1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
25 #include "workarounds.h"
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH 8
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS 64u
37 * rx_alloc_method - RX buffer allocation method
39 * This driver supports two methods for allocating and using RX buffers:
40 * each RX buffer may be backed by an skb or by an order-n page.
42 * When GRO is in use then the second method has a lower overhead,
43 * since we don't have to allocate then free skbs on reassembled frames.
46 * - RX_ALLOC_METHOD_AUTO = 0
47 * - RX_ALLOC_METHOD_SKB = 1
48 * - RX_ALLOC_METHOD_PAGE = 2
50 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51 * controlled by the parameters below.
53 * - Since pushing and popping descriptors are separated by the rx_queue
54 * size, so the watermarks should be ~rxd_size.
55 * - The performance win by using page-based allocation for GRO is less
56 * than the performance hit of using page-based allocation of non-GRO,
57 * so the watermarks should reflect this.
59 * Per channel we maintain a single variable, updated by each channel:
61 * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 * RX_ALLOC_FACTOR_SKB)
63 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64 * limits the hysteresis), and update the allocation strategy:
66 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
69 static int rx_alloc_method
= RX_ALLOC_METHOD_AUTO
;
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
76 /* This is the percentage fill level below which new RX descriptors
77 * will be added to the RX descriptor ring.
79 static unsigned int rx_refill_threshold
= 90;
81 /* This is the percentage fill level to which an RX queue will be refilled
82 * when the "RX refill threshold" is reached.
84 static unsigned int rx_refill_limit
= 95;
87 * RX maximum head room required.
89 * This must be at least 1 to prevent overflow and at least 2 to allow
92 #define EFX_RXD_HEAD_ROOM 2
94 /* Offset of ethernet header within page */
95 static inline unsigned int efx_rx_buf_offset(struct efx_nic
*efx
,
96 struct efx_rx_buffer
*buf
)
98 /* Offset is always within one page, so we don't need to consider
101 return (((__force
unsigned long) buf
->dma_addr
& (PAGE_SIZE
- 1)) +
102 efx
->type
->rx_buffer_hash_size
);
104 static inline unsigned int efx_rx_buf_size(struct efx_nic
*efx
)
106 return PAGE_SIZE
<< efx
->rx_buffer_order
;
109 static u8
*efx_rx_buf_eh(struct efx_nic
*efx
, struct efx_rx_buffer
*buf
)
112 return page_address(buf
->u
.page
) + efx_rx_buf_offset(efx
, buf
);
114 return ((u8
*)buf
->u
.skb
->data
+
115 efx
->type
->rx_buffer_hash_size
);
118 static inline u32
efx_rx_buf_hash(const u8
*eh
)
120 /* The ethernet header is always directly after any hash. */
121 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
122 return __le32_to_cpup((const __le32
*)(eh
- 4));
124 const u8
*data
= eh
- 4;
125 return ((u32
)data
[0] |
133 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
135 * @rx_queue: Efx RX queue
137 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
138 * struct efx_rx_buffer for each one. Return a negative error code or 0
139 * on success. May fail having only inserted fewer than EFX_RX_BATCH
142 static int efx_init_rx_buffers_skb(struct efx_rx_queue
*rx_queue
)
144 struct efx_nic
*efx
= rx_queue
->efx
;
145 struct net_device
*net_dev
= efx
->net_dev
;
146 struct efx_rx_buffer
*rx_buf
;
148 int skb_len
= efx
->rx_buffer_len
;
149 unsigned index
, count
;
151 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
152 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
153 rx_buf
= efx_rx_buffer(rx_queue
, index
);
155 rx_buf
->u
.skb
= skb
= netdev_alloc_skb(net_dev
, skb_len
);
159 /* Adjust the SKB for padding and checksum */
160 skb_reserve(skb
, NET_IP_ALIGN
);
161 rx_buf
->len
= skb_len
- NET_IP_ALIGN
;
162 rx_buf
->is_page
= false;
163 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
165 rx_buf
->dma_addr
= pci_map_single(efx
->pci_dev
,
166 skb
->data
, rx_buf
->len
,
168 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
,
169 rx_buf
->dma_addr
))) {
170 dev_kfree_skb_any(skb
);
171 rx_buf
->u
.skb
= NULL
;
175 ++rx_queue
->added_count
;
176 ++rx_queue
->alloc_skb_count
;
183 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
185 * @rx_queue: Efx RX queue
187 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
188 * and populates struct efx_rx_buffers for each one. Return a negative error
189 * code or 0 on success. If a single page can be split between two buffers,
190 * then the page will either be inserted fully, or not at at all.
