Avoid beyond bounds copy while caching ACL
[zen-stable.git] / arch / mips / kernel / vpe.c
blobbfa12a4f97b96e46d5339aa0bfbb96bfeed4459e
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 * VPE support module
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP environment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
30 #include <linux/kernel.h>
31 #include <linux/device.h>
32 #include <linux/fs.h>
33 #include <linux/init.h>
34 #include <asm/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/list.h>
37 #include <linux/vmalloc.h>
38 #include <linux/elf.h>
39 #include <linux/seq_file.h>
40 #include <linux/syscalls.h>
41 #include <linux/moduleloader.h>
42 #include <linux/interrupt.h>
43 #include <linux/poll.h>
44 #include <linux/bootmem.h>
45 #include <asm/mipsregs.h>
46 #include <asm/mipsmtregs.h>
47 #include <asm/cacheflush.h>
48 #include <linux/atomic.h>
49 #include <asm/cpu.h>
50 #include <asm/mips_mt.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
56 typedef void *vpe_handle;
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
66 * The number of TCs and VPEs physically available on the core
68 static int hw_tcs, hw_vpes;
69 static char module_name[] = "vpe";
70 static int major;
71 static const int minor = 1; /* fixed for now */
73 #ifdef CONFIG_MIPS_APSP_KSPD
74 static struct kspd_notifications kspd_events;
75 static int kspd_events_reqd;
76 #endif
78 /* grab the likely amount of memory we will need. */
79 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
80 #define P_SIZE (2 * 1024 * 1024)
81 #else
82 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
83 #define P_SIZE (256 * 1024)
84 #endif
86 extern unsigned long physical_memsize;
88 #define MAX_VPES 16
89 #define VPE_PATH_MAX 256
91 enum vpe_state {
92 VPE_STATE_UNUSED = 0,
93 VPE_STATE_INUSE,
94 VPE_STATE_RUNNING
97 enum tc_state {
98 TC_STATE_UNUSED = 0,
99 TC_STATE_INUSE,
100 TC_STATE_RUNNING,
101 TC_STATE_DYNAMIC
104 struct vpe {
105 enum vpe_state state;
107 /* (device) minor associated with this vpe */
108 int minor;
110 /* elfloader stuff */
111 void *load_addr;
112 unsigned long len;
113 char *pbuffer;
114 unsigned long plen;
115 unsigned int uid, gid;
116 char cwd[VPE_PATH_MAX];
118 unsigned long __start;
120 /* tc's associated with this vpe */
121 struct list_head tc;
123 /* The list of vpe's */
124 struct list_head list;
126 /* shared symbol address */
127 void *shared_ptr;
129 /* the list of who wants to know when something major happens */
130 struct list_head notify;
132 unsigned int ntcs;
135 struct tc {
136 enum tc_state state;
137 int index;
139 struct vpe *pvpe; /* parent VPE */
140 struct list_head tc; /* The list of TC's with this VPE */
141 struct list_head list; /* The global list of tc's */
144 struct {
145 spinlock_t vpe_list_lock;
146 struct list_head vpe_list; /* Virtual processing elements */
147 spinlock_t tc_list_lock;
148 struct list_head tc_list; /* Thread contexts */
149 } vpecontrol = {
150 .vpe_list_lock = __SPIN_LOCK_UNLOCKED(vpe_list_lock),
151 .vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
152 .tc_list_lock = __SPIN_LOCK_UNLOCKED(tc_list_lock),
153 .tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
156 static void release_progmem(void *ptr);
158 /* get the vpe associated with this minor */
159 static struct vpe *get_vpe(int minor)
161 struct vpe *res, *v;
163 if (!cpu_has_mipsmt)
164 return NULL;
166 res = NULL;
167 spin_lock(&vpecontrol.vpe_list_lock);
168 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
169 if (v->minor == minor) {
170 res = v;
171 break;
174 spin_unlock(&vpecontrol.vpe_list_lock);
176 return res;
179 /* get the vpe associated with this minor */
180 static struct tc *get_tc(int index)
182 struct tc *res, *t;
184 res = NULL;
185 spin_lock(&vpecontrol.tc_list_lock);
186 list_for_each_entry(t, &vpecontrol.tc_list, list) {
187 if (t->index == index) {
188 res = t;
189 break;
192 spin_unlock(&vpecontrol.tc_list_lock);
194 return res;
197 /* allocate a vpe and associate it with this minor (or index) */
198 static struct vpe *alloc_vpe(int minor)
200 struct vpe *v;
202 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL)
203 return NULL;
205 INIT_LIST_HEAD(&v->tc);
206 spin_lock(&vpecontrol.vpe_list_lock);
207 list_add_tail(&v->list, &vpecontrol.vpe_list);
208 spin_unlock(&vpecontrol.vpe_list_lock);
210 INIT_LIST_HEAD(&v->notify);
211 v->minor = minor;
213 return v;
216 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
217 static struct tc *alloc_tc(int index)
219 struct tc *tc;
221 if ((tc = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL)
222 goto out;
224 INIT_LIST_HEAD(&tc->tc);
225 tc->index = index;
227 spin_lock(&vpecontrol.tc_list_lock);
228 list_add_tail(&tc->list, &vpecontrol.tc_list);
229 spin_unlock(&vpecontrol.tc_list_lock);
231 out:
232 return tc;
235 /* clean up and free everything */
236 static void release_vpe(struct vpe *v)
238 list_del(&v->list);
239 if (v->load_addr)
240 release_progmem(v);
241 kfree(v);
244 static void __maybe_unused dump_mtregs(void)
246 unsigned long val;
248 val = read_c0_config3();
249 printk("config3 0x%lx MT %ld\n", val,
250 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
252 val = read_c0_mvpcontrol();
253 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
254 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
255 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
256 (val & MVPCONTROL_EVP));
258 val = read_c0_mvpconf0();
259 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
260 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
261 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
264 /* Find some VPE program space */
265 static void *alloc_progmem(unsigned long len)
267 void *addr;
269 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
271 * This means you must tell Linux to use less memory than you
272 * physically have, for example by passing a mem= boot argument.
