Avoid beyond bounds copy while caching ACL
[zen-stable.git] / drivers / cpufreq / cpufreq.c
blob622013fb7890e465f6c62ecb4595c70534f4bc6b
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31 #include <linux/syscore_ops.h>
33 #include <trace/events/power.h>
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
70 #define lock_policy_rwsem(mode, cpu) \
71 static int lock_policy_rwsem_##mode \
72 (int cpu) \
73 { \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
82 return 0; \
85 lock_policy_rwsem(read, cpu);
87 lock_policy_rwsem(write, cpu);
89 static void unlock_policy_rwsem_read(int cpu)
91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 static void unlock_policy_rwsem_write(int cpu)
98 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99 BUG_ON(policy_cpu == -1);
100 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
104 /* internal prototypes */
105 static int __cpufreq_governor(struct cpufreq_policy *policy,
106 unsigned int event);
107 static unsigned int __cpufreq_get(unsigned int cpu);
108 static void handle_update(struct work_struct *work);
111 * Two notifier lists: the "policy" list is involved in the
112 * validation process for a new CPU frequency policy; the
113 * "transition" list for kernel code that needs to handle
114 * changes to devices when the CPU clock speed changes.
115 * The mutex locks both lists.
117 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120 static bool init_cpufreq_transition_notifier_list_called;
121 static int __init init_cpufreq_transition_notifier_list(void)
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 init_cpufreq_transition_notifier_list_called = true;
125 return 0;
127 pure_initcall(init_cpufreq_transition_notifier_list);
129 static LIST_HEAD(cpufreq_governor_list);
130 static DEFINE_MUTEX(cpufreq_governor_mutex);
132 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
134 struct cpufreq_policy *data;
135 unsigned long flags;
137 if (cpu >= nr_cpu_ids)
138 goto err_out;
140 /* get the cpufreq driver */
141 spin_lock_irqsave(&cpufreq_driver_lock, flags);
143 if (!cpufreq_driver)
144 goto err_out_unlock;
146 if (!try_module_get(cpufreq_driver->owner))
147 goto err_out_unlock;
150 /* get the CPU */
151 data = per_cpu(cpufreq_cpu_data, cpu);
153 if (!data)
154 goto err_out_put_module;
156 if (!kobject_get(&data->kobj))
157 goto err_out_put_module;
159 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160 return data;
162 err_out_put_module:
163 module_put(cpufreq_driver->owner);
164 err_out_unlock:
165 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166 err_out:
167 return NULL;
169 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172 void cpufreq_cpu_put(struct cpufreq_policy *data)
174 kobject_put(&data->kobj);
175 module_put(cpufreq_driver->owner);
177 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180 /*********************************************************************
181 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
182 *********************************************************************/
185 * adjust_jiffies - adjust the system "loops_per_jiffy"
187 * This function alters the system "loops_per_jiffy" for the clock
188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
189 * systems as each CPU might be scaled differently. So, use the arch
190 * per-CPU loops_per_jiffy value wherever possible.
192 #ifndef CONFIG_SMP
193 static unsigned long l_p_j_ref;
194 static unsigned int l_p_j_ref_freq;
196 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
198 if (ci->flags & CPUFREQ_CONST_LOOPS)
199 return;
201 if (!l_p_j_ref_freq) {
202 l_p_j_ref = loops_per_jiffy;
203 l_p_j_ref_freq = ci->old;
204 pr_debug("saving %lu as reference value for loops_per_jiffy; "
205 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
207 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
208 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
209 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
210 ci->new);
211 pr_debug("scaling loops_per_jiffy to %lu "
212 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
215 #else
216 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
218 return;
220 #endif
224 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
225 * on frequency transition.
227 * This function calls the transition notifiers and the "adjust_jiffies"
228 * function. It is called twice on all CPU frequency changes that have
229 * external effects.
231 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
233 struct cpufreq_policy *policy;
235 BUG_ON(irqs_disabled());
237 freqs->flags = cpufreq_driver->flags;
238 pr_debug("notification %u of frequency transition to %u kHz\n",
239 state, freqs->new);
241 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
242 switch (state) {
244 case CPUFREQ_PRECHANGE:
245 /* detect if the driver reported a value as "old frequency"
246 * which is not equal to what the cpufreq core thinks is
247 * "old frequency".
249 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
250 if ((policy) && (policy->cpu == freqs->cpu) &&
251 (policy->cur) && (policy->cur != freqs->old)) {
252 pr_debug("Warning: CPU frequency is"
253 " %u, cpufreq assumed %u kHz.\n",
254 freqs->old, policy->cur);
255 freqs->old = policy->cur;
258 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
259 CPUFREQ_PRECHANGE, freqs);
260 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
261 break;
263 case CPUFREQ_POSTCHANGE:
264 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
265 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
266 (unsigned long)freqs->cpu);
267 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
268 trace_cpu_frequency(freqs->new, freqs->cpu);
269 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
270 CPUFREQ_POSTCHANGE, freqs);
271 if (likely(policy) && likely(policy->cpu == freqs->cpu))
272 policy->cur = freqs->new;
273 break;
276 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
280 /*********************************************************************
281 * SYSFS INTERFACE *
282 *********************************************************************/
284 static struct cpufreq_governor *__find_governor(const char *str_governor)
286 struct cpufreq_governor *t;
288 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
289 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
290 return t;
292 return NULL;
296 * cpufreq_parse_governor - parse a governor string
298 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
299 struct cpufreq_governor **governor)
301 int err = -EINVAL;
303 if (!cpufreq_driver)
304 goto out;
306 if (cpufreq_driver->setpolicy) {
307 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
308 *policy = CPUFREQ_POLICY_PERFORMANCE;
309 err = 0;
310 } else if (!strnicmp(str_governor, "powersave",
311 CPUFREQ_NAME_LEN)) {
312 *policy = CPUFREQ_POLICY_POWERSAVE;
313 err = 0;
315 } else if (cpufreq_driver->target) {
316 struct cpufreq_governor *t;
318 mutex_lock(&cpufreq_governor_mutex);
320 t = __find_governor(str_governor);
322 if (t == NULL) {
323 int ret;
325 mutex_unlock(&cpufreq_governor_mutex);
326 ret = request_module("cpufreq_%s", str_governor);
327 mutex_lock(&cpufreq_governor_mutex);
329 if (ret == 0)
330 t = __find_governor(str_governor);
333 if (t != NULL) {
334 *governor = t;
335 err = 0;
338 mutex_unlock(&cpufreq_governor_mutex);
340 out:
341 return err;
346 * cpufreq_per_cpu_attr_read() / show_##file_name() -
347 * print out cpufreq information
349 * Write out information from cpufreq_driver->policy[cpu]; object must be
350 * "unsigned int".
