powerpc: use consistent types in mktree
[zen-stable.git] / drivers / firewire / sbp2.c
blob8d51568ee14344ee1e9e4ac11f690ae7a2c1d6a2
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
67 * Concurrent logins are useful together with cluster filesystems.
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
75 * Flags for firmware oddities
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
131 static const char sbp2_driver_name[] = "sbp2";
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
137 struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
164 struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
183 static struct fw_device *target_device(struct sbp2_target *tgt)
185 return fw_parent_device(tgt->unit);
188 /* Impossible login_id, to detect logout attempt before successful login */
189 #define INVALID_LOGIN_ID 0x10000
192 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
193 * provided in the config rom. Most devices do provide a value, which
194 * we'll use for login management orbs, but with some sane limits.
196 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
197 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
199 #define SBP2_ORB_NULL 0x80000000
200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
204 * There is no transport protocol limit to the CDB length, but we implement
205 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
207 #define SBP2_MAX_CDB_SIZE 16
210 * The default maximum s/g segment size of a FireWire controller is
211 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
212 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
214 #define SBP2_MAX_SEG_SIZE 0xfffc
216 /* Unit directory keys */
217 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
218 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
219 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
222 /* Management orb opcodes */
223 #define SBP2_LOGIN_REQUEST 0x0
224 #define SBP2_QUERY_LOGINS_REQUEST 0x1
225 #define SBP2_RECONNECT_REQUEST 0x3
226 #define SBP2_SET_PASSWORD_REQUEST 0x4
227 #define SBP2_LOGOUT_REQUEST 0x7
228 #define SBP2_ABORT_TASK_REQUEST 0xb
229 #define SBP2_ABORT_TASK_SET 0xc
230 #define SBP2_LOGICAL_UNIT_RESET 0xe
231 #define SBP2_TARGET_RESET_REQUEST 0xf
233 /* Offsets for command block agent registers */
234 #define SBP2_AGENT_STATE 0x00
235 #define SBP2_AGENT_RESET 0x04
236 #define SBP2_ORB_POINTER 0x08
237 #define SBP2_DOORBELL 0x10
238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
240 /* Status write response codes */
241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
253 #define STATUS_GET_DATA(v) ((v).data)
255 struct sbp2_status {
256 u32 status;
257 u32 orb_low;
258 u8 data[24];
261 struct sbp2_pointer {
262 __be32 high;
263 __be32 low;
266 struct sbp2_orb {
267 struct fw_transaction t;
268 struct kref kref;
269 dma_addr_t request_bus;
270 int rcode;
271 struct sbp2_pointer pointer;
272 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
273 struct list_head link;
276 #define MANAGEMENT_ORB_LUN(v) ((v))
277 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
278 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
279 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
280 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
281 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
283 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
284 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
286 struct sbp2_management_orb {
287 struct sbp2_orb base;
288 struct {
289 struct sbp2_pointer password;
290 struct sbp2_pointer response;
291 __be32 misc;
292 __be32 length;
293 struct sbp2_pointer status_fifo;
294 } request;
295 __be32 response[4];
296 dma_addr_t response_bus;
297 struct completion done;
298 struct sbp2_status status;
301 struct sbp2_login_response {
302 __be32 misc;
303 struct sbp2_pointer command_block_agent;
304 __be32 reconnect_hold;
306 #define COMMAND_ORB_DATA_SIZE(v) ((v))
307 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
308 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
309 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
310 #define COMMAND_ORB_SPEED(v) ((v) << 24)
311 #define COMMAND_ORB_DIRECTION ((1) << 27)
312 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
313 #define COMMAND_ORB_NOTIFY ((1) << 31)
315 struct sbp2_command_orb {
316 struct sbp2_orb base;
317 struct {
318 struct sbp2_pointer next;
319 struct sbp2_pointer data_descriptor;
320 __be32 misc;
321 u8 command_block[SBP2_MAX_CDB_SIZE];
322 } request;
323 struct scsi_cmnd *cmd;
324 scsi_done_fn_t done;
325 struct sbp2_logical_unit *lu;
327 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328 dma_addr_t page_table_bus;
331 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
332 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
335 * List of devices with known bugs.
337 * The firmware_revision field, masked with 0xffff00, is the best
338 * indicator for the type of bridge chip of a device. It yields a few
339 * false positives but this did not break correctly behaving devices
340 * so far.