274 addr = pfn_to_kaddr(max_low_pfn);
275 memset(addr, 0, len);
276 #else
277 /* simple grab some mem for now */
278 addr = kzalloc(len, GFP_KERNEL);
279 #endif
281 return addr;
284 static void release_progmem(void *ptr)
286 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
287 kfree(ptr);
288 #endif
291 /* Update size with this section: return offset. */
292 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
294 long ret;
296 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
297 *size = ret + sechdr->sh_size;
298 return ret;
301 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
302 might -- code, read-only data, read-write data, small data. Tally
303 sizes, and place the offsets into sh_entsize fields: high bit means it
304 belongs in init. */
305 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
306 Elf_Shdr * sechdrs, const char *secstrings)
308 static unsigned long const masks[][2] = {
309 /* NOTE: all executable code must be the first section
310 * in this array; otherwise modify the text_size
311 * finder in the two loops below */
312 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
313 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
314 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
315 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
317 unsigned int m, i;
319 for (i = 0; i < hdr->e_shnum; i++)
320 sechdrs[i].sh_entsize = ~0UL;
322 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
323 for (i = 0; i < hdr->e_shnum; ++i) {
324 Elf_Shdr *s = &sechdrs[i];
326 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
327 if ((s->sh_flags & masks[m][0]) != masks[m][0]
328 || (s->sh_flags & masks[m][1])
329 || s->sh_entsize != ~0UL)
330 continue;
331 s->sh_entsize =
332 get_offset((unsigned long *)&mod->core_size, s);
335 if (m == 0)
336 mod->core_text_size = mod->core_size;
342 /* from module-elf32.c, but subverted a little */
344 struct mips_hi16 {
345 struct mips_hi16 *next;
346 Elf32_Addr *addr;
347 Elf32_Addr value;
350 static struct mips_hi16 *mips_hi16_list;
351 static unsigned int gp_offs, gp_addr;
353 static int apply_r_mips_none(struct module *me, uint32_t *location,
354 Elf32_Addr v)
356 return 0;
359 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
360 Elf32_Addr v)
362 int rel;
364 if( !(*location & 0xffff) ) {
365 rel = (int)v - gp_addr;
367 else {
368 /* .sbss + gp(relative) + offset */
369 /* kludge! */
370 rel = (int)(short)((int)v + gp_offs +
371 (int)(short)(*location & 0xffff) - gp_addr);
374 if( (rel > 32768) || (rel < -32768) ) {
375 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
376 "relative address 0x%x out of range of gp register\n",
377 rel);
378 return -ENOEXEC;
381 *location = (*location & 0xffff0000) | (rel & 0xffff);
383 return 0;
386 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
387 Elf32_Addr v)
389 int rel;
390 rel = (((unsigned int)v - (unsigned int)location));
391 rel >>= 2; // because the offset is in _instructions_ not bytes.
392 rel -= 1; // and one instruction less due to the branch delay slot.
394 if( (rel > 32768) || (rel < -32768) ) {
395 printk(KERN_DEBUG "VPE loader: "
396 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
397 return -ENOEXEC;
400 *location = (*location & 0xffff0000) | (rel & 0xffff);
402 return 0;
405 static int apply_r_mips_32(struct module *me, uint32_t *location,
406 Elf32_Addr v)
408 *location += v;
410 return 0;
413 static int apply_r_mips_26(struct module *me, uint32_t *location,
414 Elf32_Addr v)
416 if (v % 4) {
417 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
418 " unaligned relocation\n");
419 return -ENOEXEC;
423 * Not desperately convinced this is a good check of an overflow condition
424 * anyway. But it gets in the way of handling undefined weak symbols which
425 * we want to set to zero.
426 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
427 * printk(KERN_ERR
428 * "module %s: relocation overflow\n",
429 * me->name);
430 * return -ENOEXEC;
434 *location = (*location & ~0x03ffffff) |
435 ((*location + (v >> 2)) & 0x03ffffff);
436 return 0;
439 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
440 Elf32_Addr v)
442 struct mips_hi16 *n;
445 * We cannot relocate this one now because we don't know the value of
446 * the carry we need to add. Save the information, and let LO16 do the
447 * actual relocation.
