usb: Netlogic: Use CPU_XLR in place of NLM_XLR
[zen-stable.git] / drivers / net / ethernet / via / via-velocity.c
blob4535d7cc848edb5a4d775c562e75eaae9b2032d2
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
17 * This source has not been verified for use in safety critical systems.
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
22 * Original code:
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
37 * Author: Chuang Liang-Shing, AJ Jiang
39 * Date: Jan 24, 2003
41 * MODULE_LICENSE("GPL");
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
80 #include "via-velocity.h"
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
96 int i;
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
101 writeb(0, &regs->CAMADDR);
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
115 * mac_set_cam_mask - Set a CAM mask
116 * @regs: register block for this velocity
117 * @mask: CAM mask to load
119 * Store a new mask into a CAM
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
123 int i;
124 /* Select CAM mask */
125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
127 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
129 for (i = 0; i < 8; i++)
130 writeb(*mask++, &(regs->MARCAM[i]));
132 /* disable CAMEN */
133 writeb(0, &regs->CAMADDR);
135 /* Select mar */
136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 int i;
142 /* Select CAM mask */
143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
147 for (i = 0; i < 8; i++)
148 writeb(*mask++, &(regs->MARCAM[i]));
150 /* disable CAMEN */
151 writeb(0, &regs->CAMADDR);
153 /* Select mar */
154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
158 * mac_set_cam - set CAM data
159 * @regs: register block of this velocity
160 * @idx: Cam index
161 * @addr: 2 or 6 bytes of CAM data
163 * Load an address or vlan tag into a CAM
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
167 int i;
169 /* Select CAM mask */
170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
172 idx &= (64 - 1);
174 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
176 for (i = 0; i < 6; i++)
177 writeb(*addr++, &(regs->MARCAM[i]));
179 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
181 udelay(10);
183 writeb(0, &regs->CAMADDR);
185 /* Select mar */
186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 const u8 *addr)
193 /* Select CAM mask */
194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
196 idx &= (64 - 1);
198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 writew(*((u16 *) addr), &regs->MARCAM[0]);
201 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
203 udelay(10);
205 writeb(0, &regs->CAMADDR);
207 /* Select mar */
208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
213 * mac_wol_reset - reset WOL after exiting low power
214 * @regs: register block of this velocity
216 * Called after we drop out of wake on lan mode in order to
217 * reset the Wake on lan features. This function doesn't restore
218 * the rest of the logic from the result of sleep/wakeup
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
223 /* Turn off SWPTAG right after leaving power mode */
224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 /* clear sticky bits */
226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 /* disable force PME-enable */
231 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 /* disable power-event config bit */
233 writew(0xFFFF, &regs->WOLCRClr);
234 /* clear power status */
235 writew(0xFFFF, &regs->WOLSRClr);
238 static const struct ethtool_ops velocity_ethtool_ops;
241 Define module options
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
248 #define VELOCITY_PARAM(N, D) \
249 static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 module_param_array(N, int, NULL, 0); \
251 MODULE_PARM_DESC(N, D);
253 #define RX_DESC_MIN 64
254 #define RX_DESC_MAX 255
255 #define RX_DESC_DEF 64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
258 #define TX_DESC_MIN 16
259 #define TX_DESC_MAX 256
260 #define TX_DESC_DEF 64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
263 #define RX_THRESH_MIN 0
264 #define RX_THRESH_MAX 3
265 #define RX_THRESH_DEF 0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267 0: indicate the rxfifo threshold is 128 bytes.
268 1: indicate the rxfifo threshold is 512 bytes.
269 2: indicate the rxfifo threshold is 1024 bytes.
270 3: indicate the rxfifo threshold is store & forward.
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
274 #define DMA_LENGTH_MIN 0
275 #define DMA_LENGTH_MAX 7
276 #define DMA_LENGTH_DEF 6
278 /* DMA_length[] is used for controlling the DMA length
279 0: 8 DWORDs
280 1: 16 DWORDs
281 2: 32 DWORDs
282 3: 64 DWORDs
283 4: 128 DWORDs
284 5: 256 DWORDs
285 6: SF(flush till emply)
286 7: SF(flush till emply)
288 VELOCITY_PARAM(DMA_length, "DMA length");
290 #define IP_ALIG_DEF 0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292 0: indicate the IP header won't be DWORD byte aligned.(Default) .
293 1: indicate the IP header will be DWORD byte aligned.
294 In some environment, the IP header should be DWORD byte aligned,
295 or the packet will be droped when we receive it. (eg: IPVS)
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
299 #define FLOW_CNTL_DEF 1
300 #define FLOW_CNTL_MIN 1
301 #define FLOW_CNTL_MAX 5
303 /* flow_control[] is used for setting the flow control ability of NIC.
304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305 2: enable TX flow control.
306 3: enable RX flow control.
307 4: enable RX/TX flow control.
308 5: disable
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316 0: indicate autonegotiation for both speed and duplex mode
317 1: indicate 100Mbps half duplex mode
318 2: indicate 100Mbps full duplex mode
319 3: indicate 10Mbps half duplex mode
320 4: indicate 10Mbps full duplex mode
321 5: indicate 1000Mbps full duplex mode
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
329 #define VAL_PKT_LEN_DEF 0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
336 #define WOL_OPT_DEF 0
337 #define WOL_OPT_MIN 0
338 #define WOL_OPT_MAX 7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
353 * Internal board variants. At the moment we have only one
355 static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
372 * get_chip_name - identifier to name
373 * @id: chip identifier
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
378 static const char __devinit *get_chip_name(enum chip_type chip_id)
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
395 static void __devexit velocity_remove1(struct pci_dev *pdev)
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
407 velocity_nics--;
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
424 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
426 if (val == -1)
427 *opt = def;
428 else if (val < min || val > max) {
429 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 devname, name, min, max);
431 *opt = def;
432 } else {
433 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 devname, name, val);
435 *opt = val;
440 * velocity_set_bool_opt - parser for boolean options
441 * @opt: pointer to option value
442 * @val: value the user requested (or -1 for default)
443 * @def: default value (yes/no)
444 * @flag: numeric value to set for true.
445 * @name: property name
446 * @dev: device name
448 * Set a boolean property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
452 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
454 (*opt) &= (~flag);
455 if (val == -1)
456 *opt |= (def ? flag : 0);
457 else if (val < 0 || val > 1) {
458 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 devname, name);
460 *opt |= (def ? flag : 0);
461 } else {
462 printk(KERN_INFO "%s: set parameter %s to %s\n",
463 devname, name, val ? "TRUE" : "FALSE");
464 *opt |= (val ? flag : 0);
469 * velocity_get_options - set options on device
470 * @opts: option structure for the device
471 * @index: index of option to use in module options array
472 * @devname: device name
474 * Turn the module and command options into a single structure
475 * for the current device
477 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
480 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
485 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 opts->numrx = (opts->numrx & ~3);
494 * velocity_init_cam_filter - initialise CAM
495 * @vptr: velocity to program
497 * Initialize the content addressable memory used for filters. Load
498 * appropriately according to the presence of VLAN
500 static void velocity_init_cam_filter(struct velocity_info *vptr)
502 struct mac_regs __iomem *regs = vptr->mac_regs;
503 unsigned int vid, i = 0;
505 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
509 /* Disable all CAMs */
510 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 mac_set_cam_mask(regs, vptr->mCAMmask);
515 /* Enable VCAMs */
516 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
517 mac_set_vlan_cam(regs, i, (u8 *) &vid);
518 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
519 if (++i >= VCAM_SIZE)
520 break;
522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
527 struct velocity_info *vptr = netdev_priv(dev);
529 spin_lock_irq(&vptr->lock);
530 set_bit(vid, vptr->active_vlans);
531 velocity_init_cam_filter(vptr);
532 spin_unlock_irq(&vptr->lock);
535 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
537 struct velocity_info *vptr = netdev_priv(dev);
539 spin_lock_irq(&vptr->lock);
540 clear_bit(vid, vptr->active_vlans);
541 velocity_init_cam_filter(vptr);
542 spin_unlock_irq(&vptr->lock);
545 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
547 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
551 * velocity_rx_reset - handle a receive reset
552 * @vptr: velocity we are resetting
554 * Reset the ownership and status for the receive ring side.
555 * Hand all the receive queue to the NIC.
557 static void velocity_rx_reset(struct velocity_info *vptr)
560 struct mac_regs __iomem *regs = vptr->mac_regs;
561 int i;
563 velocity_init_rx_ring_indexes(vptr);
566 * Init state, all RD entries belong to the NIC
568 for (i = 0; i < vptr->options.numrx; ++i)
569 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
571 writew(vptr->options.numrx, &regs->RBRDU);
572 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
573 writew(0, &regs->RDIdx);
574 writew(vptr->options.numrx - 1, &regs->RDCSize);
578 * velocity_get_opt_media_mode - get media selection
579 * @vptr: velocity adapter
581 * Get the media mode stored in EEPROM or module options and load
582 * mii_status accordingly. The requested link state information
583 * is also returned.
585 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
587 u32 status = 0;
589 switch (vptr->options.spd_dpx) {
590 case SPD_DPX_AUTO:
591 status = VELOCITY_AUTONEG_ENABLE;
592 break;
593 case SPD_DPX_100_FULL:
594 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
595 break;
596 case SPD_DPX_10_FULL:
597 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
598 break;
599 case SPD_DPX_100_HALF:
600 status = VELOCITY_SPEED_100;
601 break;
602 case SPD_DPX_10_HALF:
603 status = VELOCITY_SPEED_10;
604 break;
605 case SPD_DPX_1000_FULL:
606 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
607 break;
609 vptr->mii_status = status;
610 return status;
614 * safe_disable_mii_autopoll - autopoll off
615 * @regs: velocity registers
617 * Turn off the autopoll and wait for it to disable on the chip
619 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
621 u16 ww;
623 /* turn off MAUTO */
624 writeb(0, &regs->MIICR);
625 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
626 udelay(1);
627 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
628 break;
633 * enable_mii_autopoll - turn on autopolling
634 * @regs: velocity registers
636 * Enable the MII link status autopoll feature on the Velocity
637 * hardware. Wait for it to enable.
639 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
641 int ii;
643 writeb(0, &(regs->MIICR));
644 writeb(MIIADR_SWMPL, &regs->MIIADR);
646 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
647 udelay(1);
648 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
649 break;
652 writeb(MIICR_MAUTO, &regs->MIICR);
654 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
655 udelay(1);
656 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
657 break;
663 * velocity_mii_read - read MII data
664 * @regs: velocity registers
665 * @index: MII register index
666 * @data: buffer for received data
668 * Perform a single read of an MII 16bit register. Returns zero
669 * on success or -ETIMEDOUT if the PHY did not respond.