342 static const struct {
343 u32 firmware_revision;
344 u32 model;
345 unsigned int workarounds;
346 } sbp2_workarounds_table[] = {
347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348 .firmware_revision = 0x002800,
349 .model = 0x001010,
350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
351 SBP2_WORKAROUND_MODE_SENSE_8 |
352 SBP2_WORKAROUND_POWER_CONDITION,
354 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355 .firmware_revision = 0x002800,
356 .model = 0x000000,
357 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
358 SBP2_WORKAROUND_POWER_CONDITION,
360 /* Initio bridges, actually only needed for some older ones */ {
361 .firmware_revision = 0x000200,
362 .model = SBP2_ROM_VALUE_WILDCARD,
363 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
365 /* PL-3507 bridge with Prolific firmware */ {
366 .firmware_revision = 0x012800,
367 .model = SBP2_ROM_VALUE_WILDCARD,
368 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
370 /* Symbios bridge */ {
371 .firmware_revision = 0xa0b800,
372 .model = SBP2_ROM_VALUE_WILDCARD,
373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
375 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
376 .firmware_revision = 0x002600,
377 .model = SBP2_ROM_VALUE_WILDCARD,
378 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
381 * iPod 2nd generation: needs 128k max transfer size workaround
382 * iPod 3rd generation: needs fix capacity workaround
385 .firmware_revision = 0x0a2700,
386 .model = 0x000000,
387 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
388 SBP2_WORKAROUND_FIX_CAPACITY,
390 /* iPod 4th generation */ {
391 .firmware_revision = 0x0a2700,
392 .model = 0x000021,
393 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
395 /* iPod mini */ {
396 .firmware_revision = 0x0a2700,
397 .model = 0x000022,
398 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
400 /* iPod mini */ {
401 .firmware_revision = 0x0a2700,
402 .model = 0x000023,
403 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
405 /* iPod Photo */ {
406 .firmware_revision = 0x0a2700,
407 .model = 0x00007e,
408 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
412 static void free_orb(struct kref *kref)
414 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
416 kfree(orb);
419 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
420 int tcode, int destination, int source,
421 int generation, int speed,
422 unsigned long long offset,
423 void *payload, size_t length, void *callback_data)
425 struct sbp2_logical_unit *lu = callback_data;
426 struct sbp2_orb *orb;
427 struct sbp2_status status;
428 size_t header_size;
429 unsigned long flags;
431 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
432 length == 0 || length > sizeof(status)) {
433 fw_send_response(card, request, RCODE_TYPE_ERROR);
434 return;
437 header_size = min(length, 2 * sizeof(u32));
438 fw_memcpy_from_be32(&status, payload, header_size);
439 if (length > header_size)
440 memcpy(status.data, payload + 8, length - header_size);
441 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
442 fw_notify("non-orb related status write, not handled\n");
443 fw_send_response(card, request, RCODE_COMPLETE);
444 return;
447 /* Lookup the orb corresponding to this status write. */
448 spin_lock_irqsave(&card->lock, flags);
449 list_for_each_entry(orb, &lu->orb_list, link) {
450 if (STATUS_GET_ORB_HIGH(status) == 0 &&
451 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452 orb->rcode = RCODE_COMPLETE;
453 list_del(&orb->link);
454 break;
457 spin_unlock_irqrestore(&card->lock, flags);
459 if (&orb->link != &lu->orb_list)
460 orb->callback(orb, &status);
461 else
462 fw_error("status write for unknown orb\n");
464 kref_put(&orb->kref, free_orb);
466 fw_send_response(card, request, RCODE_COMPLETE);
469 static void complete_transaction(struct fw_card *card, int rcode,
470 void *payload, size_t length, void *data)
472 struct sbp2_orb *orb = data;
473 unsigned long flags;
476 * This is a little tricky. We can get the status write for
477 * the orb before we get this callback. The status write
478 * handler above will assume the orb pointer transaction was
479 * successful and set the rcode to RCODE_COMPLETE for the orb.
480 * So this callback only sets the rcode if it hasn't already
481 * been set and only does the cleanup if the transaction
482 * failed and we didn't already get a status write.
484 spin_lock_irqsave(&card->lock, flags);
486 if (orb->rcode == -1)
487 orb->rcode = rcode;
488 if (orb->rcode != RCODE_COMPLETE) {
489 list_del(&orb->link);
490 spin_unlock_irqrestore(&card->lock, flags);
491 orb->callback(orb, NULL);
492 } else {
493 spin_unlock_irqrestore(&card->lock, flags);
496 kref_put(&orb->kref, free_orb);
499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
500 int node_id, int generation, u64 offset)
502 struct fw_device *device = target_device(lu->tgt);
503 unsigned long flags;
505 orb->pointer.high = 0;
506 orb->pointer.low = cpu_to_be32(orb->request_bus);
508 spin_lock_irqsave(&device->card->lock, flags);
509 list_add_tail(&orb->link, &lu->orb_list);
510 spin_unlock_irqrestore(&device->card->lock, flags);
512 /* Take a ref for the orb list and for the transaction callback. */
513 kref_get(&orb->kref);
514 kref_get(&orb->kref);
516 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
517 node_id, generation, device->max_speed, offset,
518 &orb->pointer, sizeof(orb->pointer),
519 complete_transaction, orb);
522 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
524 struct fw_device *device = target_device(lu->tgt);
525 struct sbp2_orb *orb, *next;
526 struct list_head list;
527 unsigned long flags;
528 int retval = -ENOENT;
530 INIT_LIST_HEAD(&list);
531 spin_lock_irqsave(&device->card->lock, flags);
532 list_splice_init(&lu->orb_list, &list);
533 spin_unlock_irqrestore(&device->card->lock, flags);
535 list_for_each_entry_safe(orb, next, &list, link) {