192 static int efx_init_rx_buffers_page(struct efx_rx_queue
*rx_queue
)
194 struct efx_nic
*efx
= rx_queue
->efx
;
195 struct efx_rx_buffer
*rx_buf
;
198 struct efx_rx_page_state
*state
;
200 unsigned index
, count
;
202 /* We can split a page between two buffers */
203 BUILD_BUG_ON(EFX_RX_BATCH
& 1);
205 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
206 page
= alloc_pages(__GFP_COLD
| __GFP_COMP
| GFP_ATOMIC
,
207 efx
->rx_buffer_order
);
208 if (unlikely(page
== NULL
))
210 dma_addr
= pci_map_page(efx
->pci_dev
, page
, 0,
211 efx_rx_buf_size(efx
),
213 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
, dma_addr
))) {
214 __free_pages(page
, efx
->rx_buffer_order
);
217 page_addr
= page_address(page
);
220 state
->dma_addr
= dma_addr
;
222 page_addr
+= sizeof(struct efx_rx_page_state
);
223 dma_addr
+= sizeof(struct efx_rx_page_state
);
226 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
227 rx_buf
= efx_rx_buffer(rx_queue
, index
);
228 rx_buf
->dma_addr
= dma_addr
+ EFX_PAGE_IP_ALIGN
;
229 rx_buf
->u
.page
= page
;
230 rx_buf
->len
= efx
->rx_buffer_len
- EFX_PAGE_IP_ALIGN
;
231 rx_buf
->is_page
= true;
232 ++rx_queue
->added_count
;
233 ++rx_queue
->alloc_page_count
;
236 if ((~count
& 1) && (efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
)) {
237 /* Use the second half of the page */
239 dma_addr
+= (PAGE_SIZE
>> 1);
240 page_addr
+= (PAGE_SIZE
>> 1);
249 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
250 struct efx_rx_buffer
*rx_buf
)
252 if (rx_buf
->is_page
&& rx_buf
->u
.page
) {
253 struct efx_rx_page_state
*state
;
255 state
= page_address(rx_buf
->u
.page
);
256 if (--state
->refcnt
== 0) {
257 pci_unmap_page(efx
->pci_dev
,
259 efx_rx_buf_size(efx
),
262 } else if (!rx_buf
->is_page
&& rx_buf
->u
.skb
) {
263 pci_unmap_single(efx
->pci_dev
, rx_buf
->dma_addr
,
264 rx_buf
->len
, PCI_DMA_FROMDEVICE
);
268 static void efx_free_rx_buffer(struct efx_nic
*efx
,
269 struct efx_rx_buffer
*rx_buf
)
271 if (rx_buf
->is_page
&& rx_buf
->u
.page
) {
272 __free_pages(rx_buf
->u
.page
, efx
->rx_buffer_order
);
273 rx_buf
->u
.page
= NULL
;
274 } else if (!rx_buf
->is_page
&& rx_buf
->u
.skb
) {
275 dev_kfree_skb_any(rx_buf
->u
.skb
);
276 rx_buf
->u
.skb
= NULL
;
280 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
281 struct efx_rx_buffer
*rx_buf
)
283 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
284 efx_free_rx_buffer(rx_queue
->efx
, rx_buf
);
287 /* Attempt to resurrect the other receive buffer that used to share this page,
288 * which had previously been passed up to the kernel and freed. */
289 static void efx_resurrect_rx_buffer(struct efx_rx_queue
*rx_queue
,
290 struct efx_rx_buffer
*rx_buf
)
292 struct efx_rx_page_state
*state
= page_address(rx_buf
->u
.page
);
293 struct efx_rx_buffer
*new_buf
;
294 unsigned fill_level
, index
;
296 /* +1 because efx_rx_packet() incremented removed_count. +1 because
297 * we'd like to insert an additional descriptor whilst leaving
298 * EFX_RXD_HEAD_ROOM for the non-recycle path */
299 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
+ 2);
300 if (unlikely(fill_level
> rx_queue
->max_fill
)) {
301 /* We could place "state" on a list, and drain the list in
302 * efx_fast_push_rx_descriptors(). For now, this will do. */
307 get_page(rx_buf
->u
.page
);
309 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
310 new_buf
= efx_rx_buffer(rx_queue
, index
);
311 new_buf
->dma_addr
= rx_buf
->dma_addr
^ (PAGE_SIZE
>> 1);
312 new_buf
->u
.page
= rx_buf
->u
.page
;
313 new_buf
->len
= rx_buf
->len
;
314 new_buf
->is_page
= true;
315 ++rx_queue
->added_count
;
318 /* Recycle the given rx buffer directly back into the rx_queue. There is
319 * always room to add this buffer, because we've just popped a buffer. */
320 static void efx_recycle_rx_buffer(struct efx_channel
*channel
,
321 struct efx_rx_buffer
*rx_buf
)
323 struct efx_nic
*efx
= channel
->efx
;
324 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
325 struct efx_rx_buffer
*new_buf
;
328 if (rx_buf
->is_page
&& efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
&&
329 page_count(rx_buf
->u
.page
) == 1)
330 efx_resurrect_rx_buffer(rx_queue
, rx_buf
);
332 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
333 new_buf
= efx_rx_buffer(rx_queue
, index
);
335 memcpy(new_buf
, rx_buf
, sizeof(*new_buf
));
336 rx_buf
->u
.page
= NULL
;
337 ++rx_queue
->added_count
;
341 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
342 * @rx_queue: RX descriptor queue
343 * This will aim to fill the RX descriptor queue up to
344 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
345 * memory to do so, a slow fill will be scheduled.
