Avoid beyond bounds copy while caching ACL
[zen-stable.git] / drivers / gpu / drm / ttm / ttm_bo.c
blob7c3a57de8187c603628758c8650448f889de550f
1 /**************************************************************************
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
50 static struct attribute ttm_bo_count = {
51 .name = "bo_count",
52 .mode = S_IRUGO
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
57 int i;
59 for (i = 0; i <= TTM_PL_PRIV5; i++)
60 if (flags & (1 << i)) {
61 *mem_type = i;
62 return 0;
64 return -EINVAL;
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
69 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
71 printk(KERN_ERR TTM_PFX " has_type: %d\n", man->has_type);
72 printk(KERN_ERR TTM_PFX " use_type: %d\n", man->use_type);
73 printk(KERN_ERR TTM_PFX " flags: 0x%08X\n", man->flags);
74 printk(KERN_ERR TTM_PFX " gpu_offset: 0x%08lX\n", man->gpu_offset);
75 printk(KERN_ERR TTM_PFX " size: %llu\n", man->size);
76 printk(KERN_ERR TTM_PFX " available_caching: 0x%08X\n",
77 man->available_caching);
78 printk(KERN_ERR TTM_PFX " default_caching: 0x%08X\n",
79 man->default_caching);
80 if (mem_type != TTM_PL_SYSTEM)
81 (*man->func->debug)(man, TTM_PFX);
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 struct ttm_placement *placement)
87 int i, ret, mem_type;
89 printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 bo, bo->mem.num_pages, bo->mem.size >> 10,
91 bo->mem.size >> 20);
92 for (i = 0; i < placement->num_placement; i++) {
93 ret = ttm_mem_type_from_flags(placement->placement[i],
94 &mem_type);
95 if (ret)
96 return;
97 printk(KERN_ERR TTM_PFX " placement[%d]=0x%08X (%d)\n",
98 i, placement->placement[i], mem_type);
99 ttm_mem_type_debug(bo->bdev, mem_type);
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 struct attribute *attr,
105 char *buffer)
107 struct ttm_bo_global *glob =
108 container_of(kobj, struct ttm_bo_global, kobj);
110 return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 (unsigned long) atomic_read(&glob->bo_count));
114 static struct attribute *ttm_bo_global_attrs[] = {
115 &ttm_bo_count,
116 NULL
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 .show = &ttm_bo_global_show
123 static struct kobj_type ttm_bo_glob_kobj_type = {
124 .release = &ttm_bo_global_kobj_release,
125 .sysfs_ops = &ttm_bo_global_ops,
126 .default_attrs = ttm_bo_global_attrs
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
132 return 1 << (type);
135 static void ttm_bo_release_list(struct kref *list_kref)
137 struct ttm_buffer_object *bo =
138 container_of(list_kref, struct ttm_buffer_object, list_kref);
139 struct ttm_bo_device *bdev = bo->bdev;
140 size_t acc_size = bo->acc_size;
142 BUG_ON(atomic_read(&bo->list_kref.refcount));
143 BUG_ON(atomic_read(&bo->kref.refcount));
144 BUG_ON(atomic_read(&bo->cpu_writers));
145 BUG_ON(bo->sync_obj != NULL);
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
150 if (bo->ttm)
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->glob->bo_count);
153 if (bo->destroy)
154 bo->destroy(bo);
155 else {
156 kfree(bo);
158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
163 if (interruptible) {
164 return wait_event_interruptible(bo->event_queue,
165 atomic_read(&bo->reserved) == 0);
166 } else {
167 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 return 0;
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
175 struct ttm_bo_device *bdev = bo->bdev;
176 struct ttm_mem_type_manager *man;
178 BUG_ON(!atomic_read(&bo->reserved));
180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
182 BUG_ON(!list_empty(&bo->lru));
184 man = &bdev->man[bo->mem.mem_type];
185 list_add_tail(&bo->lru, &man->lru);
186 kref_get(&bo->list_kref);
188 if (bo->ttm != NULL) {
189 list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 kref_get(&bo->list_kref);
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
197 int put_count = 0;
199 if (!list_empty(&bo->swap)) {
200 list_del_init(&bo->swap);
201 ++put_count;
203 if (!list_empty(&bo->lru)) {
204 list_del_init(&bo->lru);
205 ++put_count;
209 * TODO: Add a driver hook to delete from
210 * driver-specific LRU's here.
213 return put_count;
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 bool interruptible,
218 bool no_wait, bool use_sequence, uint32_t sequence)
220 struct ttm_bo_global *glob = bo->glob;
221 int ret;
223 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
225 * Deadlock avoidance for multi-bo reserving.
227 if (use_sequence && bo->seq_valid) {
229 * We've already reserved this one.
231 if (unlikely(sequence == bo->val_seq))
232 return -EDEADLK;
234 * Already reserved by a thread that will not back
235 * off for us. We need to back off.
237 if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 return -EAGAIN;
241 if (no_wait)
242 return -EBUSY;
244 spin_unlock(&glob->lru_lock);
245 ret = ttm_bo_wait_unreserved(bo, interruptible);
246 spin_lock(&glob->lru_lock);
248 if (unlikely(ret))
249 return ret;
252 if (use_sequence) {
254 * Wake up waiters that may need to recheck for deadlock,
255 * if we decreased the sequence number.
257 if (unlikely((bo->val_seq - sequence < (1 << 31))
258 || !bo->seq_valid))
259 wake_up_all(&bo->event_queue);
261 bo->val_seq = sequence;
262 bo->seq_valid = true;
263 } else {
264 bo->seq_valid = false;
267 return 0;
269 EXPORT_SYMBOL(ttm_bo_reserve);
271 static void ttm_bo_ref_bug(struct kref *list_kref)
273 BUG();
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 bool never_free)
279 kref_sub(&bo->list_kref, count,
280 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 bool interruptible,
285 bool no_wait, bool use_sequence, uint32_t sequence)
287 struct ttm_bo_global *glob = bo->glob;
288 int put_count = 0;
289 int ret;
291 spin_lock(&glob->lru_lock);
292 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 sequence);
294 if (likely(ret == 0))
295 put_count = ttm_bo_del_from_lru(bo);
296 spin_unlock(&glob->lru_lock);
298 ttm_bo_list_ref_sub(bo, put_count, true);
300 return ret;
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
305 ttm_bo_add_to_lru(bo);
306 atomic_set(&bo->reserved, 0);
307 wake_up_all(&bo->event_queue);
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
312 struct ttm_bo_global *glob = bo->glob;
314 spin_lock(&glob->lru_lock);
315 ttm_bo_unreserve_locked(bo);
316 spin_unlock(&glob->lru_lock);
318 EXPORT_SYMBOL(ttm_bo_unreserve);
321 * Call bo->mutex locked.