671 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
673 u16 ww;
676 * Disable MIICR_MAUTO, so that mii addr can be set normally
678 safe_disable_mii_autopoll(regs);
680 writeb(index, &regs->MIIADR);
682 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
684 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
685 if (!(readb(&regs->MIICR) & MIICR_RCMD))
686 break;
689 *data = readw(&regs->MIIDATA);
691 enable_mii_autopoll(regs);
692 if (ww == W_MAX_TIMEOUT)
693 return -ETIMEDOUT;
694 return 0;
698 * mii_check_media_mode - check media state
699 * @regs: velocity registers
701 * Check the current MII status and determine the link status
702 * accordingly
704 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
706 u32 status = 0;
707 u16 ANAR;
709 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
710 status |= VELOCITY_LINK_FAIL;
712 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
713 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
714 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
715 status |= (VELOCITY_SPEED_1000);
716 else {
717 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
718 if (ANAR & ADVERTISE_100FULL)
719 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
720 else if (ANAR & ADVERTISE_100HALF)
721 status |= VELOCITY_SPEED_100;
722 else if (ANAR & ADVERTISE_10FULL)
723 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
724 else
725 status |= (VELOCITY_SPEED_10);
728 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
729 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
730 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
731 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
732 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
733 status |= VELOCITY_AUTONEG_ENABLE;
737 return status;
741 * velocity_mii_write - write MII data
742 * @regs: velocity registers
743 * @index: MII register index
744 * @data: 16bit data for the MII register
746 * Perform a single write to an MII 16bit register. Returns zero
747 * on success or -ETIMEDOUT if the PHY did not respond.
749 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
751 u16 ww;
754 * Disable MIICR_MAUTO, so that mii addr can be set normally
756 safe_disable_mii_autopoll(regs);
758 /* MII reg offset */
759 writeb(mii_addr, &regs->MIIADR);
760 /* set MII data */
761 writew(data, &regs->MIIDATA);
763 /* turn on MIICR_WCMD */
764 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
766 /* W_MAX_TIMEOUT is the timeout period */
767 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
768 udelay(5);
769 if (!(readb(&regs->MIICR) & MIICR_WCMD))
770 break;
772 enable_mii_autopoll(regs);
774 if (ww == W_MAX_TIMEOUT)
775 return -ETIMEDOUT;
776 return 0;
780 * set_mii_flow_control - flow control setup
781 * @vptr: velocity interface
783 * Set up the flow control on this interface according to
784 * the supplied user/eeprom options.
786 static void set_mii_flow_control(struct velocity_info *vptr)
788 /*Enable or Disable PAUSE in ANAR */
789 switch (vptr->options.flow_cntl) {
790 case FLOW_CNTL_TX:
791 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
792 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
793 break;
795 case FLOW_CNTL_RX:
796 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
797 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
798 break;
800 case FLOW_CNTL_TX_RX:
801 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
802 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
803 break;
805 case FLOW_CNTL_DISABLE:
806 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
807 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
808 break;
809 default:
810 break;
815 * mii_set_auto_on - autonegotiate on
816 * @vptr: velocity
818 * Enable autonegotation on this interface
820 static void mii_set_auto_on(struct velocity_info *vptr)
822 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
823 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
824 else
825 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
828 static u32 check_connection_type(struct mac_regs __iomem *regs)
830 u32 status = 0;
831 u8 PHYSR0;
832 u16 ANAR;
833 PHYSR0 = readb(&regs->PHYSR0);
836 if (!(PHYSR0 & PHYSR0_LINKGD))
837 status|=VELOCITY_LINK_FAIL;
840 if (PHYSR0 & PHYSR0_FDPX)
841 status |= VELOCITY_DUPLEX_FULL;
843 if (PHYSR0 & PHYSR0_SPDG)
844 status |= VELOCITY_SPEED_1000;
845 else if (PHYSR0 & PHYSR0_SPD10)
846 status |= VELOCITY_SPEED_10;
847 else
848 status |= VELOCITY_SPEED_100;
850 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
851 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
852 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
853 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
854 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
855 status |= VELOCITY_AUTONEG_ENABLE;
859 return status;
863 * velocity_set_media_mode - set media mode
864 * @mii_status: old MII link state
866 * Check the media link state and configure the flow control
867 * PHY and also velocity hardware setup accordingly. In particular
868 * we need to set up CD polling and frame bursting.
870 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
872 u32 curr_status;
873 struct mac_regs __iomem *regs = vptr->mac_regs;
875 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
876 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
878 /* Set mii link status */
879 set_mii_flow_control(vptr);
882 Check if new status is consistent with current status
883 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
884 (mii_status==curr_status)) {
885 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
886 vptr->mii_status=check_connection_type(vptr->mac_regs);
887 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
888 return 0;
892 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
893 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
896 * If connection type is AUTO
898 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
899 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
900 /* clear force MAC mode bit */
901 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
902 /* set duplex mode of MAC according to duplex mode of MII */
903 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
904 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
905 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
907 /* enable AUTO-NEGO mode */
908 mii_set_auto_on(vptr);
909 } else {
910 u16 CTRL1000;
911 u16 ANAR;
912 u8 CHIPGCR;
915 * 1. if it's 3119, disable frame bursting in halfduplex mode
916 * and enable it in fullduplex mode
917 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
918 * 3. only enable CD heart beat counter in 10HD mode
921 /* set force MAC mode bit */
922 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
924 CHIPGCR = readb(&regs->CHIPGCR);
926 if (mii_status & VELOCITY_SPEED_1000)
927 CHIPGCR |= CHIPGCR_FCGMII;
928 else
929 CHIPGCR &= ~CHIPGCR_FCGMII;
931 if (mii_status & VELOCITY_DUPLEX_FULL) {
932 CHIPGCR |= CHIPGCR_FCFDX;
933 writeb(CHIPGCR, &regs->CHIPGCR);
934 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
935 if (vptr->rev_id < REV_ID_VT3216_A0)
936 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
937 } else {
938 CHIPGCR &= ~CHIPGCR_FCFDX;
939 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
940 writeb(CHIPGCR, &regs->CHIPGCR);
941 if (vptr->rev_id < REV_ID_VT3216_A0)
942 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
945 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
946 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
947 if ((mii_status & VELOCITY_SPEED_1000) &&
948 (mii_status & VELOCITY_DUPLEX_FULL)) {
949 CTRL1000 |= ADVERTISE_1000FULL;
951 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
953 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
954 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
955 else
956 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
958 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
959 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
960 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
961 if (mii_status & VELOCITY_SPEED_100) {
962 if (mii_status & VELOCITY_DUPLEX_FULL)
963 ANAR |= ADVERTISE_100FULL;
964 else
965 ANAR |= ADVERTISE_100HALF;
966 } else if (mii_status & VELOCITY_SPEED_10) {
967 if (mii_status & VELOCITY_DUPLEX_FULL)
968 ANAR |= ADVERTISE_10FULL;
969 else
970 ANAR |= ADVERTISE_10HALF;
972 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
973 /* enable AUTO-NEGO mode */
974 mii_set_auto_on(vptr);
975 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
977 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
978 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
979 return VELOCITY_LINK_CHANGE;
983 * velocity_print_link_status - link status reporting
984 * @vptr: velocity to report on
986 * Turn the link status of the velocity card into a kernel log
987 * description of the new link state, detailing speed and duplex
988 * status
990 static void velocity_print_link_status(struct velocity_info *vptr)
993 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
994 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
995 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
996 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
998 if (vptr->mii_status & VELOCITY_SPEED_1000)
999 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1000 else if (vptr->mii_status & VELOCITY_SPEED_100)
1001 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1002 else
1003 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1005 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1006 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1007 else
1008 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1009 } else {
1010 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1011 switch (vptr->options.spd_dpx) {
1012 case SPD_DPX_1000_FULL:
1013 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1014 break;
1015 case SPD_DPX_100_HALF:
1016 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1017 break;
1018 case SPD_DPX_100_FULL:
1019 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1020 break;
1021 case SPD_DPX_10_HALF:
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1023 break;
1024 case SPD_DPX_10_FULL:
1025 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1026 break;
1027 default:
1028 break;
1034 * enable_flow_control_ability - flow control
1035 * @vptr: veloity to configure
1037 * Set up flow control according to the flow control options
1038 * determined by the eeprom/configuration.
1040 static void enable_flow_control_ability(struct velocity_info *vptr)
1043 struct mac_regs __iomem *regs = vptr->mac_regs;
1045 switch (vptr->options.flow_cntl) {
1047 case FLOW_CNTL_DEFAULT:
1048 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1049 writel(CR0_FDXRFCEN, &regs->CR0Set);
1050 else
1051 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1053 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1054 writel(CR0_FDXTFCEN, &regs->CR0Set);
1055 else
1056 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1057 break;
1059 case FLOW_CNTL_TX:
1060 writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1062 break;
1064 case FLOW_CNTL_RX:
1065 writel(CR0_FDXRFCEN, &regs->CR0Set);
1066 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1067 break;
1069 case FLOW_CNTL_TX_RX:
1070 writel(CR0_FDXTFCEN, &regs->CR0Set);
1071 writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 break;
1074 case FLOW_CNTL_DISABLE:
1075 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1077 break;
1079 default:
1080 break;
1086 * velocity_soft_reset - soft reset
1087 * @vptr: velocity to reset
1089 * Kick off a soft reset of the velocity adapter and then poll
1090 * until the reset sequence has completed before returning.
1092 static int velocity_soft_reset(struct velocity_info *vptr)
1094 struct mac_regs __iomem *regs = vptr->mac_regs;
1095 int i = 0;
1097 writel(CR0_SFRST, &regs->CR0Set);
1099 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1100 udelay(5);
1101 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1102 break;
1105 if (i == W_MAX_TIMEOUT) {
1106 writel(CR0_FORSRST, &regs->CR0Set);
1107 /* FIXME: PCI POSTING */
1108 /* delay 2ms */
1109 mdelay(2);
1111 return 0;
1115 * velocity_set_multi - filter list change callback
1116 * @dev: network device
1118 * Called by the network layer when the filter lists need to change
1119 * for a velocity adapter. Reload the CAMs with the new address
1120 * filter ruleset.