353 #define show_one(file_name, object) \
354 static ssize_t show_##file_name \
355 (struct cpufreq_policy *policy, char *buf) \
357 return sprintf(buf, "%u\n", policy->object); \
360 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
361 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
362 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
363 show_one(scaling_min_freq, min);
364 show_one(scaling_max_freq, max);
365 show_one(scaling_cur_freq, cur);
367 static int __cpufreq_set_policy(struct cpufreq_policy *data,
368 struct cpufreq_policy *policy);
371 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
373 #define store_one(file_name, object) \
374 static ssize_t store_##file_name \
375 (struct cpufreq_policy *policy, const char *buf, size_t count) \
377 unsigned int ret = -EINVAL; \
378 struct cpufreq_policy new_policy; \
380 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
381 if (ret) \
382 return -EINVAL; \
384 ret = sscanf(buf, "%u", &new_policy.object); \
385 if (ret != 1) \
386 return -EINVAL; \
388 ret = __cpufreq_set_policy(policy, &new_policy); \
389 policy->user_policy.object = policy->object; \
391 return ret ? ret : count; \
394 store_one(scaling_min_freq, min);
395 store_one(scaling_max_freq, max);
398 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
400 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
401 char *buf)
403 unsigned int cur_freq = __cpufreq_get(policy->cpu);
404 if (!cur_freq)
405 return sprintf(buf, "<unknown>");
406 return sprintf(buf, "%u\n", cur_freq);
411 * show_scaling_governor - show the current policy for the specified CPU
413 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
415 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
416 return sprintf(buf, "powersave\n");
417 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
418 return sprintf(buf, "performance\n");
419 else if (policy->governor)
420 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
421 policy->governor->name);
422 return -EINVAL;
427 * store_scaling_governor - store policy for the specified CPU
429 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
430 const char *buf, size_t count)
432 unsigned int ret = -EINVAL;
433 char str_governor[16];
434 struct cpufreq_policy new_policy;
436 ret = cpufreq_get_policy(&new_policy, policy->cpu);
437 if (ret)
438 return ret;
440 ret = sscanf(buf, "%15s", str_governor);
441 if (ret != 1)
442 return -EINVAL;
444 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
445 &new_policy.governor))
446 return -EINVAL;
448 /* Do not use cpufreq_set_policy here or the user_policy.max
449 will be wrongly overridden */
450 ret = __cpufreq_set_policy(policy, &new_policy);
452 policy->user_policy.policy = policy->policy;
453 policy->user_policy.governor = policy->governor;
455 if (ret)
456 return ret;
457 else
458 return count;
462 * show_scaling_driver - show the cpufreq driver currently loaded
464 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
466 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
470 * show_scaling_available_governors - show the available CPUfreq governors
472 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
473 char *buf)
475 ssize_t i = 0;
476 struct cpufreq_governor *t;
478 if (!cpufreq_driver->target) {
479 i += sprintf(buf, "performance powersave");
480 goto out;
483 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
484 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
485 - (CPUFREQ_NAME_LEN + 2)))
486 goto out;
487 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
489 out:
490 i += sprintf(&buf[i], "\n");
491 return i;
494 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
496 ssize_t i = 0;
497 unsigned int cpu;
499 for_each_cpu(cpu, mask) {
500 if (i)
501 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
502 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
503 if (i >= (PAGE_SIZE - 5))
504 break;
506 i += sprintf(&buf[i], "\n");
507 return i;
511 * show_related_cpus - show the CPUs affected by each transition even if
512 * hw coordination is in use
514 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
516 if (cpumask_empty(policy->related_cpus))
517 return show_cpus(policy->cpus, buf);
518 return show_cpus(policy->related_cpus, buf);
522 * show_affected_cpus - show the CPUs affected by each transition
524 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
526 return show_cpus(policy->cpus, buf);
529 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
530 const char *buf, size_t count)
532 unsigned int freq = 0;
533 unsigned int ret;
535 if (!policy->governor || !policy->governor->store_setspeed)
536 return -EINVAL;
538 ret = sscanf(buf, "%u", &freq);
539 if (ret != 1)
540 return -EINVAL;
542 policy->governor->store_setspeed(policy, freq);
544 return count;
547 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
549 if (!policy->governor || !policy->governor->show_setspeed)
550 return sprintf(buf, "<unsupported>\n");
552 return policy->governor->show_setspeed(policy, buf);