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
325 struct ttm_bo_device *bdev = bo->bdev;
326 struct ttm_bo_global *glob = bo->glob;
327 int ret = 0;
328 uint32_t page_flags = 0;
330 TTM_ASSERT_LOCKED(&bo->mutex);
331 bo->ttm = NULL;
333 if (bdev->need_dma32)
334 page_flags |= TTM_PAGE_FLAG_DMA32;
336 switch (bo->type) {
337 case ttm_bo_type_device:
338 if (zero_alloc)
339 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 case ttm_bo_type_kernel:
341 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 page_flags, glob->dummy_read_page);
343 if (unlikely(bo->ttm == NULL))
344 ret = -ENOMEM;
345 break;
346 default:
347 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
348 ret = -EINVAL;
349 break;
352 return ret;
355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 struct ttm_mem_reg *mem,
357 bool evict, bool interruptible,
358 bool no_wait_reserve, bool no_wait_gpu)
360 struct ttm_bo_device *bdev = bo->bdev;
361 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 int ret = 0;
367 if (old_is_pci || new_is_pci ||
368 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 ret = ttm_mem_io_lock(old_man, true);
370 if (unlikely(ret != 0))
371 goto out_err;
372 ttm_bo_unmap_virtual_locked(bo);
373 ttm_mem_io_unlock(old_man);
377 * Create and bind a ttm if required.
380 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 if (bo->ttm == NULL) {
382 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 ret = ttm_bo_add_ttm(bo, zero);
384 if (ret)
385 goto out_err;
388 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 if (ret)
390 goto out_err;
392 if (mem->mem_type != TTM_PL_SYSTEM) {
393 ret = ttm_tt_bind(bo->ttm, mem);
394 if (ret)
395 goto out_err;
398 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 if (bdev->driver->move_notify)
400 bdev->driver->move_notify(bo, mem);
401 bo->mem = *mem;
402 mem->mm_node = NULL;
403 goto moved;
407 if (bdev->driver->move_notify)
408 bdev->driver->move_notify(bo, mem);
410 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
411 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
412 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
413 else if (bdev->driver->move)
414 ret = bdev->driver->move(bo, evict, interruptible,
415 no_wait_reserve, no_wait_gpu, mem);
416 else
417 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
419 if (ret) {
420 if (bdev->driver->move_notify) {
421 struct ttm_mem_reg tmp_mem = *mem;
422 *mem = bo->mem;
423 bo->mem = tmp_mem;
424 bdev->driver->move_notify(bo, mem);
425 bo->mem = *mem;
428 goto out_err;
431 moved:
432 if (bo->evicted) {
433 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
434 if (ret)
435 printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
436 bo->evicted = false;
439 if (bo->mem.mm_node) {
440 bo->offset = (bo->mem.start << PAGE_SHIFT) +
441 bdev->man[bo->mem.mem_type].gpu_offset;
442 bo->cur_placement = bo->mem.placement;
443 } else
444 bo->offset = 0;
446 return 0;
448 out_err:
449 new_man = &bdev->man[bo->mem.mem_type];
450 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
451 ttm_tt_unbind(bo->ttm);
452 ttm_tt_destroy(bo->ttm);
453 bo->ttm = NULL;
456 return ret;
460 * Call bo::reserved.
461 * Will release GPU memory type usage on destruction.
462 * This is the place to put in driver specific hooks to release
463 * driver private resources.
464 * Will release the bo::reserved lock.
467 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
469 if (bo->bdev->driver->move_notify)
470 bo->bdev->driver->move_notify(bo, NULL);
472 if (bo->ttm) {
473 ttm_tt_unbind(bo->ttm);
474 ttm_tt_destroy(bo->ttm);
475 bo->ttm = NULL;
477 ttm_bo_mem_put(bo, &bo->mem);
479 atomic_set(&bo->reserved, 0);
482 * Make processes trying to reserve really pick it up.
484 smp_mb__after_atomic_dec();
485 wake_up_all(&bo->event_queue);
488 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
490 struct ttm_bo_device *bdev = bo->bdev;
491 struct ttm_bo_global *glob = bo->glob;
492 struct ttm_bo_driver *driver;
493 void *sync_obj = NULL;
494 void *sync_obj_arg;
495 int put_count;
496 int ret;
498 spin_lock(&bdev->fence_lock);
499 (void) ttm_bo_wait(bo, false, false, true);
500 if (!bo->sync_obj) {
502 spin_lock(&glob->lru_lock);
505 * Lock inversion between bo:reserve and bdev::fence_lock here,
506 * but that's OK, since we're only trylocking.
509 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
511 if (unlikely(ret == -EBUSY))
512 goto queue;
514 spin_unlock(&bdev->fence_lock);
515 put_count = ttm_bo_del_from_lru(bo);
517 spin_unlock(&glob->lru_lock);
518 ttm_bo_cleanup_memtype_use(bo);
520 ttm_bo_list_ref_sub(bo, put_count, true);
522 return;
523 } else {
524 spin_lock(&glob->lru_lock);
526 queue:
527 driver = bdev->driver;
528 if (bo->sync_obj)
529 sync_obj = driver->sync_obj_ref(bo->sync_obj);
530 sync_obj_arg = bo->sync_obj_arg;
532 kref_get(&bo->list_kref);
533 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
534 spin_unlock(&glob->lru_lock);
535 spin_unlock(&bdev->fence_lock);
537 if (sync_obj) {
538 driver->sync_obj_flush(sync_obj, sync_obj_arg);
539 driver->sync_obj_unref(&sync_obj);
541 schedule_delayed_work(&bdev->wq,
542 ((HZ / 100) < 1) ? 1 : HZ / 100);
546 * function ttm_bo_cleanup_refs
547 * If bo idle, remove from delayed- and lru lists, and unref.
