2 * Intel IXP4xx Ethernet driver for Linux
4 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
10 * Ethernet port config (0x00 is not present on IXP42X):
12 * logical port 0x00 0x10 0x20
13 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
14 * physical PortId 2 0 1
16 * RX-free queue 26 27 28
17 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
21 * bits 0 -> 1 - NPE ID (RX and TX-done)
22 * bits 0 -> 2 - priority (TX, per 802.1D)
23 * bits 3 -> 4 - port ID (user-set?)
24 * bits 5 -> 31 - physical descriptor address
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
32 #include <linux/kernel.h>
33 #include <linux/net_tstamp.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <mach/ixp46x_ts.h>
41 #include <mach/qmgr.h>
46 #define DEBUG_PKT_BYTES 0
50 #define DRV_NAME "ixp4xx_eth"
54 #define RX_DESCS 64 /* also length of all RX queues */
55 #define TX_DESCS 16 /* also length of all TX queues */
56 #define TXDONE_QUEUE_LEN 64 /* dwords */
58 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
59 #define REGS_SIZE 0x1000
60 #define MAX_MRU 1536 /* 0x600 */
61 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
63 #define NAPI_WEIGHT 16
64 #define MDIO_INTERVAL (3 * HZ)
65 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
66 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
68 #define NPE_ID(port_id) ((port_id) >> 4)
69 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
70 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
71 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
72 #define TXDONE_QUEUE 31
74 #define PTP_SLAVE_MODE 1
75 #define PTP_MASTER_MODE 2
76 #define PORT2CHANNEL(p) NPE_ID(p->id)
78 /* TX Control Registers */
79 #define TX_CNTRL0_TX_EN 0x01
80 #define TX_CNTRL0_HALFDUPLEX 0x02
81 #define TX_CNTRL0_RETRY 0x04
82 #define TX_CNTRL0_PAD_EN 0x08
83 #define TX_CNTRL0_APPEND_FCS 0x10
84 #define TX_CNTRL0_2DEFER 0x20
85 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
86 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
88 /* RX Control Registers */
89 #define RX_CNTRL0_RX_EN 0x01
90 #define RX_CNTRL0_PADSTRIP_EN 0x02
91 #define RX_CNTRL0_SEND_FCS 0x04
92 #define RX_CNTRL0_PAUSE_EN 0x08
93 #define RX_CNTRL0_LOOP_EN 0x10
94 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
95 #define RX_CNTRL0_RX_RUNT_EN 0x40
96 #define RX_CNTRL0_BCAST_DIS 0x80
97 #define RX_CNTRL1_DEFER_EN 0x01
99 /* Core Control Register */
100 #define CORE_RESET 0x01
101 #define CORE_RX_FIFO_FLUSH 0x02
102 #define CORE_TX_FIFO_FLUSH 0x04
103 #define CORE_SEND_JAM 0x08
104 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
106 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
107 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
109 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
110 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
113 /* NPE message codes */
114 #define NPE_GETSTATUS 0x00
115 #define NPE_EDB_SETPORTADDRESS 0x01
116 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
117 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
118 #define NPE_GETSTATS 0x04
119 #define NPE_RESETSTATS 0x05
120 #define NPE_SETMAXFRAMELENGTHS 0x06
121 #define NPE_VLAN_SETRXTAGMODE 0x07
122 #define NPE_VLAN_SETDEFAULTRXVID 0x08
123 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
124 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
125 #define NPE_VLAN_SETRXQOSENTRY 0x0B
126 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
127 #define NPE_STP_SETBLOCKINGSTATE 0x0D
128 #define NPE_FW_SETFIREWALLMODE 0x0E
129 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
130 #define NPE_PC_SETAPMACTABLE 0x11
131 #define NPE_SETLOOPBACK_MODE 0x12
132 #define NPE_PC_SETBSSIDTABLE 0x13
133 #define NPE_ADDRESS_FILTER_CONFIG 0x14
134 #define NPE_APPENDFCSCONFIG 0x15
135 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
136 #define NPE_MAC_RECOVERY_START 0x17
140 typedef struct sk_buff buffer_t
;
141 #define free_buffer dev_kfree_skb
142 #define free_buffer_irq dev_kfree_skb_irq
144 typedef void buffer_t
;
145 #define free_buffer kfree
146 #define free_buffer_irq kfree
150 u32 tx_control
[2], __res1
[2]; /* 000 */
151 u32 rx_control
[2], __res2
[2]; /* 010 */
152 u32 random_seed
, __res3
[3]; /* 020 */
153 u32 partial_empty_threshold
, __res4
; /* 030 */
154 u32 partial_full_threshold
, __res5
; /* 038 */
155 u32 tx_start_bytes
, __res6
[3]; /* 040 */
156 u32 tx_deferral
, rx_deferral
, __res7
[2];/* 050 */
157 u32 tx_2part_deferral