536 retval = 0;
537 if (fw_cancel_transaction(device->card, &orb->t) == 0)
538 continue;
540 orb->rcode = RCODE_CANCELLED;
541 orb->callback(orb, NULL);
544 return retval;
547 static void complete_management_orb(struct sbp2_orb *base_orb,
548 struct sbp2_status *status)
550 struct sbp2_management_orb *orb =
551 container_of(base_orb, struct sbp2_management_orb, base);
553 if (status)
554 memcpy(&orb->status, status, sizeof(*status));
555 complete(&orb->done);
558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
559 int generation, int function,
560 int lun_or_login_id, void *response)
562 struct fw_device *device = target_device(lu->tgt);
563 struct sbp2_management_orb *orb;
564 unsigned int timeout;
565 int retval = -ENOMEM;
567 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
568 return 0;
570 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
571 if (orb == NULL)
572 return -ENOMEM;
574 kref_init(&orb->base.kref);
575 orb->response_bus =
576 dma_map_single(device->card->device, &orb->response,
577 sizeof(orb->response), DMA_FROM_DEVICE);
578 if (dma_mapping_error(device->card->device, orb->response_bus))
579 goto fail_mapping_response;
581 orb->request.response.high = 0;
582 orb->request.response.low = cpu_to_be32(orb->response_bus);
584 orb->request.misc = cpu_to_be32(
585 MANAGEMENT_ORB_NOTIFY |
586 MANAGEMENT_ORB_FUNCTION(function) |
587 MANAGEMENT_ORB_LUN(lun_or_login_id));
588 orb->request.length = cpu_to_be32(
589 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
591 orb->request.status_fifo.high =
592 cpu_to_be32(lu->address_handler.offset >> 32);
593 orb->request.status_fifo.low =
594 cpu_to_be32(lu->address_handler.offset);
596 if (function == SBP2_LOGIN_REQUEST) {
597 /* Ask for 2^2 == 4 seconds reconnect grace period */
598 orb->request.misc |= cpu_to_be32(
599 MANAGEMENT_ORB_RECONNECT(2) |
600 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
601 timeout = lu->tgt->mgt_orb_timeout;
602 } else {
603 timeout = SBP2_ORB_TIMEOUT;
606 init_completion(&orb->done);
607 orb->base.callback = complete_management_orb;
609 orb->base.request_bus =
610 dma_map_single(device->card->device, &orb->request,
611 sizeof(orb->request), DMA_TO_DEVICE);
612 if (dma_mapping_error(device->card->device, orb->base.request_bus))
613 goto fail_mapping_request;
615 sbp2_send_orb(&orb->base, lu, node_id, generation,
616 lu->tgt->management_agent_address);
618 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
620 retval = -EIO;
621 if (sbp2_cancel_orbs(lu) == 0) {
622 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
623 lu->tgt->bus_id, orb->base.rcode);
624 goto out;
627 if (orb->base.rcode != RCODE_COMPLETE) {
628 fw_error("%s: management write failed, rcode 0x%02x\n",
629 lu->tgt->bus_id, orb->base.rcode);
630 goto out;
633 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
634 STATUS_GET_SBP_STATUS(orb->status) != 0) {
635 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
636 STATUS_GET_RESPONSE(orb->status),
637 STATUS_GET_SBP_STATUS(orb->status));
638 goto out;
641 retval = 0;
642 out:
643 dma_unmap_single(device->card->device, orb->base.request_bus,
644 sizeof(orb->request), DMA_TO_DEVICE);
645 fail_mapping_request:
646 dma_unmap_single(device->card->device, orb->response_bus,
647 sizeof(orb->response), DMA_FROM_DEVICE);
648 fail_mapping_response:
649 if (response)
650 memcpy(response, orb->response, sizeof(orb->response));
651 kref_put(&orb->base.kref, free_orb);
653 return retval;
656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
658 struct fw_device *device = target_device(lu->tgt);
659 __be32 d = 0;
661 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
662 lu->tgt->node_id, lu->generation, device->max_speed,
663 lu->command_block_agent_address + SBP2_AGENT_RESET,
664 &d, sizeof(d));
667 static void complete_agent_reset_write_no_wait(struct fw_card *card,
668 int rcode, void *payload, size_t length, void *data)
670 kfree(data);
673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
675 struct fw_device *device = target_device(lu->tgt);
676 struct fw_transaction *t;
677 static __be32 d;
679 t = kmalloc(sizeof(*t), GFP_ATOMIC);
680 if (t == NULL)
681 return;
683 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
684 lu->tgt->node_id, lu->generation, device->max_speed,
685 lu->command_block_agent_address + SBP2_AGENT_RESET,
686 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
692 * We may access dont_block without taking card->lock here:
693 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
694 * are currently serialized against each other.
695 * And a wrong result in sbp2_conditionally_block()'s access of
696 * dont_block is rather harmless, it simply misses its first chance.
698 --lu->tgt->dont_block;
702 * Blocks lu->tgt if all of the following conditions are met:
703 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
704 * logical units have been finished (indicated by dont_block == 0).
705 * - lu->generation is stale.
707 * Note, scsi_block_requests() must be called while holding card->lock,
708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
709 * unblock the target.
711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
713 struct sbp2_target *tgt = lu->tgt;
714 struct fw_card *card = target_device(tgt)->card;
715 struct Scsi_Host *shost =
716 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
717 unsigned long flags;
719 spin_lock_irqsave(&card->lock, flags);
720 if (!tgt->dont_block && !lu->blocked &&
721 lu->generation != card->generation) {
722 lu->blocked = true;
723 if (++tgt->blocked == 1)
724 scsi_block_requests(shost);
726 spin_unlock_irqrestore(&card->lock, flags);
730 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
731 * Note, it is harmless to run scsi_unblock_requests() outside the
732 * card->lock protected section. On the other hand, running it inside
733 * the section might clash with shost->host_lock.