1122 static void velocity_set_multi(struct net_device *dev)
1124 struct velocity_info *vptr = netdev_priv(dev);
1125 struct mac_regs __iomem *regs = vptr->mac_regs;
1126 u8 rx_mode;
1127 int i;
1128 struct netdev_hw_addr *ha;
1130 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1131 writel(0xffffffff, &regs->MARCAM[0]);
1132 writel(0xffffffff, &regs->MARCAM[4]);
1133 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1134 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1135 (dev->flags & IFF_ALLMULTI)) {
1136 writel(0xffffffff, &regs->MARCAM[0]);
1137 writel(0xffffffff, &regs->MARCAM[4]);
1138 rx_mode = (RCR_AM | RCR_AB);
1139 } else {
1140 int offset = MCAM_SIZE - vptr->multicast_limit;
1141 mac_get_cam_mask(regs, vptr->mCAMmask);
1143 i = 0;
1144 netdev_for_each_mc_addr(ha, dev) {
1145 mac_set_cam(regs, i + offset, ha->addr);
1146 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1147 i++;
1150 mac_set_cam_mask(regs, vptr->mCAMmask);
1151 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1153 if (dev->mtu > 1500)
1154 rx_mode |= RCR_AL;
1156 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1161 * MII access , media link mode setting functions
1165 * mii_init - set up MII
1166 * @vptr: velocity adapter
1167 * @mii_status: links tatus
1169 * Set up the PHY for the current link state.
1171 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1173 u16 BMCR;
1175 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1176 case PHYID_CICADA_CS8201:
1178 * Reset to hardware default
1180 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1182 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1183 * off it in NWay-forced half mode for NWay-forced v.s.
1184 * legacy-forced issue.
1186 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1187 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1188 else
1189 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1191 * Turn on Link/Activity LED enable bit for CIS8201
1193 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1194 break;
1195 case PHYID_VT3216_32BIT:
1196 case PHYID_VT3216_64BIT:
1198 * Reset to hardware default
1200 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1202 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1203 * off it in NWay-forced half mode for NWay-forced v.s.
1204 * legacy-forced issue
1206 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1207 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1208 else
1209 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210 break;
1212 case PHYID_MARVELL_1000:
1213 case PHYID_MARVELL_1000S:
1215 * Assert CRS on Transmit
1217 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1219 * Reset to hardware default
1221 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1222 break;
1223 default:
1226 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1227 if (BMCR & BMCR_ISOLATE) {
1228 BMCR &= ~BMCR_ISOLATE;
1229 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1234 * setup_queue_timers - Setup interrupt timers
1236 * Setup interrupt frequency during suppression (timeout if the frame
1237 * count isn't filled).
1239 static void setup_queue_timers(struct velocity_info *vptr)
1241 /* Only for newer revisions */
1242 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1243 u8 txqueue_timer = 0;
1244 u8 rxqueue_timer = 0;
1246 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1247 VELOCITY_SPEED_100)) {
1248 txqueue_timer = vptr->options.txqueue_timer;
1249 rxqueue_timer = vptr->options.rxqueue_timer;
1252 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1253 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1258 * setup_adaptive_interrupts - Setup interrupt suppression
1260 * @vptr velocity adapter
1262 * The velocity is able to suppress interrupt during high interrupt load.
1263 * This function turns on that feature.
1265 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1267 struct mac_regs __iomem *regs = vptr->mac_regs;
1268 u16 tx_intsup = vptr->options.tx_intsup;
1269 u16 rx_intsup = vptr->options.rx_intsup;
1271 /* Setup default interrupt mask (will be changed below) */
1272 vptr->int_mask = INT_MASK_DEF;
1274 /* Set Tx Interrupt Suppression Threshold */
1275 writeb(CAMCR_PS0, &regs->CAMCR);
1276 if (tx_intsup != 0) {
1277 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1278 ISR_PTX2I | ISR_PTX3I);
1279 writew(tx_intsup, &regs->ISRCTL);
1280 } else
1281 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1283 /* Set Rx Interrupt Suppression Threshold */
1284 writeb(CAMCR_PS1, &regs->CAMCR);
1285 if (rx_intsup != 0) {
1286 vptr->int_mask &= ~ISR_PRXI;
1287 writew(rx_intsup, &regs->ISRCTL);
1288 } else
1289 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1291 /* Select page to interrupt hold timer */
1292 writeb(0, &regs->CAMCR);
1296 * velocity_init_registers - initialise MAC registers
1297 * @vptr: velocity to init
1298 * @type: type of initialisation (hot or cold)
1300 * Initialise the MAC on a reset or on first set up on the
1301 * hardware.
1303 static void velocity_init_registers(struct velocity_info *vptr,
1304 enum velocity_init_type type)
1306 struct mac_regs __iomem *regs = vptr->mac_regs;
1307 int i, mii_status;
1309 mac_wol_reset(regs);
1311 switch (type) {
1312 case VELOCITY_INIT_RESET:
1313 case VELOCITY_INIT_WOL:
1315 netif_stop_queue(vptr->dev);
1318 * Reset RX to prevent RX pointer not on the 4X location
1320 velocity_rx_reset(vptr);
1321 mac_rx_queue_run(regs);
1322 mac_rx_queue_wake(regs);
1324 mii_status = velocity_get_opt_media_mode(vptr);
1325 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1326 velocity_print_link_status(vptr);
1327 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1328 netif_wake_queue(vptr->dev);
1331 enable_flow_control_ability(vptr);
1333 mac_clear_isr(regs);
1334 writel(CR0_STOP, &regs->CR0Clr);
1335 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1336 &regs->CR0Set);
1338 break;
1340 case VELOCITY_INIT_COLD:
1341 default:
1343 * Do reset
1345 velocity_soft_reset(vptr);
1346 mdelay(5);
1348 mac_eeprom_reload(regs);
1349 for (i = 0; i < 6; i++)
1350 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1353 * clear Pre_ACPI bit.
1355 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1356 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1357 mac_set_dma_length(regs, vptr->options.DMA_length);
1359 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1361 * Back off algorithm use original IEEE standard
1363 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1366 * Init CAM filter
1368 velocity_init_cam_filter(vptr);
1371 * Set packet filter: Receive directed and broadcast address
1373 velocity_set_multi(vptr->dev);
1376 * Enable MII auto-polling
1378 enable_mii_autopoll(regs);
1380 setup_adaptive_interrupts(vptr);
1382 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1383 writew(vptr->options.numrx - 1, &regs->RDCSize);
1384 mac_rx_queue_run(regs);
1385 mac_rx_queue_wake(regs);
1387 writew(vptr->options.numtx - 1, &regs->TDCSize);
1389 for (i = 0; i < vptr->tx.numq; i++) {
1390 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1391 mac_tx_queue_run(regs, i);
1394 init_flow_control_register(vptr);
1396 writel(CR0_STOP, &regs->CR0Clr);
1397 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1399 mii_status = velocity_get_opt_media_mode(vptr);
1400 netif_stop_queue(vptr->dev);
1402 mii_init(vptr, mii_status);
1404 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1405 velocity_print_link_status(vptr);
1406 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1407 netif_wake_queue(vptr->dev);
1410 enable_flow_control_ability(vptr);
1411 mac_hw_mibs_init(regs);
1412 mac_write_int_mask(vptr->int_mask, regs);
1413 mac_clear_isr(regs);
1418 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1420 struct mac_regs __iomem *regs = vptr->mac_regs;
1421 int avail, dirty, unusable;
1424 * RD number must be equal to 4X per hardware spec
1425 * (programming guide rev 1.20, p.13)
1427 if (vptr->rx.filled < 4)
1428 return;
1430 wmb();
1432 unusable = vptr->rx.filled & 0x0003;
1433 dirty = vptr->rx.dirty - unusable;
1434 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1435 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1436 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1439 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1440 vptr->rx.filled = unusable;
1444 * velocity_init_dma_rings - set up DMA rings
1445 * @vptr: Velocity to set up
1447 * Allocate PCI mapped DMA rings for the receive and transmit layer
1448 * to use.
1450 static int velocity_init_dma_rings(struct velocity_info *vptr)
1452 struct velocity_opt *opt = &vptr->options;
1453 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1454 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1455 struct pci_dev *pdev = vptr->pdev;
1456 dma_addr_t pool_dma;
1457 void *pool;
1458 unsigned int i;
1461 * Allocate all RD/TD rings a single pool.
1463 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1464 * alignment
1466 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1467 rx_ring_size, &pool_dma);
1468 if (!pool) {
1469 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1470 vptr->dev->name);
1471 return -ENOMEM;
1474 vptr->rx.ring = pool;
1475 vptr->rx.pool_dma = pool_dma;
1477 pool += rx_ring_size;
1478 pool_dma += rx_ring_size;
1480 for (i = 0; i < vptr->tx.numq; i++) {
1481 vptr->tx.rings[i] = pool;
1482 vptr->tx.pool_dma[i] = pool_dma;
1483 pool += tx_ring_size;
1484 pool_dma += tx_ring_size;
1487 return 0;
1490 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1492 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1496 * velocity_alloc_rx_buf - allocate aligned receive buffer
1497 * @vptr: velocity
1498 * @idx: ring index
1500 * Allocate a new full sized buffer for the reception of a frame and
1501 * map it into PCI space for the hardware to use. The hardware
1502 * requires *64* byte alignment of the buffer which makes life
1503 * less fun than would be ideal.
1505 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1507 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1508 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1510 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1511 if (rd_info->skb == NULL)
1512 return -ENOMEM;
1515 * Do the gymnastics to get the buffer head for data at
1516 * 64byte alignment.
1518 skb_reserve(rd_info->skb,
1519 64 - ((unsigned long) rd_info->skb->data & 63));
1520 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1521 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1524 * Fill in the descriptor to match
1527 *((u32 *) & (rd->rdesc0)) = 0;
1528 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1529 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1530 rd->pa_high = 0;
1531 return 0;
1535 static int velocity_rx_refill(struct velocity_info *vptr)
1537 int dirty = vptr->rx.dirty, done = 0;
1539 do {
1540 struct rx_desc *rd = vptr->rx.ring + dirty;
1542 /* Fine for an all zero Rx desc at init time as well */
1543 if (rd->rdesc0.len & OWNED_BY_NIC)
1544 break;
1546 if (!vptr->rx.info[dirty].skb) {
1547 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1548 break;
1550 done++;
1551 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1552 } while (dirty != vptr->rx.curr);
1554 if (done) {
1555 vptr->rx.dirty = dirty;
1556 vptr->rx.filled += done;
1559 return done;
1563 * velocity_free_rd_ring - free receive ring
1564 * @vptr: velocity to clean up
1566 * Free the receive buffers for each ring slot and any
1567 * attached socket buffers that need to go away.