[2], __res8
[2]; /* 060 */
158 u32 slot_time
, __res9
[3]; /* 070 */
159 u32 mdio_command
[4]; /* 080 */
160 u32 mdio_status
[4]; /* 090 */
161 u32 mcast_mask
[6], __res10
[2]; /* 0A0 */
162 u32 mcast_addr
[6], __res11
[2]; /* 0C0 */
163 u32 int_clock_threshold
, __res12
[3]; /* 0E0 */
164 u32 hw_addr
[6], __res13
[61]; /* 0F0 */
165 u32 core_control
; /* 1FC */
169 struct resource
*mem_res
;
170 struct eth_regs __iomem
*regs
;
172 struct net_device
*netdev
;
173 struct napi_struct napi
;
174 struct phy_device
*phydev
;
175 struct eth_plat_info
*plat
;
176 buffer_t
*rx_buff_tab
[RX_DESCS
], *tx_buff_tab
[TX_DESCS
];
177 struct desc
*desc_tab
; /* coherent */
179 int id
; /* logical port ID */
186 /* NPE message structure */
189 u8 cmd
, eth_id
, byte2
, byte3
;
190 u8 byte4
, byte5
, byte6
, byte7
;
192 u8 byte3
, byte2
, eth_id
, cmd
;
193 u8 byte7
, byte6
, byte5
, byte4
;
197 /* Ethernet packet descriptor */
199 u32 next
; /* pointer to next buffer, unused */
202 u16 buf_len
; /* buffer length */
203 u16 pkt_len
; /* packet length */
204 u32 data
; /* pointer to data buffer in RAM */
212 u16 pkt_len
; /* packet length */
213 u16 buf_len
; /* buffer length */
214 u32 data
; /* pointer to data buffer in RAM */
224 u8 dst_mac_0
, dst_mac_1
, dst_mac_2
, dst_mac_3
;
225 u8 dst_mac_4
, dst_mac_5
, src_mac_0
, src_mac_1
;
226 u8 src_mac_2
, src_mac_3
, src_mac_4
, src_mac_5
;
228 u8 dst_mac_3
, dst_mac_2
, dst_mac_1
, dst_mac_0
;
229 u8 src_mac_1
, src_mac_0
, dst_mac_5
, dst_mac_4
;
230 u8 src_mac_5
, src_mac_4
, src_mac_3
, src_mac_2
;
235 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
236 (n) * sizeof(struct desc))
237 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
239 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
240 ((n) + RX_DESCS) * sizeof(struct desc))
241 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
244 static inline void memcpy_swab32(u32
*dest
, u32
*src
, int cnt
)
247 for (i
= 0; i
< cnt
; i
++)
248 dest
[i
] = swab32(src
[i
]);
252 static spinlock_t mdio_lock
;
253 static struct eth_regs __iomem
*mdio_regs
; /* mdio command and status only */
254 static struct mii_bus
*mdio_bus
;
255 static int ports_open
;
256 static struct port
*npe_port_tab
[MAX_NPES
];
257 static struct dma_pool
*dma_pool
;
259 static struct sock_filter ptp_filter
[] = {
263 static int ixp_ptp_match(struct sk_buff
*skb
, u16 uid_hi
, u32 uid_lo
, u16 seqid
)
265 u8
*data
= skb
->data
;
270 if (sk_run_filter(skb
, ptp_filter
) != PTP_CLASS_V1_IPV4
)
273 offset
= ETH_HLEN
+ IPV4_HLEN(data
) + UDP_HLEN
;
275 if (skb
->len
< offset
+ OFF_PTP_SEQUENCE_ID
+ sizeof(seqid
))
278 hi
= (u16
*)(data
+ offset
+ OFF_PTP_SOURCE_UUID
);
279 id
= (u16
*)(data
+ offset
+ OFF_PTP_SEQUENCE_ID
);
281 memcpy(&lo
, &hi
[1], sizeof(lo
));
283 return (uid_hi
== ntohs(*hi
) &&
284 uid_lo
== ntohl(lo
) &&
285 seqid
== ntohs(*id
));
288 static void ixp_rx_timestamp(struct port
*port
, struct sk_buff
*skb
)
290 struct skb_shared_hwtstamps
*shhwtstamps
;
291 struct ixp46x_ts_regs
*regs
;
296 if (!port
->hwts_rx_en
)
299 ch
= PORT2CHANNEL(port
);
301 regs
= (struct ixp46x_ts_regs __iomem
*) IXP4XX_TIMESYNC_BASE_VIRT
;
303 val
= __raw_readl(®s
->channel
[ch
].ch_event
);
305 if (!(val
& RX_SNAPSHOT_LOCKED
))
308 lo
= __raw_readl(®s
->channel
[ch
].src_uuid_lo
);
309 hi
= __raw_readl(®s
->channel
[ch
].src_uuid_hi
);
312 seq
= (hi
>> 16) & 0xffff;
314 if (!ixp_ptp_match(skb
, htons(uid
), htonl(lo
), htons(seq
)))
317 lo
= __raw_readl(®s
->channel
[ch
].rx_snap_lo
);
318 hi
= __raw_readl(®s
->channel
[ch
].rx_snap_hi
);
319 ns
= ((u64
) hi
) << 32;
321 ns
<<= TICKS_NS_SHIFT
;
323 shhwtstamps
= skb_hwtstamps(skb
);
324 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
325 shhwtstamps
->hwtstamp
= ns_to_ktime(ns
);
327 __raw_writel(RX_SNAPSHOT_LOCKED
, ®s
->channel
[ch
].ch_event
);
330 static void ixp_tx_timestamp(struct port
*port
, struct sk_buff
*skb
)
332 struct skb_shared_hwtstamps shhwtstamps
;
333 struct ixp46x_ts_regs
*regs
;
334 struct skb_shared_info
*shtx
;
336 u32 ch
, cnt
, hi
, lo
, val
;
338 shtx
= skb_shinfo(skb
);
339 if (unlikely(shtx
->tx_flags
& SKBTX_HW_TSTAMP
&& port
->hwts_tx_en
))
340 shtx
->tx_flags
|= SKBTX_IN_PROGRESS
;
344 ch
= PORT2CHANNEL(port
);
346 regs
= (struct ixp46x_ts_regs __iomem
*) IXP4XX_TIMESYNC_BASE_VIRT
;
349 * This really stinks, but we have to poll for the Tx time stamp.
350 * Usually, the time stamp is ready after 4 to 6 microseconds.