556 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
558 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
560 unsigned int limit;
561 int ret;
562 if (cpufreq_driver->bios_limit) {
563 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
564 if (!ret)
565 return sprintf(buf, "%u\n", limit);
567 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
570 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
571 cpufreq_freq_attr_ro(cpuinfo_min_freq);
572 cpufreq_freq_attr_ro(cpuinfo_max_freq);
573 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
574 cpufreq_freq_attr_ro(scaling_available_governors);
575 cpufreq_freq_attr_ro(scaling_driver);
576 cpufreq_freq_attr_ro(scaling_cur_freq);
577 cpufreq_freq_attr_ro(bios_limit);
578 cpufreq_freq_attr_ro(related_cpus);
579 cpufreq_freq_attr_ro(affected_cpus);
580 cpufreq_freq_attr_rw(scaling_min_freq);
581 cpufreq_freq_attr_rw(scaling_max_freq);
582 cpufreq_freq_attr_rw(scaling_governor);
583 cpufreq_freq_attr_rw(scaling_setspeed);
585 static struct attribute *default_attrs[] = {
586 &cpuinfo_min_freq.attr,
587 &cpuinfo_max_freq.attr,
588 &cpuinfo_transition_latency.attr,
589 &scaling_min_freq.attr,
590 &scaling_max_freq.attr,
591 &affected_cpus.attr,
592 &related_cpus.attr,
593 &scaling_governor.attr,
594 &scaling_driver.attr,
595 &scaling_available_governors.attr,
596 &scaling_setspeed.attr,
597 NULL
600 struct kobject *cpufreq_global_kobject;
601 EXPORT_SYMBOL(cpufreq_global_kobject);
603 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
604 #define to_attr(a) container_of(a, struct freq_attr, attr)
606 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
608 struct cpufreq_policy *policy = to_policy(kobj);
609 struct freq_attr *fattr = to_attr(attr);
610 ssize_t ret = -EINVAL;
611 policy = cpufreq_cpu_get(policy->cpu);
612 if (!policy)
613 goto no_policy;
615 if (lock_policy_rwsem_read(policy->cpu) < 0)
616 goto fail;
618 if (fattr->show)
619 ret = fattr->show(policy, buf);
620 else
621 ret = -EIO;
623 unlock_policy_rwsem_read(policy->cpu);
624 fail:
625 cpufreq_cpu_put(policy);
626 no_policy:
627 return ret;
630 static ssize_t store(struct kobject *kobj, struct attribute *attr,
631 const char *buf, size_t count)
633 struct cpufreq_policy *policy = to_policy(kobj);
634 struct freq_attr *fattr = to_attr(attr);
635 ssize_t ret = -EINVAL;
636 policy = cpufreq_cpu_get(policy->cpu);
637 if (!policy)
638 goto no_policy;
640 if (lock_policy_rwsem_write(policy->cpu) < 0)
641 goto fail;
643 if (fattr->store)
644 ret = fattr->store(policy, buf, count);
645 else
646 ret = -EIO;
648 unlock_policy_rwsem_write(policy->cpu);
649 fail:
650 cpufreq_cpu_put(policy);
651 no_policy:
652 return ret;
655 static void cpufreq_sysfs_release(struct kobject *kobj)
657 struct cpufreq_policy *policy = to_policy(kobj);
658 pr_debug("last reference is dropped\n");
659 complete(&policy->kobj_unregister);
662 static const struct sysfs_ops sysfs_ops = {
663 .show = show,
664 .store = store,
667 static struct kobj_type ktype_cpufreq = {
668 .sysfs_ops = &sysfs_ops,
669 .default_attrs = default_attrs,
670 .release = cpufreq_sysfs_release,
674 * Returns:
675 * Negative: Failure
676 * 0: Success
677 * Positive: When we have a managed CPU and the sysfs got symlinked
679 static int cpufreq_add_dev_policy(unsigned int cpu,
680 struct cpufreq_policy *policy,
681 struct device *dev)
683 int ret = 0;
684 #ifdef CONFIG_SMP
685 unsigned long flags;
686 unsigned int j;
687 #ifdef CONFIG_HOTPLUG_CPU
688 struct cpufreq_governor *gov;
690 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
691 if (gov) {
692 policy->governor = gov;
693 pr_debug("Restoring governor %s for cpu %d\n",
694 policy->governor->name, cpu);
696 #endif
698 for_each_cpu(j, policy->cpus) {
699 struct cpufreq_policy *managed_policy;
701 if (cpu == j)
702 continue;
704 /* Check for existing affected CPUs.
705 * They may not be aware of it due to CPU Hotplug.
706 * cpufreq_cpu_put is called when the device is removed
707 * in __cpufreq_remove_dev()
709 managed_policy = cpufreq_cpu_get(j);
710 if (unlikely(managed_policy)) {
712 /* Set proper policy_cpu */
713 unlock_policy_rwsem_write(cpu);
714 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
716 if (lock_policy_rwsem_write(cpu) < 0) {
717 /* Should not go through policy unlock path */
718 if (cpufreq_driver->exit)
719 cpufreq_driver->exit(policy);
720 cpufreq_cpu_put(managed_policy);
721 return -EBUSY;
724 spin_lock_irqsave(&cpufreq_driver_lock, flags);
725 cpumask_copy(managed_policy->cpus, policy->cpus);
726 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
727 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
729 pr_debug("CPU already managed, adding link\n");
730 ret = sysfs_create_link(&dev->kobj,
731 &managed_policy->kobj,
732 "cpufreq");
733 if (ret)
734 cpufreq_cpu_put(managed_policy);
736 * Success. We only needed to be added to the mask.
737 * Call driver->exit() because only the cpu parent of
738 * the kobj needed to call init().
