Avoid beyond bounds copy while caching ACL
[zen-stable.git] / drivers / net / ethernet / intel / e100.c
blob9436397e5725ecd6efdd735ac579ff9fa268e131
1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
42 * Theory of Operation
44 * I. General
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
73 * III. Transmit
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
97 * IV. Receive
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
124 * placed.
126 * V. Miscellaneous
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
139 * TODO:
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
143 * FIXES:
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 #include <linux/hardirq.h>
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/moduleparam.h>
156 #include <linux/kernel.h>
157 #include <linux/types.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/delay.h>
161 #include <linux/init.h>
162 #include <linux/pci.h>
163 #include <linux/dma-mapping.h>
164 #include <linux/dmapool.h>
165 #include <linux/netdevice.h>
166 #include <linux/etherdevice.h>
167 #include <linux/mii.h>
168 #include <linux/if_vlan.h>
169 #include <linux/skbuff.h>
170 #include <linux/ethtool.h>
171 #include <linux/string.h>
172 #include <linux/firmware.h>
173 #include <linux/rtnetlink.h>
174 #include <asm/unaligned.h>
177 #define DRV_NAME "e100"
178 #define DRV_EXT "-NAPI"
179 #define DRV_VERSION "3.5.24-k2"DRV_EXT
180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
183 #define E100_WATCHDOG_PERIOD (2 * HZ)
184 #define E100_NAPI_WEIGHT 16
186 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
187 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
188 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
190 MODULE_DESCRIPTION(DRV_DESCRIPTION);
191 MODULE_AUTHOR(DRV_COPYRIGHT);
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194 MODULE_FIRMWARE(FIRMWARE_D101M);
195 MODULE_FIRMWARE(FIRMWARE_D101S);
196 MODULE_FIRMWARE(FIRMWARE_D102E);
198 static int debug = 3;
199 static int eeprom_bad_csum_allow = 0;
200 static int use_io = 0;
201 module_param(debug, int, 0);
202 module_param(eeprom_bad_csum_allow, int, 0);
203 module_param(use_io, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 { 0, }
256 MODULE_DEVICE_TABLE(pci, e100_id_table);
258 enum mac {
259 mac_82557_D100_A = 0,
260 mac_82557_D100_B = 1,
261 mac_82557_D100_C = 2,
262 mac_82558_D101_A4 = 4,
263 mac_82558_D101_B0 = 5,
264 mac_82559_D101M = 8,
265 mac_82559_D101S = 9,
266 mac_82550_D102 = 12,
267 mac_82550_D102_C = 13,
268 mac_82551_E = 14,
269 mac_82551_F = 15,
270 mac_82551_10 = 16,
271 mac_unknown = 0xFF,
274 enum phy {
275 phy_100a = 0x000003E0,
276 phy_100c = 0x035002A8,
277 phy_82555_tx = 0x015002A8,
278 phy_nsc_tx = 0x5C002000,
279 phy_82562_et = 0x033002A8,
280 phy_82562_em = 0x032002A8,
281 phy_82562_ek = 0x031002A8,
282 phy_82562_eh = 0x017002A8,
283 phy_82552_v = 0xd061004d,
284 phy_unknown = 0xFFFFFFFF,
287 /* CSR (Control/Status Registers) */
288 struct csr {
289 struct {
290 u8 status;
291 u8 stat_ack;
292 u8 cmd_lo;
293 u8 cmd_hi;
294 u32 gen_ptr;
295 } scb;
296 u32 port;
297 u16 flash_ctrl;
298 u8 eeprom_ctrl_lo;
299 u8 eeprom_ctrl_hi;
300 u32 mdi_ctrl;
301 u32 rx_dma_count;
304 enum scb_status {
305 rus_no_res = 0x08,
306 rus_ready = 0x10,
307 rus_mask = 0x3C,
310 enum ru_state {