352 for (cnt
= 0; cnt
< 100; cnt
++) {
353 val
= __raw_readl(®s
->channel
[ch
].ch_event
);
354 if (val
& TX_SNAPSHOT_LOCKED
)
358 if (!(val
& TX_SNAPSHOT_LOCKED
)) {
359 shtx
->tx_flags
&= ~SKBTX_IN_PROGRESS
;
363 lo
= __raw_readl(®s
->channel
[ch
].tx_snap_lo
);
364 hi
= __raw_readl(®s
->channel
[ch
].tx_snap_hi
);
365 ns
= ((u64
) hi
) << 32;
367 ns
<<= TICKS_NS_SHIFT
;
369 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
370 shhwtstamps
.hwtstamp
= ns_to_ktime(ns
);
371 skb_tstamp_tx(skb
, &shhwtstamps
);
373 __raw_writel(TX_SNAPSHOT_LOCKED
, ®s
->channel
[ch
].ch_event
);
376 static int hwtstamp_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
378 struct hwtstamp_config cfg
;
379 struct ixp46x_ts_regs
*regs
;
380 struct port
*port
= netdev_priv(netdev
);
383 if (copy_from_user(&cfg
, ifr
->ifr_data
, sizeof(cfg
)))
386 if (cfg
.flags
) /* reserved for future extensions */
389 ch
= PORT2CHANNEL(port
);
390 regs
= (struct ixp46x_ts_regs __iomem
*) IXP4XX_TIMESYNC_BASE_VIRT
;
392 switch (cfg
.tx_type
) {
393 case HWTSTAMP_TX_OFF
:
394 port
->hwts_tx_en
= 0;
397 port
->hwts_tx_en
= 1;
403 switch (cfg
.rx_filter
) {
404 case HWTSTAMP_FILTER_NONE
:
405 port
->hwts_rx_en
= 0;
407 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
408 port
->hwts_rx_en
= PTP_SLAVE_MODE
;
409 __raw_writel(0, ®s
->channel
[ch
].ch_control
);
411 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
412 port
->hwts_rx_en
= PTP_MASTER_MODE
;
413 __raw_writel(MASTER_MODE
, ®s
->channel
[ch
].ch_control
);
419 /* Clear out any old time stamps. */
420 __raw_writel(TX_SNAPSHOT_LOCKED
| RX_SNAPSHOT_LOCKED
,
421 ®s
->channel
[ch
].ch_event
);
423 return copy_to_user(ifr
->ifr_data
, &cfg
, sizeof(cfg
)) ? -EFAULT
: 0;
426 static int ixp4xx_mdio_cmd(struct mii_bus
*bus
, int phy_id
, int location
,
431 if (__raw_readl(&mdio_regs
->mdio_command
[3]) & 0x80) {
432 printk(KERN_ERR
"%s: MII not ready to transmit\n", bus
->name
);
437 __raw_writel(cmd
& 0xFF, &mdio_regs
->mdio_command
[0]);
438 __raw_writel(cmd
>> 8, &mdio_regs
->mdio_command
[1]);
440 __raw_writel(((phy_id
<< 5) | location
) & 0xFF,
441 &mdio_regs
->mdio_command
[2]);
442 __raw_writel((phy_id
>> 3) | (write
<< 2) | 0x80 /* GO */,
443 &mdio_regs
->mdio_command
[3]);
445 while ((cycles
< MAX_MDIO_RETRIES
) &&
446 (__raw_readl(&mdio_regs
->mdio_command
[3]) & 0x80)) {
451 if (cycles
== MAX_MDIO_RETRIES
) {
452 printk(KERN_ERR
"%s #%i: MII write failed\n", bus
->name
,
458 printk(KERN_DEBUG
"%s #%i: mdio_%s() took %i cycles\n", bus
->name
,
459 phy_id
, write
? "write" : "read", cycles
);
465 if (__raw_readl(&mdio_regs
->mdio_status
[3]) & 0x80) {
467 printk(KERN_DEBUG
"%s #%i: MII read failed\n", bus
->name
,
470 return 0xFFFF; /* don't return error */
473 return (__raw_readl(&mdio_regs
->mdio_status
[0]) & 0xFF) |
474 ((__raw_readl(&mdio_regs
->mdio_status
[1]) & 0xFF) << 8);
477 static int ixp4xx_mdio_read(struct mii_bus
*bus
, int phy_id
, int location
)
482 spin_lock_irqsave(&mdio_lock
, flags
);
483 ret
= ixp4xx_mdio_cmd(bus
, phy_id
, location
, 0, 0);
484 spin_unlock_irqrestore(&mdio_lock
, flags
);
486 printk(KERN_DEBUG
"%s #%i: MII read [%i] -> 0x%X\n", bus
->name
,
487 phy_id
, location
, ret
);
492 static int ixp4xx_mdio_write(struct mii_bus
*bus
, int phy_id
, int location
,
498 spin_lock_irqsave(&mdio_lock
, flags
);
499 ret
= ixp4xx_mdio_cmd(bus
, phy_id
, location
, 1, val
);
500 spin_unlock_irqrestore(&mdio_lock
, flags
);
502 printk(KERN_DEBUG
"%s #%i: MII write [%i] <- 0x%X, err = %i\n",
503 bus
->name
, phy_id
, location
, val
, ret
);
508 static int ixp4xx_mdio_register(void)
512 if (!(mdio_bus
= mdiobus_alloc()))
515 if (cpu_is_ixp43x()) {
516 /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
517 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH
))
519 mdio_regs
= (struct eth_regs __iomem
*)IXP4XX_EthC_BASE_VIRT
;
521 /* All MII PHY accesses use NPE-B Ethernet registers */
522 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0
))
524 mdio_regs
= (struct eth_regs __iomem
*)IXP4XX_EthB_BASE_VIRT
;
527 __raw_writel(DEFAULT_CORE_CNTRL
, &mdio_regs
->core_control
);
528 spin_lock_init(&mdio_lock
);
529 mdio_bus
->name
= "IXP4xx MII Bus";
530 mdio_bus
->read
= &ixp4xx_mdio_read
;
531 mdio_bus
->write
= &ixp4xx_mdio_write
;
532 strcpy(mdio_bus
->id
, "0");
534 if ((err
= mdiobus_register(mdio_bus
)))
535 mdiobus_free(mdio_bus
);
539 static void ixp4xx_mdio_remove(void)
541 mdiobus_unregister(mdio_bus
);
542 mdiobus_free(mdio_bus