548 * If not idle, do nothing.
550 * @interruptible Any sleeps should occur interruptibly.
551 * @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
552 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
555 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
556 bool interruptible,
557 bool no_wait_reserve,
558 bool no_wait_gpu)
560 struct ttm_bo_device *bdev = bo->bdev;
561 struct ttm_bo_global *glob = bo->glob;
562 int put_count;
563 int ret = 0;
565 retry:
566 spin_lock(&bdev->fence_lock);
567 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
568 spin_unlock(&bdev->fence_lock);
570 if (unlikely(ret != 0))
571 return ret;
573 spin_lock(&glob->lru_lock);
575 if (unlikely(list_empty(&bo->ddestroy))) {
576 spin_unlock(&glob->lru_lock);
577 return 0;
580 ret = ttm_bo_reserve_locked(bo, interruptible,
581 no_wait_reserve, false, 0);
583 if (unlikely(ret != 0)) {
584 spin_unlock(&glob->lru_lock);
585 return ret;
589 * We can re-check for sync object without taking
590 * the bo::lock since setting the sync object requires
591 * also bo::reserved. A busy object at this point may
592 * be caused by another thread recently starting an accelerated
593 * eviction.
596 if (unlikely(bo->sync_obj)) {
597 atomic_set(&bo->reserved, 0);
598 wake_up_all(&bo->event_queue);
599 spin_unlock(&glob->lru_lock);
600 goto retry;
603 put_count = ttm_bo_del_from_lru(bo);
604 list_del_init(&bo->ddestroy);
605 ++put_count;
607 spin_unlock(&glob->lru_lock);
608 ttm_bo_cleanup_memtype_use(bo);
610 ttm_bo_list_ref_sub(bo, put_count, true);
612 return 0;
616 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617 * encountered buffers.
620 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
622 struct ttm_bo_global *glob = bdev->glob;
623 struct ttm_buffer_object *entry = NULL;
624 int ret = 0;
626 spin_lock(&glob->lru_lock);
627 if (list_empty(&bdev->ddestroy))
628 goto out_unlock;
630 entry = list_first_entry(&bdev->ddestroy,
631 struct ttm_buffer_object, ddestroy);
632 kref_get(&entry->list_kref);
634 for (;;) {
635 struct ttm_buffer_object *nentry = NULL;
637 if (entry->ddestroy.next != &bdev->ddestroy) {
638 nentry = list_first_entry(&entry->ddestroy,
639 struct ttm_buffer_object, ddestroy);
640 kref_get(&nentry->list_kref);
643 spin_unlock(&glob->lru_lock);
644 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
645 !remove_all);
646 kref_put(&entry->list_kref, ttm_bo_release_list);
647 entry = nentry;
649 if (ret || !entry)
650 goto out;
652 spin_lock(&glob->lru_lock);
653 if (list_empty(&entry->ddestroy))
654 break;
657 out_unlock:
658 spin_unlock(&glob->lru_lock);
659 out:
660 if (entry)
661 kref_put(&entry->list_kref, ttm_bo_release_list);
662 return ret;
665 static void ttm_bo_delayed_workqueue(struct work_struct *work)
667 struct ttm_bo_device *bdev =
668 container_of(work, struct ttm_bo_device, wq.work);
670 if (ttm_bo_delayed_delete(bdev, false)) {
671 schedule_delayed_work(&bdev->wq,
672 ((HZ / 100) < 1) ? 1 : HZ / 100);
676 static void ttm_bo_release(struct kref *kref)
678 struct ttm_buffer_object *bo =
679 container_of(kref, struct ttm_buffer_object, kref);
680 struct ttm_bo_device *bdev = bo->bdev;
681 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
683 if (likely(bo->vm_node != NULL)) {
684 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
685 drm_mm_put_block(bo->vm_node);
686 bo->vm_node = NULL;
688 write_unlock(&bdev->vm_lock);
689 ttm_mem_io_lock(man, false);
690 ttm_mem_io_free_vm(bo);
691 ttm_mem_io_unlock(man);
692 ttm_bo_cleanup_refs_or_queue(bo);
693 kref_put(&bo->list_kref, ttm_bo_release_list);
694 write_lock(&bdev->vm_lock);
697 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
699 struct ttm_buffer_object *bo = *p_bo;
700 struct ttm_bo_device *bdev = bo->bdev;
702 *p_bo = NULL;
703 write_lock(&bdev->vm_lock);
704 kref_put(&bo->kref, ttm_bo_release);
705 write_unlock(&bdev->vm_lock);
707 EXPORT_SYMBOL(ttm_bo_unref);
709 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
711 return cancel_delayed_work_sync(&bdev->wq);
713 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
715 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
717 if (resched)
718 schedule_delayed_work(&bdev->wq,
719 ((HZ / 100) < 1) ? 1 : HZ / 100);
721 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
723 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
724 bool no_wait_reserve, bool no_wait_gpu)
726 struct ttm_bo_device *bdev = bo->bdev;
727 struct ttm_mem_reg evict_mem;
728 struct ttm_placement placement;
729 int ret = 0;
731 spin_lock(&bdev->fence_lock);
732 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
733 spin_unlock(&bdev->fence_lock);
735 if (unlikely(ret != 0)) {
736 if (ret != -ERESTARTSYS) {
737 printk(KERN_ERR TTM_PFX
738 "Failed to expire sync object before "
739 "buffer eviction.\n");
741 goto out;
744 BUG_ON(!atomic_read(&bo->reserved));
746 evict_mem = bo->mem;
747 evict_mem.mm_node = NULL;
748 evict_mem.bus.io_reserved_vm = false;
749 evict_mem.bus.io_reserved_count = 0;
751 placement.fpfn = 0;
752 placement.lpfn = 0;
753 placement.num_placement = 0;
754 placement.num_busy_placement = 0;
755 bdev->driver->evict_flags(bo, &placement);
756 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
757 no_wait_reserve, no_wait_gpu);
758 if (ret) {
759 if (ret != -ERESTARTSYS) {
760 printk(KERN_ERR TTM_PFX
761 "Failed to find memory space for "
762 "buffer 0x%p eviction.\n", bo);
763 ttm_bo_mem_space_debug(bo, &placement);
765 goto out;
768 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
769 no_wait_reserve, no_wait_gpu);
770 if (ret) {
771 if (ret != -ERESTARTSYS)
772 printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
773 ttm_bo_mem_put(bo, &evict_mem);
774 goto out;
776 bo->evicted = true;
777 out:
778 return ret;
781 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
782 uint32_t mem_type,
783 bool interruptible, bool no_wait_reserve,
784 bool no_wait_gpu)
786 struct ttm_bo_global *glob = bdev->glob;
787 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
788 struct ttm_buffer_object *bo;
789 int ret, put_count = 0;
791 retry:
792 spin_lock(&glob->lru_lock);
793 if (list_empty(&man->lru)) {
794 spin_unlock(&glob->lru_lock);
795 return -EBUSY;
798 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
799 kref_get(&bo->list_kref);
801 if (!list_empty(&bo->ddestroy)) {
802 spin_unlock(&glob->lru_lock);
803 ret = ttm_bo_cleanup_refs(bo, interruptible,
804 no_wait_reserve, no_wait_gpu);
805 kref_put(&bo->list_kref, ttm_bo_release_list);
807 if (likely(ret == 0 || ret == -ERESTARTSYS))
808 return ret;
810 goto retry;
813 ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
815 if (unlikely(ret == -EBUSY)) {
816 spin_unlock(&glob->lru_lock);
817 if (likely(!no_wait_gpu))
818 ret = ttm_bo_wait_unreserved(bo, interruptible);
820 kref_put(&bo->list_kref, ttm_bo_release_list);
823 * We *need* to retry after releasing the lru lock.