740 if (cpufreq_driver->exit)
741 cpufreq_driver->exit(policy);
743 if (!ret)
744 return 1;
745 else
746 return ret;
749 #endif
750 return ret;
754 /* symlink affected CPUs */
755 static int cpufreq_add_dev_symlink(unsigned int cpu,
756 struct cpufreq_policy *policy)
758 unsigned int j;
759 int ret = 0;
761 for_each_cpu(j, policy->cpus) {
762 struct cpufreq_policy *managed_policy;
763 struct device *cpu_dev;
765 if (j == cpu)
766 continue;
767 if (!cpu_online(j))
768 continue;
770 pr_debug("CPU %u already managed, adding link\n", j);
771 managed_policy = cpufreq_cpu_get(cpu);
772 cpu_dev = get_cpu_device(j);
773 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
774 "cpufreq");
775 if (ret) {
776 cpufreq_cpu_put(managed_policy);
777 return ret;
780 return ret;
783 static int cpufreq_add_dev_interface(unsigned int cpu,
784 struct cpufreq_policy *policy,
785 struct device *dev)
787 struct cpufreq_policy new_policy;
788 struct freq_attr **drv_attr;
789 unsigned long flags;
790 int ret = 0;
791 unsigned int j;
793 /* prepare interface data */
794 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
795 &dev->kobj, "cpufreq");
796 if (ret)
797 return ret;
799 /* set up files for this cpu device */
800 drv_attr = cpufreq_driver->attr;
801 while ((drv_attr) && (*drv_attr)) {
802 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
803 if (ret)
804 goto err_out_kobj_put;
805 drv_attr++;
807 if (cpufreq_driver->get) {
808 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
809 if (ret)
810 goto err_out_kobj_put;
812 if (cpufreq_driver->target) {
813 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
814 if (ret)
815 goto err_out_kobj_put;
817 if (cpufreq_driver->bios_limit) {
818 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
819 if (ret)
820 goto err_out_kobj_put;
823 spin_lock_irqsave(&cpufreq_driver_lock, flags);
824 for_each_cpu(j, policy->cpus) {
825 if (!cpu_online(j))
826 continue;
827 per_cpu(cpufreq_cpu_data, j) = policy;
828 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
830 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
832 ret = cpufreq_add_dev_symlink(cpu, policy);
833 if (ret)
834 goto err_out_kobj_put;
836 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
837 /* assure that the starting sequence is run in __cpufreq_set_policy */
838 policy->governor = NULL;
840 /* set default policy */
841 ret = __cpufreq_set_policy(policy, &new_policy);
842 policy->user_policy.policy = policy->policy;
843 policy->user_policy.governor = policy->governor;
845 if (ret) {
846 pr_debug("setting policy failed\n");
847 if (cpufreq_driver->exit)
848 cpufreq_driver->exit(policy);
850 return ret;
852 err_out_kobj_put:
853 kobject_put(&policy->kobj);
854 wait_for_completion(&policy->kobj_unregister);
855 return ret;
860 * cpufreq_add_dev - add a CPU device
862 * Adds the cpufreq interface for a CPU device.
864 * The Oracle says: try running cpufreq registration/unregistration concurrently
865 * with with cpu hotplugging and all hell will break loose. Tried to clean this
866 * mess up, but more thorough testing is needed. - Mathieu
868 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
870 unsigned int cpu = dev->id;
871 int ret = 0, found = 0;
872 struct cpufreq_policy *policy;
873 unsigned long flags;
874 unsigned int j;
875 #ifdef CONFIG_HOTPLUG_CPU
876 int sibling;
877 #endif
879 if (cpu_is_offline(cpu))
880 return 0;
882 pr_debug("adding CPU %u\n", cpu);
884 #ifdef CONFIG_SMP
885 /* check whether a different CPU already registered this
886 * CPU because it is in the same boat. */
887 policy = cpufreq_cpu_get(cpu);
888 if (unlikely(policy)) {
889 cpufreq_cpu_put(policy);
890 return 0;
892 #endif
894 if (!try_module_get(cpufreq_driver->owner)) {
895 ret = -EINVAL;
896 goto module_out;
899 ret = -ENOMEM;
900 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
901 if (!policy)
902 goto nomem_out;
904 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
905 goto err_free_policy;
907 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
908 goto err_free_cpumask;
910 policy->cpu = cpu;
911 cpumask_copy(policy->cpus, cpumask_of(cpu));
913 /* Initially set CPU itself as the policy_cpu */
914 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
915 ret = (lock_policy_rwsem_write(cpu) < 0);
916 WARN_ON(ret);
918 init_completion(&policy->kobj_unregister);
919 INIT_WORK(&policy->update, handle_update);
921 /* Set governor before ->init, so that driver could check it */
922 #ifdef CONFIG_HOTPLUG_CPU
923 for_each_online_cpu(sibling) {
924 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
925 if (cp && cp->governor &&
926 (cpumask_test_cpu(cpu, cp->related_cpus))) {
927 policy->governor = cp->governor;
928 found = 1;
929 break;
932 #endif
933 if (!found)
934 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
935 /* call driver. From then on the cpufreq must be able
936 * to accept all calls to ->verify and ->setpolicy for this CPU
938 ret = cpufreq_driver->init(policy);
939 if (ret) {
940 pr_debug("initialization failed\n");
941 goto err_unlock_policy;
943 policy->user_policy.min = policy->min;
944 policy->user_policy.max = policy->max;
946 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
947 CPUFREQ_START, policy);
949 ret = cpufreq_add_dev_policy(cpu, policy, dev);
950 if (ret) {
951 if (ret > 0)
952 /* This is a managed cpu, symlink created,
953 exit with 0 */
954 ret = 0;
955 goto err_unlock_policy;
958 ret = cpufreq_add_dev_interface(cpu, policy, dev);
959 if (ret)
960 goto err_out_unregister;
962 unlock_policy_rwsem_write(cpu);
964 kobject_uevent(&policy->kobj, KOBJ_ADD);
965 module_put(cpufreq_driver->owner);
966 pr_debug("initialization complete\n");
968 return 0;
971 err_out_unregister:
972 spin_lock_irqsave(&cpufreq_driver_lock, flags);
973 for_each_cpu(j, policy->cpus)
974 per_cpu(cpufreq_cpu_data, j) = NULL;
975 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
977 kobject_put(&policy->kobj);
978 wait_for_completion(&policy->kobj_unregister);
980 err_unlock_policy:
981 unlock_policy_rwsem_write(cpu);
982 free_cpumask_var(policy->related_cpus);
983 err_free_cpumask:
984 free_cpumask_var(policy->cpus);
985 err_free_policy:
986 kfree(policy);
987 nomem_out:
988 module_put(cpufreq_driver->owner);
989 module_out:
990 return ret;
995 * __cpufreq_remove_dev - remove a CPU device
997 * Removes the cpufreq interface for a CPU device.