);
546 static void ixp4xx_adjust_link(struct net_device
*dev
)
548 struct port
*port
= netdev_priv(dev
);
549 struct phy_device
*phydev
= port
->phydev
;
554 printk(KERN_INFO
"%s: link down\n", dev
->name
);
559 if (port
->speed
== phydev
->speed
&& port
->duplex
== phydev
->duplex
)
562 port
->speed
= phydev
->speed
;
563 port
->duplex
= phydev
->duplex
;
566 __raw_writel(DEFAULT_TX_CNTRL0
& ~TX_CNTRL0_HALFDUPLEX
,
567 &port
->regs
->tx_control
[0]);
569 __raw_writel(DEFAULT_TX_CNTRL0
| TX_CNTRL0_HALFDUPLEX
,
570 &port
->regs
->tx_control
[0]);
572 printk(KERN_INFO
"%s: link up, speed %u Mb/s, %s duplex\n",
573 dev
->name
, port
->speed
, port
->duplex
? "full" : "half");
577 static inline void debug_pkt(struct net_device
*dev
, const char *func
,
583 printk(KERN_DEBUG
"%s: %s(%i) ", dev
->name
, func
, len
);
584 for (i
= 0; i
< len
; i
++) {
585 if (i
>= DEBUG_PKT_BYTES
)
588 ((i
== 6) || (i
== 12) || (i
>= 14)) ? " " : "",
596 static inline void debug_desc(u32 phys
, struct desc
*desc
)
599 printk(KERN_DEBUG
"%X: %X %3X %3X %08X %2X < %2X %4X %X"
600 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
601 phys
, desc
->next
, desc
->buf_len
, desc
->pkt_len
,
602 desc
->data
, desc
->dest_id
, desc
->src_id
, desc
->flags
,
603 desc
->qos
, desc
->padlen
, desc
->vlan_tci
,
604 desc
->dst_mac_0
, desc
->dst_mac_1
, desc
->dst_mac_2
,
605 desc
->dst_mac_3
, desc
->dst_mac_4
, desc
->dst_mac_5
,
606 desc
->src_mac_0
, desc
->src_mac_1
, desc
->src_mac_2
,
607 desc
->src_mac_3
, desc
->src_mac_4
, desc
->src_mac_5
);
611 static inline int queue_get_desc(unsigned int queue
, struct port
*port
,
614 u32 phys
, tab_phys
, n_desc
;
617 if (!(phys
= qmgr_get_entry(queue
)))
620 phys
&= ~0x1F; /* mask out non-address bits */
621 tab_phys
= is_tx
? tx_desc_phys(port
, 0) : rx_desc_phys(port
, 0);
622 tab
= is_tx
? tx_desc_ptr(port
, 0) : rx_desc_ptr(port
, 0);
623 n_desc
= (phys
- tab_phys
) / sizeof(struct desc
);
624 BUG_ON(n_desc
>= (is_tx
? TX_DESCS
: RX_DESCS
));
625 debug_desc(phys
, &tab
[n_desc
]);
626 BUG_ON(tab
[n_desc
].next
);
630 static inline void queue_put_desc(unsigned int queue
, u32 phys
,
633 debug_desc(phys
, desc
);
635 qmgr_put_entry(queue
, phys
);
636 /* Don't check for queue overflow here, we've allocated sufficient
637 length and queues >= 32 don't support this check anyway. */
641 static inline void dma_unmap_tx(struct port
*port
, struct desc
*desc
)
644 dma_unmap_single(&port
->netdev
->dev
, desc
->data
,
645 desc
->buf_len
, DMA_TO_DEVICE
);
647 dma_unmap_single(&port
->netdev
->dev
, desc
->data
& ~3,
648 ALIGN((desc
->data
& 3) + desc
->buf_len
, 4),
654 static void eth_rx_irq(void *pdev
)
656 struct net_device
*dev
= pdev
;
657 struct port
*port
= netdev_priv(dev
);
660 printk(KERN_DEBUG
"%s: eth_rx_irq\n", dev
->name
);
662 qmgr_disable_irq(port
->plat
->rxq
);
663 napi_schedule(&port
->napi
);
666 static int eth_poll(struct napi_struct
*napi
, int budget
)
668 struct port
*port
= container_of(napi
, struct port
, napi
);
669 struct net_device
*dev
= port
->netdev
;
670 unsigned int rxq
= port
->plat
->rxq
, rxfreeq
= RXFREE_QUEUE(port
->id
);
674 printk(KERN_DEBUG
"%s: eth_poll\n", dev
->name
);
677 while (received
< budget
) {
682 struct sk_buff
*temp
;
686 if ((n
= queue_get_desc(rxq
, port
, 0)) < 0) {
688 printk(KERN_DEBUG
"%s: eth_poll napi_complete\n",
692 qmgr_enable_irq(rxq
);
693 if (!qmgr_stat_below_low_watermark(rxq
) &&
694 napi_reschedule(napi
)) { /* not empty again */
696 printk(KERN_DEBUG
"%s: eth_poll"
697 " napi_reschedule successed\n",
700 qmgr_disable_irq(rxq
);
704 printk(KERN_DEBUG
"%s: eth_poll all done\n",
707 return received
; /* all work done */
710 desc
= rx_desc_ptr(port
, n
);
713 if ((skb
= netdev_alloc_skb(dev
, RX_BUFF_SIZE
))) {
714 phys
= dma_map_single(&dev
->dev
, skb
->data
,
715 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
716 if (dma_mapping_error(&dev
->dev
, phys
)) {
722 skb
= netdev_alloc_skb(dev
,
723 ALIGN(NET_IP_ALIGN
+ desc
->pkt_len
, 4));
727 dev
->stats
.rx_dropped
++;
728 /* put the desc back on RX-ready queue */
729 desc
->buf_len
= MAX_MRU
;
731 queue_put_desc(rxfreeq
, rx_desc_phys(port
, n
), desc
);
735 /* process received frame */
738 skb
= port
->rx_buff_tab
[n
];
739 dma_unmap_single(&dev
->dev
, desc
->data
- NET_IP_ALIGN
,
740 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
742 dma_sync_single_for_cpu(&dev
->dev
, desc
->data
- NET_IP_ALIGN
,
743 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
