2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
24 #include <mach/board.h>
28 /* SPI register offsets */
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_RPR 0x0100
42 #define SPI_RCR 0x0104
43 #define SPI_TPR 0x0108
44 #define SPI_TCR 0x010c
45 #define SPI_RNPR 0x0110
46 #define SPI_RNCR 0x0114
47 #define SPI_TNPR 0x0118
48 #define SPI_TNCR 0x011c
49 #define SPI_PTCR 0x0120
50 #define SPI_PTSR 0x0124
53 #define SPI_SPIEN_OFFSET 0
54 #define SPI_SPIEN_SIZE 1
55 #define SPI_SPIDIS_OFFSET 1
56 #define SPI_SPIDIS_SIZE 1
57 #define SPI_SWRST_OFFSET 7
58 #define SPI_SWRST_SIZE 1
59 #define SPI_LASTXFER_OFFSET 24
60 #define SPI_LASTXFER_SIZE 1
63 #define SPI_MSTR_OFFSET 0
64 #define SPI_MSTR_SIZE 1
65 #define SPI_PS_OFFSET 1
67 #define SPI_PCSDEC_OFFSET 2
68 #define SPI_PCSDEC_SIZE 1
69 #define SPI_FDIV_OFFSET 3
70 #define SPI_FDIV_SIZE 1
71 #define SPI_MODFDIS_OFFSET 4
72 #define SPI_MODFDIS_SIZE 1
73 #define SPI_LLB_OFFSET 7
74 #define SPI_LLB_SIZE 1
75 #define SPI_PCS_OFFSET 16
76 #define SPI_PCS_SIZE 4
77 #define SPI_DLYBCS_OFFSET 24
78 #define SPI_DLYBCS_SIZE 8
80 /* Bitfields in RDR */
81 #define SPI_RD_OFFSET 0
82 #define SPI_RD_SIZE 16
84 /* Bitfields in TDR */
85 #define SPI_TD_OFFSET 0
86 #define SPI_TD_SIZE 16
89 #define SPI_RDRF_OFFSET 0
90 #define SPI_RDRF_SIZE 1
91 #define SPI_TDRE_OFFSET 1
92 #define SPI_TDRE_SIZE 1
93 #define SPI_MODF_OFFSET 2
94 #define SPI_MODF_SIZE 1
95 #define SPI_OVRES_OFFSET 3
96 #define SPI_OVRES_SIZE 1
97 #define SPI_ENDRX_OFFSET 4
98 #define SPI_ENDRX_SIZE 1
99 #define SPI_ENDTX_OFFSET 5
100 #define SPI_ENDTX_SIZE 1
101 #define SPI_RXBUFF_OFFSET 6
102 #define SPI_RXBUFF_SIZE 1
103 #define SPI_TXBUFE_OFFSET 7
104 #define SPI_TXBUFE_SIZE 1
105 #define SPI_NSSR_OFFSET 8
106 #define SPI_NSSR_SIZE 1
107 #define SPI_TXEMPTY_OFFSET 9
108 #define SPI_TXEMPTY_SIZE 1
109 #define SPI_SPIENS_OFFSET 16
110 #define SPI_SPIENS_SIZE 1
112 /* Bitfields in CSR0 */
113 #define SPI_CPOL_OFFSET 0
114 #define SPI_CPOL_SIZE 1
115 #define SPI_NCPHA_OFFSET 1
116 #define SPI_NCPHA_SIZE 1
117 #define SPI_CSAAT_OFFSET 3
118 #define SPI_CSAAT_SIZE 1
119 #define SPI_BITS_OFFSET 4
120 #define SPI_BITS_SIZE 4
121 #define SPI_SCBR_OFFSET 8
122 #define SPI_SCBR_SIZE 8
123 #define SPI_DLYBS_OFFSET 16
124 #define SPI_DLYBS_SIZE 8
125 #define SPI_DLYBCT_OFFSET 24
126 #define SPI_DLYBCT_SIZE 8
128 /* Bitfields in RCR */
129 #define SPI_RXCTR_OFFSET 0
130 #define SPI_RXCTR_SIZE 16
132 /* Bitfields in TCR */
133 #define SPI_TXCTR_OFFSET 0
134 #define SPI_TXCTR_SIZE 16
136 /* Bitfields in RNCR */
137 #define SPI_RXNCR_OFFSET 0
138 #define SPI_RXNCR_SIZE 16
140 /* Bitfields in TNCR */
141 #define SPI_TXNCR_OFFSET 0
142 #define SPI_TXNCR_SIZE 16
144 /* Bitfields in PTCR */
145 #define SPI_RXTEN_OFFSET 0
146 #define SPI_RXTEN_SIZE 1
147 #define SPI_RXTDIS_OFFSET 1
148 #define SPI_RXTDIS_SIZE 1
149 #define SPI_TXTEN_OFFSET 8
150 #define SPI_TXTEN_SIZE 1
151 #define SPI_TXTDIS_OFFSET 9
152 #define SPI_TXTDIS_SIZE 1
154 /* Constants for BITS */
155 #define SPI_BITS_8_BPT 0
156 #define SPI_BITS_9_BPT 1
157 #define SPI_BITS_10_BPT 2