735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
737 struct sbp2_target *tgt = lu->tgt;
738 struct fw_card *card = target_device(tgt)->card;
739 struct Scsi_Host *shost =
740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
741 unsigned long flags;
742 bool unblock = false;
744 spin_lock_irqsave(&card->lock, flags);
745 if (lu->blocked && lu->generation == card->generation) {
746 lu->blocked = false;
747 unblock = --tgt->blocked == 0;
749 spin_unlock_irqrestore(&card->lock, flags);
751 if (unblock)
752 scsi_unblock_requests(shost);
756 * Prevents future blocking of tgt and unblocks it.
757 * Note, it is harmless to run scsi_unblock_requests() outside the
758 * card->lock protected section. On the other hand, running it inside
759 * the section might clash with shost->host_lock.
761 static void sbp2_unblock(struct sbp2_target *tgt)
763 struct fw_card *card = target_device(tgt)->card;
764 struct Scsi_Host *shost =
765 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766 unsigned long flags;
768 spin_lock_irqsave(&card->lock, flags);
769 ++tgt->dont_block;
770 spin_unlock_irqrestore(&card->lock, flags);
772 scsi_unblock_requests(shost);
775 static int sbp2_lun2int(u16 lun)
777 struct scsi_lun eight_bytes_lun;
779 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
780 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
781 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
783 return scsilun_to_int(&eight_bytes_lun);
786 static void sbp2_release_target(struct kref *kref)
788 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
789 struct sbp2_logical_unit *lu, *next;
790 struct Scsi_Host *shost =
791 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
792 struct scsi_device *sdev;
793 struct fw_device *device = target_device(tgt);
795 /* prevent deadlocks */
796 sbp2_unblock(tgt);
798 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
799 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
800 if (sdev) {
801 scsi_remove_device(sdev);
802 scsi_device_put(sdev);
804 if (lu->login_id != INVALID_LOGIN_ID) {
805 int generation, node_id;
807 * tgt->node_id may be obsolete here if we failed
808 * during initial login or after a bus reset where
809 * the topology changed.
811 generation = device->generation;
812 smp_rmb(); /* node_id vs. generation */
813 node_id = device->node_id;
814 sbp2_send_management_orb(lu, node_id, generation,
815 SBP2_LOGOUT_REQUEST,
816 lu->login_id, NULL);
818 fw_core_remove_address_handler(&lu->address_handler);
819 list_del(&lu->link);
820 kfree(lu);
822 scsi_remove_host(shost);
823 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
825 fw_unit_put(tgt->unit);
826 scsi_host_put(shost);
827 fw_device_put(device);
830 static struct workqueue_struct *sbp2_wq;
832 static void sbp2_target_put(struct sbp2_target *tgt)
834 kref_put(&tgt->kref, sbp2_release_target);
838 * Always get the target's kref when scheduling work on one its units.
839 * Each workqueue job is responsible to call sbp2_target_put() upon return.
841 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
843 kref_get(&lu->tgt->kref);
844 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
845 sbp2_target_put(lu->tgt);
849 * Write retransmit retry values into the BUSY_TIMEOUT register.
850 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
851 * default retry_limit value is 0 (i.e. never retry transmission). We write a
852 * saner value after logging into the device.
853 * - The dual-phase retry protocol is optional to implement, and if not
854 * supported, writes to the dual-phase portion of the register will be
855 * ignored. We try to write the original 1394-1995 default here.
856 * - In the case of devices that are also SBP-3-compliant, all writes are
857 * ignored, as the register is read-only, but contains single-phase retry of
858 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
859 * write attempt is safe and yields more consistent behavior for all devices.
861 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
862 * and section 6.4 of the SBP-3 spec for further details.
864 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
866 struct fw_device *device = target_device(lu->tgt);
867 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
869 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
870 lu->tgt->node_id, lu->generation, device->max_speed,
871 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
872 &d, sizeof(d));
875 static void sbp2_reconnect(struct work_struct *work);
877 static void sbp2_login(struct work_struct *work)
879 struct sbp2_logical_unit *lu =
880 container_of(work, struct sbp2_logical_unit, work.work);
881 struct sbp2_target *tgt = lu->tgt;
882 struct fw_device *device = target_device(tgt);
883 struct Scsi_Host *shost;
884 struct scsi_device *sdev;
885 struct sbp2_login_response response;
886 int generation, node_id, local_node_id;
888 if (fw_device_is_shutdown(device))
889 goto out;
891 generation = device->generation;
892 smp_rmb(); /* node IDs must not be older than generation */
893 node_id = device->node_id;
894 local_node_id = device->card->node_id;
896 /* If this is a re-login attempt, log out, or we might be rejected. */
897 if (lu->has_sdev)
898 sbp2_send_management_orb(lu, device->node_id, generation,
899 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
901 if (sbp2_send_management_orb(lu, node_id, generation,
902 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
903 if (lu->retries++ < 5) {
904 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
905 } else {
906 fw_error("%s: failed to login to LUN %04x\n",
907 tgt->bus_id, lu->lun);
908 /* Let any waiting I/O fail from now on. */
909 sbp2_unblock(lu->tgt);
911 goto out;
914 tgt->node_id = node_id;
915 tgt->address_high = local_node_id << 16;
916 smp_wmb(); /* node IDs must not be older than generation */
917 lu->generation = generation;
919 lu->command_block_agent_address =
920 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
921 << 32) | be32_to_cpu(response.command_block_agent.low);
922 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
924 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
925 tgt->bus_id, lu->lun, lu->retries);
927 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
928 sbp2_set_busy_timeout(lu);
930 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
931 sbp2_agent_reset(lu);
933 /* This was a re-login. */
934 if (lu->has_sdev) {
935 sbp2_cancel_orbs(lu);
936 sbp2_conditionally_unblock(lu);
937 goto out;
940 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
941 ssleep(SBP2_INQUIRY_DELAY);
943 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
944 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
946 * FIXME: We are unable to perform reconnects while in sbp2_login().