311 RU_SUSPENDED = 0,
312 RU_RUNNING = 1,
313 RU_UNINITIALIZED = -1,
316 enum scb_stat_ack {
317 stat_ack_not_ours = 0x00,
318 stat_ack_sw_gen = 0x04,
319 stat_ack_rnr = 0x10,
320 stat_ack_cu_idle = 0x20,
321 stat_ack_frame_rx = 0x40,
322 stat_ack_cu_cmd_done = 0x80,
323 stat_ack_not_present = 0xFF,
324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
328 enum scb_cmd_hi {
329 irq_mask_none = 0x00,
330 irq_mask_all = 0x01,
331 irq_sw_gen = 0x02,
334 enum scb_cmd_lo {
335 cuc_nop = 0x00,
336 ruc_start = 0x01,
337 ruc_load_base = 0x06,
338 cuc_start = 0x10,
339 cuc_resume = 0x20,
340 cuc_dump_addr = 0x40,
341 cuc_dump_stats = 0x50,
342 cuc_load_base = 0x60,
343 cuc_dump_reset = 0x70,
346 enum cuc_dump {
347 cuc_dump_complete = 0x0000A005,
348 cuc_dump_reset_complete = 0x0000A007,
351 enum port {
352 software_reset = 0x0000,
353 selftest = 0x0001,
354 selective_reset = 0x0002,
357 enum eeprom_ctrl_lo {
358 eesk = 0x01,
359 eecs = 0x02,
360 eedi = 0x04,
361 eedo = 0x08,
364 enum mdi_ctrl {
365 mdi_write = 0x04000000,
366 mdi_read = 0x08000000,
367 mdi_ready = 0x10000000,
370 enum eeprom_op {
371 op_write = 0x05,
372 op_read = 0x06,
373 op_ewds = 0x10,
374 op_ewen = 0x13,
377 enum eeprom_offsets {
378 eeprom_cnfg_mdix = 0x03,
379 eeprom_phy_iface = 0x06,
380 eeprom_id = 0x0A,
381 eeprom_config_asf = 0x0D,
382 eeprom_smbus_addr = 0x90,
385 enum eeprom_cnfg_mdix {
386 eeprom_mdix_enabled = 0x0080,
389 enum eeprom_phy_iface {
390 NoSuchPhy = 0,
391 I82553AB,
392 I82553C,
393 I82503,
394 DP83840,
395 S80C240,
396 S80C24,
397 I82555,
398 DP83840A = 10,
401 enum eeprom_id {
402 eeprom_id_wol = 0x0020,
405 enum eeprom_config_asf {
406 eeprom_asf = 0x8000,
407 eeprom_gcl = 0x4000,
410 enum cb_status {
411 cb_complete = 0x8000,
412 cb_ok = 0x2000,
415 enum cb_command {
416 cb_nop = 0x0000,
417 cb_iaaddr = 0x0001,
418 cb_config = 0x0002,
419 cb_multi = 0x0003,
420 cb_tx = 0x0004,
421 cb_ucode = 0x0005,
422 cb_dump = 0x0006,
423 cb_tx_sf = 0x0008,
424 cb_cid = 0x1f00,
425 cb_i = 0x2000,
426 cb_s = 0x4000,
427 cb_el = 0x8000,
430 struct rfd {
431 __le16 status;
432 __le16 command;
433 __le32 link;
434 __le32 rbd;
435 __le16 actual_size;
436 __le16 size;
439 struct rx {
440 struct rx *next, *prev;
441 struct sk_buff *skb;
442 dma_addr_t dma_addr;
445 #if defined(__BIG_ENDIAN_BITFIELD)
446 #define X(a,b) b,a
447 #else
448 #define X(a,b) a,b
449 #endif
450 struct config {
451 /*0*/ u8 X(byte_count:6, pad0:2);
452 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
453 /*2*/ u8 adaptive_ifs;
454 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
455 term_write_cache_line:1), pad3:4);
456 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
457 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
458 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
459 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
460 rx_discard_overruns:1), rx_save_bad_frames:1);
461 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
462 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
463 tx_dynamic_tbd:1);
464 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
465 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
466 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
467 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
468 loopback:2);