1569 static void velocity_free_rd_ring(struct velocity_info *vptr)
1571 int i;
1573 if (vptr->rx.info == NULL)
1574 return;
1576 for (i = 0; i < vptr->options.numrx; i++) {
1577 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1578 struct rx_desc *rd = vptr->rx.ring + i;
1580 memset(rd, 0, sizeof(*rd));
1582 if (!rd_info->skb)
1583 continue;
1584 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1585 PCI_DMA_FROMDEVICE);
1586 rd_info->skb_dma = 0;
1588 dev_kfree_skb(rd_info->skb);
1589 rd_info->skb = NULL;
1592 kfree(vptr->rx.info);
1593 vptr->rx.info = NULL;
1597 * velocity_init_rd_ring - set up receive ring
1598 * @vptr: velocity to configure
1600 * Allocate and set up the receive buffers for each ring slot and
1601 * assign them to the network adapter.
1603 static int velocity_init_rd_ring(struct velocity_info *vptr)
1605 int ret = -ENOMEM;
1607 vptr->rx.info = kcalloc(vptr->options.numrx,
1608 sizeof(struct velocity_rd_info), GFP_KERNEL);
1609 if (!vptr->rx.info)
1610 goto out;
1612 velocity_init_rx_ring_indexes(vptr);
1614 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1615 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1616 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1617 velocity_free_rd_ring(vptr);
1618 goto out;
1621 ret = 0;
1622 out:
1623 return ret;
1627 * velocity_init_td_ring - set up transmit ring
1628 * @vptr: velocity
1630 * Set up the transmit ring and chain the ring pointers together.
1631 * Returns zero on success or a negative posix errno code for
1632 * failure.
1634 static int velocity_init_td_ring(struct velocity_info *vptr)
1636 int j;
1638 /* Init the TD ring entries */
1639 for (j = 0; j < vptr->tx.numq; j++) {
1641 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1642 sizeof(struct velocity_td_info),
1643 GFP_KERNEL);
1644 if (!vptr->tx.infos[j]) {
1645 while (--j >= 0)
1646 kfree(vptr->tx.infos[j]);
1647 return -ENOMEM;
1650 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1652 return 0;
1656 * velocity_free_dma_rings - free PCI ring pointers
1657 * @vptr: Velocity to free from
1659 * Clean up the PCI ring buffers allocated to this velocity.
1661 static void velocity_free_dma_rings(struct velocity_info *vptr)
1663 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1664 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1666 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1669 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1671 int ret;
1673 velocity_set_rxbufsize(vptr, mtu);
1675 ret = velocity_init_dma_rings(vptr);
1676 if (ret < 0)
1677 goto out;
1679 ret = velocity_init_rd_ring(vptr);
1680 if (ret < 0)
1681 goto err_free_dma_rings_0;
1683 ret = velocity_init_td_ring(vptr);
1684 if (ret < 0)
1685 goto err_free_rd_ring_1;
1686 out:
1687 return ret;
1689 err_free_rd_ring_1:
1690 velocity_free_rd_ring(vptr);
1691 err_free_dma_rings_0:
1692 velocity_free_dma_rings(vptr);
1693 goto out;
1697 * velocity_free_tx_buf - free transmit buffer
1698 * @vptr: velocity
1699 * @tdinfo: buffer
1701 * Release an transmit buffer. If the buffer was preallocated then
1702 * recycle it, if not then unmap the buffer.
1704 static void velocity_free_tx_buf(struct velocity_info *vptr,
1705 struct velocity_td_info *tdinfo, struct tx_desc *td)
1707 struct sk_buff *skb = tdinfo->skb;
1710 * Don't unmap the pre-allocated tx_bufs
1712 if (tdinfo->skb_dma) {
1713 int i;
1715 for (i = 0; i < tdinfo->nskb_dma; i++) {
1716 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1718 /* For scatter-gather */
1719 if (skb_shinfo(skb)->nr_frags > 0)
1720 pktlen = max_t(size_t, pktlen,
1721 td->td_buf[i].size & ~TD_QUEUE);
1723 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1724 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1727 dev_kfree_skb_irq(skb);
1728 tdinfo->skb = NULL;
1732 * FIXME: could we merge this with velocity_free_tx_buf ?
1734 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1735 int q, int n)
1737 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1738 int i;
1740 if (td_info == NULL)
1741 return;
1743 if (td_info->skb) {
1744 for (i = 0; i < td_info->nskb_dma; i++) {
1745 if (td_info->skb_dma[i]) {
1746 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1747 td_info->skb->len, PCI_DMA_TODEVICE);
1748 td_info->skb_dma[i] = 0;
1751 dev_kfree_skb(td_info->skb);
1752 td_info->skb = NULL;
1757 * velocity_free_td_ring - free td ring
1758 * @vptr: velocity
1760 * Free up the transmit ring for this particular velocity adapter.
1761 * We free the ring contents but not the ring itself.
1763 static void velocity_free_td_ring(struct velocity_info *vptr)
1765 int i, j;
1767 for (j = 0; j < vptr->tx.numq; j++) {
1768 if (vptr->tx.infos[j] == NULL)
1769 continue;
1770 for (i = 0; i < vptr->options.numtx; i++)
1771 velocity_free_td_ring_entry(vptr, j, i);
1773 kfree(vptr->tx.infos[j]);
1774 vptr->tx.infos[j] = NULL;
1778 static void velocity_free_rings(struct velocity_info *vptr)
1780 velocity_free_td_ring(vptr);
1781 velocity_free_rd_ring(vptr);
1782 velocity_free_dma_rings(vptr);
1786 * velocity_error - handle error from controller
1787 * @vptr: velocity
1788 * @status: card status
1790 * Process an error report from the hardware and attempt to recover
1791 * the card itself. At the moment we cannot recover from some
1792 * theoretically impossible errors but this could be fixed using
1793 * the pci_device_failed logic to bounce the hardware
1796 static void velocity_error(struct velocity_info *vptr, int status)
1799 if (status & ISR_TXSTLI) {
1800 struct mac_regs __iomem *regs = vptr->mac_regs;
1802 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1803 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1804 writew(TRDCSR_RUN, &regs->TDCSRClr);
1805 netif_stop_queue(vptr->dev);
1807 /* FIXME: port over the pci_device_failed code and use it
1808 here */
1811 if (status & ISR_SRCI) {
1812 struct mac_regs __iomem *regs = vptr->mac_regs;
1813 int linked;
1815 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1816 vptr->mii_status = check_connection_type(regs);
1819 * If it is a 3119, disable frame bursting in
1820 * halfduplex mode and enable it in fullduplex
1821 * mode
1823 if (vptr->rev_id < REV_ID_VT3216_A0) {
1824 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1825 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1826 else
1827 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1830 * Only enable CD heart beat counter in 10HD mode
1832 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1833 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1834 else
1835 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1837 setup_queue_timers(vptr);
1840 * Get link status from PHYSR0
1842 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1844 if (linked) {
1845 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1846 netif_carrier_on(vptr->dev);
1847 } else {
1848 vptr->mii_status |= VELOCITY_LINK_FAIL;
1849 netif_carrier_off(vptr->dev);
1852 velocity_print_link_status(vptr);
1853 enable_flow_control_ability(vptr);
1856 * Re-enable auto-polling because SRCI will disable
1857 * auto-polling
1860 enable_mii_autopoll(regs);
1862 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1863 netif_stop_queue(vptr->dev);
1864 else
1865 netif_wake_queue(vptr->dev);
1868 if (status & ISR_MIBFI)
1869 velocity_update_hw_mibs(vptr);
1870 if (status & ISR_LSTEI)
1871 mac_rx_queue_wake(vptr->mac_regs);
1875 * tx_srv - transmit interrupt service
1876 * @vptr; Velocity
1878 * Scan the queues looking for transmitted packets that
1879 * we can complete and clean up. Update any statistics as
1880 * necessary/
1882 static int velocity_tx_srv(struct velocity_info *vptr)
1884 struct tx_desc *td;
1885 int qnum;
1886 int full = 0;
1887 int idx;
1888 int works = 0;
1889 struct velocity_td_info *tdinfo;
1890 struct net_device_stats *stats = &vptr->dev->stats;
1892 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1893 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1894 idx = (idx + 1) % vptr->options.numtx) {
1897 * Get Tx Descriptor
1899 td = &(vptr->tx.rings[qnum][idx]);
1900 tdinfo = &(vptr->tx.infos[qnum][idx]);
1902 if (td->tdesc0.len & OWNED_BY_NIC)
1903 break;
1905 if ((works++ > 15))
1906 break;
1908 if (td->tdesc0.TSR & TSR0_TERR) {
1909 stats->tx_errors++;
1910 stats->tx_dropped++;
1911 if (td->tdesc0.TSR & TSR0_CDH)
1912 stats->tx_heartbeat_errors++;
1913 if (td->tdesc0.TSR & TSR0_CRS)
1914 stats->tx_carrier_errors++;
1915 if (td->tdesc0.TSR & TSR0_ABT)
1916 stats->tx_aborted_errors++;
1917 if (td->tdesc0.TSR & TSR0_OWC)
1918 stats->tx_window_errors++;
1919 } else {
1920 stats->tx_packets++;
1921 stats->tx_bytes += tdinfo->skb->len;
1923 velocity_free_tx_buf(vptr, tdinfo, td);
1924 vptr->tx.used[qnum]--;
1926 vptr->tx.tail[qnum] = idx;
1928 if (AVAIL_TD(vptr, qnum) < 1)
1929 full = 1;
1932 * Look to see if we should kick the transmit network
1933 * layer for more work.
1935 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1936 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1937 netif_wake_queue(vptr->dev);
1939 return works;
1943 * velocity_rx_csum - checksum process
1944 * @rd: receive packet descriptor
1945 * @skb: network layer packet buffer
1947 * Process the status bits for the received packet and determine
1948 * if the checksum was computed and verified by the hardware
1950 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1952 skb_checksum_none_assert(skb);
1954 if (rd->rdesc1.CSM & CSM_IPKT) {
1955 if (rd->rdesc1.CSM & CSM_IPOK) {
1956 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1957 (rd->rdesc1.CSM & CSM_UDPKT)) {
1958 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1959 return;
1961 skb->ip_summed = CHECKSUM_UNNECESSARY;
1967 * velocity_rx_copy - in place Rx copy for small packets
1968 * @rx_skb: network layer packet buffer candidate
1969 * @pkt_size: received data size
1970 * @rd: receive packet descriptor
1971 * @dev: network device
1973 * Replace the current skb that is scheduled for Rx processing by a
1974 * shorter, immediately allocated skb, if the received packet is small
1975 * enough. This function returns a negative value if the received
1976 * packet is too big or if memory is exhausted.