158 #define SPI_BITS_11_BPT 3
159 #define SPI_BITS_12_BPT 4
160 #define SPI_BITS_13_BPT 5
161 #define SPI_BITS_14_BPT 6
162 #define SPI_BITS_15_BPT 7
163 #define SPI_BITS_16_BPT 8
165 /* Bit manipulation macros */
166 #define SPI_BIT(name) \
167 (1 << SPI_##name##_OFFSET)
168 #define SPI_BF(name,value) \
169 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170 #define SPI_BFEXT(name,value) \
171 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172 #define SPI_BFINS(name,value,old) \
173 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174 | SPI_BF(name,value))
176 /* Register access macros */
177 #define spi_readl(port,reg) \
178 __raw_readl((port)->regs + SPI_##reg)
179 #define spi_writel(port,reg,value) \
180 __raw_writel((value), (port)->regs + SPI_##reg)
184 * The core SPI transfer engine just talks to a register bank to set up
185 * DMA transfers; transfer queue progress is driven by IRQs. The clock
186 * framework provides the base clock, subdivided for each spi_device.
194 struct platform_device
*pdev
;
195 struct spi_device
*stay
;
198 struct list_head queue
;
199 struct spi_transfer
*current_transfer
;
200 unsigned long current_remaining_bytes
;
201 struct spi_transfer
*next_transfer
;
202 unsigned long next_remaining_bytes
;
205 dma_addr_t buffer_dma
;
208 /* Controller-specific per-slave state */
209 struct atmel_spi_device
{
210 unsigned int npcs_pin
;
214 #define BUFFER_SIZE PAGE_SIZE
215 #define INVALID_DMA_ADDRESS 0xffffffff
218 * Version 2 of the SPI controller has
220 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
223 * - SPI_CSRx.SBCR allows faster clocking
225 * We can determine the controller version by reading the VERSION
226 * register, but I haven't checked that it exists on all chips, and
227 * this is cheaper anyway.
229 static bool atmel_spi_is_v2(void)
231 return !cpu_is_at91rm9200();
235 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236 * they assume that spi slave device state will not change on deselect, so
237 * that automagic deselection is OK. ("NPCSx rises if no data is to be
238 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
239 * controllers have CSAAT and friends.
241 * Since the CSAAT functionality is a bit weird on newer controllers as
242 * well, we use GPIO to control nCSx pins on all controllers, updating
243 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
244 * support active-high chipselects despite the controller's belief that
245 * only active-low devices/systems exists.
247 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248 * right when driven with GPIO. ("Mode Fault does not allow more than one
249 * Master on Chip Select 0.") No workaround exists for that ... so for
250 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251 * and (c) will trigger that first erratum in some cases.
253 * TODO: Test if the atmel_spi_is_v2() branch below works on
254 * AT91RM9200 if we use some other register than CSR0. However, don't
255 * do this unconditionally since AP7000 has an errata where the BITS
256 * field in CSR0 overrides all other CSRs.