947 * Therefore __scsi_add_device() will get into trouble if a bus reset
948 * happens in parallel. It will either fail or leave us with an
949 * unusable sdev. As a workaround we check for this and retry the
950 * whole login and SCSI probing.
953 /* Reported error during __scsi_add_device() */
954 if (IS_ERR(sdev))
955 goto out_logout_login;
957 /* Unreported error during __scsi_add_device() */
958 smp_rmb(); /* get current card generation */
959 if (generation != device->card->generation) {
960 scsi_remove_device(sdev);
961 scsi_device_put(sdev);
962 goto out_logout_login;
965 /* No error during __scsi_add_device() */
966 lu->has_sdev = true;
967 scsi_device_put(sdev);
968 sbp2_allow_block(lu);
969 goto out;
971 out_logout_login:
972 smp_rmb(); /* generation may have changed */
973 generation = device->generation;
974 smp_rmb(); /* node_id must not be older than generation */
976 sbp2_send_management_orb(lu, device->node_id, generation,
977 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
979 * If a bus reset happened, sbp2_update will have requeued
980 * lu->work already. Reset the work from reconnect to login.
982 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
983 out:
984 sbp2_target_put(tgt);
987 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
989 struct sbp2_logical_unit *lu;
991 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
992 if (!lu)
993 return -ENOMEM;
995 lu->address_handler.length = 0x100;
996 lu->address_handler.address_callback = sbp2_status_write;
997 lu->address_handler.callback_data = lu;
999 if (fw_core_add_address_handler(&lu->address_handler,
1000 &fw_high_memory_region) < 0) {
1001 kfree(lu);
1002 return -ENOMEM;
1005 lu->tgt = tgt;
1006 lu->lun = lun_entry & 0xffff;
1007 lu->login_id = INVALID_LOGIN_ID;
1008 lu->retries = 0;
1009 lu->has_sdev = false;
1010 lu->blocked = false;
1011 ++tgt->dont_block;
1012 INIT_LIST_HEAD(&lu->orb_list);
1013 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1015 list_add_tail(&lu->link, &tgt->lu_list);
1016 return 0;
1019 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1021 struct fw_csr_iterator ci;
1022 int key, value;
1024 fw_csr_iterator_init(&ci, directory);
1025 while (fw_csr_iterator_next(&ci, &key, &value))
1026 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1027 sbp2_add_logical_unit(tgt, value) < 0)
1028 return -ENOMEM;
1029 return 0;
1032 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1033 u32 *model, u32 *firmware_revision)
1035 struct fw_csr_iterator ci;
1036 int key, value;
1037 unsigned int timeout;
1039 fw_csr_iterator_init(&ci, directory);
1040 while (fw_csr_iterator_next(&ci, &key, &value)) {
1041 switch (key) {
1043 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1044 tgt->management_agent_address =
1045 CSR_REGISTER_BASE + 4 * value;
1046 break;
1048 case CSR_DIRECTORY_ID:
1049 tgt->directory_id = value;
1050 break;
1052 case CSR_MODEL:
1053 *model = value;
1054 break;
1056 case SBP2_CSR_FIRMWARE_REVISION:
1057 *firmware_revision = value;
1058 break;
1060 case SBP2_CSR_UNIT_CHARACTERISTICS:
1061 /* the timeout value is stored in 500ms units */
1062 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1063 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1064 tgt->mgt_orb_timeout =
1065 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1067 if (timeout > tgt->mgt_orb_timeout)
1068 fw_notify("%s: config rom contains %ds "
1069 "management ORB timeout, limiting "
1070 "to %ds\n", tgt->bus_id,
1071 timeout / 1000,
1072 tgt->mgt_orb_timeout / 1000);
1073 break;
1075 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1076 if (sbp2_add_logical_unit(tgt, value) < 0)
1077 return -ENOMEM;
1078 break;
1080 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1081 /* Adjust for the increment in the iterator */
1082 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1083 return -ENOMEM;
1084 break;
1087 return 0;
1090 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1091 u32 firmware_revision)
1093 int i;
1094 unsigned int w = sbp2_param_workarounds;
1096 if (w)
1097 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1098 "if you need the workarounds parameter for %s\n",
1099 tgt->bus_id);
1101 if (w & SBP2_WORKAROUND_OVERRIDE)
1102 goto out;
1104 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1106 if (sbp2_workarounds_table[i].firmware_revision !=
1107 (firmware_revision & 0xffffff00))
1108 continue;
1110 if (sbp2_workarounds_table[i].model != model &&
1111 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1112 continue;
1114 w |= sbp2_workarounds_table[i].workarounds;