1978 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1979 struct velocity_info *vptr)
1981 int ret = -1;
1982 if (pkt_size < rx_copybreak) {
1983 struct sk_buff *new_skb;
1985 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1986 if (new_skb) {
1987 new_skb->ip_summed = rx_skb[0]->ip_summed;
1988 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1989 *rx_skb = new_skb;
1990 ret = 0;
1994 return ret;
1998 * velocity_iph_realign - IP header alignment
1999 * @vptr: velocity we are handling
2000 * @skb: network layer packet buffer
2001 * @pkt_size: received data size
2003 * Align IP header on a 2 bytes boundary. This behavior can be
2004 * configured by the user.
2006 static inline void velocity_iph_realign(struct velocity_info *vptr,
2007 struct sk_buff *skb, int pkt_size)
2009 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2010 memmove(skb->data + 2, skb->data, pkt_size);
2011 skb_reserve(skb, 2);
2016 * velocity_receive_frame - received packet processor
2017 * @vptr: velocity we are handling
2018 * @idx: ring index
2020 * A packet has arrived. We process the packet and if appropriate
2021 * pass the frame up the network stack
2023 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2025 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2026 struct net_device_stats *stats = &vptr->dev->stats;
2027 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2028 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2029 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2030 struct sk_buff *skb;
2032 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2033 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2034 stats->rx_length_errors++;
2035 return -EINVAL;
2038 if (rd->rdesc0.RSR & RSR_MAR)
2039 stats->multicast++;
2041 skb = rd_info->skb;
2043 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2044 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2047 * Drop frame not meeting IEEE 802.3
2050 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2051 if (rd->rdesc0.RSR & RSR_RL) {
2052 stats->rx_length_errors++;
2053 return -EINVAL;
2057 pci_action = pci_dma_sync_single_for_device;
2059 velocity_rx_csum(rd, skb);
2061 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2062 velocity_iph_realign(vptr, skb, pkt_len);
2063 pci_action = pci_unmap_single;
2064 rd_info->skb = NULL;
2067 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2068 PCI_DMA_FROMDEVICE);
2070 skb_put(skb, pkt_len - 4);
2071 skb->protocol = eth_type_trans(skb, vptr->dev);
2073 if (rd->rdesc0.RSR & RSR_DETAG) {
2074 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2076 __vlan_hwaccel_put_tag(skb, vid);
2078 netif_rx(skb);
2080 stats->rx_bytes += pkt_len;
2081 stats->rx_packets++;
2083 return 0;
2087 * velocity_rx_srv - service RX interrupt
2088 * @vptr: velocity
2090 * Walk the receive ring of the velocity adapter and remove
2091 * any received packets from the receive queue. Hand the ring
2092 * slots back to the adapter for reuse.
2094 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2096 struct net_device_stats *stats = &vptr->dev->stats;
2097 int rd_curr = vptr->rx.curr;
2098 int works = 0;
2100 while (works < budget_left) {
2101 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2103 if (!vptr->rx.info[rd_curr].skb)
2104 break;
2106 if (rd->rdesc0.len & OWNED_BY_NIC)
2107 break;
2109 rmb();
2112 * Don't drop CE or RL error frame although RXOK is off
2114 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2115 if (velocity_receive_frame(vptr, rd_curr) < 0)
2116 stats->rx_dropped++;
2117 } else {
2118 if (rd->rdesc0.RSR & RSR_CRC)
2119 stats->rx_crc_errors++;
2120 if (rd->rdesc0.RSR & RSR_FAE)
2121 stats->rx_frame_errors++;
2123 stats->rx_dropped++;
2126 rd->size |= RX_INTEN;
2128 rd_curr++;
2129 if (rd_curr >= vptr->options.numrx)
2130 rd_curr = 0;
2131 works++;
2134 vptr->rx.curr = rd_curr;
2136 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2137 velocity_give_many_rx_descs(vptr);
2139 VAR_USED(stats);
2140 return works;
2143 static int velocity_poll(struct napi_struct *napi, int budget)
2145 struct velocity_info *vptr = container_of(napi,
2146 struct velocity_info, napi);
2147 unsigned int rx_done;
2148 unsigned long flags;
2150 spin_lock_irqsave(&vptr->lock, flags);
2152 * Do rx and tx twice for performance (taken from the VIA
2153 * out-of-tree driver).
2155 rx_done = velocity_rx_srv(vptr, budget / 2);
2156 velocity_tx_srv(vptr);
2157 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2158 velocity_tx_srv(vptr);
2160 /* If budget not fully consumed, exit the polling mode */
2161 if (rx_done < budget) {
2162 napi_complete(napi);
2163 mac_enable_int(vptr->mac_regs);
2165 spin_unlock_irqrestore(&vptr->lock, flags);
2167 return rx_done;
2171 * velocity_intr - interrupt callback
2172 * @irq: interrupt number
2173 * @dev_instance: interrupting device
2175 * Called whenever an interrupt is generated by the velocity
2176 * adapter IRQ line. We may not be the source of the interrupt
2177 * and need to identify initially if we are, and if not exit as
2178 * efficiently as possible.
2180 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2182 struct net_device *dev = dev_instance;
2183 struct velocity_info *vptr = netdev_priv(dev);
2184 u32 isr_status;
2186 spin_lock(&vptr->lock);
2187 isr_status = mac_read_isr(vptr->mac_regs);
2189 /* Not us ? */
2190 if (isr_status == 0) {
2191 spin_unlock(&vptr->lock);
2192 return IRQ_NONE;
2195 /* Ack the interrupt */
2196 mac_write_isr(vptr->mac_regs, isr_status);
2198 if (likely(napi_schedule_prep(&vptr->napi))) {
2199 mac_disable_int(vptr->mac_regs);
2200 __napi_schedule(&vptr->napi);
2203 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2204 velocity_error(vptr, isr_status);
2206 spin_unlock(&vptr->lock);
2208 return IRQ_HANDLED;
2212 * velocity_open - interface activation callback
2213 * @dev: network layer device to open
2215 * Called when the network layer brings the interface up. Returns
2216 * a negative posix error code on failure, or zero on success.
2218 * All the ring allocation and set up is done on open for this
2219 * adapter to minimise memory usage when inactive
2221 static int velocity_open(struct net_device *dev)
2223 struct velocity_info *vptr = netdev_priv(dev);
2224 int ret;
2226 ret = velocity_init_rings(vptr, dev->mtu);
2227 if (ret < 0)
2228 goto out;
2230 /* Ensure chip is running */
2231 pci_set_power_state(vptr->pdev, PCI_D0);
2233 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2235 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2236 dev->name, dev);
2237 if (ret < 0) {
2238 /* Power down the chip */
2239 pci_set_power_state(vptr->pdev, PCI_D3hot);
2240 velocity_free_rings(vptr);
2241 goto out;
2244 velocity_give_many_rx_descs(vptr);
2246 mac_enable_int(vptr->mac_regs);
2247 netif_start_queue(dev);
2248 napi_enable(&vptr->napi);
2249 vptr->flags |= VELOCITY_FLAGS_OPENED;
2250 out:
2251 return ret;
2255 * velocity_shutdown - shut down the chip
2256 * @vptr: velocity to deactivate
2258 * Shuts down the internal operations of the velocity and
2259 * disables interrupts, autopolling, transmit and receive
2261 static void velocity_shutdown(struct velocity_info *vptr)
2263 struct mac_regs __iomem *regs = vptr->mac_regs;
2264 mac_disable_int(regs);
2265 writel(CR0_STOP, &regs->CR0Set);
2266 writew(0xFFFF, &regs->TDCSRClr);
2267 writeb(0xFF, &regs->RDCSRClr);
2268 safe_disable_mii_autopoll(regs);
2269 mac_clear_isr(regs);
2273 * velocity_change_mtu - MTU change callback
2274 * @dev: network device
2275 * @new_mtu: desired MTU
2277 * Handle requests from the networking layer for MTU change on
2278 * this interface. It gets called on a change by the network layer.
2279 * Return zero for success or negative posix error code.
2281 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2283 struct velocity_info *vptr = netdev_priv(dev);
2284 int ret = 0;
2286 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2287 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2288 vptr->dev->name);
2289 ret = -EINVAL;
2290 goto out_0;
2293 if (!netif_running(dev)) {
2294 dev->mtu = new_mtu;
2295 goto out_0;
2298 if (dev->mtu != new_mtu) {
2299 struct velocity_info *tmp_vptr;
2300 unsigned long flags;
2301 struct rx_info rx;
2302 struct tx_info tx;
2304 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2305 if (!tmp_vptr) {
2306 ret = -ENOMEM;
2307 goto out_0;
2310 tmp_vptr->dev = dev;
2311 tmp_vptr->pdev = vptr->pdev;
2312 tmp_vptr->options = vptr->options;
2313 tmp_vptr->tx.numq = vptr->tx.numq;
2315 ret = velocity_init_rings(tmp_vptr, new_mtu);
2316 if (ret < 0)
2317 goto out_free_tmp_vptr_1;
2319 spin_lock_irqsave(&vptr->lock, flags);
2321 netif_stop_queue(dev);
2322 velocity_shutdown(vptr);
2324 rx = vptr->rx;
2325 tx = vptr->tx;
2327 vptr->rx = tmp_vptr->rx;
2328 vptr->tx = tmp_vptr->tx;
2330 tmp_vptr->rx = rx;
2331 tmp_vptr->tx = tx;
2333 dev->mtu = new_mtu;
2335 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2337 velocity_give_many_rx_descs(vptr);
2339 mac_enable_int(vptr->mac_regs);
2340 netif_start_queue(dev);
2342 spin_unlock_irqrestore(&vptr->lock, flags);
2344 velocity_free_rings(tmp_vptr);
2346 out_free_tmp_vptr_1:
2347 kfree(tmp_vptr);
2349 out_0:
2350 return ret;
2354 * velocity_mii_ioctl - MII ioctl handler
2355 * @dev: network device
2356 * @ifr: the ifreq block for the ioctl
2357 * @cmd: the command
2359 * Process MII requests made via ioctl from the network layer. These
2360 * are used by tools like kudzu to interrogate the link state of the
2361 * hardware
2363 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2365 struct velocity_info *vptr = netdev_priv(dev);
2366 struct mac_regs __iomem *regs = vptr->mac_regs;
2367 unsigned long flags;
2368 struct mii_ioctl_data *miidata = if_mii(ifr);
2369 int err;
2371 switch (cmd) {
2372 case SIOCGMIIPHY:
2373 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2374 break;
2375 case SIOCGMIIREG:
2376 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2377 return -ETIMEDOUT;
2378 break;
2379 case SIOCSMIIREG:
2380 spin_lock_irqsave(&vptr->lock, flags);
2381 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2382 spin_unlock_irqrestore(&vptr->lock, flags);
2383 check_connection_type(vptr->mac_regs);
2384 if (err)
2385 return err;
2386 break;
2387 default:
2388 return -EOPNOTSUPP;
2390 return 0;
2394 * velocity_ioctl - ioctl entry point
2395 * @dev: network device
2396 * @rq: interface request ioctl
2397 * @cmd: command code
2399 * Called when the user issues an ioctl request to the network
2400 * device in question. The velocity interface supports MII.