998 * Caller should already have policy_rwsem in write mode for this CPU.
999 * This routine frees the rwsem before returning.
1001 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1003 unsigned int cpu = dev->id;
1004 unsigned long flags;
1005 struct cpufreq_policy *data;
1006 struct kobject *kobj;
1007 struct completion *cmp;
1008 #ifdef CONFIG_SMP
1009 struct device *cpu_dev;
1010 unsigned int j;
1011 #endif
1013 pr_debug("unregistering CPU %u\n", cpu);
1015 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1016 data = per_cpu(cpufreq_cpu_data, cpu);
1018 if (!data) {
1019 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1020 unlock_policy_rwsem_write(cpu);
1021 return -EINVAL;
1023 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1026 #ifdef CONFIG_SMP
1027 /* if this isn't the CPU which is the parent of the kobj, we
1028 * only need to unlink, put and exit
1030 if (unlikely(cpu != data->cpu)) {
1031 pr_debug("removing link\n");
1032 cpumask_clear_cpu(cpu, data->cpus);
1033 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1034 kobj = &dev->kobj;
1035 cpufreq_cpu_put(data);
1036 unlock_policy_rwsem_write(cpu);
1037 sysfs_remove_link(kobj, "cpufreq");
1038 return 0;
1040 #endif
1042 #ifdef CONFIG_SMP
1044 #ifdef CONFIG_HOTPLUG_CPU
1045 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1046 CPUFREQ_NAME_LEN);
1047 #endif
1049 /* if we have other CPUs still registered, we need to unlink them,
1050 * or else wait_for_completion below will lock up. Clean the
1051 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1052 * the sysfs links afterwards.
1054 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1055 for_each_cpu(j, data->cpus) {
1056 if (j == cpu)
1057 continue;
1058 per_cpu(cpufreq_cpu_data, j) = NULL;
1062 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1065 for_each_cpu(j, data->cpus) {
1066 if (j == cpu)
1067 continue;
1068 pr_debug("removing link for cpu %u\n", j);
1069 #ifdef CONFIG_HOTPLUG_CPU
1070 strncpy(per_cpu(cpufreq_cpu_governor, j),
1071 data->governor->name, CPUFREQ_NAME_LEN);
1072 #endif
1073 cpu_dev = get_cpu_device(j);
1074 kobj = &cpu_dev->kobj;
1075 unlock_policy_rwsem_write(cpu);
1076 sysfs_remove_link(kobj, "cpufreq");
1077 lock_policy_rwsem_write(cpu);
1078 cpufreq_cpu_put(data);
1081 #else
1082 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1083 #endif
1085 if (cpufreq_driver->target)
1086 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1088 kobj = &data->kobj;
1089 cmp = &data->kobj_unregister;
1090 unlock_policy_rwsem_write(cpu);
1091 kobject_put(kobj);
1093 /* we need to make sure that the underlying kobj is actually
1094 * not referenced anymore by anybody before we proceed with
1095 * unloading.
1097 pr_debug("waiting for dropping of refcount\n");
1098 wait_for_completion(cmp);
1099 pr_debug("wait complete\n");
1101 lock_policy_rwsem_write(cpu);
1102 if (cpufreq_driver->exit)
1103 cpufreq_driver->exit(data);
1104 unlock_policy_rwsem_write(cpu);
1106 #ifdef CONFIG_HOTPLUG_CPU
1107 /* when the CPU which is the parent of the kobj is hotplugged
1108 * offline, check for siblings, and create cpufreq sysfs interface
1109 * and symlinks
1111 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1112 /* first sibling now owns the new sysfs dir */
1113 cpumask_clear_cpu(cpu, data->cpus);
1114 cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL);
1116 /* finally remove our own symlink */
1117 lock_policy_rwsem_write(cpu);
1118 __cpufreq_remove_dev(dev, sif);
1120 #endif
1122 free_cpumask_var(data->related_cpus);
1123 free_cpumask_var(data->cpus);
1124 kfree(data);
1126 return 0;
1130 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1132 unsigned int cpu = dev->id;
1133 int retval;
1135 if (cpu_is_offline(cpu))
1136 return 0;
1138 if (unlikely(lock_policy_rwsem_write(cpu)))
1139 BUG();
1141 retval = __cpufreq_remove_dev(dev, sif);
1142 return retval;
1146 static void handle_update(struct work_struct *work)
1148 struct cpufreq_policy *policy =
1149 container_of(work, struct cpufreq_policy, update);
1150 unsigned int cpu = policy->cpu;
1151 pr_debug("handle_update for cpu %u called\n", cpu);
1152 cpufreq_update_policy(cpu);
1156 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1157 * @cpu: cpu number
1158 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1159 * @new_freq: CPU frequency the CPU actually runs at
1161 * We adjust to current frequency first, and need to clean up later.
1162 * So either call to cpufreq_update_policy() or schedule handle_update()).
1164 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1165 unsigned int new_freq)
1167 struct cpufreq_freqs freqs;
1169 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1170 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1172 freqs.cpu = cpu;
1173 freqs.old = old_freq;
1174 freqs.new = new_freq;
1175 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1176 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1181 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1182 * @cpu: CPU number
1184 * This is the last known freq, without actually getting it from the driver.
1185 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1187 unsigned int cpufreq_quick_get(unsigned int cpu)
1189 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1190 unsigned int ret_freq = 0;
1192 if (policy) {
1193 ret_freq = policy->cur;
1194 cpufreq_cpu_put(policy);
1197 return ret_freq;
1199 EXPORT_SYMBOL(cpufreq_quick_get);
1202 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1203 * @cpu: CPU number
1205 * Just return the max possible frequency for a given CPU.