259 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
261 struct atmel_spi_device
*asd
= spi
->controller_state
;
262 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
265 if (atmel_spi_is_v2()) {
267 * Always use CSR0. This ensures that the clock
268 * switches to the correct idle polarity before we
271 spi_writel(as
, CSR0
, asd
->csr
);
272 spi_writel(as
, MR
, SPI_BF(PCS
, 0x0e) | SPI_BIT(MODFDIS
)
274 mr
= spi_readl(as
, MR
);
275 gpio_set_value(asd
->npcs_pin
, active
);
277 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
281 /* Make sure clock polarity is correct */
282 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
283 csr
= spi_readl(as
, CSR0
+ 4 * i
);
284 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
285 spi_writel(as
, CSR0
+ 4 * i
,
286 csr
^ SPI_BIT(CPOL
));
289 mr
= spi_readl(as
, MR
);
290 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
291 if (spi
->chip_select
!= 0)
292 gpio_set_value(asd
->npcs_pin
, active
);
293 spi_writel(as
, MR
, mr
);
296 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
297 asd
->npcs_pin
, active
? " (high)" : "",
301 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
303 struct atmel_spi_device
*asd
= spi
->controller_state
;
304 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
307 /* only deactivate *this* device; sometimes transfers to
308 * another device may be active when this routine is called.
310 mr
= spi_readl(as
, MR
);
311 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
312 mr
= SPI_BFINS(PCS
, 0xf, mr
);
313 spi_writel(as
, MR
, mr
);
316 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
317 asd
->npcs_pin
, active
? " (low)" : "",
320 if (atmel_spi_is_v2() || spi
->chip_select
!= 0)
321 gpio_set_value(asd
->npcs_pin
, !active
);
324 static inline int atmel_spi_xfer_is_last(struct spi_message
*msg
,
325 struct spi_transfer
*xfer
)
327 return msg
->transfers
.prev
== &xfer
->transfer_list
;
330 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer
*xfer
)
332 return xfer
->delay_usecs
== 0 && !xfer
->cs_change
;
335 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
336 struct spi_transfer
*xfer
,
341 struct atmel_spi
*as
= spi_master_get_devdata(master
);
344 /* use scratch buffer only when rx or tx data is unspecified */
346 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
348 *rx_dma
= as
->buffer_dma
;
349 if (len
> BUFFER_SIZE
)
353 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
355 *tx_dma
= as
->buffer_dma
;
356 if (len
> BUFFER_SIZE
)
358 memset(as
->buffer
, 0, len
);
359 dma_sync_single_for_device(&as
->pdev
->dev
,
360 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
367 * Submit next transfer for DMA.
368 * lock is held, spi irq is blocked
370 static void atmel_spi_next_xfer(struct spi_master
*master
,
371 struct spi_message
*msg
)
373 struct atmel_spi
*as
= spi_master_get_devdata(master
);
374 struct spi_transfer
*xfer
;
377 dma_addr_t tx_dma
, rx_dma
;
379 if (!as
->current_transfer
)
380 xfer
= list_entry(msg
->transfers
.next
,
381 struct spi_transfer
, transfer_list
);
382 else if (!as
->next_transfer
)
383 xfer
= list_entry(as
->current_transfer
->transfer_list
.next
,
384 struct spi_transfer
, transfer_list
);
389 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
392 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
393 remaining
= xfer
->len
- len
;
395 spi_writel(as
, RPR
, rx_dma
);
396 spi_writel(as
, TPR
, tx_dma
);
398 if (msg
->spi
->bits_per_word
> 8)
400 spi_writel(as
, RCR
, len
);
401 spi_writel(as
, TCR
, len
);
403 dev_dbg(&msg
->spi
->dev
,
404 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
406 xfer
->rx_buf
, xfer
->rx_dma
);
408 xfer
= as
->next_transfer
;
409 remaining
= as
->next_remaining_bytes
;
412 as
->current_transfer
= xfer
;
413 as
->current_remaining_bytes
= remaining
;
417 else if (!atmel_spi_xfer_is_last(msg
, xfer
)
418 && atmel_spi_xfer_can_be_chained(xfer
)) {
419 xfer
= list_entry(xfer
->transfer_list
.next
,
420 struct spi_transfer
, transfer_list
);
425 as
->next_transfer
= xfer
;
431 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
432 as
->next_remaining_bytes
= total
- len
;
434 spi_writel(as
, RNPR
, rx_dma
);
435 spi_writel(as