469 /*11*/ u8 X(linear_priority:3, pad11:5);
470 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
471 /*13*/ u8 ip_addr_lo;
472 /*14*/ u8 ip_addr_hi;
473 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
474 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
475 pad15_2:1), crs_or_cdt:1);
476 /*16*/ u8 fc_delay_lo;
477 /*17*/ u8 fc_delay_hi;
478 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
479 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
480 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
481 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
482 full_duplex_force:1), full_duplex_pin:1);
483 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
484 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
485 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
486 u8 pad_d102[9];
489 #define E100_MAX_MULTICAST_ADDRS 64
490 struct multi {
491 __le16 count;
492 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
495 /* Important: keep total struct u32-aligned */
496 #define UCODE_SIZE 134
497 struct cb {
498 __le16 status;
499 __le16 command;
500 __le32 link;
501 union {
502 u8 iaaddr[ETH_ALEN];
503 __le32 ucode[UCODE_SIZE];
504 struct config config;
505 struct multi multi;
506 struct {
507 u32 tbd_array;
508 u16 tcb_byte_count;
509 u8 threshold;
510 u8 tbd_count;
511 struct {
512 __le32 buf_addr;
513 __le16 size;
514 u16 eol;
515 } tbd;
516 } tcb;
517 __le32 dump_buffer_addr;
518 } u;
519 struct cb *next, *prev;
520 dma_addr_t dma_addr;
521 struct sk_buff *skb;
524 enum loopback {
525 lb_none = 0, lb_mac = 1, lb_phy = 3,
528 struct stats {
529 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
530 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
531 tx_multiple_collisions, tx_total_collisions;
532 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
533 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
534 rx_short_frame_errors;
535 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
536 __le16 xmt_tco_frames, rcv_tco_frames;
537 __le32 complete;
540 struct mem {
541 struct {
542 u32 signature;
543 u32 result;
544 } selftest;
545 struct stats stats;
546 u8 dump_buf[596];
549 struct param_range {
550 u32 min;
551 u32 max;
552 u32 count;
555 struct params {
556 struct param_range rfds;
557 struct param_range cbs;
560 struct nic {
561 /* Begin: frequently used values: keep adjacent for cache effect */
562 u32 msg_enable ____cacheline_aligned;
563 struct net_device *netdev;
564 struct pci_dev *pdev;
565 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
567 struct rx *rxs ____cacheline_aligned;
568 struct rx *rx_to_use;
569 struct rx *rx_to_clean;
570 struct rfd blank_rfd;
571 enum ru_state ru_running;
573 spinlock_t cb_lock ____cacheline_aligned;
574 spinlock_t cmd_lock;
575 struct csr __iomem *csr;
576 enum scb_cmd_lo cuc_cmd;
577 unsigned int cbs_avail;
578 struct napi_struct napi;
579 struct cb *cbs;
580 struct cb *cb_to_use;
581 struct cb *cb_to_send;
582 struct cb *cb_to_clean;
583 __le16 tx_command;
584 /* End: frequently used values: keep adjacent for cache effect */
586 enum {
587 ich = (1 << 0),
588 promiscuous = (1 << 1),
589 multicast_all = (1 << 2),
590 wol_magic = (1 << 3),
591 ich_10h_workaround = (1 << 4),
592 } flags ____cacheline_aligned;
594 enum mac mac;
595 enum phy phy;
596 struct params params;