1115 break;
1117 out:
1118 if (w)
1119 fw_notify("Workarounds for %s: 0x%x "
1120 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1121 tgt->bus_id, w, firmware_revision, model);
1122 tgt->workarounds = w;
1125 static struct scsi_host_template scsi_driver_template;
1127 static int sbp2_probe(struct device *dev)
1129 struct fw_unit *unit = fw_unit(dev);
1130 struct fw_device *device = fw_parent_device(unit);
1131 struct sbp2_target *tgt;
1132 struct sbp2_logical_unit *lu;
1133 struct Scsi_Host *shost;
1134 u32 model, firmware_revision;
1136 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1137 BUG_ON(dma_set_max_seg_size(device->card->device,
1138 SBP2_MAX_SEG_SIZE));
1140 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1141 if (shost == NULL)
1142 return -ENOMEM;
1144 tgt = (struct sbp2_target *)shost->hostdata;
1145 dev_set_drvdata(&unit->device, tgt);
1146 tgt->unit = unit;
1147 kref_init(&tgt->kref);
1148 INIT_LIST_HEAD(&tgt->lu_list);
1149 tgt->bus_id = dev_name(&unit->device);
1150 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1152 if (fw_device_enable_phys_dma(device) < 0)
1153 goto fail_shost_put;
1155 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1157 if (scsi_add_host(shost, &unit->device) < 0)
1158 goto fail_shost_put;
1160 fw_device_get(device);
1161 fw_unit_get(unit);
1163 /* implicit directory ID */
1164 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1165 + CSR_CONFIG_ROM) & 0xffffff;
1167 firmware_revision = SBP2_ROM_VALUE_MISSING;
1168 model = SBP2_ROM_VALUE_MISSING;
1170 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1171 &firmware_revision) < 0)
1172 goto fail_tgt_put;
1174 sbp2_init_workarounds(tgt, model, firmware_revision);
1177 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1178 * and so on up to 4096 bytes. The SBP-2 max_payload field
1179 * specifies the max payload size as 2 ^ (max_payload + 2), so
1180 * if we set this to max_speed + 7, we get the right value.
1182 tgt->max_payload = min(device->max_speed + 7, 10U);
1183 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1185 /* Do the login in a workqueue so we can easily reschedule retries. */
1186 list_for_each_entry(lu, &tgt->lu_list, link)
1187 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1188 return 0;
1190 fail_tgt_put:
1191 sbp2_target_put(tgt);
1192 return -ENOMEM;
1194 fail_shost_put:
1195 scsi_host_put(shost);
1196 return -ENOMEM;
1199 static int sbp2_remove(struct device *dev)
1201 struct fw_unit *unit = fw_unit(dev);
1202 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1204 sbp2_target_put(tgt);
1205 return 0;
1208 static void sbp2_reconnect(struct work_struct *work)
1210 struct sbp2_logical_unit *lu =
1211 container_of(work, struct sbp2_logical_unit, work.work);
1212 struct sbp2_target *tgt = lu->tgt;
1213 struct fw_device *device = target_device(tgt);
1214 int generation, node_id, local_node_id;
1216 if (fw_device_is_shutdown(device))
1217 goto out;
1219 generation = device->generation;
1220 smp_rmb(); /* node IDs must not be older than generation */
1221 node_id = device->node_id;
1222 local_node_id = device->card->node_id;
1224 if (sbp2_send_management_orb(lu, node_id, generation,
1225 SBP2_RECONNECT_REQUEST,
1226 lu->login_id, NULL) < 0) {
1228 * If reconnect was impossible even though we are in the
1229 * current generation, fall back and try to log in again.
1231 * We could check for "Function rejected" status, but
1232 * looking at the bus generation as simpler and more general.
1234 smp_rmb(); /* get current card generation */
1235 if (generation == device->card->generation ||
1236 lu->retries++ >= 5) {
1237 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1238 lu->retries = 0;
1239 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1241 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1242 goto out;
1245 tgt->node_id = node_id;
1246 tgt->address_high = local_node_id << 16;
1247 smp_wmb(); /* node IDs must not be older than generation */
1248 lu->generation = generation;
1250 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1251 tgt->bus_id, lu->lun, lu->retries);
1253 sbp2_agent_reset(lu);
1254 sbp2_cancel_orbs(lu);
1255 sbp2_conditionally_unblock(lu);
1256 out:
1257 sbp2_target_put(tgt);
1260 static void sbp2_update(struct fw_unit *unit)
1262 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1263 struct sbp2_logical_unit *lu;
1265 fw_device_enable_phys_dma(fw_parent_device(unit));
1268 * Fw-core serializes sbp2_update() against sbp2_remove().
1269 * Iteration over tgt->lu_list is therefore safe here.