826 if (unlikely(ret != 0))
827 return ret;
828 goto retry;
831 put_count = ttm_bo_del_from_lru(bo);
832 spin_unlock(&glob->lru_lock);
834 BUG_ON(ret != 0);
836 ttm_bo_list_ref_sub(bo, put_count, true);
838 ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
839 ttm_bo_unreserve(bo);
841 kref_put(&bo->list_kref, ttm_bo_release_list);
842 return ret;
845 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
847 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
849 if (mem->mm_node)
850 (*man->func->put_node)(man, mem);
852 EXPORT_SYMBOL(ttm_bo_mem_put);
855 * Repeatedly evict memory from the LRU for @mem_type until we create enough
856 * space, or we've evicted everything and there isn't enough space.
858 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
859 uint32_t mem_type,
860 struct ttm_placement *placement,
861 struct ttm_mem_reg *mem,
862 bool interruptible,
863 bool no_wait_reserve,
864 bool no_wait_gpu)
866 struct ttm_bo_device *bdev = bo->bdev;
867 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
868 int ret;
870 do {
871 ret = (*man->func->get_node)(man, bo, placement, mem);
872 if (unlikely(ret != 0))
873 return ret;
874 if (mem->mm_node)
875 break;
876 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
877 no_wait_reserve, no_wait_gpu);
878 if (unlikely(ret != 0))
879 return ret;
880 } while (1);
881 if (mem->mm_node == NULL)
882 return -ENOMEM;
883 mem->mem_type = mem_type;
884 return 0;
887 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
888 uint32_t cur_placement,
889 uint32_t proposed_placement)
891 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
892 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
895 * Keep current caching if possible.
898 if ((cur_placement & caching) != 0)
899 result |= (cur_placement & caching);
900 else if ((man->default_caching & caching) != 0)
901 result |= man->default_caching;
902 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
903 result |= TTM_PL_FLAG_CACHED;
904 else if ((TTM_PL_FLAG_WC & caching) != 0)
905 result |= TTM_PL_FLAG_WC;
906 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
907 result |= TTM_PL_FLAG_UNCACHED;
909 return result;
912 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
913 uint32_t mem_type,
914 uint32_t proposed_placement,
915 uint32_t *masked_placement)
917 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
919 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
920 return false;
922 if ((proposed_placement & man->available_caching) == 0)
923 return false;
925 cur_flags |= (proposed_placement & man->available_caching);
927 *masked_placement = cur_flags;
928 return true;
932 * Creates space for memory region @mem according to its type.
934 * This function first searches for free space in compatible memory types in
935 * the priority order defined by the driver. If free space isn't found, then
936 * ttm_bo_mem_force_space is attempted in priority order to evict and find
937 * space.
939 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
940 struct ttm_placement *placement,
941 struct ttm_mem_reg *mem,
942 bool interruptible, bool no_wait_reserve,
943 bool no_wait_gpu)
945 struct ttm_bo_device *bdev = bo->bdev;
946 struct ttm_mem_type_manager *man;
947 uint32_t mem_type = TTM_PL_SYSTEM;
948 uint32_t cur_flags = 0;
949 bool type_found = false;
950 bool type_ok = false;
951 bool has_erestartsys = false;
952 int i, ret;
954 mem->mm_node = NULL;
955 for (i = 0; i < placement->num_placement; ++i) {
956 ret = ttm_mem_type_from_flags(placement->placement[i],
957 &mem_type);
958 if (ret)
959 return ret;
960 man = &bdev->man[mem_type];
962 type_ok = ttm_bo_mt_compatible(man,
963 mem_type,
964 placement->placement[i],
965 &cur_flags);
967 if (!type_ok)
968 continue;
970 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
971 cur_flags);
973 * Use the access and other non-mapping-related flag bits from
974 * the memory placement flags to the current flags
976 ttm_flag_masked(&cur_flags, placement->placement[i],
977 ~TTM_PL_MASK_MEMTYPE);
979 if (mem_type == TTM_PL_SYSTEM)
980 break;
982 if (man->has_type && man->use_type) {
983 type_found = true;
984 ret = (*man->func->get_node)(man, bo, placement, mem);
985 if (unlikely(ret))
986 return ret;
988 if (mem->mm_node)
989 break;
992 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
993 mem->mem_type = mem_type;
994 mem->placement = cur_flags;
995 return 0;
998 if (!type_found)
999 return -EINVAL;
1001 for (i = 0; i < placement->num_busy_placement; ++i) {
1002 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1003 &mem_type);
1004 if (ret)
1005 return ret;
1006 man = &bdev->man[mem_type];
1007 if (!man->has_type)
1008 continue;
1009 if (!ttm_bo_mt_compatible(man,
1010 mem_type,
1011 placement->busy_placement[i],
1012 &cur_flags))
1013 continue;
1015 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1016 cur_flags);
1018 * Use the access and other non-mapping-related flag bits from
1019 * the memory placement flags to the current flags
1021 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1022 ~TTM_PL_MASK_MEMTYPE);
1025 if (mem_type == TTM_PL_SYSTEM) {
1026 mem->mem_type = mem_type;
1027 mem->placement = cur_flags;
1028 mem->mm_node = NULL;
1029 return 0;
1032 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1033 interruptible, no_wait_reserve, no_wait_gpu);
1034 if (ret == 0 && mem->mm_node) {
1035 mem->placement = cur_flags;
1036 return 0;
1038 if (ret == -ERESTARTSYS)
1039 has_erestartsys = true;
1041 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1042 return ret;
1044 EXPORT_SYMBOL(ttm_bo_mem_space);
1046 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1048 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1049 return -EBUSY;
1051 return wait_event_interruptible(bo->event_queue,
1052 atomic_read(&bo->cpu_writers) == 0);
1054 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1056 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1057 struct ttm_placement *placement,
1058 bool interruptible, bool no_wait_reserve,
1059 bool no_wait_gpu)
1061 int ret = 0;
1062 struct ttm_mem_reg mem;
1063 struct ttm_bo_device *bdev = bo->bdev;
1065 BUG_ON(!atomic_read(&bo->reserved));
1068 * FIXME: It's possible to pipeline buffer moves.