, TNPR
, tx_dma
);
437 if (msg
->spi
->bits_per_word
> 8)
439 spi_writel(as
, RNCR
, len
);
440 spi_writel(as
, TNCR
, len
);
442 dev_dbg(&msg
->spi
->dev
,
443 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
445 xfer
->rx_buf
, xfer
->rx_dma
);
446 ieval
= SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
448 spi_writel(as
, RNCR
, 0);
449 spi_writel(as
, TNCR
, 0);
450 ieval
= SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
453 /* REVISIT: We're waiting for ENDRX before we start the next
454 * transfer because we need to handle some difficult timing
455 * issues otherwise. If we wait for ENDTX in one transfer and
456 * then starts waiting for ENDRX in the next, it's difficult
457 * to tell the difference between the ENDRX interrupt we're
458 * actually waiting for and the ENDRX interrupt of the
461 * It should be doable, though. Just not now...
463 spi_writel(as
, IER
, ieval
);
464 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
467 static void atmel_spi_next_message(struct spi_master
*master
)
469 struct atmel_spi
*as
= spi_master_get_devdata(master
);
470 struct spi_message
*msg
;
471 struct spi_device
*spi
;
473 BUG_ON(as
->current_transfer
);
475 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
478 dev_dbg(master
->dev
.parent
, "start message %p for %s\n",
479 msg
, dev_name(&spi
->dev
));
481 /* select chip if it's not still active */
483 if (as
->stay
!= spi
) {
484 cs_deactivate(as
, as
->stay
);
485 cs_activate(as
, spi
);
489 cs_activate(as
, spi
);
491 atmel_spi_next_xfer(master
, msg
);
495 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496 * - The buffer is either valid for CPU access, else NULL
497 * - If the buffer is valid, so is its DMA address
499 * This driver manages the dma address unless message->is_dma_mapped.
502 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
504 struct device
*dev
= &as
->pdev
->dev
;
506 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
508 /* tx_buf is a const void* where we need a void * for the dma
510 void *nonconst_tx
= (void *)xfer
->tx_buf
;
512 xfer
->tx_dma
= dma_map_single(dev
,
513 nonconst_tx
, xfer
->len
,
515 if (dma_mapping_error(dev
, xfer
->tx_dma
))
519 xfer
->rx_dma
= dma_map_single(dev
,
520 xfer
->rx_buf
, xfer
->len
,
522 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
524 dma_unmap_single(dev
,
525 xfer
->tx_dma
, xfer
->len
,
533 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
534 struct spi_transfer
*xfer
)
536 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
537 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
538 xfer
->len
, DMA_TO_DEVICE
);
539 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
540 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
541 xfer
->len
, DMA_FROM_DEVICE
);
545 atmel_spi_msg_done(struct spi_master
*master
, struct atmel_spi
*as
,
546 struct spi_message
*msg
, int status
, int stay
)
548 if (!stay
|| status
< 0)
549 cs_deactivate(as
, msg
->spi
);
553 list_del(&msg
->queue
);
554 msg
->status
= status
;
556 dev_dbg(master
->dev
.parent
,
557 "xfer complete: %u bytes transferred\n",
560 spin_unlock(&as
->lock
);
561 msg
->complete(msg
->context
);
562 spin_lock(&as
->lock
);
564 as
->current_transfer
= NULL
;
565 as
->next_transfer
= NULL
;
567 /* continue if needed */
568 if (list_empty(&as
->queue
) || as
->stopping
)
569 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
571 atmel_spi_next_message(master
);
575 atmel_spi_interrupt(int irq
, void *dev_id
)
577 struct spi_master
*master
= dev_id
;
578 struct atmel_spi
*as
= spi_master_get_devdata(master
);
579 struct spi_message
*msg
;
580 struct spi_transfer
*xfer
;
581 u32 status
, pending
, imr
;
584 spin_lock(&as
->lock
);
586 xfer
= as
->current_transfer
;
587 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
589 imr
= spi_readl(as
, IMR
);
590 status
= spi_readl(as
, SR
);
591 pending
= status
& imr
;
593 if (pending
& SPI_BIT(OVRES
)) {
598 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
602 * When we get an overrun, we disregard the current
603 * transfer. Data will not be copied back from any
604 * bounce buffer and msg->actual_len will not be
605 * updated with the last xfer.