597 struct timer_list watchdog;
598 struct mii_if_info mii;
599 struct work_struct tx_timeout_task;
600 enum loopback loopback;
602 struct mem *mem;
603 dma_addr_t dma_addr;
605 struct pci_pool *cbs_pool;
606 dma_addr_t cbs_dma_addr;
607 u8 adaptive_ifs;
608 u8 tx_threshold;
609 u32 tx_frames;
610 u32 tx_collisions;
611 u32 tx_deferred;
612 u32 tx_single_collisions;
613 u32 tx_multiple_collisions;
614 u32 tx_fc_pause;
615 u32 tx_tco_frames;
617 u32 rx_fc_pause;
618 u32 rx_fc_unsupported;
619 u32 rx_tco_frames;
620 u32 rx_over_length_errors;
622 u16 eeprom_wc;
623 __le16 eeprom[256];
624 spinlock_t mdio_lock;
625 const struct firmware *fw;
628 static inline void e100_write_flush(struct nic *nic)
630 /* Flush previous PCI writes through intermediate bridges
631 * by doing a benign read */
632 (void)ioread8(&nic->csr->scb.status);
635 static void e100_enable_irq(struct nic *nic)
637 unsigned long flags;
639 spin_lock_irqsave(&nic->cmd_lock, flags);
640 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
641 e100_write_flush(nic);
642 spin_unlock_irqrestore(&nic->cmd_lock, flags);
645 static void e100_disable_irq(struct nic *nic)
647 unsigned long flags;
649 spin_lock_irqsave(&nic->cmd_lock, flags);
650 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
651 e100_write_flush(nic);
652 spin_unlock_irqrestore(&nic->cmd_lock, flags);
655 static void e100_hw_reset(struct nic *nic)
657 /* Put CU and RU into idle with a selective reset to get
658 * device off of PCI bus */
659 iowrite32(selective_reset, &nic->csr->port);
660 e100_write_flush(nic); udelay(20);
662 /* Now fully reset device */
663 iowrite32(software_reset, &nic->csr->port);
664 e100_write_flush(nic); udelay(20);
666 /* Mask off our interrupt line - it's unmasked after reset */
667 e100_disable_irq(nic);
670 static int e100_self_test(struct nic *nic)
672 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
674 /* Passing the self-test is a pretty good indication
675 * that the device can DMA to/from host memory */
677 nic->mem->selftest.signature = 0;
678 nic->mem->selftest.result = 0xFFFFFFFF;
680 iowrite32(selftest | dma_addr, &nic->csr->port);
681 e100_write_flush(nic);
682 /* Wait 10 msec for self-test to complete */
683 msleep(10);
685 /* Interrupts are enabled after self-test */
686 e100_disable_irq(nic);
688 /* Check results of self-test */
689 if (nic->mem->selftest.result != 0) {
690 netif_err(nic, hw, nic->netdev,
691 "Self-test failed: result=0x%08X\n",
692 nic->mem->selftest.result);
693 return -ETIMEDOUT;
695 if (nic->mem->selftest.signature == 0) {
696 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
697 return -ETIMEDOUT;
700 return 0;
703 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
705 u32 cmd_addr_data[3];
706 u8 ctrl;
707 int i, j;
709 /* Three cmds: write/erase enable, write data, write/erase disable */
710 cmd_addr_data[0] = op_ewen << (addr_len - 2);
711 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
712 le16_to_cpu(data);
713 cmd_addr_data[2] = op_ewds << (addr_len - 2);
715 /* Bit-bang cmds to write word to eeprom */
716 for (j = 0; j < 3; j++) {
718 /* Chip select */
719 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
720 e100_write_flush(nic); udelay(4);
722 for (i = 31; i >= 0; i--) {
723 ctrl = (cmd_addr_data[j] & (1 << i)) ?