449 n = kmalloc(sizeof *n, GFP_KERNEL);
450 if (!n)
451 return -ENOMEM;
453 n->addr = location;
454 n->value = v;
455 n->next = mips_hi16_list;
456 mips_hi16_list = n;
458 return 0;
461 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
462 Elf32_Addr v)
464 unsigned long insnlo = *location;
465 Elf32_Addr val, vallo;
466 struct mips_hi16 *l, *next;
468 /* Sign extend the addend we extract from the lo insn. */
469 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
471 if (mips_hi16_list != NULL) {
473 l = mips_hi16_list;
474 while (l != NULL) {
475 unsigned long insn;
478 * The value for the HI16 had best be the same.
480 if (v != l->value) {
481 printk(KERN_DEBUG "VPE loader: "
482 "apply_r_mips_lo16/hi16: \t"
483 "inconsistent value information\n");
484 goto out_free;
488 * Do the HI16 relocation. Note that we actually don't
489 * need to know anything about the LO16 itself, except
490 * where to find the low 16 bits of the addend needed
491 * by the LO16.
493 insn = *l->addr;
494 val = ((insn & 0xffff) << 16) + vallo;
495 val += v;
498 * Account for the sign extension that will happen in
499 * the low bits.
501 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
503 insn = (insn & ~0xffff) | val;
504 *l->addr = insn;
506 next = l->next;
507 kfree(l);
508 l = next;
511 mips_hi16_list = NULL;
515 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
517 val = v + vallo;
518 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
519 *location = insnlo;
521 return 0;
523 out_free:
524 while (l != NULL) {
525 next = l->next;
526 kfree(l);
527 l = next;
529 mips_hi16_list = NULL;
531 return -ENOEXEC;
534 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
535 Elf32_Addr v) = {
536 [R_MIPS_NONE] = apply_r_mips_none,
537 [R_MIPS_32] = apply_r_mips_32,
538 [R_MIPS_26] = apply_r_mips_26,
539 [R_MIPS_HI16] = apply_r_mips_hi16,
540 [R_MIPS_LO16] = apply_r_mips_lo16,
541 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
542 [R_MIPS_PC16] = apply_r_mips_pc16
545 static char *rstrs[] = {
546 [R_MIPS_NONE] = "MIPS_NONE",
547 [R_MIPS_32] = "MIPS_32",
548 [R_MIPS_26] = "MIPS_26",
549 [R_MIPS_HI16] = "MIPS_HI16",
550 [R_MIPS_LO16] = "MIPS_LO16",
551 [R_MIPS_GPREL16] = "MIPS_GPREL16",
552 [R_MIPS_PC16] = "MIPS_PC16"
555 static int apply_relocations(Elf32_Shdr *sechdrs,
556 const char *strtab,
557 unsigned int symindex,
558 unsigned int relsec,
559 struct module *me)
561 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
562 Elf32_Sym *sym;
563 uint32_t *location;
564 unsigned int i;
565 Elf32_Addr v;
566 int res;
568 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
569 Elf32_Word r_info = rel[i].r_info;
571 /* This is where to make the change */
572 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
573 + rel[i].r_offset;
574 /* This is the symbol it is referring to */
575 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
576 + ELF32_R_SYM(r_info);
578 if (!sym->st_value) {
579 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
580 me->name, strtab + sym->st_name);
581 /* just print the warning, dont barf */
584 v = sym->st_value;
586 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
587 if( res ) {
588 char *r = rstrs[ELF32_R_TYPE(r_info)];
589 printk(KERN_WARNING "VPE loader: .text+0x%x "
590 "relocation type %s for symbol \"%s\" failed\n",
591 rel[i].r_offset, r ? r : "UNKNOWN",
592 strtab + sym->st_name);
593 return res;
597 return 0;
600 static inline void save_gp_address(unsigned int secbase, unsigned int rel)
602 gp_addr = secbase + rel;
603 gp_offs = gp_addr - (secbase & 0xffff0000);
605 /* end module-elf32.c */
609 /* Change all symbols so that sh_value encodes the pointer directly. */
610 static void simplify_symbols(Elf_Shdr * sechdrs,
611 unsigned int symindex,
612 const char *strtab,
613 const char *secstrings,
614 unsigned int nsecs, struct module *mod)
616 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
617 unsigned long secbase, bssbase = 0;
618 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
619 int size;
621 /* find the .bss section for COMMON symbols */
622 for (i = 0; i < nsecs; i++) {
623 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
624 bssbase = sechdrs[i].sh_addr;
625 break;
629 for (i = 1; i < n; i++) {
630 switch (sym[i].st_shndx) {
631 case SHN_COMMON:
632 /* Allocate space for the symbol in the .bss section.
633 st_value is currently size.