1069 * Have the driver move function wait for idle when necessary,
1070 * instead of doing it here.
1072 spin_lock(&bdev->fence_lock);
1073 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1074 spin_unlock(&bdev->fence_lock);
1075 if (ret)
1076 return ret;
1077 mem.num_pages = bo->num_pages;
1078 mem.size = mem.num_pages << PAGE_SHIFT;
1079 mem.page_alignment = bo->mem.page_alignment;
1080 mem.bus.io_reserved_vm = false;
1081 mem.bus.io_reserved_count = 0;
1083 * Determine where to move the buffer.
1085 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1086 if (ret)
1087 goto out_unlock;
1088 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1089 out_unlock:
1090 if (ret && mem.mm_node)
1091 ttm_bo_mem_put(bo, &mem);
1092 return ret;
1095 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1096 struct ttm_mem_reg *mem)
1098 int i;
1100 if (mem->mm_node && placement->lpfn != 0 &&
1101 (mem->start < placement->fpfn ||
1102 mem->start + mem->num_pages > placement->lpfn))
1103 return -1;
1105 for (i = 0; i < placement->num_placement; i++) {
1106 if ((placement->placement[i] & mem->placement &
1107 TTM_PL_MASK_CACHING) &&
1108 (placement->placement[i] & mem->placement &
1109 TTM_PL_MASK_MEM))
1110 return i;
1112 return -1;
1115 int ttm_bo_validate(struct ttm_buffer_object *bo,
1116 struct ttm_placement *placement,
1117 bool interruptible, bool no_wait_reserve,
1118 bool no_wait_gpu)
1120 int ret;
1122 BUG_ON(!atomic_read(&bo->reserved));
1123 /* Check that range is valid */
1124 if (placement->lpfn || placement->fpfn)
1125 if (placement->fpfn > placement->lpfn ||
1126 (placement->lpfn - placement->fpfn) < bo->num_pages)
1127 return -EINVAL;
1129 * Check whether we need to move buffer.
1131 ret = ttm_bo_mem_compat(placement, &bo->mem);
1132 if (ret < 0) {
1133 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1134 if (ret)
1135 return ret;
1136 } else {
1138 * Use the access and other non-mapping-related flag bits from
1139 * the compatible memory placement flags to the active flags
1141 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1142 ~TTM_PL_MASK_MEMTYPE);
1145 * We might need to add a TTM.
1147 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1148 ret = ttm_bo_add_ttm(bo, true);
1149 if (ret)
1150 return ret;
1152 return 0;
1154 EXPORT_SYMBOL(ttm_bo_validate);
1156 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1157 struct ttm_placement *placement)
1159 BUG_ON((placement->fpfn || placement->lpfn) &&
1160 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1162 return 0;
1165 int ttm_bo_init(struct ttm_bo_device *bdev,
1166 struct ttm_buffer_object *bo,
1167 unsigned long size,
1168 enum ttm_bo_type type,
1169 struct ttm_placement *placement,
1170 uint32_t page_alignment,
1171 unsigned long buffer_start,
1172 bool interruptible,
1173 struct file *persistent_swap_storage,
1174 size_t acc_size,
1175 void (*destroy) (struct ttm_buffer_object *))
1177 int ret = 0;
1178 unsigned long num_pages;
1179 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1181 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1182 if (ret) {
1183 printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
1184 if (destroy)
1185 (*destroy)(bo);
1186 else
1187 kfree(bo);
1188 return -ENOMEM;
1191 size += buffer_start & ~PAGE_MASK;
1192 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1193 if (num_pages == 0) {
1194 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1195 if (destroy)
1196 (*destroy)(bo);
1197 else
1198 kfree(bo);
1199 return -EINVAL;
1201 bo->destroy = destroy;
1203 kref_init(&bo->kref);
1204 kref_init(&bo->list_kref);
1205 atomic_set(&bo->cpu_writers, 0);
1206 atomic_set(&bo->reserved, 1);
1207 init_waitqueue_head(&bo->event_queue);
1208 INIT_LIST_HEAD(&bo->lru);
1209 INIT_LIST_HEAD(&bo->ddestroy);
1210 INIT_LIST_HEAD(&bo->swap);
1211 INIT_LIST_HEAD(&bo->io_reserve_lru);
1212 bo->bdev = bdev;
1213 bo->glob = bdev->glob;
1214 bo->type = type;
1215 bo->num_pages = num_pages;
1216 bo->mem.size = num_pages << PAGE_SHIFT;
1217 bo->mem.mem_type = TTM_PL_SYSTEM;
1218 bo->mem.num_pages = bo->num_pages;
1219 bo->mem.mm_node = NULL;
1220 bo->mem.page_alignment = page_alignment;
1221 bo->mem.bus.io_reserved_vm = false;
1222 bo->mem.bus.io_reserved_count = 0;
1223 bo->buffer_start = buffer_start & PAGE_MASK;
1224 bo->priv_flags = 0;
1225 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1226 bo->seq_valid = false;
1227 bo->persistent_swap_storage = persistent_swap_storage;
1228 bo->acc_size = acc_size;
1229 atomic_inc(&bo->glob->bo_count);
1231 ret = ttm_bo_check_placement(bo, placement);
1232 if (unlikely(ret != 0))
1233 goto out_err;
1236 * For ttm_bo_type_device buffers, allocate
1237 * address space from the device.
