2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/kernel.h>
15 #include <linux/notifier.h>
16 #include <linux/signal.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/init.h>
21 #include <asm/cputype.h>
22 #include <asm/thread_notify.h>
29 * Our undef handlers (in entry.S)
31 void vfp_testing_entry(void);
32 void vfp_support_entry(void);
33 void vfp_null_entry(void);
35 void (*vfp_vector
)(void) = vfp_null_entry
;
39 * Used in startup: set to non-zero if VFP checks fail
40 * After startup, holds VFP architecture
42 unsigned int VFP_arch
;
45 * The pointer to the vfpstate structure of the thread which currently
46 * owns the context held in the VFP hardware, or NULL if the hardware
49 * For UP, this is sufficient to tell which thread owns the VFP context.
50 * However, for SMP, we also need to check the CPU number stored in the
51 * saved state too to catch migrations.
53 union vfp_state
*vfp_current_hw_state
[NR_CPUS
];
56 * Is 'thread's most up to date state stored in this CPUs hardware?
57 * Must be called from non-preemptible context.
59 static bool vfp_state_in_hw(unsigned int cpu
, struct thread_info
*thread
)
62 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
65 return vfp_current_hw_state
[cpu
] == &thread
->vfpstate
;
69 * Force a reload of the VFP context from the thread structure. We do
70 * this by ensuring that access to the VFP hardware is disabled, and
71 * clear vfp_current_hw_state. Must be called from non-preemptible context.
73 static void vfp_force_reload(unsigned int cpu
, struct thread_info
*thread
)
75 if (vfp_state_in_hw(cpu
, thread
)) {
76 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
77 vfp_current_hw_state
[cpu
] = NULL
;
80 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
85 * Per-thread VFP initialization.
87 static void vfp_thread_flush(struct thread_info
*thread
)
89 union vfp_state
*vfp
= &thread
->vfpstate
;
93 * Disable VFP to ensure we initialize it first. We must ensure
94 * that the modification of vfp_current_hw_state[] and hardware
95 * disable are done for the same CPU and without preemption.
97 * Do this first to ensure that preemption won't overwrite our
98 * state saving should access to the VFP be enabled at this point.
101 if (vfp_current_hw_state
[cpu
] == vfp
)
102 vfp_current_hw_state
[cpu
] = NULL
;
103 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
106 memset(vfp
, 0, sizeof(union vfp_state
));
108 vfp
->hard
.fpexc
= FPEXC_EN
;
109 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
111 vfp
->hard
.cpu
= NR_CPUS
;
115 static void vfp_thread_exit(struct thread_info
*thread
)
117 /* release case: Per-thread VFP cleanup. */
118 union vfp_state
*vfp
= &thread
->vfpstate
;
119 unsigned int cpu
= get_cpu();
121 if (vfp_current_hw_state
[cpu
] == vfp
)
122 vfp_current_hw_state
[cpu
] = NULL
;
126 static void vfp_thread_copy(struct thread_info
*thread
)
128 struct thread_info
*parent
= current_thread_info();
130 vfp_sync_hwstate(parent
);
131 thread
->vfpstate
= parent
->vfpstate
;
133 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
138 * When this function is called with the following 'cmd's, the following
139 * is true while this function is being run:
140 * THREAD_NOFTIFY_SWTICH:
141 * - the previously running thread will not be scheduled onto another CPU.
142 * - the next thread to be run (v) will not be running on another CPU.
143 * - thread->cpu is the local CPU number
144 * - not preemptible as we're called in the middle of a thread switch
145 * THREAD_NOTIFY_FLUSH:
146 * - the thread (v) will be running on the local CPU, so
147 * v === current_thread_info()
148 * - thread->cpu is the local CPU number at the time it is accessed,
149 * but may change at any time.
150 * - we could be preempted if tree preempt rcu is enabled, so
151 * it is unsafe to use thread->cpu.
153 * - the thread (v) will be running on the local CPU, so
154 * v === current_thread_info()
155 * - thread->cpu is the local CPU number at the time it is accessed,
156 * but may change at any time.
157 * - we could be preempted if tree preempt rcu is enabled, so
158 * it is unsafe to use thread->cpu.
160 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
162 struct thread_info
*thread
= v
;
169 case THREAD_NOTIFY_SWITCH
:
176 * On SMP, if VFP is enabled, save the old state in
177 * case the thread migrates to a different CPU. The
178 * restoring is done lazily.
