %s\n",
2211 RESET_TYPE(method), RESET_TYPE(type));
2212 break;
2215 set_bit(method, &efx->reset_pending);
2217 /* efx_process_channel() will no longer read events once a
2218 * reset is scheduled. So switch back to poll'd MCDI completions. */
2219 efx_mcdi_mode_poll(efx);
2221 queue_work(reset_workqueue, &efx->reset_work);
2224 /**************************************************************************
2226 * List of NICs we support
2228 **************************************************************************/
2230 /* PCI device ID table */
2231 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2232 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2233 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2234 .driver_data = (unsigned long) &falcon_a1_nic_type},
2235 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2236 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2237 .driver_data = (unsigned long) &falcon_b0_nic_type},
2238 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, BETHPAGE_A_P_DEVID),
2239 .driver_data = (unsigned long) &siena_a0_nic_type},
2240 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, SIENA_A_P_DEVID),
2241 .driver_data = (unsigned long) &siena_a0_nic_type},
2242 {0} /* end of list */
2245 /**************************************************************************
2247 * Dummy PHY/MAC operations
2249 * Can be used for some unimplemented operations
2250 * Needed so all function pointers are valid and do not have to be tested
2251 * before use
2253 **************************************************************************/
2254 int efx_port_dummy_op_int(struct efx_nic *efx)
2256 return 0;
2258 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2260 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2262 return false;
2265 static const struct efx_phy_operations efx_dummy_phy_operations = {
2266 .init = efx_port_dummy_op_int,
2267 .reconfigure = efx_port_dummy_op_int,
2268 .poll = efx_port_dummy_op_poll,
2269 .fini = efx_port_dummy_op_void,
2272 /**************************************************************************
2274 * Data housekeeping
2276 **************************************************************************/
2278 /* This zeroes out and then fills in the invariants in a struct
2279 * efx_nic (including all sub-structures).
2281 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2282 struct pci_dev *pci_dev, struct net_device *net_dev)
2284 int i;
2286 /* Initialise common structures */
2287 memset(efx, 0, sizeof(*efx));
2288 spin_lock_init(&efx->biu_lock);
2289 #ifdef CONFIG_SFC_MTD
2290 INIT_LIST_HEAD(&efx->mtd_list);
2291 #endif
2292 INIT_WORK(&efx->reset_work, efx_reset_work);
2293 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2294 efx->pci_dev = pci_dev;
2295 efx->msg_enable = debug;
2296 efx->state = STATE_INIT;
2297 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2299 efx->net_dev = net_dev;
2300 spin_lock_init(&efx->stats_lock);
2301 mutex_init(&efx->mac_lock);
2302 efx->mac_op = type->default_mac_ops;
2303 efx->phy_op = &efx_dummy_phy_operations;
2304 efx->mdio.dev = net_dev;
2305 INIT_WORK(&efx->mac_work, efx_mac_work);
2307 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2308 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2309 if (!efx->channel[i])
2310 goto fail;
2313 efx->type = type;
2315 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2317 /* Higher numbered interrupt modes are less capable! */
2318 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2319 interrupt_mode);
2321 /* Would be good to use the net_dev name, but we're too early */
2322 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2323 pci_name(pci_dev));
2324 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2325 if (!efx->workqueue)
2326 goto fail;
2328 return 0;
2330 fail:
2331 efx_fini_struct(efx);
2332 return -ENOMEM;
2335 static void efx_fini_struct(struct efx_nic *efx)
2337 int i;
2339 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2340 kfree(efx->channel[i]);
2342 if (efx->workqueue) {
2343 destroy_workqueue(efx->workqueue);
2344 efx->workqueue = NULL;
2348 /**************************************************************************
2350 * PCI interface
2352 **************************************************************************/
2354 /* Main body of final NIC shutdown code
2355 * This is called only at module unload (or hotplug removal).
2357 static void efx_pci_remove_main(struct efx_nic *efx)
2359 #ifdef CONFIG_RFS_ACCEL
2360 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2361 efx->net_dev->rx_cpu_rmap = NULL;
2362 #endif
2363 efx_nic_fini_interrupt(efx);
2364 efx_fini_channels(efx);
2365 efx_fini_port(efx);
2366 efx->type->fini(efx);
2367 efx_fini_napi(efx);
2368 efx_remove_all(efx);
2371 /* Final NIC shutdown
2372 * This is called only at module unload (or hotplug removal).