634 We want it to have the address of the symbol. */
636 size = sym[i].st_value;
637 sym[i].st_value = bssbase;
639 bssbase += size;
640 break;
642 case SHN_ABS:
643 /* Don't need to do anything */
644 break;
646 case SHN_UNDEF:
647 /* ret = -ENOENT; */
648 break;
650 case SHN_MIPS_SCOMMON:
651 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON "
652 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
653 sym[i].st_shndx);
654 // .sbss section
655 break;
657 default:
658 secbase = sechdrs[sym[i].st_shndx].sh_addr;
660 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
661 save_gp_address(secbase, sym[i].st_value);
664 sym[i].st_value += secbase;
665 break;
670 #ifdef DEBUG_ELFLOADER
671 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
672 const char *strtab, struct module *mod)
674 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
675 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
677 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
678 for (i = 1; i < n; i++) {
679 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
680 strtab + sym[i].st_name, sym[i].st_value);
683 #endif
685 /* We are prepared so configure and start the VPE... */
686 static int vpe_run(struct vpe * v)
688 unsigned long flags, val, dmt_flag;
689 struct vpe_notifications *n;
690 unsigned int vpeflags;
691 struct tc *t;
693 /* check we are the Master VPE */
694 local_irq_save(flags);
695 val = read_c0_vpeconf0();
696 if (!(val & VPECONF0_MVP)) {
697 printk(KERN_WARNING
698 "VPE loader: only Master VPE's are allowed to configure MT\n");
699 local_irq_restore(flags);
701 return -1;
704 dmt_flag = dmt();
705 vpeflags = dvpe();
707 if (!list_empty(&v->tc)) {
708 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
709 evpe(vpeflags);
710 emt(dmt_flag);
711 local_irq_restore(flags);
713 printk(KERN_WARNING
714 "VPE loader: TC %d is already in use.\n",
715 t->index);
716 return -ENOEXEC;
718 } else {
719 evpe(vpeflags);
720 emt(dmt_flag);
721 local_irq_restore(flags);
723 printk(KERN_WARNING
724 "VPE loader: No TC's associated with VPE %d\n",
725 v->minor);
727 return -ENOEXEC;
730 /* Put MVPE's into 'configuration state' */
731 set_c0_mvpcontrol(MVPCONTROL_VPC);
733 settc(t->index);
735 /* should check it is halted, and not activated */
736 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
737 evpe(vpeflags);
738 emt(dmt_flag);
739 local_irq_restore(flags);
741 printk(KERN_WARNING "VPE loader: TC %d is already active!\n",
742 t->index);
744 return -ENOEXEC;
747 /* Write the address we want it to start running from in the TCPC register. */
748 write_tc_c0_tcrestart((unsigned long)v->__start);
749 write_tc_c0_tccontext((unsigned long)0);
752 * Mark the TC as activated, not interrupt exempt and not dynamically
753 * allocatable
755 val = read_tc_c0_tcstatus();
756 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
757 write_tc_c0_tcstatus(val);
759 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
762 * The sde-kit passes 'memsize' to __start in $a3, so set something
763 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
764 * DFLT_HEAP_SIZE when you compile your program
766 mttgpr(6, v->ntcs);
767 mttgpr(7, physical_memsize);
769 /* set up VPE1 */
771 * bind the TC to VPE 1 as late as possible so we only have the final
772 * VPE registers to set up, and so an EJTAG probe can trigger on it
774 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
776 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
778 back_to_back_c0_hazard();
780 /* Set up the XTC bit in vpeconf0 to point at our tc */
781 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
782 | (t->index << VPECONF0_XTC_SHIFT));
784 back_to_back_c0_hazard();
786 /* enable this VPE */
787 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
789 /* clear out any left overs from a previous program */
790 write_vpe_c0_status(0);
791 write_vpe_c0_cause(0);
793 /* take system out of configuration state */
794 clear_c0_mvpcontrol(MVPCONTROL_VPC);
797 * SMTC/SMVP kernels manage VPE enable independently,
798 * but uniprocessor kernels need to turn it on, even
799 * if that wasn't the pre-dvpe() state.
801 #ifdef CONFIG_SMP
802 evpe(vpeflags);
803 #else
804 evpe(EVPE_ENABLE);
805 #endif
806 emt(dmt_flag);
807 local_irq_restore(flags);
809 list_for_each_entry(n, &v->notify, list)
810 n->start(minor);
812 return 0;
815 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
816 unsigned int symindex, const char *strtab,
817 struct module *mod)
819 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
820 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
822 for (i = 1; i < n; i++) {
823 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
824 v->__start = sym[i].st_value;
827 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
828 v->shared_ptr = (void *)sym[i].st_value;
832 if ( (v->__start == 0) || (v->shared_ptr == NULL))
833 return -1;
835 return 0;
839 * Allocates a VPE with some program code space(the load address), copies the
840 * contents of the program (p)buffer performing relocatations/etc, free's it
841 * when finished.