1239 if (bo->type == ttm_bo_type_device) {
1240 ret = ttm_bo_setup_vm(bo);
1241 if (ret)
1242 goto out_err;
1245 ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1246 if (ret)
1247 goto out_err;
1249 ttm_bo_unreserve(bo);
1250 return 0;
1252 out_err:
1253 ttm_bo_unreserve(bo);
1254 ttm_bo_unref(&bo);
1256 return ret;
1258 EXPORT_SYMBOL(ttm_bo_init);
1260 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1261 unsigned long bo_size,
1262 unsigned struct_size)
1264 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1265 size_t size = 0;
1267 size += ttm_round_pot(struct_size);
1268 size += PAGE_ALIGN(npages * sizeof(void *));
1269 size += ttm_round_pot(sizeof(struct ttm_tt));
1270 return size;
1272 EXPORT_SYMBOL(ttm_bo_acc_size);
1274 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1275 unsigned long bo_size,
1276 unsigned struct_size)
1278 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1279 size_t size = 0;
1281 size += ttm_round_pot(struct_size);
1282 size += PAGE_ALIGN(npages * sizeof(void *));
1283 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1284 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1285 return size;
1287 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1289 int ttm_bo_create(struct ttm_bo_device *bdev,
1290 unsigned long size,
1291 enum ttm_bo_type type,
1292 struct ttm_placement *placement,
1293 uint32_t page_alignment,
1294 unsigned long buffer_start,
1295 bool interruptible,
1296 struct file *persistent_swap_storage,
1297 struct ttm_buffer_object **p_bo)
1299 struct ttm_buffer_object *bo;
1300 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1301 size_t acc_size;
1302 int ret;
1304 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1305 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1306 if (unlikely(ret != 0))
1307 return ret;
1309 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1311 if (unlikely(bo == NULL)) {
1312 ttm_mem_global_free(mem_glob, acc_size);
1313 return -ENOMEM;
1316 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1317 buffer_start, interruptible,
1318 persistent_swap_storage, acc_size, NULL);
1319 if (likely(ret == 0))
1320 *p_bo = bo;
1322 return ret;
1324 EXPORT_SYMBOL(ttm_bo_create);
1326 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1327 unsigned mem_type, bool allow_errors)
1329 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1330 struct ttm_bo_global *glob = bdev->glob;
1331 int ret;
1334 * Can't use standard list traversal since we're unlocking.
1337 spin_lock(&glob->lru_lock);
1338 while (!list_empty(&man->lru)) {
1339 spin_unlock(&glob->lru_lock);
1340 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1341 if (ret) {
1342 if (allow_errors) {
1343 return ret;
1344 } else {
1345 printk(KERN_ERR TTM_PFX
1346 "Cleanup eviction failed\n");
1349 spin_lock(&glob->lru_lock);
1351 spin_unlock(&glob->lru_lock);
1352 return 0;
1355 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1357 struct ttm_mem_type_manager *man;
1358 int ret = -EINVAL;
1360 if (mem_type >= TTM_NUM_MEM_TYPES) {
1361 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1362 return ret;
1364 man = &bdev->man[mem_type];
1366 if (!man->has_type) {
1367 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1368 "memory manager type %u\n", mem_type);
1369 return ret;
1372 man->use_type = false;
1373 man->has_type = false;
1375 ret = 0;
1376 if (mem_type > 0) {
1377 ttm_bo_force_list_clean(bdev, mem_type, false);
1379 ret = (*man->func->takedown)(man);
1382 return ret;
1384 EXPORT_SYMBOL(ttm_bo_clean_mm);
1386 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1388 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1390 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1391 printk(KERN_ERR TTM_PFX
1392 "Illegal memory manager memory type %u.\n",
1393 mem_type);
1394 return -EINVAL;
1397 if (!man->has_type) {
1398 printk(KERN_ERR TTM_PFX
1399 "Memory type %u has not been initialized.\n",
1400 mem_type);
1401 return 0;
1404 return ttm_bo_force_list_clean(bdev, mem_type, true);
1406 EXPORT_SYMBOL(ttm_bo_evict_mm);
1408 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1409 unsigned long p_size)
1411 int ret = -EINVAL;
1412 struct ttm_mem_type_manager *man;
1414 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1415 man = &bdev->man[type];
1416 BUG_ON(man->has_type);
1417 man->io_reserve_fastpath = true;
1418 man->use_io_reserve_lru = false;
1419 mutex_init(&man->io_reserve_mutex);
1420 INIT_LIST_HEAD(&man->io_reserve_lru);
1422 ret = bdev->driver->init_mem_type(bdev, type, man);
1423 if (ret)
1424 return ret;
1425 man->bdev = bdev;
1427 ret = 0;
1428 if (type != TTM_PL_SYSTEM) {
1429 ret = (*man->func->init)(man, p_size);
1430 if (ret)
1431 return ret;
1433 man->has_type = true;
1434 man->use_type = true;
1435 man->size = p_size;
1437 INIT_LIST_HEAD(&man->lru);
1439 return 0;
1441 EXPORT_SYMBOL(ttm_bo_init_mm);
1443 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1445 struct ttm_bo_global *glob =
1446 container_of(kobj, struct ttm_bo_global, kobj);
1448 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1449 __free_page(glob->dummy_read_page);
1450 kfree(glob);
1453 void ttm_bo_global_release(struct drm_global_reference *ref)
1455 struct ttm_bo_global *glob = ref->object;
1457 kobject_del(&glob->kobj);
1458 kobject_put(&glob->kobj);
1460 EXPORT_SYMBOL(ttm_bo_global_release);
1462 int ttm_bo_global_init(struct drm_global_reference *ref)
1464 struct ttm_bo_global_ref *bo_ref =
1465 container_of(ref, struct ttm_bo_global_ref, ref);