744 memcpy_swab32((u32
*)skb
->data
, (u32
*)port
->rx_buff_tab
[n
],
745 ALIGN(NET_IP_ALIGN
+ desc
->pkt_len
, 4) / 4);
747 skb_reserve(skb
, NET_IP_ALIGN
);
748 skb_put(skb
, desc
->pkt_len
);
750 debug_pkt(dev
, "eth_poll", skb
->data
, skb
->len
);
752 ixp_rx_timestamp(port
, skb
);
753 skb
->protocol
= eth_type_trans(skb
, dev
);
754 dev
->stats
.rx_packets
++;
755 dev
->stats
.rx_bytes
+= skb
->len
;
756 netif_receive_skb(skb
);
758 /* put the new buffer on RX-free queue */
760 port
->rx_buff_tab
[n
] = temp
;
761 desc
->data
= phys
+ NET_IP_ALIGN
;
763 desc
->buf_len
= MAX_MRU
;
765 queue_put_desc(rxfreeq
, rx_desc_phys(port
, n
), desc
);
770 printk(KERN_DEBUG
"eth_poll(): end, not all work done\n");
772 return received
; /* not all work done */
776 static void eth_txdone_irq(void *unused
)
781 printk(KERN_DEBUG DRV_NAME
": eth_txdone_irq\n");
783 while ((phys
= qmgr_get_entry(TXDONE_QUEUE
)) != 0) {
790 BUG_ON(npe_id
>= MAX_NPES
);
791 port
= npe_port_tab
[npe_id
];
793 phys
&= ~0x1F; /* mask out non-address bits */
794 n_desc
= (phys
- tx_desc_phys(port
, 0)) / sizeof(struct desc
);
795 BUG_ON(n_desc
>= TX_DESCS
);
796 desc
= tx_desc_ptr(port
, n_desc
);
797 debug_desc(phys
, desc
);
799 if (port
->tx_buff_tab
[n_desc
]) { /* not the draining packet */
800 port
->netdev
->stats
.tx_packets
++;
801 port
->netdev
->stats
.tx_bytes
+= desc
->pkt_len
;
803 dma_unmap_tx(port
, desc
);
805 printk(KERN_DEBUG
"%s: eth_txdone_irq free %p\n",
806 port
->netdev
->name
, port
->tx_buff_tab
[n_desc
]);
808 free_buffer_irq(port
->tx_buff_tab
[n_desc
]);
809 port
->tx_buff_tab
[n_desc
] = NULL
;
812 start
= qmgr_stat_below_low_watermark(port
->plat
->txreadyq
);
813 queue_put_desc(port
->plat
->txreadyq
, phys
, desc
);
814 if (start
) { /* TX-ready queue was empty */
816 printk(KERN_DEBUG
"%s: eth_txdone_irq xmit ready\n",
819 netif_wake_queue(port
->netdev
);
824 static int eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
826 struct port
*port
= netdev_priv(dev
);
827 unsigned int txreadyq
= port
->plat
->txreadyq
;
828 int len
, offset
, bytes
, n
;
834 printk(KERN_DEBUG
"%s: eth_xmit\n", dev
->name
);
837 if (unlikely(skb
->len
> MAX_MRU
)) {
839 dev
->stats
.tx_errors
++;
843 debug_pkt(dev
, "eth_xmit", skb
->data
, skb
->len
);
847 offset
= 0; /* no need to keep alignment */
851 offset
= (int)skb
->data
& 3; /* keep 32-bit alignment */
852 bytes
= ALIGN(offset
+ len
, 4);
853 if (!(mem
= kmalloc(bytes
, GFP_ATOMIC
))) {
855 dev
->stats
.tx_dropped
++;
858 memcpy_swab32(mem
, (u32
*)((int)skb
->data
& ~3), bytes
/ 4);
861 phys
= dma_map_single(&dev
->dev
, mem
, bytes
, DMA_TO_DEVICE
);
862 if (dma_mapping_error(&dev
->dev
, phys
)) {
867 dev
->stats
.tx_dropped
++;
871 n
= queue_get_desc(txreadyq
, port
, 1);
873 desc
= tx_desc_ptr(port
, n
);
876 port
->tx_buff_tab
[n
] = skb
;
878 port
->tx_buff_tab
[n
] = mem
;
880 desc
->data
= phys
+ offset
;
881 desc
->buf_len
= desc
->pkt_len
= len
;
883 /* NPE firmware pads short frames with zeros internally */
885 queue_put_desc(TX_QUEUE(port
->id
), tx_desc_phys(port
, n
), desc
);
887 if (qmgr_stat_below_low_watermark(txreadyq
)) { /* empty */
889 printk(KERN_DEBUG
"%s: eth_xmit queue full\n", dev
->name
);
891 netif_stop_queue(dev
);
892 /* we could miss TX ready interrupt */
893 /* really empty in fact */
894 if (!qmgr_stat_below_low_watermark(txreadyq
)) {
896 printk(KERN_DEBUG
"%s: eth_xmit ready again\n",
899 netif_wake_queue(dev
);
904 printk(KERN_DEBUG
"%s: eth_xmit end\n", dev
->name
);
907 ixp_tx_timestamp(port
, skb
);
908 skb_tx_timestamp(skb
);
917 static void eth_set_mcast_list(struct net_device
*dev
)
919 struct port
*port
= netdev_priv(dev
);
920 struct netdev_hw_addr
*ha
;
921 u8 diffs
[ETH_ALEN
], *addr
;
923 static const u8 allmulti
[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
925 if (dev
->flags
& IFF_ALLMULTI
) {
926 for (i
= 0; i
< ETH_ALEN
; i
++) {
927 __raw_writel(allmulti
[i
], &port
->regs
->mcast_addr
[i
]);
928 __raw_writel(allmulti
[i
], &port
->regs
->mcast_mask
[i
]);
930 __raw_writel(DEFAULT_RX_CNTRL0
| RX_CNTRL0_ADDR_FLTR_EN
,
931 &port
->regs
->rx_control
[0]);
935 if ((dev
->flags
& IFF_PROMISC
) || netdev_mc_empty(dev
)) {
936 __raw_writel(DEFAULT_RX_CNTRL0
& ~RX_CNTRL0_ADDR_FLTR_EN
,
937 &port
->regs
->rx_control
[0]);
941 memset(diffs
, 0, ETH_ALEN
);
944 netdev_for_each_mc_addr(ha
, dev
) {
946 addr
= ha
->addr
; /* first MAC address */
947 for (i
= 0; i
< ETH_ALEN
; i
++)