347 * The caller must provide serialisation (none is used here). In practise,
348 * this means this function must run from the NAPI handler, or be called
349 * when NAPI is disabled.
351 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
)
353 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
357 /* Calculate current fill level, and exit if we don't need to fill */
358 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
359 EFX_BUG_ON_PARANOID(fill_level
> rx_queue
->efx
->rxq_entries
);
360 if (fill_level
>= rx_queue
->fast_fill_trigger
)
363 /* Record minimum fill level */
364 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
366 rx_queue
->min_fill
= fill_level
;
369 space
= rx_queue
->fast_fill_limit
- fill_level
;
370 if (space
< EFX_RX_BATCH
)
373 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
374 "RX queue %d fast-filling descriptor ring from"
375 " level %d to level %d using %s allocation\n",
376 efx_rx_queue_index(rx_queue
), fill_level
,
377 rx_queue
->fast_fill_limit
,
378 channel
->rx_alloc_push_pages
? "page" : "skb");
381 if (channel
->rx_alloc_push_pages
)
382 rc
= efx_init_rx_buffers_page(rx_queue
);
384 rc
= efx_init_rx_buffers_skb(rx_queue
);
386 /* Ensure that we don't leave the rx queue empty */
387 if (rx_queue
->added_count
== rx_queue
->removed_count
)
388 efx_schedule_slow_fill(rx_queue
);
391 } while ((space
-= EFX_RX_BATCH
) >= EFX_RX_BATCH
);
393 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
394 "RX queue %d fast-filled descriptor ring "
395 "to level %d\n", efx_rx_queue_index(rx_queue
),
396 rx_queue
->added_count
- rx_queue
->removed_count
);
399 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
400 efx_nic_notify_rx_desc(rx_queue
);
403 void efx_rx_slow_fill(unsigned long context
)
405 struct efx_rx_queue
*rx_queue
= (struct efx_rx_queue
*)context
;
406 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
408 /* Post an event to cause NAPI to run and refill the queue */
409 efx_nic_generate_fill_event(channel
);
410 ++rx_queue
->slow_fill_count
;
413 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
414 struct efx_rx_buffer
*rx_buf
,
415 int len
, bool *discard
,
418 struct efx_nic
*efx
= rx_queue
->efx
;
419 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
421 if (likely(len
<= max_len
))
424 /* The packet must be discarded, but this is only a fatal error
425 * if the caller indicated it was
429 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
431 netif_err(efx
, rx_err
, efx
->net_dev
,
432 " RX queue %d seriously overlength "
433 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
434 efx_rx_queue_index(rx_queue
), len
, max_len
,
435 efx
->type
->rx_buffer_padding
);
436 /* If this buffer was skb-allocated, then the meta
437 * data at the end of the skb will be trashed. So
438 * we have no choice but to leak the fragment.