1271 list_for_each_entry(lu, &tgt->lu_list, link) {
1272 sbp2_conditionally_block(lu);
1273 lu->retries = 0;
1274 sbp2_queue_work(lu, 0);
1278 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1279 #define SBP2_SW_VERSION_ENTRY 0x00010483
1281 static const struct ieee1394_device_id sbp2_id_table[] = {
1283 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1284 IEEE1394_MATCH_VERSION,
1285 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1286 .version = SBP2_SW_VERSION_ENTRY,
1291 static struct fw_driver sbp2_driver = {
1292 .driver = {
1293 .owner = THIS_MODULE,
1294 .name = sbp2_driver_name,
1295 .bus = &fw_bus_type,
1296 .probe = sbp2_probe,
1297 .remove = sbp2_remove,
1299 .update = sbp2_update,
1300 .id_table = sbp2_id_table,
1303 static void sbp2_unmap_scatterlist(struct device *card_device,
1304 struct sbp2_command_orb *orb)
1306 if (scsi_sg_count(orb->cmd))
1307 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1308 scsi_sg_count(orb->cmd),
1309 orb->cmd->sc_data_direction);
1311 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1312 dma_unmap_single(card_device, orb->page_table_bus,
1313 sizeof(orb->page_table), DMA_TO_DEVICE);
1316 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1318 int sam_status;
1320 sense_data[0] = 0x70;
1321 sense_data[1] = 0x0;
1322 sense_data[2] = sbp2_status[1];
1323 sense_data[3] = sbp2_status[4];
1324 sense_data[4] = sbp2_status[5];
1325 sense_data[5] = sbp2_status[6];
1326 sense_data[6] = sbp2_status[7];
1327 sense_data[7] = 10;
1328 sense_data[8] = sbp2_status[8];
1329 sense_data[9] = sbp2_status[9];
1330 sense_data[10] = sbp2_status[10];
1331 sense_data[11] = sbp2_status[11];
1332 sense_data[12] = sbp2_status[2];
1333 sense_data[13] = sbp2_status[3];
1334 sense_data[14] = sbp2_status[12];
1335 sense_data[15] = sbp2_status[13];
1337 sam_status = sbp2_status[0] & 0x3f;
1339 switch (sam_status) {
1340 case SAM_STAT_GOOD:
1341 case SAM_STAT_CHECK_CONDITION:
1342 case SAM_STAT_CONDITION_MET:
1343 case SAM_STAT_BUSY:
1344 case SAM_STAT_RESERVATION_CONFLICT:
1345 case SAM_STAT_COMMAND_TERMINATED:
1346 return DID_OK << 16 | sam_status;
1348 default:
1349 return DID_ERROR << 16;
1353 static void complete_command_orb(struct sbp2_orb *base_orb,
1354 struct sbp2_status *status)
1356 struct sbp2_command_orb *orb =
1357 container_of(base_orb, struct sbp2_command_orb, base);
1358 struct fw_device *device = target_device(orb->lu->tgt);
1359 int result;
1361 if (status != NULL) {
1362 if (STATUS_GET_DEAD(*status))
1363 sbp2_agent_reset_no_wait(orb->lu);
1365 switch (STATUS_GET_RESPONSE(*status)) {
1366 case SBP2_STATUS_REQUEST_COMPLETE:
1367 result = DID_OK << 16;
1368 break;
1369 case SBP2_STATUS_TRANSPORT_FAILURE:
1370 result = DID_BUS_BUSY << 16;
1371 break;
1372 case SBP2_STATUS_ILLEGAL_REQUEST:
1373 case SBP2_STATUS_VENDOR_DEPENDENT:
1374 default:
1375 result = DID_ERROR << 16;
1376 break;
1379 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1380 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1381 orb->cmd->sense_buffer);
1382 } else {
1384 * If the orb completes with status == NULL, something
1385 * went wrong, typically a bus reset happened mid-orb
1386 * or when sending the write (less likely).
1388 result = DID_BUS_BUSY << 16;
1389 sbp2_conditionally_block(orb->lu);
1392 dma_unmap_single(device->card->device, orb->base.request_bus,
1393 sizeof(orb->request), DMA_TO_DEVICE);
1394 sbp2_unmap_scatterlist(device->card->device, orb);
1396 orb->cmd->result = result;
1397 orb->done(orb->cmd);
1400 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1401 struct fw_device *device, struct sbp2_logical_unit *lu)
1403 struct scatterlist *sg = scsi_sglist(orb->cmd);
1404 int i, n;
1406 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1407 orb->cmd->sc_data_direction);
1408 if (n == 0)
1409 goto fail;
1412 * Handle the special case where there is only one element in
1413 * the scatter list by converting it to an immediate block
1414 * request. This is also a workaround for broken devices such
1415 * as the second generation iPod which doesn't support page
1416 * tables.
1418 if (n == 1) {
1419 orb->request.data_descriptor.high =
1420 cpu_to_be32(lu->tgt->address_high);
1421 orb->request.data_descriptor.low =
1422 cpu_to_be32(sg_dma_address(sg));
1423 orb->request.misc |=
1424 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1425 return 0;
1428 for_each_sg(sg, sg, n, i) {
1429 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1430 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1433 orb->page_table_bus =
1434 dma_map_single(device->card->device, orb->page_table,
1435 sizeof(orb->page_table), DMA_TO_DEVICE);
1436 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1437 goto fail_page_table;
1440 * The data_descriptor pointer is the one case where we need
1441 * to fill in the node ID part of the address. All other
1442 * pointers assume that the data referenced reside on the
1443 * initiator (i.e. us), but data_descriptor can refer to data
1444 * on other nodes so we need to put our ID in descriptor.high.