2402 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2404 struct velocity_info *vptr = netdev_priv(dev);
2405 int ret;
2407 /* If we are asked for information and the device is power
2408 saving then we need to bring the device back up to talk to it */
2410 if (!netif_running(dev))
2411 pci_set_power_state(vptr->pdev, PCI_D0);
2413 switch (cmd) {
2414 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2415 case SIOCGMIIREG: /* Read MII PHY register. */
2416 case SIOCSMIIREG: /* Write to MII PHY register. */
2417 ret = velocity_mii_ioctl(dev, rq, cmd);
2418 break;
2420 default:
2421 ret = -EOPNOTSUPP;
2423 if (!netif_running(dev))
2424 pci_set_power_state(vptr->pdev, PCI_D3hot);
2427 return ret;
2431 * velocity_get_status - statistics callback
2432 * @dev: network device
2434 * Callback from the network layer to allow driver statistics
2435 * to be resynchronized with hardware collected state. In the
2436 * case of the velocity we need to pull the MIB counters from
2437 * the hardware into the counters before letting the network
2438 * layer display them.
2440 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2442 struct velocity_info *vptr = netdev_priv(dev);
2444 /* If the hardware is down, don't touch MII */
2445 if (!netif_running(dev))
2446 return &dev->stats;
2448 spin_lock_irq(&vptr->lock);
2449 velocity_update_hw_mibs(vptr);
2450 spin_unlock_irq(&vptr->lock);
2452 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2453 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2454 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2456 // unsigned long rx_dropped; /* no space in linux buffers */
2457 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2458 /* detailed rx_errors: */
2459 // unsigned long rx_length_errors;
2460 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2461 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2462 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2463 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2464 // unsigned long rx_missed_errors; /* receiver missed packet */
2466 /* detailed tx_errors */
2467 // unsigned long tx_fifo_errors;
2469 return &dev->stats;
2473 * velocity_close - close adapter callback
2474 * @dev: network device
2476 * Callback from the network layer when the velocity is being
2477 * deactivated by the network layer
2479 static int velocity_close(struct net_device *dev)
2481 struct velocity_info *vptr = netdev_priv(dev);
2483 napi_disable(&vptr->napi);
2484 netif_stop_queue(dev);
2485 velocity_shutdown(vptr);
2487 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2488 velocity_get_ip(vptr);
2489 if (dev->irq != 0)
2490 free_irq(dev->irq, dev);
2492 /* Power down the chip */
2493 pci_set_power_state(vptr->pdev, PCI_D3hot);
2495 velocity_free_rings(vptr);
2497 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2498 return 0;
2502 * velocity_xmit - transmit packet callback
2503 * @skb: buffer to transmit
2504 * @dev: network device
2506 * Called by the networ layer to request a packet is queued to
2507 * the velocity. Returns zero on success.
2509 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2510 struct net_device *dev)
2512 struct velocity_info *vptr = netdev_priv(dev);
2513 int qnum = 0;
2514 struct tx_desc *td_ptr;
2515 struct velocity_td_info *tdinfo;
2516 unsigned long flags;
2517 int pktlen;
2518 int index, prev;
2519 int i = 0;
2521 if (skb_padto(skb, ETH_ZLEN))
2522 goto out;
2524 /* The hardware can handle at most 7 memory segments, so merge
2525 * the skb if there are more */
2526 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2527 kfree_skb(skb);
2528 return NETDEV_TX_OK;
2531 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2532 max_t(unsigned int, skb->len, ETH_ZLEN) :
2533 skb_headlen(skb);
2535 spin_lock_irqsave(&vptr->lock, flags);
2537 index = vptr->tx.curr[qnum];
2538 td_ptr = &(vptr->tx.rings[qnum][index]);
2539 tdinfo = &(vptr->tx.infos[qnum][index]);
2541 td_ptr->tdesc1.TCR = TCR0_TIC;
2542 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2545 * Map the linear network buffer into PCI space and
2546 * add it to the transmit ring.
2548 tdinfo->skb = skb;
2549 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2550 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2551 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2552 td_ptr->td_buf[0].pa_high = 0;
2553 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2555 /* Handle fragments */
2556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2557 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2559 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2560 frag, 0,
2561 skb_frag_size(frag),
2562 DMA_TO_DEVICE);
2564 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2565 td_ptr->td_buf[i + 1].pa_high = 0;
2566 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2568 tdinfo->nskb_dma = i + 1;
2570 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2572 if (vlan_tx_tag_present(skb)) {
2573 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2574 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2578 * Handle hardware checksum
2580 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2581 const struct iphdr *ip = ip_hdr(skb);
2582 if (ip->protocol == IPPROTO_TCP)
2583 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2584 else if (ip->protocol == IPPROTO_UDP)
2585 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2586 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2589 prev = index - 1;
2590 if (prev < 0)
2591 prev = vptr->options.numtx - 1;
2592 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2593 vptr->tx.used[qnum]++;
2594 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2596 if (AVAIL_TD(vptr, qnum) < 1)
2597 netif_stop_queue(dev);
2599 td_ptr = &(vptr->tx.rings[qnum][prev]);
2600 td_ptr->td_buf[0].size |= TD_QUEUE;
2601 mac_tx_queue_wake(vptr->mac_regs, qnum);
2603 spin_unlock_irqrestore(&vptr->lock, flags);
2604 out:
2605 return NETDEV_TX_OK;
2608 static const struct net_device_ops velocity_netdev_ops = {
2609 .ndo_open = velocity_open,
2610 .ndo_stop = velocity_close,
2611 .ndo_start_xmit = velocity_xmit,
2612 .ndo_get_stats = velocity_get_stats,
2613 .ndo_validate_addr = eth_validate_addr,
2614 .ndo_set_mac_address = eth_mac_addr,
2615 .ndo_set_rx_mode = velocity_set_multi,
2616 .ndo_change_mtu = velocity_change_mtu,
2617 .ndo_do_ioctl = velocity_ioctl,
2618 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2619 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2623 * velocity_init_info - init private data
2624 * @pdev: PCI device
2625 * @vptr: Velocity info
2626 * @info: Board type
2628 * Set up the initial velocity_info struct for the device that has been
2629 * discovered.
2631 static void __devinit velocity_init_info(struct pci_dev *pdev,
2632 struct velocity_info *vptr,
2633 const struct velocity_info_tbl *info)
2635 memset(vptr, 0, sizeof(struct velocity_info));
2637 vptr->pdev = pdev;
2638 vptr->chip_id = info->chip_id;
2639 vptr->tx.numq = info->txqueue;
2640 vptr->multicast_limit = MCAM_SIZE;
2641 spin_lock_init(&vptr->lock);
2645 * velocity_get_pci_info - retrieve PCI info for device
2646 * @vptr: velocity device
2647 * @pdev: PCI device it matches
2649 * Retrieve the PCI configuration space data that interests us from
2650 * the kernel PCI layer
2652 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2654 vptr->rev_id = pdev->revision;
2656 pci_set_master(pdev);
2658 vptr->ioaddr = pci_resource_start(pdev, 0);
2659 vptr->memaddr = pci_resource_start(pdev, 1);
2661 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2662 dev_err(&pdev->dev,
2663 "region #0 is not an I/O resource, aborting.\n");
2664 return -EINVAL;
2667 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2668 dev_err(&pdev->dev,
2669 "region #1 is an I/O resource, aborting.\n");
2670 return -EINVAL;
2673 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2674 dev_err(&pdev->dev, "region #1 is too small.\n");
2675 return -EINVAL;
2677 vptr->pdev = pdev;
2679 return 0;
2683 * velocity_print_info - per driver data
2684 * @vptr: velocity
2686 * Print per driver data as the kernel driver finds Velocity
2687 * hardware
2689 static void __devinit velocity_print_info(struct velocity_info *vptr)
2691 struct net_device *dev = vptr->dev;
2693 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2694 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2695 dev->name, dev->dev_addr);
2698 static u32 velocity_get_link(struct net_device *dev)
2700 struct velocity_info *vptr = netdev_priv(dev);
2701 struct mac_regs __iomem *regs = vptr->mac_regs;
2702 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2706 * velocity_found1 - set up discovered velocity card
2707 * @pdev: PCI device
2708 * @ent: PCI device table entry that matched
2710 * Configure a discovered adapter from scratch. Return a negative
2711 * errno error code on failure paths.
2713 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2715 static int first = 1;
2716 struct net_device *dev;
2717 int i;
2718 const char *drv_string;
2719 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2720 struct velocity_info *vptr;
2721 struct mac_regs __iomem *regs;
2722 int ret = -ENOMEM;
2724 /* FIXME: this driver, like almost all other ethernet drivers,
2725 * can support more than MAX_UNITS.