843 static int vpe_elfload(struct vpe * v)
845 Elf_Ehdr *hdr;
846 Elf_Shdr *sechdrs;
847 long err = 0;
848 char *secstrings, *strtab = NULL;
849 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
850 struct module mod; // so we can re-use the relocations code
852 memset(&mod, 0, sizeof(struct module));
853 strcpy(mod.name, "VPE loader");
855 hdr = (Elf_Ehdr *) v->pbuffer;
856 len = v->plen;
858 /* Sanity checks against insmoding binaries or wrong arch,
859 weird elf version */
860 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
861 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
862 || !elf_check_arch(hdr)
863 || hdr->e_shentsize != sizeof(*sechdrs)) {
864 printk(KERN_WARNING
865 "VPE loader: program wrong arch or weird elf version\n");
867 return -ENOEXEC;
870 if (hdr->e_type == ET_REL)
871 relocate = 1;
873 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
874 printk(KERN_ERR "VPE loader: program length %u truncated\n",
875 len);
877 return -ENOEXEC;
880 /* Convenience variables */
881 sechdrs = (void *)hdr + hdr->e_shoff;
882 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
883 sechdrs[0].sh_addr = 0;
885 /* And these should exist, but gcc whinges if we don't init them */
886 symindex = strindex = 0;
888 if (relocate) {
889 for (i = 1; i < hdr->e_shnum; i++) {
890 if (sechdrs[i].sh_type != SHT_NOBITS
891 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
892 printk(KERN_ERR "VPE program length %u truncated\n",
893 len);
894 return -ENOEXEC;
897 /* Mark all sections sh_addr with their address in the
898 temporary image. */
899 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
901 /* Internal symbols and strings. */
902 if (sechdrs[i].sh_type == SHT_SYMTAB) {
903 symindex = i;
904 strindex = sechdrs[i].sh_link;
905 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
908 layout_sections(&mod, hdr, sechdrs, secstrings);
911 v->load_addr = alloc_progmem(mod.core_size);
912 if (!v->load_addr)
913 return -ENOMEM;
915 pr_info("VPE loader: loading to %p\n", v->load_addr);
917 if (relocate) {
918 for (i = 0; i < hdr->e_shnum; i++) {
919 void *dest;
921 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
922 continue;
924 dest = v->load_addr + sechdrs[i].sh_entsize;
926 if (sechdrs[i].sh_type != SHT_NOBITS)
927 memcpy(dest, (void *)sechdrs[i].sh_addr,
928 sechdrs[i].sh_size);
929 /* Update sh_addr to point to copy in image. */
930 sechdrs[i].sh_addr = (unsigned long)dest;
932 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
933 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
936 /* Fix up syms, so that st_value is a pointer to location. */
937 simplify_symbols(sechdrs, symindex, strtab, secstrings,
938 hdr->e_shnum, &mod);
940 /* Now do relocations. */
941 for (i = 1; i < hdr->e_shnum; i++) {
942 const char *strtab = (char *)sechdrs[strindex].sh_addr;
943 unsigned int info = sechdrs[i].sh_info;
945 /* Not a valid relocation section? */
946 if (info >= hdr->e_shnum)
947 continue;
949 /* Don't bother with non-allocated sections */
950 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
951 continue;
953 if (sechdrs[i].sh_type == SHT_REL)
954 err = apply_relocations(sechdrs, strtab, symindex, i,
955 &mod);
956 else if (sechdrs[i].sh_type == SHT_RELA)
957 err = apply_relocate_add(sechdrs, strtab, symindex, i,
958 &mod);
959 if (err < 0)
960 return err;
963 } else {
964 struct elf_phdr *phdr = (struct elf_phdr *) ((char *)hdr + hdr->e_phoff);
966 for (i = 0; i < hdr->e_phnum; i++) {
967 if (phdr->p_type == PT_LOAD) {
968 memcpy((void *)phdr->p_paddr,
969 (char *)hdr + phdr->p_offset,
970 phdr->p_filesz);
971 memset((void *)phdr->p_paddr + phdr->p_filesz,
972 0, phdr->p_memsz - phdr->p_filesz);
974 phdr++;
977 for (i = 0; i < hdr->e_shnum; i++) {
978 /* Internal symbols and strings. */
979 if (sechdrs[i].sh_type == SHT_SYMTAB) {
980 symindex = i;
981 strindex = sechdrs[i].sh_link;
982 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
984 /* mark the symtab's address for when we try to find the
985 magic symbols */
986 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
991 /* make sure it's physically written out */
992 flush_icache_range((unsigned long)v->load_addr,
993 (unsigned long)v->load_addr + v->len);
995 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
996 if (v->__start == 0) {
997 printk(KERN_WARNING "VPE loader: program does not contain "
998 "a __start symbol\n");
999 return -ENOEXEC;
1002 if (v->shared_ptr == NULL)