1466 struct ttm_bo_global *glob = ref->object;
1467 int ret;
1469 mutex_init(&glob->device_list_mutex);
1470 spin_lock_init(&glob->lru_lock);
1471 glob->mem_glob = bo_ref->mem_glob;
1472 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1474 if (unlikely(glob->dummy_read_page == NULL)) {
1475 ret = -ENOMEM;
1476 goto out_no_drp;
1479 INIT_LIST_HEAD(&glob->swap_lru);
1480 INIT_LIST_HEAD(&glob->device_list);
1482 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1483 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1484 if (unlikely(ret != 0)) {
1485 printk(KERN_ERR TTM_PFX
1486 "Could not register buffer object swapout.\n");
1487 goto out_no_shrink;
1490 atomic_set(&glob->bo_count, 0);
1492 ret = kobject_init_and_add(
1493 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1494 if (unlikely(ret != 0))
1495 kobject_put(&glob->kobj);
1496 return ret;
1497 out_no_shrink:
1498 __free_page(glob->dummy_read_page);
1499 out_no_drp:
1500 kfree(glob);
1501 return ret;
1503 EXPORT_SYMBOL(ttm_bo_global_init);
1506 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1508 int ret = 0;
1509 unsigned i = TTM_NUM_MEM_TYPES;
1510 struct ttm_mem_type_manager *man;
1511 struct ttm_bo_global *glob = bdev->glob;
1513 while (i--) {
1514 man = &bdev->man[i];
1515 if (man->has_type) {
1516 man->use_type = false;
1517 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1518 ret = -EBUSY;
1519 printk(KERN_ERR TTM_PFX
1520 "DRM memory manager type %d "
1521 "is not clean.\n", i);
1523 man->has_type = false;
1527 mutex_lock(&glob->device_list_mutex);
1528 list_del(&bdev->device_list);
1529 mutex_unlock(&glob->device_list_mutex);
1531 cancel_delayed_work_sync(&bdev->wq);
1533 while (ttm_bo_delayed_delete(bdev, true))
1536 spin_lock(&glob->lru_lock);
1537 if (list_empty(&bdev->ddestroy))
1538 TTM_DEBUG("Delayed destroy list was clean\n");
1540 if (list_empty(&bdev->man[0].lru))
1541 TTM_DEBUG("Swap list was clean\n");
1542 spin_unlock(&glob->lru_lock);
1544 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1545 write_lock(&bdev->vm_lock);
1546 drm_mm_takedown(&bdev->addr_space_mm);
1547 write_unlock(&bdev->vm_lock);
1549 return ret;
1551 EXPORT_SYMBOL(ttm_bo_device_release);
1553 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1554 struct ttm_bo_global *glob,
1555 struct ttm_bo_driver *driver,
1556 uint64_t file_page_offset,
1557 bool need_dma32)
1559 int ret = -EINVAL;
1561 rwlock_init(&bdev->vm_lock);
1562 bdev->driver = driver;
1564 memset(bdev->man, 0, sizeof(bdev->man));
1567 * Initialize the system memory buffer type.
1568 * Other types need to be driver / IOCTL initialized.
1570 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1571 if (unlikely(ret != 0))
1572 goto out_no_sys;
1574 bdev->addr_space_rb = RB_ROOT;
1575 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1576 if (unlikely(ret != 0))
1577 goto out_no_addr_mm;
1579 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1580 bdev->nice_mode = true;
1581 INIT_LIST_HEAD(&bdev->ddestroy);
1582 bdev->dev_mapping = NULL;
1583 bdev->glob = glob;
1584 bdev->need_dma32 = need_dma32;
1585 bdev->val_seq = 0;
1586 spin_lock_init(&bdev->fence_lock);
1587 mutex_lock(&glob->device_list_mutex);
1588 list_add_tail(&bdev->device_list, &glob->device_list);
1589 mutex_unlock(&glob->device_list_mutex);
1591 return 0;
1592 out_no_addr_mm:
1593 ttm_bo_clean_mm(bdev, 0);
1594 out_no_sys:
1595 return ret;
1597 EXPORT_SYMBOL(ttm_bo_device_init);
1600 * buffer object vm functions.
1603 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1605 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1607 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1608 if (mem->mem_type == TTM_PL_SYSTEM)
1609 return false;
1611 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1612 return false;
1614 if (mem->placement & TTM_PL_FLAG_CACHED)
1615 return false;
1617 return true;
1620 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1622 struct ttm_bo_device *bdev = bo->bdev;
1623 loff_t offset = (loff_t) bo->addr_space_offset;
1624 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1626 if (!bdev->dev_mapping)
1627 return;
1628 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1629 ttm_mem_io_free_vm(bo);
1632 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1634 struct ttm_bo_device *bdev = bo->bdev;
1635 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1637 ttm_mem_io_lock(man, false);
1638 ttm_bo_unmap_virtual_locked(bo);
1639 ttm_mem_io_unlock(man);
1643 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1645 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1647 struct ttm_bo_device *bdev = bo->bdev;
1648 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1649 struct rb_node *parent = NULL;
1650 struct ttm_buffer_object *cur_bo;
1651 unsigned long offset = bo->vm_node->start;
1652 unsigned long cur_offset;
1654 while (*cur) {
1655 parent = *cur;
1656 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1657 cur_offset = cur_bo->vm_node->start;
1658 if (offset < cur_offset)
1659 cur = &parent->rb_left;
1660 else if (offset > cur_offset)
1661 cur = &parent->rb_right;
1662 else
1663 BUG();
1666 rb_link_node(&bo->vm_rb, parent, cur);
1667 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1671 * ttm_bo_setup_vm:
1673 * @bo: the buffer to allocate address space for
1675 * Allocate address space in the drm device so that applications
1676 * can mmap the buffer and access the contents. This only
1677 * applies to ttm_bo_type_device objects as others are not
1678 * placed in the drm device address space.