607 * We will also not process any remaning transfers in
610 * First, stop the transfer and unmap the DMA buffers.
612 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
613 if (!msg
->is_dma_mapped
)
614 atmel_spi_dma_unmap_xfer(master
, xfer
);
616 /* REVISIT: udelay in irq is unfriendly */
617 if (xfer
->delay_usecs
)
618 udelay(xfer
->delay_usecs
);
620 dev_warn(master
->dev
.parent
, "overrun (%u/%u remaining)\n",
621 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
624 * Clean up DMA registers and make sure the data
625 * registers are empty.
627 spi_writel(as
, RNCR
, 0);
628 spi_writel(as
, TNCR
, 0);
629 spi_writel(as
, RCR
, 0);
630 spi_writel(as
, TCR
, 0);
631 for (timeout
= 1000; timeout
; timeout
--)
632 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
635 dev_warn(master
->dev
.parent
,
636 "timeout waiting for TXEMPTY");
637 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
640 /* Clear any overrun happening while cleaning up */
643 atmel_spi_msg_done(master
, as
, msg
, -EIO
, 0);
644 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
647 spi_writel(as
, IDR
, pending
);
649 if (as
->current_remaining_bytes
== 0) {
650 msg
->actual_length
+= xfer
->len
;
652 if (!msg
->is_dma_mapped
)
653 atmel_spi_dma_unmap_xfer(master
, xfer
);
655 /* REVISIT: udelay in irq is unfriendly */
656 if (xfer
->delay_usecs
)
657 udelay(xfer
->delay_usecs
);
659 if (atmel_spi_xfer_is_last(msg
, xfer
)) {
660 /* report completed message */
661 atmel_spi_msg_done(master
, as
, msg
, 0,
664 if (xfer
->cs_change
) {
665 cs_deactivate(as
, msg
->spi
);
667 cs_activate(as
, msg
->spi
);
671 * Not done yet. Submit the next transfer.
673 * FIXME handle protocol options for xfer
675 atmel_spi_next_xfer(master
, msg
);
679 * Keep going, we still have data to send in
680 * the current transfer.
682 atmel_spi_next_xfer(master
, msg
);
686 spin_unlock(&as
->lock
);
691 static int atmel_spi_setup(struct spi_device
*spi
)
693 struct atmel_spi
*as
;
694 struct atmel_spi_device
*asd
;
696 unsigned int bits
= spi
->bits_per_word
;
697 unsigned long bus_hz
;
698 unsigned int npcs_pin
;
701 as
= spi_master_get_devdata(spi
->master
);
706 if (spi
->chip_select
> spi
->master
->num_chipselect
) {
708 "setup: invalid chipselect %u (%u defined)\n",
709 spi
->chip_select
, spi
->master
->num_chipselect
);
713 if (bits
< 8 || bits
> 16) {
715 "setup: invalid bits_per_word %u (8 to 16)\n",
720 /* see notes above re chipselect */
721 if (!atmel_spi_is_v2()
722 && spi
->chip_select
== 0
723 && (spi
->mode
& SPI_CS_HIGH
)) {
724 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
728 /* v1 chips start out at half the peripheral bus speed. */
729 bus_hz
= clk_get_rate(as
->clk
);
730 if (!atmel_spi_is_v2())
733 if (spi
->max_speed_hz
) {
735 * Calculate the lowest divider that satisfies the
736 * constraint, assuming div32/fdiv/mbz == 0.