1003 printk(KERN_WARNING "VPE loader: "
1004 "program does not contain vpe_shared symbol.\n"
1005 " Unable to use AMVP (AP/SP) facilities.\n");
1008 printk(" elf loaded\n");
1009 return 0;
1012 static void cleanup_tc(struct tc *tc)
1014 unsigned long flags;
1015 unsigned int mtflags, vpflags;
1016 int tmp;
1018 local_irq_save(flags);
1019 mtflags = dmt();
1020 vpflags = dvpe();
1021 /* Put MVPE's into 'configuration state' */
1022 set_c0_mvpcontrol(MVPCONTROL_VPC);
1024 settc(tc->index);
1025 tmp = read_tc_c0_tcstatus();
1027 /* mark not allocated and not dynamically allocatable */
1028 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1029 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1030 write_tc_c0_tcstatus(tmp);
1032 write_tc_c0_tchalt(TCHALT_H);
1033 mips_ihb();
1035 /* bind it to anything other than VPE1 */
1036 // write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1038 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1039 evpe(vpflags);
1040 emt(mtflags);
1041 local_irq_restore(flags);
1044 static int getcwd(char *buff, int size)
1046 mm_segment_t old_fs;
1047 int ret;
1049 old_fs = get_fs();
1050 set_fs(KERNEL_DS);
1052 ret = sys_getcwd(buff, size);
1054 set_fs(old_fs);
1056 return ret;
1059 /* checks VPE is unused and gets ready to load program */
1060 static int vpe_open(struct inode *inode, struct file *filp)
1062 enum vpe_state state;
1063 struct vpe_notifications *not;
1064 struct vpe *v;
1065 int ret;
1067 if (minor != iminor(inode)) {
1068 /* assume only 1 device at the moment. */
1069 pr_warning("VPE loader: only vpe1 is supported\n");
1071 return -ENODEV;
1074 if ((v = get_vpe(tclimit)) == NULL) {
1075 pr_warning("VPE loader: unable to get vpe\n");
1077 return -ENODEV;
1080 state = xchg(&v->state, VPE_STATE_INUSE);
1081 if (state != VPE_STATE_UNUSED) {
1082 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1084 list_for_each_entry(not, &v->notify, list) {
1085 not->stop(tclimit);
1088 release_progmem(v->load_addr);
1089 cleanup_tc(get_tc(tclimit));
1092 /* this of-course trashes what was there before... */
1093 v->pbuffer = vmalloc(P_SIZE);
1094 if (!v->pbuffer) {
1095 pr_warning("VPE loader: unable to allocate memory\n");
1096 return -ENOMEM;
1098 v->plen = P_SIZE;
1099 v->load_addr = NULL;
1100 v->len = 0;
1102 v->uid = filp->f_cred->fsuid;
1103 v->gid = filp->f_cred->fsgid;
1105 #ifdef CONFIG_MIPS_APSP_KSPD
1106 /* get kspd to tell us when a syscall_exit happens */
1107 if (!kspd_events_reqd) {
1108 kspd_notify(&kspd_events);
1109 kspd_events_reqd++;
1111 #endif
1113 v->cwd[0] = 0;
1114 ret = getcwd(v->cwd, VPE_PATH_MAX);
1115 if (ret < 0)
1116 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1118 v->shared_ptr = NULL;
1119 v->__start = 0;
1121 return 0;
1124 static int vpe_release(struct inode *inode, struct file *filp)
1126 struct vpe *v;
1127 Elf_Ehdr *hdr;
1128 int ret = 0;
1130 v = get_vpe(tclimit);
1131 if (v == NULL)
1132 return -ENODEV;
1134 hdr = (Elf_Ehdr *) v->pbuffer;
1135 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) == 0) {
1136 if (vpe_elfload(v) >= 0) {
1137 vpe_run(v);
1138 } else {
1139 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1140 ret = -ENOEXEC;
1142 } else {
1143 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1144 ret = -ENOEXEC;
1147 /* It's good to be able to run the SP and if it chokes have a look at
1148 the /dev/rt?. But if we reset the pointer to the shared struct we
1149 lose what has happened. So perhaps if garbage is sent to the vpe
1150 device, use it as a trigger for the reset. Hopefully a nice
1151 executable will be along shortly. */
1152 if (ret < 0)
1153 v->shared_ptr = NULL;
1155 vfree(v->pbuffer);
1156 v->plen = 0;
1158 return ret;
1161 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1162 size_t count, loff_t * ppos)
1164 size_t ret = count;
1165 struct vpe *v;
1167 if (iminor(file->f_path.dentry->d_inode) != minor)
1168 return -ENODEV;
1170 v = get_vpe(tclimit);
1171 if (v == NULL)
1172 return -ENODEV;
1174 if ((count + v->len) > v->plen) {
1175 printk(KERN_WARNING
1176 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1177 return -ENOMEM;
1180 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1181 if (!count)
1182 return -EFAULT;
1184 v->len += count;
1185 return ret;
1188 static const struct file_operations vpe_fops = {
1189 .owner = THIS_MODULE,
1190 .open = vpe_open,
1191 .release = vpe_release,
1192 .write = vpe_write,