1207 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1209 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1210 unsigned int ret_freq = 0;
1212 if (policy) {
1213 ret_freq = policy->max;
1214 cpufreq_cpu_put(policy);
1217 return ret_freq;
1219 EXPORT_SYMBOL(cpufreq_quick_get_max);
1222 static unsigned int __cpufreq_get(unsigned int cpu)
1224 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1225 unsigned int ret_freq = 0;
1227 if (!cpufreq_driver->get)
1228 return ret_freq;
1230 ret_freq = cpufreq_driver->get(cpu);
1232 if (ret_freq && policy->cur &&
1233 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1234 /* verify no discrepancy between actual and
1235 saved value exists */
1236 if (unlikely(ret_freq != policy->cur)) {
1237 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1238 schedule_work(&policy->update);
1242 return ret_freq;
1246 * cpufreq_get - get the current CPU frequency (in kHz)
1247 * @cpu: CPU number
1249 * Get the CPU current (static) CPU frequency
1251 unsigned int cpufreq_get(unsigned int cpu)
1253 unsigned int ret_freq = 0;
1254 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1256 if (!policy)
1257 goto out;
1259 if (unlikely(lock_policy_rwsem_read(cpu)))
1260 goto out_policy;
1262 ret_freq = __cpufreq_get(cpu);
1264 unlock_policy_rwsem_read(cpu);
1266 out_policy:
1267 cpufreq_cpu_put(policy);
1268 out:
1269 return ret_freq;
1271 EXPORT_SYMBOL(cpufreq_get);
1273 static struct subsys_interface cpufreq_interface = {
1274 .name = "cpufreq",
1275 .subsys = &cpu_subsys,
1276 .add_dev = cpufreq_add_dev,
1277 .remove_dev = cpufreq_remove_dev,
1282 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1284 * This function is only executed for the boot processor. The other CPUs
1285 * have been put offline by means of CPU hotplug.
1287 static int cpufreq_bp_suspend(void)
1289 int ret = 0;
1291 int cpu = smp_processor_id();
1292 struct cpufreq_policy *cpu_policy;
1294 pr_debug("suspending cpu %u\n", cpu);
1296 /* If there's no policy for the boot CPU, we have nothing to do. */
1297 cpu_policy = cpufreq_cpu_get(cpu);
1298 if (!cpu_policy)
1299 return 0;
1301 if (cpufreq_driver->suspend) {
1302 ret = cpufreq_driver->suspend(cpu_policy);
1303 if (ret)
1304 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1305 "step on CPU %u\n", cpu_policy->cpu);
1308 cpufreq_cpu_put(cpu_policy);
1309 return ret;
1313 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1315 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1316 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1317 * restored. It will verify that the current freq is in sync with
1318 * what we believe it to be. This is a bit later than when it
1319 * should be, but nonethteless it's better than calling
1320 * cpufreq_driver->get() here which might re-enable interrupts...
1322 * This function is only executed for the boot CPU. The other CPUs have not
1323 * been turned on yet.
1325 static void cpufreq_bp_resume(void)
1327 int ret = 0;
1329 int cpu = smp_processor_id();
1330 struct cpufreq_policy *cpu_policy;
1332 pr_debug("resuming cpu %u\n", cpu);
1334 /* If there's no policy for the boot CPU, we have nothing to do. */
1335 cpu_policy = cpufreq_cpu_get(cpu);
1336 if (!cpu_policy)
1337 return;
1339 if (cpufreq_driver->resume) {
1340 ret = cpufreq_driver->resume(cpu_policy);
1341 if (ret) {
1342 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1343 "step on CPU %u\n", cpu_policy->cpu);
1344 goto fail;
1348 schedule_work(&cpu_policy->update);
1350 fail:
1351 cpufreq_cpu_put(cpu_policy);
1354 static struct syscore_ops cpufreq_syscore_ops = {
1355 .suspend = cpufreq_bp_suspend,
1356 .resume = cpufreq_bp_resume,
1360 /*********************************************************************
1361 * NOTIFIER LISTS INTERFACE *
1362 *********************************************************************/
1365 * cpufreq_register_notifier - register a driver with cpufreq
1366 * @nb: notifier function to register
1367 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1369 * Add a driver to one of two lists: either a list of drivers that
1370 * are notified about clock rate changes (once before and once after
1371 * the transition), or a list of drivers that are notified about
1372 * changes in cpufreq policy.
1374 * This function may sleep, and has the same return conditions as
1375 * blocking_notifier_chain_register.
1377 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1379 int ret;
1381 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1383 switch (list) {
1384 case CPUFREQ_TRANSITION_NOTIFIER:
1385 ret = srcu_notifier_chain_register(
1386 &cpufreq_transition_notifier_list, nb);
1387 break;
1388 case CPUFREQ_POLICY_NOTIFIER:
1389 ret = blocking_notifier_chain_register(
1390 &cpufreq_policy_notifier_list, nb);
1391 break;
1392 default:
1393 ret = -EINVAL;
1396 return ret;
1398 EXPORT_SYMBOL(cpufreq_register_notifier);
1402 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1403 * @nb: notifier block to be unregistered
1404 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1406 * Remove a driver from the CPU frequency notifier list.
1408 * This function may sleep, and has the same return conditions as
1409 * blocking_notifier_chain_unregister.