948 diffs
[i
] |= addr
[i
] ^ ha
->addr
[i
];
951 for (i
= 0; i
< ETH_ALEN
; i
++) {
952 __raw_writel(addr
[i
], &port
->regs
->mcast_addr
[i
]);
953 __raw_writel(~diffs
[i
], &port
->regs
->mcast_mask
[i
]);
956 __raw_writel(DEFAULT_RX_CNTRL0
| RX_CNTRL0_ADDR_FLTR_EN
,
957 &port
->regs
->rx_control
[0]);
961 static int eth_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
963 struct port
*port
= netdev_priv(dev
);
965 if (!netif_running(dev
))
968 if (cpu_is_ixp46x() && cmd
== SIOCSHWTSTAMP
)
969 return hwtstamp_ioctl(dev
, req
, cmd
);
971 return phy_mii_ioctl(port
->phydev
, req
, cmd
);
974 /* ethtool support */
976 static void ixp4xx_get_drvinfo(struct net_device
*dev
,
977 struct ethtool_drvinfo
*info
)
979 struct port
*port
= netdev_priv(dev
);
980 strcpy(info
->driver
, DRV_NAME
);
981 snprintf(info
->fw_version
, sizeof(info
->fw_version
), "%u:%u:%u:%u",
982 port
->firmware
[0], port
->firmware
[1],
983 port
->firmware
[2], port
->firmware
[3]);
984 strcpy(info
->bus_info
, "internal");
987 static int ixp4xx_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
989 struct port
*port
= netdev_priv(dev
);
990 return phy_ethtool_gset(port
->phydev
, cmd
);
993 static int ixp4xx_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
995 struct port
*port
= netdev_priv(dev
);
996 return phy_ethtool_sset(port
->phydev
, cmd
);
999 static int ixp4xx_nway_reset(struct net_device
*dev
)
1001 struct port
*port
= netdev_priv(dev
);
1002 return phy_start_aneg(port
->phydev
);
1005 static const struct ethtool_ops ixp4xx_ethtool_ops
= {
1006 .get_drvinfo
= ixp4xx_get_drvinfo
,
1007 .get_settings
= ixp4xx_get_settings
,
1008 .set_settings
= ixp4xx_set_settings
,
1009 .nway_reset
= ixp4xx_nway_reset
,
1010 .get_link
= ethtool_op_get_link
,
1014 static int request_queues(struct port
*port
)
1018 err
= qmgr_request_queue(RXFREE_QUEUE(port
->id
), RX_DESCS
, 0, 0,
1019 "%s:RX-free", port
->netdev
->name
);
1023 err
= qmgr_request_queue(port
->plat
->rxq
, RX_DESCS
, 0, 0,
1024 "%s:RX", port
->netdev
->name
);
1028 err
= qmgr_request_queue(TX_QUEUE(port
->id
), TX_DESCS
, 0, 0,
1029 "%s:TX", port
->netdev
->name
);
1033 err
= qmgr_request_queue(port
->plat
->txreadyq
, TX_DESCS
, 0, 0,
1034 "%s:TX-ready", port
->netdev
->name
);
1038 /* TX-done queue handles skbs sent out by the NPEs */
1040 err
= qmgr_request_queue(TXDONE_QUEUE
, TXDONE_QUEUE_LEN
, 0, 0,
1041 "%s:TX-done", DRV_NAME
);
1048 qmgr_release_queue(port
->plat
->txreadyq
);
1050 qmgr_release_queue(TX_QUEUE(port
->id
));
1052 qmgr_release_queue(port
->plat
->rxq
);
1054 qmgr_release_queue(RXFREE_QUEUE(port
->id
));
1055 printk(KERN_DEBUG
"%s: unable to request hardware queues\n",
1056 port
->netdev
->name
);
1060 static void release_queues(struct port
*port
)
1062 qmgr_release_queue(RXFREE_QUEUE(port
->id
));
1063 qmgr_release_queue(port
->plat
->rxq
);
1064 qmgr_release_queue(TX_QUEUE(port
->id
));
1065 qmgr_release_queue(port
->plat
->txreadyq
);
1068 qmgr_release_queue(TXDONE_QUEUE
);
1071 static int init_queues(struct port
*port
)
1076 if (!(dma_pool
= dma_pool_create(DRV_NAME
, NULL
,
1077 POOL_ALLOC_SIZE
, 32, 0)))
1080 if (!(port
->desc_tab
= dma_pool_alloc(dma_pool
, GFP_KERNEL
,
1081 &port
->desc_tab_phys
)))
1083 memset(port
->desc_tab
, 0, POOL_ALLOC_SIZE
);
1084 memset(port
->rx_buff_tab
, 0, sizeof(port
->rx_buff_tab
)); /* tables */
1085 memset(port
->tx_buff_tab
, 0, sizeof(port
->tx_buff_tab
));
1087 /* Setup RX buffers */
1088 for (i
= 0; i
< RX_DESCS
; i
++) {
1089 struct desc
*desc
= rx_desc_ptr(port
, i
);
1090 buffer_t
*buff
; /* skb or kmalloc()ated memory */
1093 if (!(buff
= netdev_alloc_skb(port
->netdev
, RX_BUFF_SIZE
)))
1097 if (!(buff
= kmalloc(RX_BUFF_SIZE
, GFP_KERNEL
)))
1101 desc
->buf_len
= MAX_MRU
;
1102 desc
->data
= dma_map_single(&port
->netdev
->dev
, data
,
1103 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
1104 if (dma_mapping_error(&port
->netdev
->dev
, desc
->data
)) {
1108 desc
->data
+= NET_IP_ALIGN
;
1109 port
->rx_buff_tab
[i
] = buff
;
1115 static void destroy_queues(struct port
*port
)
1119 if (port
->desc_tab
) {
1120 for (i
= 0; i
< RX_DESCS
; i
++) {
1121 struct desc
*desc
= rx_desc_ptr(port
, i
);
1122 buffer_t
*buff
= port
->rx_buff_tab
[i
];
1124 dma_unmap_single(&port
->netdev
->dev
,
1125 desc
->data
- NET_IP_ALIGN
,
1126 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
1130 for (i
= 0; i
< TX_DESCS
; i
++) {
1131 struct desc
*desc
= tx_desc_ptr(port
, i
);
1132 buffer_t
*buff