1681 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1683 struct ttm_bo_device *bdev = bo->bdev;
1684 int ret;
1686 retry_pre_get:
1687 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1688 if (unlikely(ret != 0))
1689 return ret;
1691 write_lock(&bdev->vm_lock);
1692 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1693 bo->mem.num_pages, 0, 0);
1695 if (unlikely(bo->vm_node == NULL)) {
1696 ret = -ENOMEM;
1697 goto out_unlock;
1700 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1701 bo->mem.num_pages, 0);
1703 if (unlikely(bo->vm_node == NULL)) {
1704 write_unlock(&bdev->vm_lock);
1705 goto retry_pre_get;
1708 ttm_bo_vm_insert_rb(bo);
1709 write_unlock(&bdev->vm_lock);
1710 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1712 return 0;
1713 out_unlock:
1714 write_unlock(&bdev->vm_lock);
1715 return ret;
1718 int ttm_bo_wait(struct ttm_buffer_object *bo,
1719 bool lazy, bool interruptible, bool no_wait)
1721 struct ttm_bo_driver *driver = bo->bdev->driver;
1722 struct ttm_bo_device *bdev = bo->bdev;
1723 void *sync_obj;
1724 void *sync_obj_arg;
1725 int ret = 0;
1727 if (likely(bo->sync_obj == NULL))
1728 return 0;
1730 while (bo->sync_obj) {
1732 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1733 void *tmp_obj = bo->sync_obj;
1734 bo->sync_obj = NULL;
1735 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1736 spin_unlock(&bdev->fence_lock);
1737 driver->sync_obj_unref(&tmp_obj);
1738 spin_lock(&bdev->fence_lock);
1739 continue;
1742 if (no_wait)
1743 return -EBUSY;
1745 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1746 sync_obj_arg = bo->sync_obj_arg;
1747 spin_unlock(&bdev->fence_lock);
1748 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1749 lazy, interruptible);
1750 if (unlikely(ret != 0)) {
1751 driver->sync_obj_unref(&sync_obj);
1752 spin_lock(&bdev->fence_lock);
1753 return ret;
1755 spin_lock(&bdev->fence_lock);
1756 if (likely(bo->sync_obj == sync_obj &&
1757 bo->sync_obj_arg == sync_obj_arg)) {
1758 void *tmp_obj = bo->sync_obj;
1759 bo->sync_obj = NULL;
1760 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1761 &bo->priv_flags);
1762 spin_unlock(&bdev->fence_lock);
1763 driver->sync_obj_unref(&sync_obj);
1764 driver->sync_obj_unref(&tmp_obj);
1765 spin_lock(&bdev->fence_lock);
1766 } else {
1767 spin_unlock(&bdev->fence_lock);
1768 driver->sync_obj_unref(&sync_obj);
1769 spin_lock(&bdev->fence_lock);
1772 return 0;
1774 EXPORT_SYMBOL(ttm_bo_wait);
1776 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1778 struct ttm_bo_device *bdev = bo->bdev;
1779 int ret = 0;
1782 * Using ttm_bo_reserve makes sure the lru lists are updated.
1785 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1786 if (unlikely(ret != 0))
1787 return ret;
1788 spin_lock(&bdev->fence_lock);
1789 ret = ttm_bo_wait(bo, false, true, no_wait);
1790 spin_unlock(&bdev->fence_lock);
1791 if (likely(ret == 0))
1792 atomic_inc(&bo->cpu_writers);
1793 ttm_bo_unreserve(bo);
1794 return ret;
1796 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1798 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1800 if (atomic_dec_and_test(&bo->cpu_writers))
1801 wake_up_all(&bo->event_queue);
1803 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1806 * A buffer object shrink method that tries to swap out the first
1807 * buffer object on the bo_global::swap_lru list.
1810 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1812 struct ttm_bo_global *glob =
1813 container_of(shrink, struct ttm_bo_global, shrink);
1814 struct ttm_buffer_object *bo;
1815 int ret = -EBUSY;
1816 int put_count;
1817 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1819 spin_lock(&glob->lru_lock);
1820 while (ret == -EBUSY) {
1821 if (unlikely(list_empty(&glob->swap_lru))) {
1822 spin_unlock(&glob->lru_lock);
1823 return -EBUSY;
1826 bo = list_first_entry(&glob->swap_lru,
1827 struct ttm_buffer_object, swap);
1828 kref_get(&bo->list_kref);
1830 if (!list_empty(&bo->ddestroy)) {
1831 spin_unlock(&glob->lru_lock);
1832 (void) ttm_bo_cleanup_refs(bo, false, false, false);
1833 kref_put(&bo->list_kref, ttm_bo_release_list);
1834 continue;
1838 * Reserve buffer. Since we unlock while sleeping, we need
1839 * to re-check that nobody removed us from the swap-list while
1840 * we slept.
1843 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1844 if (unlikely(ret == -EBUSY)) {
1845 spin_unlock(&glob->lru_lock);
1846 ttm_bo_wait_unreserved(bo, false);
1847 kref_put(&bo->list_kref, ttm_bo_release_list);
1848 spin_lock(&glob->lru_lock);
1852 BUG_ON(ret != 0);
1853 put_count = ttm_bo_del_from_lru(bo);
1854 spin_unlock(&glob->lru_lock);
1856 ttm_bo_list_ref_sub(bo, put_count, true);
1859 * Wait for GPU, then move to system cached.
1862 spin_lock(&bo->bdev->fence_lock);
1863 ret = ttm_bo_wait(bo, false, false, false);
1864 spin_unlock(&bo->bdev->fence_lock);
1866 if (unlikely(ret != 0))
1867 goto out;
1869 if ((bo->mem.placement & swap_placement) != swap_placement) {
1870 struct ttm_mem_reg evict_mem;
1872 evict_mem = bo->mem;
1873 evict_mem.mm_node = NULL;
1874 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1875 evict_mem.mem_type = TTM_PL_SYSTEM;
1877 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1878 false, false, false);
1879 if (unlikely(ret != 0))
1880 goto out;
1883 ttm_bo_unmap_virtual(bo);
1886 * Swap out. Buffer will be swapped in again as soon as
1887 * anyone tries to access a ttm page.
1890 if (bo->bdev->driver->swap_notify)
1891 bo->bdev->driver->swap_notify(bo);
1893 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1894 out:
1898 * Unreserve without putting on LRU to avoid swapping out an
1899 * already swapped buffer.
1902 atomic_set(&bo->reserved, 0);
1903 wake_up_all(&bo->event_queue);
1904 kref_put(&bo->list_kref, ttm_bo_release_list);
1905 return ret;
1908 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1910 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1913 EXPORT_SYMBOL(ttm_bo_swapout_all);