1411 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1413 int ret;
1415 switch (list) {
1416 case CPUFREQ_TRANSITION_NOTIFIER:
1417 ret = srcu_notifier_chain_unregister(
1418 &cpufreq_transition_notifier_list, nb);
1419 break;
1420 case CPUFREQ_POLICY_NOTIFIER:
1421 ret = blocking_notifier_chain_unregister(
1422 &cpufreq_policy_notifier_list, nb);
1423 break;
1424 default:
1425 ret = -EINVAL;
1428 return ret;
1430 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1433 /*********************************************************************
1434 * GOVERNORS *
1435 *********************************************************************/
1438 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1439 unsigned int target_freq,
1440 unsigned int relation)
1442 int retval = -EINVAL;
1444 pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1445 target_freq, relation);
1446 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1447 retval = cpufreq_driver->target(policy, target_freq, relation);
1449 return retval;
1451 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1453 int cpufreq_driver_target(struct cpufreq_policy *policy,
1454 unsigned int target_freq,
1455 unsigned int relation)
1457 int ret = -EINVAL;
1459 policy = cpufreq_cpu_get(policy->cpu);
1460 if (!policy)
1461 goto no_policy;
1463 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1464 goto fail;
1466 ret = __cpufreq_driver_target(policy, target_freq, relation);
1468 unlock_policy_rwsem_write(policy->cpu);
1470 fail:
1471 cpufreq_cpu_put(policy);
1472 no_policy:
1473 return ret;
1475 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1477 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1479 int ret = 0;
1481 policy = cpufreq_cpu_get(policy->cpu);
1482 if (!policy)
1483 return -EINVAL;
1485 if (cpu_online(cpu) && cpufreq_driver->getavg)
1486 ret = cpufreq_driver->getavg(policy, cpu);
1488 cpufreq_cpu_put(policy);
1489 return ret;
1491 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1494 * when "event" is CPUFREQ_GOV_LIMITS
1497 static int __cpufreq_governor(struct cpufreq_policy *policy,
1498 unsigned int event)
1500 int ret;
1502 /* Only must be defined when default governor is known to have latency
1503 restrictions, like e.g. conservative or ondemand.
1504 That this is the case is already ensured in Kconfig
1506 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1507 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1508 #else
1509 struct cpufreq_governor *gov = NULL;
1510 #endif
1512 if (policy->governor->max_transition_latency &&
1513 policy->cpuinfo.transition_latency >
1514 policy->governor->max_transition_latency) {
1515 if (!gov)
1516 return -EINVAL;
1517 else {
1518 printk(KERN_WARNING "%s governor failed, too long"
1519 " transition latency of HW, fallback"
1520 " to %s governor\n",
1521 policy->governor->name,
1522 gov->name);
1523 policy->governor = gov;
1527 if (!try_module_get(policy->governor->owner))
1528 return -EINVAL;
1530 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1531 policy->cpu, event);
1532 ret = policy->governor->governor(policy, event);
1534 /* we keep one module reference alive for
1535 each CPU governed by this CPU */
1536 if ((event != CPUFREQ_GOV_START) || ret)
1537 module_put(policy->governor->owner);
1538 if ((event == CPUFREQ_GOV_STOP) && !ret)
1539 module_put(policy->governor->owner);
1541 return ret;
1545 int cpufreq_register_governor(struct cpufreq_governor *governor)
1547 int err;
1549 if (!governor)
1550 return -EINVAL;
1552 mutex_lock(&cpufreq_governor_mutex);
1554 err = -EBUSY;
1555 if (__find_governor(governor->name) == NULL) {
1556 err = 0;
1557 list_add(&governor->governor_list, &cpufreq_governor_list);
1560 mutex_unlock(&cpufreq_governor_mutex);
1561 return err;
1563 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1566 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1568 #ifdef CONFIG_HOTPLUG_CPU
1569 int cpu;
1570 #endif
1572 if (!governor)
1573 return;
1575 #ifdef CONFIG_HOTPLUG_CPU
1576 for_each_present_cpu(cpu) {
1577 if (cpu_online(cpu))
1578 continue;
1579 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1580 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1582 #endif
1584 mutex_lock(&cpufreq_governor_mutex);
1585 list_del(&governor->governor_list);
1586 mutex_unlock(&cpufreq_governor_mutex);
1587 return;
1589 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1593 /*********************************************************************
1594 * POLICY INTERFACE *
1595 *********************************************************************/
1598 * cpufreq_get_policy - get the current cpufreq_policy
1599 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1600 * is written
1602 * Reads the current cpufreq policy.
1604 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1606 struct cpufreq_policy *cpu_policy;
1607 if (!policy)
1608 return -EINVAL;
1610 cpu_policy = cpufreq_cpu_get(cpu);
1611 if (!cpu_policy)
1612 return -EINVAL;
1614 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1616 cpufreq_cpu_put(cpu_policy);
1617 return 0;
1619 EXPORT_SYMBOL(cpufreq_get_policy);
1623 * data : current policy.
1624 * policy : policy to be set.
1626 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1627 struct cpufreq_policy *policy)
1629 int ret = 0;
1631 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1632 policy->min, policy->max);
1634 memcpy(&policy->cpuinfo, &data->cpuinfo,
1635 sizeof(struct cpufreq_cpuinfo));
1637 if (policy->min > data->max || policy->max < data->min) {
1638 ret = -EINVAL;
1639 goto error_out;
1642 /* verify the cpu speed can be set within this limit */
1643 ret = cpufreq_driver->verify(policy);
1644 if (ret)
1645 goto error_out;
1647 /* adjust if necessary - all reasons */
1648 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1649 CPUFREQ_ADJUST, policy);
1651 /* adjust if necessary - hardware incompatibility*/
1652 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1653 CPUFREQ_INCOMPATIBLE, policy);
1655 /* verify the cpu speed can be set within this limit,
1656 which might be different to the first one */
1657 ret = cpufreq_driver->verify(policy);
1658 if (ret)
1659 goto error_out;
1661 /* notification of the new policy */
1662 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1663 CPUFREQ_NOTIFY, policy);
1665 data->min = policy->min;
1666 data->max = policy->max;
1668 pr_debug("new min and max freqs are %u - %u kHz\n",
1669 data->min, data->max);
1671 if (cpufreq_driver->setpolicy) {
1672 data->policy = policy->policy;
1673 pr_debug("setting range\n");
1674 ret = cpufreq_driver->setpolicy(policy);
1675 } else {
1676 if (policy->governor != data->governor) {
1677 /* save old, working values */
1678 struct cpufreq_governor *old_gov = data->governor;
1680 pr_debug("governor switch\n");
1682 /* end old governor */
1683 if (data->governor)
1684 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1686 /* start new governor */
1687 data->governor = policy->governor;
1688 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1689 /* new governor failed, so re-start old one */
1690 pr_debug("starting governor %s failed\n",
1691 data->governor->name);
1692 if (old_gov) {
1693 data->governor = old_gov;
1694 __cpufreq_governor(data,
1695 CPUFREQ_GOV_START);
1697 ret = -EINVAL;
1698 goto error_out;
1700 /* might be a policy change, too, so fall through */
1702 pr_debug("governor: change or update limits\n");
1703 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1706 error_out:
1707 return ret;
1711 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1712 * @cpu: CPU which shall be re-evaluated
1714 * Useful for policy notifiers which have different necessities
1715 * at different times.