= port
->tx_buff_tab
[i
];
1134 dma_unmap_tx(port
, desc
);
1138 dma_pool_free(dma_pool
, port
->desc_tab
, port
->desc_tab_phys
);
1139 port
->desc_tab
= NULL
;
1142 if (!ports_open
&& dma_pool
) {
1143 dma_pool_destroy(dma_pool
);
1148 static int eth_open(struct net_device
*dev
)
1150 struct port
*port
= netdev_priv(dev
);
1151 struct npe
*npe
= port
->npe
;
1155 if (!npe_running(npe
)) {
1156 err
= npe_load_firmware(npe
, npe_name(npe
), &dev
->dev
);
1160 if (npe_recv_message(npe
, &msg
, "ETH_GET_STATUS")) {
1161 printk(KERN_ERR
"%s: %s not responding\n", dev
->name
,
1165 port
->firmware
[0] = msg
.byte4
;
1166 port
->firmware
[1] = msg
.byte5
;
1167 port
->firmware
[2] = msg
.byte6
;
1168 port
->firmware
[3] = msg
.byte7
;
1171 memset(&msg
, 0, sizeof(msg
));
1172 msg
.cmd
= NPE_VLAN_SETRXQOSENTRY
;
1173 msg
.eth_id
= port
->id
;
1174 msg
.byte5
= port
->plat
->rxq
| 0x80;
1175 msg
.byte7
= port
->plat
->rxq
<< 4;
1176 for (i
= 0; i
< 8; i
++) {
1178 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_RXQ"))
1182 msg
.cmd
= NPE_EDB_SETPORTADDRESS
;
1183 msg
.eth_id
= PHYSICAL_ID(port
->id
);
1184 msg
.byte2
= dev
->dev_addr
[0];
1185 msg
.byte3
= dev
->dev_addr
[1];
1186 msg
.byte4
= dev
->dev_addr
[2];
1187 msg
.byte5
= dev
->dev_addr
[3];
1188 msg
.byte6
= dev
->dev_addr
[4];
1189 msg
.byte7
= dev
->dev_addr
[5];
1190 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_MAC"))
1193 memset(&msg
, 0, sizeof(msg
));
1194 msg
.cmd
= NPE_FW_SETFIREWALLMODE
;
1195 msg
.eth_id
= port
->id
;
1196 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_FIREWALL_MODE"))
1199 if ((err
= request_queues(port
)) != 0)
1202 if ((err
= init_queues(port
)) != 0) {
1203 destroy_queues(port
);
1204 release_queues(port
);
1208 port
->speed
= 0; /* force "link up" message */
1209 phy_start(port
->phydev
);
1211 for (i
= 0; i
< ETH_ALEN
; i
++)
1212 __raw_writel(dev
->dev_addr
[i
], &port
->regs
->hw_addr
[i
]);
1213 __raw_writel(0x08, &port
->regs
->random_seed
);
1214 __raw_writel(0x12, &port
->regs
->partial_empty_threshold
);
1215 __raw_writel(0x30, &port
->regs
->partial_full_threshold
);
1216 __raw_writel(0x08, &port
->regs
->tx_start_bytes
);
1217 __raw_writel(0x15, &port
->regs
->tx_deferral
);
1218 __raw_writel(0x08, &port
->regs
->tx_2part_deferral
[0]);
1219 __raw_writel(0x07, &port
->regs
->tx_2part_deferral
[1]);
1220 __raw_writel(0x80, &port
->regs
->slot_time
);
1221 __raw_writel(0x01, &port
->regs
->int_clock_threshold
);
1223 /* Populate queues with buffers, no failure after this point */
1224 for (i
= 0; i
< TX_DESCS
; i
++)
1225 queue_put_desc(port
->plat
->txreadyq
,
1226 tx_desc_phys(port
, i
), tx_desc_ptr(port
, i
));
1228 for (i
= 0; i
< RX_DESCS
; i
++)
1229 queue_put_desc(RXFREE_QUEUE(port
->id
),
1230 rx_desc_phys(port
, i
), rx_desc_ptr(port
, i
));
1232 __raw_writel(TX_CNTRL1_RETRIES
, &port
->regs
->tx_control
[1]);
1233 __raw_writel(DEFAULT_TX_CNTRL0
, &port
->regs
->tx_control
[0]);
1234 __raw_writel(0, &port
->regs
->rx_control
[1]);
1235 __raw_writel(DEFAULT_RX_CNTRL0
, &port
->regs
->rx_control
[0]);
1237 napi_enable(&port
->napi
);
1238 eth_set_mcast_list(dev
);
1239 netif_start_queue(dev
);
1241 qmgr_set_irq(port
->plat
->rxq
, QUEUE_IRQ_SRC_NOT_EMPTY
,
1244 qmgr_set_irq(TXDONE_QUEUE
, QUEUE_IRQ_SRC_NOT_EMPTY
,
1245 eth_txdone_irq
, NULL
);
1246 qmgr_enable_irq(TXDONE_QUEUE
);
1249 /* we may already have RX data, enables IRQ */
1250 napi_schedule(&port
->napi
);
1254 static int eth_close(struct net_device
*dev
)
1256 struct port
*port
= netdev_priv(dev
);
1258 int buffs
= RX_DESCS
; /* allocated RX buffers */
1262 qmgr_disable_irq(port
->plat
->rxq
);
1263 napi_disable(&port
->napi
);
1264 netif_stop_queue(dev
);
1266 while (queue_get_desc(RXFREE_QUEUE(port
->id
), port
, 0) >= 0)
1269 memset(&msg
, 0, sizeof(msg
));
1270 msg
.cmd
= NPE_SETLOOPBACK_MODE
;
1271 msg
.eth_id
= port
->id
;
1273 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_ENABLE_LOOPBACK"))
1274 printk(KERN_CRIT
"%s: unable to enable loopback\n", dev
->name
);
1277 do { /* drain RX buffers */
1278 while (queue_get_desc(port
->plat
->rxq
, port
, 0) >= 0)
1282 if (qmgr_stat_empty(TX_QUEUE(port
->id
))) {
1283 /* we have to inject some packet */
1286 int n
= queue_get_desc(port
->plat
->txreadyq
, port
, 1);
1288 desc
= tx_desc_ptr(port
, n
);
1289 phys
= tx_desc_phys(port
, n
);
1290 desc
->buf_len
= desc
->pkt_len
= 1;
1292 queue_put_desc(TX_QUEUE(port
->id
), phys
, desc
);
1295 } while (++i