2374 static void efx_pci_remove(struct pci_dev *pci_dev)
2376 struct efx_nic *efx;
2378 efx = pci_get_drvdata(pci_dev);
2379 if (!efx)
2380 return;
2382 /* Mark the NIC as fini, then stop the interface */
2383 rtnl_lock();
2384 efx->state = STATE_FINI;
2385 dev_close(efx->net_dev);
2387 /* Allow any queued efx_resets() to complete */
2388 rtnl_unlock();
2390 efx_unregister_netdev(efx);
2392 efx_mtd_remove(efx);
2394 /* Wait for any scheduled resets to complete. No more will be
2395 * scheduled from this point because efx_stop_all() has been
2396 * called, we are no longer registered with driverlink, and
2397 * the net_device's have been removed. */
2398 cancel_work_sync(&efx->reset_work);
2400 efx_pci_remove_main(efx);
2402 efx_fini_io(efx);
2403 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2405 pci_set_drvdata(pci_dev, NULL);
2406 efx_fini_struct(efx);
2407 free_netdev(efx->net_dev);
2410 /* Main body of NIC initialisation
2411 * This is called at module load (or hotplug insertion, theoretically).
2413 static int efx_pci_probe_main(struct efx_nic *efx)
2415 int rc;
2417 /* Do start-of-day initialisation */
2418 rc = efx_probe_all(efx);
2419 if (rc)
2420 goto fail1;
2422 efx_init_napi(efx);
2424 rc = efx->type->init(efx);
2425 if (rc) {
2426 netif_err(efx, probe, efx->net_dev,
2427 "failed to initialise NIC\n");
2428 goto fail3;
2431 rc = efx_init_port(efx);
2432 if (rc) {
2433 netif_err(efx, probe, efx->net_dev,
2434 "failed to initialise port\n");
2435 goto fail4;
2438 efx_init_channels(efx);
2440 rc = efx_nic_init_interrupt(efx);
2441 if (rc)
2442 goto fail5;
2444 return 0;
2446 fail5:
2447 efx_fini_channels(efx);
2448 efx_fini_port(efx);
2449 fail4:
2450 efx->type->fini(efx);
2451 fail3:
2452 efx_fini_napi(efx);
2453 efx_remove_all(efx);
2454 fail1:
2455 return rc;
2458 /* NIC initialisation
2460 * This is called at module load (or hotplug insertion,
2461 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2462 * sets up and registers the network devices with the kernel and hooks
2463 * the interrupt service routine. It does not prepare the device for
2464 * transmission; this is left to the first time one of the network
2465 * interfaces is brought up (i.e. efx_net_open).
2467 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2468 const struct pci_device_id *entry)
2470 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2471 struct net_device *net_dev;
2472 struct efx_nic *efx;
2473 int i, rc;
2475 /* Allocate and initialise a struct net_device and struct efx_nic */
2476 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2477 EFX_MAX_RX_QUEUES);
2478 if (!net_dev)
2479 return -ENOMEM;
2480 net_dev->features |= (type->offload_features | NETIF_F_SG |
2481 NETIF_F_HIGHDMA | NETIF_F_TSO |
2482 NETIF_F_RXCSUM);
2483 if (type->offload_features & NETIF_F_V6_CSUM)
2484 net_dev->features |= NETIF_F_TSO6;
2485 /* Mask for features that also apply to VLAN devices */
2486 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2487 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2488 NETIF_F_RXCSUM);
2489 /* All offloads can be toggled */
2490 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2491 efx = netdev_priv(net_dev);
2492 pci_set_drvdata(pci_dev, efx);
2493 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2494 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2495 if (rc)
2496 goto fail1;
2498 netif_info(efx, probe, efx->net_dev,
2499 "Solarflare NIC detected\n");
2501 /* Set up basic I/O (BAR mappings etc) */
2502 rc = efx_init_io(efx);
2503 if (rc)
2504 goto fail2;
2506 /* No serialisation is required with the reset path because
2507 * we're in STATE_INIT. */
2508 for (i = 0; i < 5; i++) {
2509 rc = efx_pci_probe_main(efx);
2511 /* Serialise against efx_reset(). No more resets will be
2512 * scheduled since efx_stop_all() has been called, and we
2513 * have not and never have been registered with either
2514 * the rtnetlink or driverlink layers. */
2515 cancel_work_sync(&efx->reset_work);
2517 if (rc == 0) {
2518 if (efx->reset_pending) {
2519 /* If there was a scheduled reset during
2520 * probe, the NIC is probably hosed anyway */
2521 efx_pci_remove_main(efx);
2522 rc = -EIO;
2523 } else {
2524 break;
2528 /* Retry if a recoverably reset event has been scheduled */
2529 if (efx->reset_pending &
2530 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2531 !efx->reset_pending)
2532 goto fail3;
2534 efx->reset_pending = 0;
2537 if (rc) {
2538 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2539 goto fail4;