1717 int cpufreq_update_policy(unsigned int cpu)
1719 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1720 struct cpufreq_policy policy;
1721 int ret;
1723 if (!data) {
1724 ret = -ENODEV;
1725 goto no_policy;
1728 if (unlikely(lock_policy_rwsem_write(cpu))) {
1729 ret = -EINVAL;
1730 goto fail;
1733 pr_debug("updating policy for CPU %u\n", cpu);
1734 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1735 policy.min = data->user_policy.min;
1736 policy.max = data->user_policy.max;
1737 policy.policy = data->user_policy.policy;
1738 policy.governor = data->user_policy.governor;
1740 /* BIOS might change freq behind our back
1741 -> ask driver for current freq and notify governors about a change */
1742 if (cpufreq_driver->get) {
1743 policy.cur = cpufreq_driver->get(cpu);
1744 if (!data->cur) {
1745 pr_debug("Driver did not initialize current freq");
1746 data->cur = policy.cur;
1747 } else {
1748 if (data->cur != policy.cur)
1749 cpufreq_out_of_sync(cpu, data->cur,
1750 policy.cur);
1754 ret = __cpufreq_set_policy(data, &policy);
1756 unlock_policy_rwsem_write(cpu);
1758 fail:
1759 cpufreq_cpu_put(data);
1760 no_policy:
1761 return ret;
1763 EXPORT_SYMBOL(cpufreq_update_policy);
1765 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1766 unsigned long action, void *hcpu)
1768 unsigned int cpu = (unsigned long)hcpu;
1769 struct device *dev;
1771 dev = get_cpu_device(cpu);
1772 if (dev) {
1773 switch (action) {
1774 case CPU_ONLINE:
1775 case CPU_ONLINE_FROZEN:
1776 cpufreq_add_dev(dev, NULL);
1777 break;
1778 case CPU_DOWN_PREPARE:
1779 case CPU_DOWN_PREPARE_FROZEN:
1780 if (unlikely(lock_policy_rwsem_write(cpu)))
1781 BUG();
1783 __cpufreq_remove_dev(dev, NULL);
1784 break;
1785 case CPU_DOWN_FAILED:
1786 case CPU_DOWN_FAILED_FROZEN:
1787 cpufreq_add_dev(dev, NULL);
1788 break;
1791 return NOTIFY_OK;
1794 static struct notifier_block __refdata cpufreq_cpu_notifier = {
1795 .notifier_call = cpufreq_cpu_callback,
1798 /*********************************************************************
1799 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1800 *********************************************************************/
1803 * cpufreq_register_driver - register a CPU Frequency driver
1804 * @driver_data: A struct cpufreq_driver containing the values#
1805 * submitted by the CPU Frequency driver.
1807 * Registers a CPU Frequency driver to this core code. This code
1808 * returns zero on success, -EBUSY when another driver got here first
1809 * (and isn't unregistered in the meantime).
1812 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1814 unsigned long flags;
1815 int ret;
1817 if (!driver_data || !driver_data->verify || !driver_data->init ||
1818 ((!driver_data->setpolicy) && (!driver_data->target)))
1819 return -EINVAL;
1821 pr_debug("trying to register driver %s\n", driver_data->name);
1823 if (driver_data->setpolicy)
1824 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1826 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1827 if (cpufreq_driver) {
1828 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829 return -EBUSY;
1831 cpufreq_driver = driver_data;
1832 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1834 ret = subsys_interface_register(&cpufreq_interface);
1835 if (ret)
1836 goto err_null_driver;
1838 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839 int i;
1840 ret = -ENODEV;
1842 /* check for at least one working CPU */
1843 for (i = 0; i < nr_cpu_ids; i++)
1844 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845 ret = 0;
1846 break;
1849 /* if all ->init() calls failed, unregister */
1850 if (ret) {
1851 pr_debug("no CPU initialized for driver %s\n",
1852 driver_data->name);
1853 goto err_if_unreg;
1857 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858 pr_debug("driver %s up and running\n", driver_data->name);
1860 return 0;
1861 err_if_unreg:
1862 subsys_interface_unregister(&cpufreq_interface);
1863 err_null_driver:
1864 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1865 cpufreq_driver = NULL;
1866 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1867 return ret;
1869 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1873 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1875 * Unregister the current CPUFreq driver. Only call this if you have
1876 * the right to do so, i.e. if you have succeeded in initialising before!
1877 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1878 * currently not initialised.
1880 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1882 unsigned long flags;
1884 if (!cpufreq_driver || (driver != cpufreq_driver))
1885 return -EINVAL;
1887 pr_debug("unregistering driver %s\n", driver->name);
1889 subsys_interface_unregister(&cpufreq_interface);
1890 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1892 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1893 cpufreq_driver = NULL;
1894 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1896 return 0;
1898 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1900 static int __init cpufreq_core_init(void)
1902 int cpu;
1904 for_each_possible_cpu(cpu) {
1905 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1906 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1909 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
1910 BUG_ON(!cpufreq_global_kobject);
1911 register_syscore_ops(&cpufreq_syscore_ops);
1913 return 0;
1915 core_initcall(cpufreq_core_init);