1193 .llseek = noop_llseek,
1196 /* module wrapper entry points */
1197 /* give me a vpe */
1198 vpe_handle vpe_alloc(void)
1200 int i;
1201 struct vpe *v;
1203 /* find a vpe */
1204 for (i = 1; i < MAX_VPES; i++) {
1205 if ((v = get_vpe(i)) != NULL) {
1206 v->state = VPE_STATE_INUSE;
1207 return v;
1210 return NULL;
1213 EXPORT_SYMBOL(vpe_alloc);
1215 /* start running from here */
1216 int vpe_start(vpe_handle vpe, unsigned long start)
1218 struct vpe *v = vpe;
1220 v->__start = start;
1221 return vpe_run(v);
1224 EXPORT_SYMBOL(vpe_start);
1226 /* halt it for now */
1227 int vpe_stop(vpe_handle vpe)
1229 struct vpe *v = vpe;
1230 struct tc *t;
1231 unsigned int evpe_flags;
1233 evpe_flags = dvpe();
1235 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1237 settc(t->index);
1238 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1241 evpe(evpe_flags);
1243 return 0;
1246 EXPORT_SYMBOL(vpe_stop);
1248 /* I've done with it thank you */
1249 int vpe_free(vpe_handle vpe)
1251 struct vpe *v = vpe;
1252 struct tc *t;
1253 unsigned int evpe_flags;
1255 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1256 return -ENOEXEC;
1259 evpe_flags = dvpe();
1261 /* Put MVPE's into 'configuration state' */
1262 set_c0_mvpcontrol(MVPCONTROL_VPC);
1264 settc(t->index);
1265 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1267 /* halt the TC */
1268 write_tc_c0_tchalt(TCHALT_H);
1269 mips_ihb();
1271 /* mark the TC unallocated */
1272 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1274 v->state = VPE_STATE_UNUSED;
1276 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1277 evpe(evpe_flags);
1279 return 0;
1282 EXPORT_SYMBOL(vpe_free);
1284 void *vpe_get_shared(int index)
1286 struct vpe *v;
1288 if ((v = get_vpe(index)) == NULL)
1289 return NULL;
1291 return v->shared_ptr;
1294 EXPORT_SYMBOL(vpe_get_shared);
1296 int vpe_getuid(int index)
1298 struct vpe *v;
1300 if ((v = get_vpe(index)) == NULL)
1301 return -1;
1303 return v->uid;
1306 EXPORT_SYMBOL(vpe_getuid);
1308 int vpe_getgid(int index)
1310 struct vpe *v;
1312 if ((v = get_vpe(index)) == NULL)
1313 return -1;
1315 return v->gid;
1318 EXPORT_SYMBOL(vpe_getgid);
1320 int vpe_notify(int index, struct vpe_notifications *notify)
1322 struct vpe *v;
1324 if ((v = get_vpe(index)) == NULL)
1325 return -1;
1327 list_add(&notify->list, &v->notify);
1328 return 0;
1331 EXPORT_SYMBOL(vpe_notify);
1333 char *vpe_getcwd(int index)
1335 struct vpe *v;
1337 if ((v = get_vpe(index)) == NULL)
1338 return NULL;
1340 return v->cwd;
1343 EXPORT_SYMBOL(vpe_getcwd);
1345 #ifdef CONFIG_MIPS_APSP_KSPD
1346 static void kspd_sp_exit( int sp_id)
1348 cleanup_tc(get_tc(sp_id));
1350 #endif
1352 static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
1353 const char *buf, size_t len)
1355 struct vpe *vpe = get_vpe(tclimit);
1356 struct vpe_notifications *not;
1358 list_for_each_entry(not, &vpe->notify, list) {
1359 not->stop(tclimit);
1362 release_progmem(vpe->load_addr);
1363 cleanup_tc(get_tc(tclimit));
1364 vpe_stop(vpe);
1365 vpe_free(vpe);
1367 return len;
1370 static ssize_t show_ntcs(struct device *cd, struct device_attribute *attr,
1371 char *buf)
1373 struct vpe *vpe = get_vpe(tclimit);
1375 return sprintf(buf, "%d\n", vpe->ntcs);
1378 static ssize_t store_ntcs(struct device *dev, struct device_attribute *attr,
1379 const char *buf, size_t len)
1381 struct vpe *vpe = get_vpe(tclimit);
1382 unsigned long new;
1383 char *endp;
1385 new = simple_strtoul(buf, &endp, 0);
1386 if (endp == buf)
1387 goto out_einval;
1389 if (new == 0 || new > (hw_tcs - tclimit))
1390 goto out_einval;
1392 vpe->ntcs = new;
1394 return len;
1396 out_einval:
1397 return -EINVAL;
1400 static struct device_attribute vpe_class_attributes[] = {
1401 __ATTR(kill, S_IWUSR, NULL, store_kill),
1402 __ATTR(ntcs, S_IRUGO | S_IWUSR, show_ntcs, store_ntcs),
1406 static void vpe_device_release(struct device *cd)
1408 kfree(cd);
1411 struct class vpe_class = {
1412 .name = "vpe",
1413 .owner = THIS_MODULE,
1414 .dev_release = vpe_device_release,
1415 .dev_attrs = vpe_class_attributes,
1418 struct device vpe_device;
1420 static int __init vpe_module_init(void)
1422 unsigned int mtflags, vpflags;
1423 unsigned long flags, val;
1424 struct vpe *v = NULL;
1425 struct tc *t;
1426 int tc, err;
1428 if (!cpu_has_mipsmt) {
1429 printk("VPE loader: not a MIPS MT capable processor\n");
1430 return -ENODEV;
1433 if (vpelimit == 0) {
1434 printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