2727 if (velocity_nics >= MAX_UNITS) {
2728 dev_notice(&pdev->dev, "already found %d NICs.\n",
2729 velocity_nics);
2730 return -ENODEV;
2733 dev = alloc_etherdev(sizeof(struct velocity_info));
2734 if (!dev) {
2735 dev_err(&pdev->dev, "allocate net device failed.\n");
2736 goto out;
2739 /* Chain it all together */
2741 SET_NETDEV_DEV(dev, &pdev->dev);
2742 vptr = netdev_priv(dev);
2745 if (first) {
2746 printk(KERN_INFO "%s Ver. %s\n",
2747 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2748 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2749 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2750 first = 0;
2753 velocity_init_info(pdev, vptr, info);
2755 vptr->dev = dev;
2757 ret = pci_enable_device(pdev);
2758 if (ret < 0)
2759 goto err_free_dev;
2761 dev->irq = pdev->irq;
2763 ret = velocity_get_pci_info(vptr, pdev);
2764 if (ret < 0) {
2765 /* error message already printed */
2766 goto err_disable;
2769 ret = pci_request_regions(pdev, VELOCITY_NAME);
2770 if (ret < 0) {
2771 dev_err(&pdev->dev, "No PCI resources.\n");
2772 goto err_disable;
2775 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2776 if (regs == NULL) {
2777 ret = -EIO;
2778 goto err_release_res;
2781 vptr->mac_regs = regs;
2783 mac_wol_reset(regs);
2785 dev->base_addr = vptr->ioaddr;
2787 for (i = 0; i < 6; i++)
2788 dev->dev_addr[i] = readb(&regs->PAR[i]);
2791 drv_string = dev_driver_string(&pdev->dev);
2793 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2796 * Mask out the options cannot be set to the chip
2799 vptr->options.flags &= info->flags;
2802 * Enable the chip specified capbilities
2805 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2807 vptr->wol_opts = vptr->options.wol_opts;
2808 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2810 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2812 dev->irq = pdev->irq;
2813 dev->netdev_ops = &velocity_netdev_ops;
2814 dev->ethtool_ops = &velocity_ethtool_ops;
2815 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2817 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2818 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2819 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2821 ret = register_netdev(dev);
2822 if (ret < 0)
2823 goto err_iounmap;
2825 if (!velocity_get_link(dev)) {
2826 netif_carrier_off(dev);
2827 vptr->mii_status |= VELOCITY_LINK_FAIL;
2830 velocity_print_info(vptr);
2831 pci_set_drvdata(pdev, dev);
2833 /* and leave the chip powered down */
2835 pci_set_power_state(pdev, PCI_D3hot);
2836 velocity_nics++;
2837 out:
2838 return ret;
2840 err_iounmap:
2841 iounmap(regs);
2842 err_release_res:
2843 pci_release_regions(pdev);
2844 err_disable:
2845 pci_disable_device(pdev);
2846 err_free_dev:
2847 free_netdev(dev);
2848 goto out;
2851 #ifdef CONFIG_PM
2853 * wol_calc_crc - WOL CRC
2854 * @pattern: data pattern
2855 * @mask_pattern: mask
2857 * Compute the wake on lan crc hashes for the packet header
2858 * we are interested in.
2860 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2862 u16 crc = 0xFFFF;
2863 u8 mask;
2864 int i, j;
2866 for (i = 0; i < size; i++) {
2867 mask = mask_pattern[i];
2869 /* Skip this loop if the mask equals to zero */
2870 if (mask == 0x00)
2871 continue;
2873 for (j = 0; j < 8; j++) {
2874 if ((mask & 0x01) == 0) {
2875 mask >>= 1;
2876 continue;
2878 mask >>= 1;
2879 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2882 /* Finally, invert the result once to get the correct data */
2883 crc = ~crc;
2884 return bitrev32(crc) >> 16;
2888 * velocity_set_wol - set up for wake on lan
2889 * @vptr: velocity to set WOL status on
2891 * Set a card up for wake on lan either by unicast or by
2892 * ARP packet.
2894 * FIXME: check static buffer is safe here
2896 static int velocity_set_wol(struct velocity_info *vptr)
2898 struct mac_regs __iomem *regs = vptr->mac_regs;
2899 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2900 static u8 buf[256];
2901 int i;
2903 static u32 mask_pattern[2][4] = {
2904 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2905 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2908 writew(0xFFFF, &regs->WOLCRClr);
2909 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2910 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2913 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2914 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2917 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2918 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2920 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2921 struct arp_packet *arp = (struct arp_packet *) buf;
2922 u16 crc;
2923 memset(buf, 0, sizeof(struct arp_packet) + 7);
2925 for (i = 0; i < 4; i++)
2926 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2928 arp->type = htons(ETH_P_ARP);
2929 arp->ar_op = htons(1);
2931 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2933 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2934 (u8 *) & mask_pattern[0][0]);
2936 writew(crc, &regs->PatternCRC[0]);
2937 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2940 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2941 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2943 writew(0x0FFF, &regs->WOLSRClr);
2945 if (spd_dpx == SPD_DPX_1000_FULL)
2946 goto mac_done;
2948 if (spd_dpx != SPD_DPX_AUTO)
2949 goto advertise_done;
2951 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2952 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2953 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2955 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2958 if (vptr->mii_status & VELOCITY_SPEED_1000)
2959 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2961 advertise_done:
2962 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2965 u8 GCR;
2966 GCR = readb(&regs->CHIPGCR);
2967 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2968 writeb(GCR, &regs->CHIPGCR);
2971 mac_done:
2972 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2973 /* Turn on SWPTAG just before entering power mode */
2974 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2975 /* Go to bed ..... */
2976 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2978 return 0;
2982 * velocity_save_context - save registers
2983 * @vptr: velocity
2984 * @context: buffer for stored context
2986 * Retrieve the current configuration from the velocity hardware
2987 * and stash it in the context structure, for use by the context
2988 * restore functions. This allows us to save things we need across
2989 * power down states
2991 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2993 struct mac_regs __iomem *regs = vptr->mac_regs;
2994 u16 i;
2995 u8 __iomem *ptr = (u8 __iomem *)regs;
2997 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2998 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3000 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3001 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3003 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3004 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3008 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3010 struct net_device *dev = pci_get_drvdata(pdev);
3011 struct velocity_info *vptr = netdev_priv(dev);
3012 unsigned long flags;
3014 if (!netif_running(vptr->dev))
3015 return 0;
3017 netif_device_detach(vptr->dev);
3019 spin_lock_irqsave(&vptr->lock, flags);
3020 pci_save_state(pdev);
3022 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3023 velocity_get_ip(vptr);
3024 velocity_save_context(vptr, &vptr->context);
3025 velocity_shutdown(vptr);
3026 velocity_set_wol(vptr);
3027 pci_enable_wake(pdev, PCI_D3hot, 1);
3028 pci_set_power_state(pdev, PCI_D3hot);
3029 } else {
3030 velocity_save_context(vptr, &vptr->context);
3031 velocity_shutdown(vptr);
3032 pci_disable_device(pdev);
3033 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3036 spin_unlock_irqrestore(&vptr->lock, flags);
3037 return 0;
3041 * velocity_restore_context - restore registers
3042 * @vptr: velocity
3043 * @context: buffer for stored context
3045 * Reload the register configuration from the velocity context
3046 * created by velocity_save_context.
3048 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3050 struct mac_regs __iomem *regs = vptr->mac_regs;
3051 int i;
3052 u8 __iomem *ptr = (u8 __iomem *)regs;
3054 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3055 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3057 /* Just skip cr0 */
3058 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3059 /* Clear */
3060 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3061 /* Set */
3062 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3065 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3066 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3068 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3069 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3071 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3072 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3075 static int velocity_resume(struct pci_dev *pdev)
3077 struct net_device *dev = pci_get_drvdata(pdev);
3078 struct velocity_info *vptr = netdev_priv(dev);
3079 unsigned long flags;
3080 int i;
3082 if (!netif_running(vptr->dev))
3083 return 0;
3085 pci_set_power_state(pdev, PCI_D0);
3086 pci_enable_wake(pdev, 0, 0);
3087 pci_restore_state(pdev);
3089 mac_wol_reset(vptr->mac_regs);
3091 spin_lock_irqsave(&vptr->lock, flags);
3092 velocity_restore_context(vptr, &vptr->context);
3093 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3094 mac_disable_int(vptr->mac_regs);
3096 velocity_tx_srv(vptr);
3098 for (i = 0; i < vptr->tx.numq; i++) {
3099 if (vptr->tx.used[i])
3100 mac_tx_queue_wake(vptr->mac_regs, i);
3103 mac_enable_int(vptr->mac_regs);
3104 spin_unlock_irqrestore(&vptr->lock, flags);
3105 netif_device_attach(vptr->dev);
3107 return 0;
3109 #endif
3112 * Definition for our device driver. The PCI layer interface
3113 * uses this to handle all our card discover and plugging
3115 static struct pci_driver velocity_driver = {
3116 .name = VELOCITY_NAME,
3117 .id_table = velocity_id_table,
3118 .probe = velocity_found1,
3119 .remove = __devexit_p(velocity_remove1),
3120 #ifdef CONFIG_PM
3121 .suspend = velocity_suspend,
3122 .resume = velocity_resume,
3123 #endif
3128 * velocity_ethtool_up - pre hook for ethtool
3129 * @dev: network device
3131 * Called before an ethtool operation. We need to make sure the
3132 * chip is out of D3 state before we poke at it.
3134 static int velocity_ethtool_up(struct net_device *dev)
3136 struct velocity_info *vptr = netdev_priv(dev);
3137 if (!netif_running(dev))
3138 pci_set_power_state(vptr->pdev, PCI_D0);
3139 return 0;
3143 * velocity_ethtool_down - post hook for ethtool
3144 * @dev: network device
3146 * Called after an ethtool operation. Restore the chip back to D3
3147 * state if it isn't running.