738 scbr
= DIV_ROUND_UP(bus_hz
, spi
->max_speed_hz
);
741 * If the resulting divider doesn't fit into the
742 * register bitfield, we can't satisfy the constraint.
744 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
746 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747 spi
->max_speed_hz
, scbr
, bus_hz
/255);
751 /* speed zero means "as slow as possible" */
754 csr
= SPI_BF(SCBR
, scbr
) | SPI_BF(BITS
, bits
- 8);
755 if (spi
->mode
& SPI_CPOL
)
756 csr
|= SPI_BIT(CPOL
);
757 if (!(spi
->mode
& SPI_CPHA
))
758 csr
|= SPI_BIT(NCPHA
);
760 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
762 * DLYBCT would add delays between words, slowing down transfers.
763 * It could potentially be useful to cope with DMA bottlenecks, but
764 * in those cases it's probably best to just use a lower bitrate.
766 csr
|= SPI_BF(DLYBS
, 0);
767 csr
|= SPI_BF(DLYBCT
, 0);
769 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770 npcs_pin
= (unsigned int)spi
->controller_data
;
771 asd
= spi
->controller_state
;
773 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
777 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
783 asd
->npcs_pin
= npcs_pin
;
784 spi
->controller_state
= asd
;
785 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
789 spin_lock_irqsave(&as
->lock
, flags
);
792 cs_deactivate(as
, spi
);
793 spin_unlock_irqrestore(&as
->lock
, flags
);
799 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800 bus_hz
/ scbr
, bits
, spi
->mode
, spi
->chip_select
, csr
);
802 if (!atmel_spi_is_v2())
803 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
808 static int atmel_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
810 struct atmel_spi
*as
;
811 struct spi_transfer
*xfer
;
813 struct device
*controller
= spi
->master
->dev
.parent
;
815 struct atmel_spi_device
*asd
;
817 as
= spi_master_get_devdata(spi
->master
);
819 dev_dbg(controller
, "new message %p submitted for %s\n",
820 msg
, dev_name(&spi
->dev
));
822 if (unlikely(list_empty(&msg
->transfers
)))
828 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
829 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
830 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
834 if (xfer
->bits_per_word
) {
835 asd
= spi
->controller_state
;
836 bits
= (asd
->csr
>> 4) & 0xf;
837 if (bits
!= xfer
->bits_per_word
- 8) {
838 dev_dbg(&spi
->dev
, "you can't yet change "
839 "bits_per_word in transfers\n");
844 /* FIXME implement these protocol options!! */
845 if (xfer
->speed_hz
) {
846 dev_dbg(&spi
->dev
, "no protocol options yet\n");
851 * DMA map early, for performance (empties dcache ASAP) and
852 * better fault reporting. This is a DMA-only driver.
854 * NOTE that if dma_unmap_single() ever starts to do work on
855 * platforms supported by this driver, we would need to clean
856 * up mappings for previously-mapped transfers.