2542 /* Switch to the running state before we expose the device to the OS,
2543 * so that dev_open()|efx_start_all() will actually start the device */
2544 efx->state = STATE_RUNNING;
2546 rc = efx_register_netdev(efx);
2547 if (rc)
2548 goto fail5;
2550 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2552 rtnl_lock();
2553 efx_mtd_probe(efx); /* allowed to fail */
2554 rtnl_unlock();
2555 return 0;
2557 fail5:
2558 efx_pci_remove_main(efx);
2559 fail4:
2560 fail3:
2561 efx_fini_io(efx);
2562 fail2:
2563 efx_fini_struct(efx);
2564 fail1:
2565 WARN_ON(rc > 0);
2566 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2567 free_netdev(net_dev);
2568 return rc;
2571 static int efx_pm_freeze(struct device *dev)
2573 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2575 efx->state = STATE_FINI;
2577 netif_device_detach(efx->net_dev);
2579 efx_stop_all(efx);
2580 efx_fini_channels(efx);
2582 return 0;
2585 static int efx_pm_thaw(struct device *dev)
2587 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2589 efx->state = STATE_INIT;
2591 efx_init_channels(efx);
2593 mutex_lock(&efx->mac_lock);
2594 efx->phy_op->reconfigure(efx);
2595 mutex_unlock(&efx->mac_lock);
2597 efx_start_all(efx);
2599 netif_device_attach(efx->net_dev);
2601 efx->state = STATE_RUNNING;
2603 efx->type->resume_wol(efx);
2605 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2606 queue_work(reset_workqueue, &efx->reset_work);
2608 return 0;
2611 static int efx_pm_poweroff(struct device *dev)
2613 struct pci_dev *pci_dev = to_pci_dev(dev);
2614 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2616 efx->type->fini(efx);
2618 efx->reset_pending = 0;
2620 pci_save_state(pci_dev);
2621 return pci_set_power_state(pci_dev, PCI_D3hot);
2624 /* Used for both resume and restore */
2625 static int efx_pm_resume(struct device *dev)
2627 struct pci_dev *pci_dev = to_pci_dev(dev);
2628 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2629 int rc;
2631 rc = pci_set_power_state(pci_dev, PCI_D0);
2632 if (rc)
2633 return rc;
2634 pci_restore_state(pci_dev);
2635 rc = pci_enable_device(pci_dev);
2636 if (rc)
2637 return rc;
2638 pci_set_master(efx->pci_dev);
2639 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2640 if (rc)
2641 return rc;
2642 rc = efx->type->init(efx);
2643 if (rc)
2644 return rc;
2645 efx_pm_thaw(dev);
2646 return 0;
2649 static int efx_pm_suspend(struct device *dev)
2651 int rc;
2653 efx_pm_freeze(dev);
2654 rc = efx_pm_poweroff(dev);
2655 if (rc)
2656 efx_pm_resume(dev);
2657 return rc;
2660 static struct dev_pm_ops efx_pm_ops = {
2661 .suspend = efx_pm_suspend,
2662 .resume = efx_pm_resume,
2663 .freeze = efx_pm_freeze,
2664 .thaw = efx_pm_thaw,
2665 .poweroff = efx_pm_poweroff,
2666 .restore = efx_pm_resume,
2669 static struct pci_driver efx_pci_driver = {
2670 .name = KBUILD_MODNAME,
2671 .id_table = efx_pci_table,
2672 .probe = efx_pci_probe,
2673 .remove = efx_pci_remove,
2674 .driver.pm = &efx_pm_ops,
2677 /**************************************************************************
2679 * Kernel module interface
2681 *************************************************************************/
2683 module_param(interrupt_mode, uint, 0444);
2684 MODULE_PARM_DESC(interrupt_mode,
2685 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2687 static int __init efx_init_module(void)
2689 int rc;
2691 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2693 rc = register_netdevice_notifier(&efx_netdev_notifier);
2694 if (rc)
2695 goto err_notifier;
2697 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2698 if (!reset_workqueue) {
2699 rc = -ENOMEM;
2700 goto err_reset;
2703 rc = pci_register_driver(&efx_pci_driver);
2704 if (rc < 0)
2705 goto err_pci;
2707 return 0;
2709 err_pci:
2710 destroy_workqueue(reset_workqueue);
2711 err_reset:
2712 unregister_netdevice_notifier(&efx_netdev_notifier);
2713 err_notifier:
2714 return rc;
2717 static void __exit efx_exit_module(void)
2719 printk(KERN_INFO "Solarflare NET driver unloading\n");
2721 pci_unregister_driver(&efx_pci_driver);
2722 destroy_workqueue(reset_workqueue);
2723 unregister_netdevice_notifier(&efx_netdev_notifier);
2727 module_init(efx_init_module);
2728 module_exit(efx_exit_module);
2730 MODULE_AUTHOR("Solarflare Communications and "
2731 "Michael Brown <mbrown@fensystems.co.uk>");
2732 MODULE_DESCRIPTION("Solarflare Communications network driver");
2733 MODULE_LICENSE("GPL");
2734 MODULE_DEVICE_TABLE(pci, efx_pci_table);