3149 static void velocity_ethtool_down(struct net_device *dev)
3151 struct velocity_info *vptr = netdev_priv(dev);
3152 if (!netif_running(dev))
3153 pci_set_power_state(vptr->pdev, PCI_D3hot);
3156 static int velocity_get_settings(struct net_device *dev,
3157 struct ethtool_cmd *cmd)
3159 struct velocity_info *vptr = netdev_priv(dev);
3160 struct mac_regs __iomem *regs = vptr->mac_regs;
3161 u32 status;
3162 status = check_connection_type(vptr->mac_regs);
3164 cmd->supported = SUPPORTED_TP |
3165 SUPPORTED_Autoneg |
3166 SUPPORTED_10baseT_Half |
3167 SUPPORTED_10baseT_Full |
3168 SUPPORTED_100baseT_Half |
3169 SUPPORTED_100baseT_Full |
3170 SUPPORTED_1000baseT_Half |
3171 SUPPORTED_1000baseT_Full;
3173 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3174 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3175 cmd->advertising |=
3176 ADVERTISED_10baseT_Half |
3177 ADVERTISED_10baseT_Full |
3178 ADVERTISED_100baseT_Half |
3179 ADVERTISED_100baseT_Full |
3180 ADVERTISED_1000baseT_Half |
3181 ADVERTISED_1000baseT_Full;
3182 } else {
3183 switch (vptr->options.spd_dpx) {
3184 case SPD_DPX_1000_FULL:
3185 cmd->advertising |= ADVERTISED_1000baseT_Full;
3186 break;
3187 case SPD_DPX_100_HALF:
3188 cmd->advertising |= ADVERTISED_100baseT_Half;
3189 break;
3190 case SPD_DPX_100_FULL:
3191 cmd->advertising |= ADVERTISED_100baseT_Full;
3192 break;
3193 case SPD_DPX_10_HALF:
3194 cmd->advertising |= ADVERTISED_10baseT_Half;
3195 break;
3196 case SPD_DPX_10_FULL:
3197 cmd->advertising |= ADVERTISED_10baseT_Full;
3198 break;
3199 default:
3200 break;
3204 if (status & VELOCITY_SPEED_1000)
3205 ethtool_cmd_speed_set(cmd, SPEED_1000);
3206 else if (status & VELOCITY_SPEED_100)
3207 ethtool_cmd_speed_set(cmd, SPEED_100);
3208 else
3209 ethtool_cmd_speed_set(cmd, SPEED_10);
3211 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3212 cmd->port = PORT_TP;
3213 cmd->transceiver = XCVR_INTERNAL;
3214 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3216 if (status & VELOCITY_DUPLEX_FULL)
3217 cmd->duplex = DUPLEX_FULL;
3218 else
3219 cmd->duplex = DUPLEX_HALF;
3221 return 0;
3224 static int velocity_set_settings(struct net_device *dev,
3225 struct ethtool_cmd *cmd)
3227 struct velocity_info *vptr = netdev_priv(dev);
3228 u32 speed = ethtool_cmd_speed(cmd);
3229 u32 curr_status;
3230 u32 new_status = 0;
3231 int ret = 0;
3233 curr_status = check_connection_type(vptr->mac_regs);
3234 curr_status &= (~VELOCITY_LINK_FAIL);
3236 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3237 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3238 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3239 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3240 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3242 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3243 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3244 ret = -EINVAL;
3245 } else {
3246 enum speed_opt spd_dpx;
3248 if (new_status & VELOCITY_AUTONEG_ENABLE)
3249 spd_dpx = SPD_DPX_AUTO;
3250 else if ((new_status & VELOCITY_SPEED_1000) &&
3251 (new_status & VELOCITY_DUPLEX_FULL)) {
3252 spd_dpx = SPD_DPX_1000_FULL;
3253 } else if (new_status & VELOCITY_SPEED_100)
3254 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3255 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3256 else if (new_status & VELOCITY_SPEED_10)
3257 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3258 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3259 else
3260 return -EOPNOTSUPP;
3262 vptr->options.spd_dpx = spd_dpx;
3264 velocity_set_media_mode(vptr, new_status);
3267 return ret;
3270 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3272 struct velocity_info *vptr = netdev_priv(dev);
3273 strcpy(info->driver, VELOCITY_NAME);
3274 strcpy(info->version, VELOCITY_VERSION);
3275 strcpy(info->bus_info, pci_name(vptr->pdev));
3278 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3280 struct velocity_info *vptr = netdev_priv(dev);
3281 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3282 wol->wolopts |= WAKE_MAGIC;
3284 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3285 wol.wolopts|=WAKE_PHY;
3287 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3288 wol->wolopts |= WAKE_UCAST;
3289 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3290 wol->wolopts |= WAKE_ARP;
3291 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3294 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3296 struct velocity_info *vptr = netdev_priv(dev);
3298 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3299 return -EFAULT;
3300 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3303 if (wol.wolopts & WAKE_PHY) {
3304 vptr->wol_opts|=VELOCITY_WOL_PHY;
3305 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3309 if (wol->wolopts & WAKE_MAGIC) {
3310 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3311 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3313 if (wol->wolopts & WAKE_UCAST) {
3314 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3315 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3317 if (wol->wolopts & WAKE_ARP) {
3318 vptr->wol_opts |= VELOCITY_WOL_ARP;
3319 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3321 memcpy(vptr->wol_passwd, wol->sopass, 6);
3322 return 0;
3325 static u32 velocity_get_msglevel(struct net_device *dev)
3327 return msglevel;
3330 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3332 msglevel = value;
3335 static int get_pending_timer_val(int val)
3337 int mult_bits = val >> 6;
3338 int mult = 1;
3340 switch (mult_bits)
3342 case 1:
3343 mult = 4; break;
3344 case 2:
3345 mult = 16; break;
3346 case 3:
3347 mult = 64; break;
3348 case 0:
3349 default:
3350 break;
3353 return (val & 0x3f) * mult;
3356 static void set_pending_timer_val(int *val, u32 us)
3358 u8 mult = 0;
3359 u8 shift = 0;
3361 if (us >= 0x3f) {
3362 mult = 1; /* mult with 4 */
3363 shift = 2;
3365 if (us >= 0x3f * 4) {
3366 mult = 2; /* mult with 16 */
3367 shift = 4;
3369 if (us >= 0x3f * 16) {
3370 mult = 3; /* mult with 64 */
3371 shift = 6;
3374 *val = (mult << 6) | ((us >> shift) & 0x3f);
3378 static int velocity_get_coalesce(struct net_device *dev,
3379 struct ethtool_coalesce *ecmd)
3381 struct velocity_info *vptr = netdev_priv(dev);
3383 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3384 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3386 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3387 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3389 return 0;
3392 static int velocity_set_coalesce(struct net_device *dev,
3393 struct ethtool_coalesce *ecmd)
3395 struct velocity_info *vptr = netdev_priv(dev);
3396 int max_us = 0x3f * 64;
3397 unsigned long flags;
3399 /* 6 bits of */
3400 if (ecmd->tx_coalesce_usecs > max_us)
3401 return -EINVAL;
3402 if (ecmd->rx_coalesce_usecs > max_us)
3403 return -EINVAL;
3405 if (ecmd->tx_max_coalesced_frames > 0xff)
3406 return -EINVAL;
3407 if (ecmd->rx_max_coalesced_frames > 0xff)
3408 return -EINVAL;
3410 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3411 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3413 set_pending_timer_val(&vptr->options.rxqueue_timer,
3414 ecmd->rx_coalesce_usecs);
3415 set_pending_timer_val(&vptr->options.txqueue_timer,
3416 ecmd->tx_coalesce_usecs);
3418 /* Setup the interrupt suppression and queue timers */
3419 spin_lock_irqsave(&vptr->lock, flags);
3420 mac_disable_int(vptr->mac_regs);
3421 setup_adaptive_interrupts(vptr);
3422 setup_queue_timers(vptr);
3424 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3425 mac_clear_isr(vptr->mac_regs);
3426 mac_enable_int(vptr->mac_regs);
3427 spin_unlock_irqrestore(&vptr->lock, flags);
3429 return 0;
3432 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3433 "rx_all",
3434 "rx_ok",
3435 "tx_ok",
3436 "rx_error",
3437 "rx_runt_ok",
3438 "rx_runt_err",
3439 "rx_64",
3440 "tx_64",
3441 "rx_65_to_127",
3442 "tx_65_to_127",
3443 "rx_128_to_255",
3444 "tx_128_to_255",
3445 "rx_256_to_511",
3446 "tx_256_to_511",
3447 "rx_512_to_1023",
3448 "tx_512_to_1023",
3449 "rx_1024_to_1518",
3450 "tx_1024_to_1518",
3451 "tx_ether_collisions",
3452 "rx_crc_errors",
3453 "rx_jumbo",
3454 "tx_jumbo",
3455 "rx_mac_control_frames",
3456 "tx_mac_control_frames",
3457 "rx_frame_alignement_errors",
3458 "rx_long_ok",
3459 "rx_long_err",
3460 "tx_sqe_errors",
3461 "rx_no_buf",
3462 "rx_symbol_errors",
3463 "in_range_length_errors",
3464 "late_collisions"
3467 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3469 switch (sset) {
3470 case ETH_SS_STATS:
3471 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3472 break;
3476 static int velocity_get_sset_count(struct net_device *dev, int sset)
3478 switch (sset) {
3479 case ETH_SS_STATS:
3480 return ARRAY_SIZE(velocity_gstrings);
3481 default:
3482 return -EOPNOTSUPP;
3486 static void velocity_get_ethtool_stats(struct net_device *dev,
3487 struct ethtool_stats *stats, u64 *data)
3489 if (netif_running(dev)) {
3490 struct velocity_info *vptr = netdev_priv(dev);
3491 u32 *p = vptr->mib_counter;
3492 int i;
3494 spin_lock_irq(&vptr->lock);
3495 velocity_update_hw_mibs(vptr);
3496 spin_unlock_irq(&vptr->lock);
3498 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3499 *data++ = *p++;
3503 static const struct ethtool_ops velocity_ethtool_ops = {
3504 .get_settings = velocity_get_settings,
3505 .set_settings = velocity_set_settings,
3506 .get_drvinfo = velocity_get_drvinfo,
3507 .get_wol = velocity_ethtool_get_wol,
3508 .set_wol = velocity_ethtool_set_wol,
3509 .get_msglevel = velocity_get_msglevel,
3510 .set_msglevel = velocity_set_msglevel,
3511 .get_link = velocity_get_link,
3512 .get_strings = velocity_get_strings,
3513 .get_sset_count = velocity_get_sset_count,
3514 .get_ethtool_stats = velocity_get_ethtool_stats,
3515 .get_coalesce = velocity_get_coalesce,
3516 .set_coalesce = velocity_set_coalesce,
3517 .begin = velocity_ethtool_up,
3518 .complete = velocity_ethtool_down
3521 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3522 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3524 struct in_ifaddr *ifa = ptr;
3525 struct net_device *dev = ifa->ifa_dev->dev;
3527 if (dev_net(dev) == &init_net &&
3528 dev->netdev_ops == &velocity_netdev_ops)
3529 velocity_get_ip(netdev_priv(dev));
3531 return NOTIFY_DONE;
3534 static struct notifier_block velocity_inetaddr_notifier = {
3535 .notifier_call = velocity_netdev_event,
3538 static void velocity_register_notifier(void)
3540 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3543 static void velocity_unregister_notifier(void)
3545 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3548 #else
3550 #define velocity_register_notifier() do {} while (0)
3551 #define velocity_unregister_notifier() do {} while (0)
3553 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3556 * velocity_init_module - load time function
3558 * Called when the velocity module is loaded. The PCI driver
3559 * is registered with the PCI layer, and in turn will call
3560 * the probe functions for each velocity adapter installed
3561 * in the system.
3563 static int __init velocity_init_module(void)
3565 int ret;
3567 velocity_register_notifier();
3568 ret = pci_register_driver(&velocity_driver);
3569 if (ret < 0)
3570 velocity_unregister_notifier();
3571 return ret;
3575 * velocity_cleanup - module unload
3577 * When the velocity hardware is unloaded this function is called.
3578 * It will clean up the notifiers and the unregister the PCI
3579 * driver interface for this hardware. This in turn cleans up
3580 * all discovered interfaces before returning from the function
3582 static void __exit velocity_cleanup_module(void)
3584 velocity_unregister_notifier();
3585 pci_unregister_driver(&velocity_driver);
3588 module_init(velocity_init_module);
3589 module_exit(velocity_cleanup_module);