180 if ((fpexc
& FPEXC_EN
) && vfp_current_hw_state
[cpu
])
181 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
185 * Always disable VFP so we can lazily save/restore the
188 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
191 case THREAD_NOTIFY_FLUSH
:
192 vfp_thread_flush(thread
);
195 case THREAD_NOTIFY_EXIT
:
196 vfp_thread_exit(thread
);
199 case THREAD_NOTIFY_COPY
:
200 vfp_thread_copy(thread
);
207 static struct notifier_block vfp_notifier_block
= {
208 .notifier_call
= vfp_notifier
,
212 * Raise a SIGFPE for the current process.
213 * sicode describes the signal being raised.
215 static void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
219 memset(&info
, 0, sizeof(info
));
221 info
.si_signo
= SIGFPE
;
222 info
.si_code
= sicode
;
223 info
.si_addr
= (void __user
*)(instruction_pointer(regs
) - 4);
226 * This is the same as NWFPE, because it's not clear what
229 current
->thread
.error_code
= 0;
230 current
->thread
.trap_no
= 6;
232 send_sig_info(SIGFPE
, &info
, current
);
235 static void vfp_panic(char *reason
, u32 inst
)
239 printk(KERN_ERR
"VFP: Error: %s\n", reason
);
240 printk(KERN_ERR
"VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
241 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
242 for (i
= 0; i
< 32; i
+= 2)
243 printk(KERN_ERR
"VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
244 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
248 * Process bitmask of exception conditions.
250 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
254 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
256 if (exceptions
== VFP_EXCEPTION_ERROR
) {
257 vfp_panic("unhandled bounce", inst
);
258 vfp_raise_sigfpe(0, regs
);
263 * If any of the status flags are set, update the FPSCR.
264 * Comparison instructions always return at least one of
267 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
268 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
274 #define RAISE(stat,en,sig) \
275 if (exceptions & stat && fpscr & en) \
279 * These are arranged in priority order, least to highest.
281 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
282 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
283 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
284 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
285 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
288 vfp_raise_sigfpe(si_code
, regs
);
292 * Emulate a VFP instruction.
294 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
296 u32 exceptions
= VFP_EXCEPTION_ERROR
;
298 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
300 if (INST_CPRTDO(inst
)) {
301 if (!INST_CPRT(inst
)) {
305 if (vfp_single(inst
)) {
306 exceptions
= vfp_single_cpdo(inst
, fpscr
);
308 exceptions
= vfp_double_cpdo(inst
, fpscr
);
312 * A CPRT instruction can not appear in FPINST2, nor
313 * can it cause an exception. Therefore, we do not
314 * have to emulate it.
319 * A CPDT instruction can not appear in FPINST2, nor can
320 * it cause an exception. Therefore, we do not have to
324 return exceptions
& ~VFP_NAN_FLAG
;
328 * Package up a bounce condition.
330 void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
332 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
334 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
337 * At this point, FPEXC can have the following configuration:
340 * 0 1 x - synchronous exception
341 * 1 x 0 - asynchronous exception
342 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
343 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
344 * implementation), undefined otherwise
346 * Clear various bits and enable access to the VFP so we can
349 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
352 orig_fpscr
= fpscr
= fmrx(FPSCR
);
355 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
357 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
358 && (fpscr
& FPSCR_IXE
)) {
360 * Synchronous exception, emulate the trigger instruction
365 if (fpexc
& FPEXC_EX
) {
366 #ifndef CONFIG_CPU_FEROCEON
368 * Asynchronous exception. The instruction is read from FPINST
369 * and the interrupted instruction has to be restarted.
371 trigger
= fmrx(FPINST
);
374 } else if (!(fpexc
& FPEXC_DEX
)) {
376 * Illegal combination of bits. It can be caused by an
377 * unallocated VFP instruction but with FPSCR.IXE set and not
380 vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
, regs
);
385 * Modify fpscr to indicate the number of iterations remaining.
386 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
387 * whether FPEXC.VECITR or FPSCR.LEN is used.
389 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
392 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
394 fpscr
&= ~FPSCR_LENGTH_MASK
;
395 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
399 * Handle the first FP instruction. We used to take note of the
400 * FPEXC bounce reason, but this appears to be unreliable.
401 * Emulate the bounced instruction instead.
403 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
405 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
408 * If there isn't a second FP instruction, exit now. Note that
409 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
411 if (fpexc
^ (FPEXC_EX
| FPEXC_FP2V
))
415 * The barrier() here prevents fpinst2 being read
416 * before the condition above.