1435 "initializing VPE loader.\nPass maxvpes=<n> argument as "
1436 "kernel argument\n");
1438 return -ENODEV;
1441 if (tclimit == 0) {
1442 printk(KERN_WARNING "No TCs reserved for AP/SP, not "
1443 "initializing VPE loader.\nPass maxtcs=<n> argument as "
1444 "kernel argument\n");
1446 return -ENODEV;
1449 major = register_chrdev(0, module_name, &vpe_fops);
1450 if (major < 0) {
1451 printk("VPE loader: unable to register character device\n");
1452 return major;
1455 err = class_register(&vpe_class);
1456 if (err) {
1457 printk(KERN_ERR "vpe_class registration failed\n");
1458 goto out_chrdev;
1461 device_initialize(&vpe_device);
1462 vpe_device.class = &vpe_class,
1463 vpe_device.parent = NULL,
1464 dev_set_name(&vpe_device, "vpe1");
1465 vpe_device.devt = MKDEV(major, minor);
1466 err = device_add(&vpe_device);
1467 if (err) {
1468 printk(KERN_ERR "Adding vpe_device failed\n");
1469 goto out_class;
1472 local_irq_save(flags);
1473 mtflags = dmt();
1474 vpflags = dvpe();
1476 /* Put MVPE's into 'configuration state' */
1477 set_c0_mvpcontrol(MVPCONTROL_VPC);
1479 /* dump_mtregs(); */
1481 val = read_c0_mvpconf0();
1482 hw_tcs = (val & MVPCONF0_PTC) + 1;
1483 hw_vpes = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
1485 for (tc = tclimit; tc < hw_tcs; tc++) {
1487 * Must re-enable multithreading temporarily or in case we
1488 * reschedule send IPIs or similar we might hang.
1490 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1491 evpe(vpflags);
1492 emt(mtflags);
1493 local_irq_restore(flags);
1494 t = alloc_tc(tc);
1495 if (!t) {
1496 err = -ENOMEM;
1497 goto out;
1500 local_irq_save(flags);
1501 mtflags = dmt();
1502 vpflags = dvpe();
1503 set_c0_mvpcontrol(MVPCONTROL_VPC);
1505 /* VPE's */
1506 if (tc < hw_tcs) {
1507 settc(tc);
1509 if ((v = alloc_vpe(tc)) == NULL) {
1510 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1512 goto out_reenable;
1515 v->ntcs = hw_tcs - tclimit;
1517 /* add the tc to the list of this vpe's tc's. */
1518 list_add(&t->tc, &v->tc);
1520 /* deactivate all but vpe0 */
1521 if (tc >= tclimit) {
1522 unsigned long tmp = read_vpe_c0_vpeconf0();
1524 tmp &= ~VPECONF0_VPA;
1526 /* master VPE */
1527 tmp |= VPECONF0_MVP;
1528 write_vpe_c0_vpeconf0(tmp);
1531 /* disable multi-threading with TC's */
1532 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1534 if (tc >= vpelimit) {
1536 * Set config to be the same as vpe0,
1537 * particularly kseg0 coherency alg
1539 write_vpe_c0_config(read_c0_config());
1543 /* TC's */
1544 t->pvpe = v; /* set the parent vpe */
1546 if (tc >= tclimit) {
1547 unsigned long tmp;
1549 settc(tc);
1551 /* Any TC that is bound to VPE0 gets left as is - in case
1552 we are running SMTC on VPE0. A TC that is bound to any
1553 other VPE gets bound to VPE0, ideally I'd like to make
1554 it homeless but it doesn't appear to let me bind a TC
1555 to a non-existent VPE. Which is perfectly reasonable.
1557 The (un)bound state is visible to an EJTAG probe so may
1558 notify GDB...
1561 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1562 /* tc is bound >vpe0 */
1563 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1565 t->pvpe = get_vpe(0); /* set the parent vpe */
1568 /* halt the TC */
1569 write_tc_c0_tchalt(TCHALT_H);
1570 mips_ihb();
1572 tmp = read_tc_c0_tcstatus();
1574 /* mark not activated and not dynamically allocatable */
1575 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1576 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1577 write_tc_c0_tcstatus(tmp);
1581 out_reenable:
1582 /* release config state */
1583 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1585 evpe(vpflags);
1586 emt(mtflags);
1587 local_irq_restore(flags);
1589 #ifdef CONFIG_MIPS_APSP_KSPD
1590 kspd_events.kspd_sp_exit = kspd_sp_exit;
1591 #endif
1592 return 0;
1594 out_class:
1595 class_unregister(&vpe_class);
1596 out_chrdev:
1597 unregister_chrdev(major, module_name);
1599 out:
1600 return err;
1603 static void __exit vpe_module_exit(void)
1605 struct vpe *v, *n;
1607 device_del(&vpe_device);
1608 unregister_chrdev(major, module_name);
1610 /* No locking needed here */
1611 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1612 if (v->state != VPE_STATE_UNUSED)
1613 release_vpe(v);
1617 module_init(vpe_module_init);
1618 module_exit(vpe_module_exit);
1619 MODULE_DESCRIPTION("MIPS VPE Loader");
1620 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1621 MODULE_LICENSE("GPL");