440 *leak_packet
= !rx_buf
->is_page
;
441 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
444 netif_err(efx
, rx_err
, efx
->net_dev
,
445 " RX queue %d overlength RX event "
447 efx_rx_queue_index(rx_queue
), len
, max_len
);
450 efx_rx_queue_channel(rx_queue
)->n_rx_overlength
++;
453 /* Pass a received packet up through the generic GRO stack
455 * Handles driverlink veto, and passes the fragment up via
456 * the appropriate GRO method
458 static void efx_rx_packet_gro(struct efx_channel
*channel
,
459 struct efx_rx_buffer
*rx_buf
,
460 const u8
*eh
, bool checksummed
)
462 struct napi_struct
*napi
= &channel
->napi_str
;
463 gro_result_t gro_result
;
465 /* Pass the skb/page into the GRO engine */
466 if (rx_buf
->is_page
) {
467 struct efx_nic
*efx
= channel
->efx
;
468 struct page
*page
= rx_buf
->u
.page
;
471 rx_buf
->u
.page
= NULL
;
473 skb
= napi_get_frags(napi
);
479 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
480 skb
->rxhash
= efx_rx_buf_hash(eh
);
482 skb_frag_set_page(skb
, 0, page
);
483 skb_shinfo(skb
)->frags
[0].page_offset
=
484 efx_rx_buf_offset(efx
, rx_buf
);
485 skb_frag_size_set(&skb_shinfo(skb
)->frags
[0], rx_buf
->len
);
486 skb_shinfo(skb
)->nr_frags
= 1;
488 skb
->len
= rx_buf
->len
;
489 skb
->data_len
= rx_buf
->len
;
490 skb
->truesize
+= rx_buf
->len
;
492 checksummed
? CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
;
494 skb_record_rx_queue(skb
, channel
->channel
);
496 gro_result
= napi_gro_frags(napi
);
498 struct sk_buff
*skb
= rx_buf
->u
.skb
;
500 EFX_BUG_ON_PARANOID(!checksummed
);
501 rx_buf
->u
.skb
= NULL
;
503 gro_result
= napi_gro_receive(napi
, skb
);
506 if (gro_result
== GRO_NORMAL
) {
507 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
508 } else if (gro_result
!= GRO_DROP
) {
509 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_GRO
;
510 channel
->irq_mod_score
+= 2;
514 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
515 unsigned int len
, bool checksummed
, bool discard
)
517 struct efx_nic
*efx
= rx_queue
->efx
;
518 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
519 struct efx_rx_buffer
*rx_buf
;
520 bool leak_packet
= false;
522 rx_buf
= efx_rx_buffer(rx_queue
, index
);
524 /* This allows the refill path to post another buffer.
525 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
526 * isn't overwritten yet.
528 rx_queue
->removed_count
++;
530 /* Validate the length encoded in the event vs the descriptor pushed */
531 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
,
532 &discard
, &leak_packet
);
534 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
535 "RX queue %d received id %x at %llx+%x %s%s\n",
536 efx_rx_queue_index(rx_queue
), index
,
537 (unsigned long long)rx_buf
->dma_addr
, len
,
538 (checksummed
? " [SUMMED]" : ""),
539 (discard
? " [DISCARD]" : ""));
541 /* Discard packet, if instructed to do so */
542 if (unlikely(discard
)) {
543 if (unlikely(leak_packet
))
544 channel
->n_skbuff_leaks
++;
546 efx_recycle_rx_buffer(channel
, rx_buf
);
548 /* Don't hold off the previous receive */
553 /* Release card resources - assumes all RX buffers consumed in-order
556 efx_unmap_rx_buffer(efx
, rx_buf
);
558 /* Prefetch nice and early so data will (hopefully) be in cache by
559 * the time we look at it.
561 prefetch(efx_rx_buf_eh(efx
, rx_buf
));
563 /* Pipeline receives so that we give time for packet headers to be
564 * prefetched into cache.
566 rx_buf
->len
= len
- efx
->type
->rx_buffer_hash_size
;
569 __efx_rx_packet(channel
,
570 channel
->rx_pkt
, channel
->rx_pkt_csummed
);
571 channel
->rx_pkt
= rx_buf
;
572 channel
->rx_pkt_csummed
= checksummed
;
575 /* Handle a received packet. Second half: Touches packet payload. */
576 void __efx_rx_packet(struct efx_channel
*channel
,
577 struct efx_rx_buffer
*rx_buf
, bool checksummed
)
579 struct efx_nic
*efx
= channel
->efx
;
581 u8
*eh
= efx_rx_buf_eh(efx
, rx_buf
);
583 /* If we're in loopback test, then pass the packet directly to the
584 * loopback layer, and free the rx_buf here
586 if (unlikely(efx
->loopback_selftest
)) {
587 efx_loopback_rx_packet(efx
, eh
, rx_buf
->len
);
588 efx_free_rx_buffer(efx
, rx_buf
);
592 if (!rx_buf
->is_page
) {
595 prefetch(skb_shinfo(skb
));
597 skb_reserve(skb
, efx
->type