724 eecs | eedi : eecs;
725 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
726 e100_write_flush(nic); udelay(4);
728 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
729 e100_write_flush(nic); udelay(4);
731 /* Wait 10 msec for cmd to complete */
732 msleep(10);
734 /* Chip deselect */
735 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
736 e100_write_flush(nic); udelay(4);
740 /* General technique stolen from the eepro100 driver - very clever */
741 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
743 u32 cmd_addr_data;
744 u16 data = 0;
745 u8 ctrl;
746 int i;
748 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
750 /* Chip select */
751 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
752 e100_write_flush(nic); udelay(4);
754 /* Bit-bang to read word from eeprom */
755 for (i = 31; i >= 0; i--) {
756 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
757 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
758 e100_write_flush(nic); udelay(4);
760 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
761 e100_write_flush(nic); udelay(4);
763 /* Eeprom drives a dummy zero to EEDO after receiving
764 * complete address. Use this to adjust addr_len. */
765 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
766 if (!(ctrl & eedo) && i > 16) {
767 *addr_len -= (i - 16);
768 i = 17;
771 data = (data << 1) | (ctrl & eedo ? 1 : 0);
774 /* Chip deselect */
775 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
776 e100_write_flush(nic); udelay(4);
778 return cpu_to_le16(data);
781 /* Load entire EEPROM image into driver cache and validate checksum */
782 static int e100_eeprom_load(struct nic *nic)
784 u16 addr, addr_len = 8, checksum = 0;
786 /* Try reading with an 8-bit addr len to discover actual addr len */
787 e100_eeprom_read(nic, &addr_len, 0);
788 nic->eeprom_wc = 1 << addr_len;
790 for (addr = 0; addr < nic->eeprom_wc; addr++) {
791 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
792 if (addr < nic->eeprom_wc - 1)
793 checksum += le16_to_cpu(nic->eeprom[addr]);
796 /* The checksum, stored in the last word, is calculated such that
797 * the sum of words should be 0xBABA */
798 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
799 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
800 if (!eeprom_bad_csum_allow)
801 return -EAGAIN;
804 return 0;
807 /* Save (portion of) driver EEPROM cache to device and update checksum */
808 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
810 u16 addr, addr_len = 8, checksum = 0;
812 /* Try reading with an 8-bit addr len to discover actual addr len */
813 e100_eeprom_read(nic, &addr_len, 0);
814 nic->eeprom_wc = 1 << addr_len;
816 if (start + count >= nic->eeprom_wc)
817 return -EINVAL;
819 for (addr = start; addr < start + count; addr++)
820 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
822 /* The checksum, stored in the last word, is calculated such that
823 * the sum of words should be 0xBABA */
824 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
825 checksum += le16_to_cpu(nic->eeprom[addr]);
826 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
827 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
828 nic->eeprom[nic->eeprom_wc - 1]);
830 return 0;
833 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
834 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
835 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
837 unsigned long flags;
838 unsigned int i;
839 int err = 0;
841 spin_lock_irqsave(&nic->cmd_lock, flags);
843 /* Previous command is accepted when SCB clears */
844 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
845 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
846 break;
847 cpu_relax();
848 if (unlikely(i > E100_WAIT_SCB_FAST))
849 udelay(5);
851 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
852 err = -EAGAIN;
853 goto err_unlock;
856 if (unlikely(cmd != cuc_resume))
857 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
858 iowrite8(cmd, &nic->csr->scb.cmd_lo);
860 err_unlock:
861 spin_unlock_irqrestore(&nic->cmd_lock, flags);
863 return err;
866 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
867 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
869 struct cb *cb;
870 unsigned long flags;
871 int err = 0;
873 spin_lock_irqsave(&nic->cb_lock, flags);
875 if (unlikely(!nic->cbs_avail)) {
876 err = -ENOMEM;
877 goto err_unlock;
880 cb = nic->cb_to_use;
881 nic->cb_to_use = cb->next;
882 nic->cbs_avail--;
883 cb->skb = skb;
885 if (unlikely(!nic->cbs_avail))
886 err = -ENOSPC;
888 cb_prepare(nic, cb, skb);
890 /* Order is important otherwise we'll be in a race with h/w:
891 * set S-bit in current first, then clear S-bit in previous. */
892 cb->command |= cpu_to_le16(cb_s);
893 wmb();
894 cb->prev->command &= cpu_to_le16(~cb_s);
896 while (nic->cb_to_send != nic->cb_to_use) {
897 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
898 nic->cb_to_send->dma_addr))) {
899 /* Ok, here's where things get sticky. It's
900 * possible that we can't schedule the command
901 * because the controller is too busy, so
902 * let's just queue the command and try again
903 * when another command is scheduled. */
904 if (err == -ENOSPC) {
905 //request a reset
906 schedule_work(&nic->tx_timeout_task);
908 break;
909 } else {
910 nic->cuc_cmd = cuc_resume;
911 nic->cb_to_send = nic->cb_to_send->next;
915 err_unlock:
916 spin_unlock_irqrestore(&nic->cb_lock, flags);
918 return err;
921 static int mdio_read(struct net_device *netdev, int addr, int reg)
923 struct nic *nic = netdev_priv(netdev);
924 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
927 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
929 struct nic *nic = netdev_priv(netdev);
931 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
934 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
935 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
937 u32 data_out = 0;
938 unsigned int i;
939 unsigned long flags;
943 * Stratus87247: we shouldn't be writing the MDI control
944 * register until the Ready bit shows True. Also, since
945 * manipulation of the MDI control registers is a multi-step
946 * procedure it should be done under lock.