858 if (!msg
->is_dma_mapped
) {
859 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
865 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
867 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
869 xfer
->tx_buf
, xfer
->tx_dma
,
870 xfer
->rx_buf
, xfer
->rx_dma
);
874 msg
->status
= -EINPROGRESS
;
875 msg
->actual_length
= 0;
877 spin_lock_irqsave(&as
->lock
, flags
);
878 list_add_tail(&msg
->queue
, &as
->queue
);
879 if (!as
->current_transfer
)
880 atmel_spi_next_message(spi
->master
);
881 spin_unlock_irqrestore(&as
->lock
, flags
);
886 static void atmel_spi_cleanup(struct spi_device
*spi
)
888 struct atmel_spi
*as
= spi_master_get_devdata(spi
->master
);
889 struct atmel_spi_device
*asd
= spi
->controller_state
;
890 unsigned gpio
= (unsigned) spi
->controller_data
;
896 spin_lock_irqsave(&as
->lock
, flags
);
897 if (as
->stay
== spi
) {
899 cs_deactivate(as
, spi
);
901 spin_unlock_irqrestore(&as
->lock
, flags
);
903 spi
->controller_state
= NULL
;
908 /*-------------------------------------------------------------------------*/
910 static int __init
atmel_spi_probe(struct platform_device
*pdev
)
912 struct resource
*regs
;
916 struct spi_master
*master
;
917 struct atmel_spi
*as
;
919 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
923 irq
= platform_get_irq(pdev
, 0);
927 clk
= clk_get(&pdev
->dev
, "spi_clk");
931 /* setup spi core then atmel-specific driver state */
933 master
= spi_alloc_master(&pdev
->dev
, sizeof *as
);
937 /* the spi->mode bits understood by this driver: */
938 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
940 master
->bus_num
= pdev
->id
;
941 master
->num_chipselect
= 4;
942 master
->setup
= atmel_spi_setup
;
943 master
->transfer
= atmel_spi_transfer
;
944 master
->cleanup
= atmel_spi_cleanup
;
945 platform_set_drvdata(pdev
, master
);
947 as
= spi_master_get_devdata(master
);
950 * Scratch buffer is used for throwaway rx and tx data.
951 * It's coherent to minimize dcache pollution.
953 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
954 &as
->buffer_dma
, GFP_KERNEL
);
958 spin_lock_init(&as
->lock
);
959 INIT_LIST_HEAD(&as
->queue
);
961 as
->regs
= ioremap(regs
->start
, resource_size(regs
));
963 goto out_free_buffer
;
967 ret
= request_irq(irq
, atmel_spi_interrupt
, 0,
968 dev_name(&pdev
->dev
), master
);
972 /* Initialize the hardware */
974 spi_writel(as
, CR
, SPI_BIT(SWRST
));
975 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
976 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
977 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
978 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
981 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982 (unsigned long)regs
->start
, irq
);
984 ret
= spi_register_master(master
);
991 spi_writel(as
, CR
, SPI_BIT(SWRST
));
992 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
994 free_irq(irq
, master
);
998 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1002 spi_master_put(master
);
1006 static int __exit
atmel_spi_remove(struct platform_device
*pdev
)
1008 struct spi_master
*master
= platform_get_drvdata(pdev
);
1009 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1010 struct spi_message
*msg
;
1012 /* reset the hardware and block queue progress */
1013 spin_lock_irq(&as
->lock
);
1015 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1016 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1018 spin_unlock_irq(&as
->lock
);
1020 /* Terminate remaining queued transfers */
1021 list_for_each_entry(msg
, &as
->queue
, queue
) {
1022 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023 * but we shouldn't depend on that...
1025 msg
->status
= -ESHUTDOWN
;
1026 msg
->complete(msg
->context
);
1029 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
1032 clk_disable(as
->clk
);
1034 free_irq(as
->irq
, master
);
1037 spi_unregister_master(master
);
1044 static int atmel_spi_suspend(struct platform_device
*pdev
, pm_message_t mesg
)
1046 struct spi_master
*master
= platform_get_drvdata(pdev
);
1047 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1049 clk_disable(as
->clk
);
1053 static int atmel_spi_resume(struct platform_device
*pdev
)
1055 struct spi_master
*master
= platform_get_drvdata(pdev
);
1056 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1058 clk_enable(as
->clk
);
1063 #define atmel_spi_suspend NULL
1064 #define atmel_spi_resume NULL
1068 static struct platform_driver atmel_spi_driver
= {
1070 .name
= "atmel_spi",
1071 .owner
= THIS_MODULE
,
1073 .suspend
= atmel_spi_suspend
,
1074 .resume
= atmel_spi_resume
,
1075 .remove
= __exit_p(atmel_spi_remove
),
1077 module_platform_driver(atmel_spi_driver
);
1079 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1080 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1081 MODULE_LICENSE("GPL");
1082 MODULE_ALIAS("platform:atmel_spi");