419 trigger
= fmrx(FPINST2
);
422 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
424 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
429 static void vfp_enable(void *unused
)
431 u32 access
= get_copro_access();
434 * Enable full access to VFP (cp10 and cp11)
436 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
440 static int vfp_pm_suspend(void)
442 struct thread_info
*ti
= current_thread_info();
443 u32 fpexc
= fmrx(FPEXC
);
445 /* if vfp is on, then save state for resumption */
446 if (fpexc
& FPEXC_EN
) {
447 printk(KERN_DEBUG
"%s: saving vfp state\n", __func__
);
448 vfp_save_state(&ti
->vfpstate
, fpexc
);
450 /* disable, just in case */
451 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
454 /* clear any information we had about last context state */
455 memset(vfp_current_hw_state
, 0, sizeof(vfp_current_hw_state
));
460 static void vfp_pm_resume(void)
462 /* ensure we have access to the vfp */
465 /* and disable it to ensure the next usage restores the state */
466 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
469 static int vfp_cpu_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
476 case CPU_PM_ENTER_FAILED
:
484 static struct notifier_block vfp_cpu_pm_notifier_block
= {
485 .notifier_call
= vfp_cpu_pm_notifier
,
488 static void vfp_pm_init(void)
490 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block
);
494 static inline void vfp_pm_init(void) { }
495 #endif /* CONFIG_CPU_PM */
498 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
499 * with the hardware state.
501 void vfp_sync_hwstate(struct thread_info
*thread
)
503 unsigned int cpu
= get_cpu();
505 if (vfp_state_in_hw(cpu
, thread
)) {
506 u32 fpexc
= fmrx(FPEXC
);
509 * Save the last VFP state on this CPU.
511 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
512 vfp_save_state(&thread
->vfpstate
, fpexc
| FPEXC_EN
);
519 /* Ensure that the thread reloads the hardware VFP state on the next use. */
520 void vfp_flush_hwstate(struct thread_info
*thread
)
522 unsigned int cpu
= get_cpu();
524 vfp_force_reload(cpu
, thread
);
530 * VFP hardware can lose all context when a CPU goes offline.
531 * As we will be running in SMP mode with CPU hotplug, we will save the
532 * hardware state at every thread switch. We clear our held state when
533 * a CPU has been killed, indicating that the VFP hardware doesn't contain
534 * a threads VFP state. When a CPU starts up, we re-enable access to the
537 * Both CPU_DYING and CPU_STARTING are called on the CPU which
538 * is being offlined/onlined.
540 static int vfp_hotplug(struct notifier_block
*b
, unsigned long action
,
543 if (action
== CPU_DYING
|| action
== CPU_DYING_FROZEN
) {
544 vfp_force_reload((long)hcpu
, current_thread_info());
545 } else if (action
== CPU_STARTING
|| action
== CPU_STARTING_FROZEN
)
551 * VFP support code initialisation.
553 static int __init
vfp_init(void)
556 unsigned int cpu_arch
= cpu_architecture();
558 if (cpu_arch
>= CPU_ARCH_ARMv6
)
562 * First check that there is a VFP that we can use.
563 * The handler is already setup to just log calls, so
564 * we just need to read the VFPSID register.
566 vfp_vector
= vfp_testing_entry
;
568 vfpsid
= fmrx(FPSID
);
570 vfp_vector
= vfp_null_entry
;
572 printk(KERN_INFO
"VFP support v0.3: ");
574 printk("not present\n");
575 else if (vfpsid
& FPSID_NODOUBLE
) {
576 printk("no double precision support\n");
578 hotcpu_notifier(vfp_hotplug
, 0);
580 smp_call_function(vfp_enable
, NULL
, 1);
582 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
; /* Extract the architecture version */
583 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
584 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
585 (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
,
586 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
587 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
588 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
590 vfp_vector
= vfp_support_entry
;
592 thread_register_notifier(&vfp_notifier_block
);
596 * We detected VFP, and the support code is
597 * in place; report VFP support to userspace.
599 elf_hwcap
|= HWCAP_VFP
;
602 elf_hwcap
|= HWCAP_VFPv3
;
605 * Check for VFPv3 D16. CPUs in this configuration
606 * only have 16 x 64bit registers.
608 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
)) == 1)
609 elf_hwcap
|= HWCAP_VFPv3D16
;
613 * Check for the presence of the Advanced SIMD
614 * load/store instructions, integer and single
615 * precision floating point operations. Only check
616 * for NEON if the hardware has the MVFR registers.
618 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
620 if ((fmrx(MVFR1
) & 0x000fff00) == 0x00011100)
621 elf_hwcap
|= HWCAP_NEON
;
623 if ((fmrx(MVFR1
) & 0xf0000000) == 0x10000000)
624 elf_hwcap
|= HWCAP_VFPv4
;
630 late_initcall(vfp_init
);