->rx_buffer_hash_size
);
598 skb_put(skb
, rx_buf
->len
);
600 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
601 skb
->rxhash
= efx_rx_buf_hash(eh
);
603 /* Move past the ethernet header. rx_buf->data still points
604 * at the ethernet header */
605 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
607 skb_record_rx_queue(skb
, channel
->channel
);
610 if (unlikely(!(efx
->net_dev
->features
& NETIF_F_RXCSUM
)))
613 if (likely(checksummed
|| rx_buf
->is_page
)) {
614 efx_rx_packet_gro(channel
, rx_buf
, eh
, checksummed
);
618 /* We now own the SKB */
620 rx_buf
->u
.skb
= NULL
;
622 /* Set the SKB flags */
623 skb_checksum_none_assert(skb
);
625 /* Pass the packet up */
626 netif_receive_skb(skb
);
628 /* Update allocation strategy method */
629 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
632 void efx_rx_strategy(struct efx_channel
*channel
)
634 enum efx_rx_alloc_method method
= rx_alloc_method
;
636 /* Only makes sense to use page based allocation if GRO is enabled */
637 if (!(channel
->efx
->net_dev
->features
& NETIF_F_GRO
)) {
638 method
= RX_ALLOC_METHOD_SKB
;
639 } else if (method
== RX_ALLOC_METHOD_AUTO
) {
640 /* Constrain the rx_alloc_level */
641 if (channel
->rx_alloc_level
< 0)
642 channel
->rx_alloc_level
= 0;
643 else if (channel
->rx_alloc_level
> RX_ALLOC_LEVEL_MAX
)
644 channel
->rx_alloc_level
= RX_ALLOC_LEVEL_MAX
;
646 /* Decide on the allocation method */
647 method
= ((channel
->rx_alloc_level
> RX_ALLOC_LEVEL_GRO
) ?
648 RX_ALLOC_METHOD_PAGE
: RX_ALLOC_METHOD_SKB
);
651 /* Push the option */
652 channel
->rx_alloc_push_pages
= (method
== RX_ALLOC_METHOD_PAGE
);
655 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
657 struct efx_nic
*efx
= rx_queue
->efx
;
658 unsigned int entries
;
661 /* Create the smallest power-of-two aligned ring */
662 entries
= max(roundup_pow_of_two(efx
->rxq_entries
), EFX_MIN_DMAQ_SIZE
);
663 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
664 rx_queue
->ptr_mask
= entries
- 1;
666 netif_dbg(efx
, probe
, efx
->net_dev
,
667 "creating RX queue %d size %#x mask %#x\n",
668 efx_rx_queue_index(rx_queue
), efx
->rxq_entries
,
671 /* Allocate RX buffers */
672 rx_queue
->buffer
= kzalloc(entries
* sizeof(*rx_queue
->buffer
),
674 if (!rx_queue
->buffer
)
677 rc
= efx_nic_probe_rx(rx_queue
);
679 kfree(rx_queue
->buffer
);
680 rx_queue
->buffer
= NULL
;
685 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
687 struct efx_nic
*efx
= rx_queue
->efx
;
688 unsigned int max_fill
, trigger
, limit
;
690 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
691 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue
));
693 /* Initialise ptr fields */
694 rx_queue
->added_count
= 0;
695 rx_queue
->notified_count
= 0;
696 rx_queue
->removed_count
= 0;
697 rx_queue
->min_fill
= -1U;
699 /* Initialise limit fields */
700 max_fill
= efx
->rxq_entries
- EFX_RXD_HEAD_ROOM
;
701 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
702 limit
= max_fill
* min(rx_refill_limit
, 100U) / 100U;
704 rx_queue
->max_fill
= max_fill
;
705 rx_queue
->fast_fill_trigger
= trigger
;
706 rx_queue
->fast_fill_limit
= limit
;
708 /* Set up RX descriptor ring */
709 efx_nic_init_rx(rx_queue
);
712 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
715 struct efx_rx_buffer
*rx_buf
;
717 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
718 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue
));
720 del_timer_sync(&rx_queue
->slow_fill
);
721 efx_nic_fini_rx(rx_queue
);
723 /* Release RX buffers NB start at index 0 not current HW ptr */
724 if (rx_queue
->buffer
) {
725 for (i
= 0; i
<= rx_queue
->ptr_mask
; i
++) {
726 rx_buf
= efx_rx_buffer(rx_queue
, i
);
727 efx_fini_rx_buffer(rx_queue
, rx_buf
);
732 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
734 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
735 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue
));
737 efx_nic_remove_rx(rx_queue
);
739 kfree(rx_queue
->buffer
);
740 rx_queue
->buffer
= NULL
;
744 module_param(rx_alloc_method
, int, 0644);
745 MODULE_PARM_DESC(rx_alloc_method
, "Allocation method used for RX buffers");
747 module_param(rx_refill_threshold
, uint
, 0444);
748 MODULE_PARM_DESC(rx_refill_threshold
,
749 "RX descriptor ring fast/slow fill threshold (%)");