< MAX_CLOSE_WAIT
);
1298 printk(KERN_CRIT
"%s: unable to drain RX queue, %i buffer(s)"
1299 " left in NPE\n", dev
->name
, buffs
);
1302 printk(KERN_DEBUG
"Draining RX queue took %i cycles\n", i
);
1306 while (queue_get_desc(TX_QUEUE(port
->id
), port
, 1) >= 0)
1307 buffs
--; /* cancel TX */
1311 while (queue_get_desc(port
->plat
->txreadyq
, port
, 1) >= 0)
1315 } while (++i
< MAX_CLOSE_WAIT
);
1318 printk(KERN_CRIT
"%s: unable to drain TX queue, %i buffer(s) "
1319 "left in NPE\n", dev
->name
, buffs
);
1322 printk(KERN_DEBUG
"Draining TX queues took %i cycles\n", i
);
1326 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_DISABLE_LOOPBACK"))
1327 printk(KERN_CRIT
"%s: unable to disable loopback\n",
1330 phy_stop(port
->phydev
);
1333 qmgr_disable_irq(TXDONE_QUEUE
);
1334 destroy_queues(port
);
1335 release_queues(port
);
1339 static const struct net_device_ops ixp4xx_netdev_ops
= {
1340 .ndo_open
= eth_open
,
1341 .ndo_stop
= eth_close
,
1342 .ndo_start_xmit
= eth_xmit
,
1343 .ndo_set_rx_mode
= eth_set_mcast_list
,
1344 .ndo_do_ioctl
= eth_ioctl
,
1345 .ndo_change_mtu
= eth_change_mtu
,
1346 .ndo_set_mac_address
= eth_mac_addr
,
1347 .ndo_validate_addr
= eth_validate_addr
,
1350 static int __devinit
eth_init_one(struct platform_device
*pdev
)
1353 struct net_device
*dev
;
1354 struct eth_plat_info
*plat
= pdev
->dev
.platform_data
;
1356 char phy_id
[MII_BUS_ID_SIZE
+ 3];
1359 if (ptp_filter_init(ptp_filter
, ARRAY_SIZE(ptp_filter
))) {
1360 pr_err("ixp4xx_eth: bad ptp filter\n");
1364 if (!(dev
= alloc_etherdev(sizeof(struct port
))))
1367 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1368 port
= netdev_priv(dev
);
1370 port
->id
= pdev
->id
;
1373 case IXP4XX_ETH_NPEA
:
1374 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthA_BASE_VIRT
;
1375 regs_phys
= IXP4XX_EthA_BASE_PHYS
;
1377 case IXP4XX_ETH_NPEB
:
1378 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthB_BASE_VIRT
;
1379 regs_phys
= IXP4XX_EthB_BASE_PHYS
;
1381 case IXP4XX_ETH_NPEC
:
1382 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthC_BASE_VIRT
;
1383 regs_phys
= IXP4XX_EthC_BASE_PHYS
;
1390 dev
->netdev_ops
= &ixp4xx_netdev_ops
;
1391 dev
->ethtool_ops
= &ixp4xx_ethtool_ops
;
1392 dev
->tx_queue_len
= 100;
1394 netif_napi_add(dev
, &port
->napi
, eth_poll
, NAPI_WEIGHT
);
1396 if (!(port
->npe
= npe_request(NPE_ID(port
->id
)))) {
1401 port
->mem_res
= request_mem_region(regs_phys
, REGS_SIZE
, dev
->name
);
1402 if (!port
->mem_res
) {
1408 npe_port_tab
[NPE_ID(port
->id
)] = port
;
1409 memcpy(dev
->dev_addr
, plat
->hwaddr
, ETH_ALEN
);
1411 platform_set_drvdata(pdev
, dev
);
1413 __raw_writel(DEFAULT_CORE_CNTRL
| CORE_RESET
,
1414 &port
->regs
->core_control
);
1416 __raw_writel(DEFAULT_CORE_CNTRL
, &port
->regs
->core_control
);
1419 snprintf(phy_id
, MII_BUS_ID_SIZE
+ 3, PHY_ID_FMT
, "0", plat
->phy
);
1420 port
->phydev
= phy_connect(dev
, phy_id
, &ixp4xx_adjust_link
, 0,
1421 PHY_INTERFACE_MODE_MII
);
1422 if (IS_ERR(port
->phydev
)) {
1423 err
= PTR_ERR(port
->phydev
);
1427 port
->phydev
->irq
= PHY_POLL
;
1429 if ((err
= register_netdev(dev
)))
1432 printk(KERN_INFO
"%s: MII PHY %i on %s\n", dev
->name
, plat
->phy
,
1433 npe_name(port
->npe
));
1438 phy_disconnect(port
->phydev
);
1440 npe_port_tab
[NPE_ID(port
->id
)] = NULL
;
1441 platform_set_drvdata(pdev
, NULL
);
1442 release_resource(port
->mem_res
);
1444 npe_release(port
->npe
);
1450 static int __devexit
eth_remove_one(struct platform_device
*pdev
)
1452 struct net_device
*dev
= platform_get_drvdata(pdev
);
1453 struct port
*port
= netdev_priv(dev
);
1455 unregister_netdev(dev
);
1456 phy_disconnect(port
->phydev
);
1457 npe_port_tab
[NPE_ID(port
->id
)] = NULL
;
1458 platform_set_drvdata(pdev
, NULL
);
1459 npe_release(port
->npe
);
1460 release_resource(port
->mem_res
);
1465 static struct platform_driver ixp4xx_eth_driver
= {
1466 .driver
.name
= DRV_NAME
,
1467 .probe
= eth_init_one
,
1468 .remove
= eth_remove_one
,
1471 static int __init
eth_init_module(void)
1474 if ((err
= ixp4xx_mdio_register()))
1476 return platform_driver_register(&ixp4xx_eth_driver
);
1479 static void __exit
eth_cleanup_module(void)
1481 platform_driver_unregister(&ixp4xx_eth_driver
);
1482 ixp4xx_mdio_remove();
1485 MODULE_AUTHOR("Krzysztof Halasa");
1486 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1487 MODULE_LICENSE("GPL v2");
1488 MODULE_ALIAS("platform:ixp4xx_eth");
1489 module_init(eth_init_module
);
1490 module_exit(eth_cleanup_module
);