1446 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1447 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1448 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1449 COMMAND_ORB_DATA_SIZE(n));
1451 return 0;
1453 fail_page_table:
1454 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1455 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1456 fail:
1457 return -ENOMEM;
1460 /* SCSI stack integration */
1462 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1464 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1465 struct fw_device *device = target_device(lu->tgt);
1466 struct sbp2_command_orb *orb;
1467 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1470 * Bidirectional commands are not yet implemented, and unknown
1471 * transfer direction not handled.
1473 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1474 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1475 cmd->result = DID_ERROR << 16;
1476 done(cmd);
1477 return 0;
1480 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1481 if (orb == NULL) {
1482 fw_notify("failed to alloc orb\n");
1483 return SCSI_MLQUEUE_HOST_BUSY;
1486 /* Initialize rcode to something not RCODE_COMPLETE. */
1487 orb->base.rcode = -1;
1488 kref_init(&orb->base.kref);
1490 orb->lu = lu;
1491 orb->done = done;
1492 orb->cmd = cmd;
1494 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1495 orb->request.misc = cpu_to_be32(
1496 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1497 COMMAND_ORB_SPEED(device->max_speed) |
1498 COMMAND_ORB_NOTIFY);
1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1503 generation = device->generation;
1504 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1506 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1507 goto out;
1509 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1511 orb->base.callback = complete_command_orb;
1512 orb->base.request_bus =
1513 dma_map_single(device->card->device, &orb->request,
1514 sizeof(orb->request), DMA_TO_DEVICE);
1515 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1516 sbp2_unmap_scatterlist(device->card->device, orb);
1517 goto out;
1520 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1521 lu->command_block_agent_address + SBP2_ORB_POINTER);
1522 retval = 0;
1523 out:
1524 kref_put(&orb->base.kref, free_orb);
1525 return retval;
1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1530 struct sbp2_logical_unit *lu = sdev->hostdata;
1532 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1533 if (!lu)
1534 return -ENOSYS;
1536 sdev->allow_restart = 1;
1538 /* SBP-2 requires quadlet alignment of the data buffers. */
1539 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1541 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1542 sdev->inquiry_len = 36;
1544 return 0;
1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1549 struct sbp2_logical_unit *lu = sdev->hostdata;
1551 sdev->use_10_for_rw = 1;
1553 if (sbp2_param_exclusive_login)
1554 sdev->manage_start_stop = 1;
1556 if (sdev->type == TYPE_ROM)
1557 sdev->use_10_for_ms = 1;
1559 if (sdev->type == TYPE_DISK &&
1560 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1561 sdev->skip_ms_page_8 = 1;
1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1564 sdev->fix_capacity = 1;
1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1567 sdev->start_stop_pwr_cond = 1;
1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1570 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1572 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1574 return 0;
1578 * Called by scsi stack when something has really gone wrong. Usually
1579 * called when a command has timed-out for some reason.
1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1583 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1585 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1586 sbp2_agent_reset(lu);
1587 sbp2_cancel_orbs(lu);
1589 return SUCCESS;
1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1594 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1596 * This is the concatenation of target port identifier and logical unit
1597 * identifier as per SAM-2...SAM-4 annex A.
1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1600 struct device_attribute *attr, char *buf)
1602 struct scsi_device *sdev = to_scsi_device(dev);
1603 struct sbp2_logical_unit *lu;
1605 if (!sdev)
1606 return 0;
1608 lu = sdev->hostdata;
1610 return sprintf(buf, "%016llx:%06x:%04x\n",
1611 (unsigned long long)lu->tgt->guid,
1612 lu->tgt->directory_id, lu->lun);
1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1618 &dev_attr_ieee1394_id,
1619 NULL
1622 static struct scsi_host_template scsi_driver_template = {
1623 .module = THIS_MODULE,
1624 .name = "SBP-2 IEEE-1394",
1625 .proc_name = sbp2_driver_name,
1626 .queuecommand = sbp2_scsi_queuecommand,
1627 .slave_alloc = sbp2_scsi_slave_alloc,
1628 .slave_configure = sbp2_scsi_slave_configure,
1629 .eh_abort_handler = sbp2_scsi_abort,
1630 .this_id = -1,
1631 .sg_tablesize = SG_ALL,
1632 .use_clustering = ENABLE_CLUSTERING,
1633 .cmd_per_lun = 1,
1634 .can_queue = 1,
1635 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1639 MODULE_DESCRIPTION("SCSI over IEEE1394");
1640 MODULE_LICENSE("GPL");
1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1645 MODULE_ALIAS("sbp2");
1646 #endif
1648 static int __init sbp2_init(void)
1650 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1651 if (!sbp2_wq)
1652 return -ENOMEM;
1654 return driver_register(&sbp2_driver.driver);
1657 static void __exit sbp2_cleanup(void)
1659 driver_unregister(&sbp2_driver.driver);
1660 destroy_workqueue(sbp2_wq);
1663 module_init(sbp2_init);
1664 module_exit(sbp2_cleanup);