948 spin_lock_irqsave(&nic->mdio_lock, flags);
949 for (i = 100; i; --i) {
950 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
951 break;
952 udelay(20);
954 if (unlikely(!i)) {
955 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
956 spin_unlock_irqrestore(&nic->mdio_lock, flags);
957 return 0; /* No way to indicate timeout error */
959 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
961 for (i = 0; i < 100; i++) {
962 udelay(20);
963 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
964 break;
966 spin_unlock_irqrestore(&nic->mdio_lock, flags);
967 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
968 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
969 dir == mdi_read ? "READ" : "WRITE",
970 addr, reg, data, data_out);
971 return (u16)data_out;
974 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
975 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
976 u32 addr,
977 u32 dir,
978 u32 reg,
979 u16 data)
981 if ((reg == MII_BMCR) && (dir == mdi_write)) {
982 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
983 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
984 MII_ADVERTISE);
987 * Workaround Si issue where sometimes the part will not
988 * autoneg to 100Mbps even when advertised.
990 if (advert & ADVERTISE_100FULL)
991 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
992 else if (advert & ADVERTISE_100HALF)
993 data |= BMCR_SPEED100;
996 return mdio_ctrl_hw(nic, addr, dir, reg, data);
999 /* Fully software-emulated mdio_ctrl() function for cards without
1000 * MII-compliant PHYs.
1001 * For now, this is mainly geared towards 80c24 support; in case of further
1002 * requirements for other types (i82503, ...?) either extend this mechanism
1003 * or split it, whichever is cleaner.
1005 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1006 u32 addr,
1007 u32 dir,
1008 u32 reg,
1009 u16 data)
1011 /* might need to allocate a netdev_priv'ed register array eventually
1012 * to be able to record state changes, but for now
1013 * some fully hardcoded register handling ought to be ok I guess. */
1015 if (dir == mdi_read) {
1016 switch (reg) {
1017 case MII_BMCR:
1018 /* Auto-negotiation, right? */
1019 return BMCR_ANENABLE |
1020 BMCR_FULLDPLX;
1021 case MII_BMSR:
1022 return BMSR_LSTATUS /* for mii_link_ok() */ |
1023 BMSR_ANEGCAPABLE |
1024 BMSR_10FULL;
1025 case MII_ADVERTISE:
1026 /* 80c24 is a "combo card" PHY, right? */
1027 return ADVERTISE_10HALF |
1028 ADVERTISE_10FULL;
1029 default:
1030 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1031 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032 dir == mdi_read ? "READ" : "WRITE",
1033 addr, reg, data);
1034 return 0xFFFF;
1036 } else {
1037 switch (reg) {
1038 default:
1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir == mdi_read ? "READ" : "WRITE",
1042 addr, reg, data);
1043 return 0xFFFF;
1047 static inline int e100_phy_supports_mii(struct nic *nic)
1049 /* for now, just check it by comparing whether we
1050 are using MII software emulation.
1052 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1055 static void e100_get_defaults(struct nic *nic)
1057 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1058 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1060 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1061 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1062 if (nic->mac == mac_unknown)
1063 nic->mac = mac_82557_D100_A;
1065 nic->params.rfds = rfds;
1066 nic->params.cbs = cbs;
1068 /* Quadwords to DMA into FIFO before starting frame transmit */
1069 nic->tx_threshold = 0xE0;
1071 /* no interrupt for every tx completion, delay = 256us if not 557 */
1072 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1073 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1075 /* Template for a freshly allocated RFD */
1076 nic->blank_rfd.command = 0;
1077 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1078 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1080 /* MII setup */
1081 nic->mii.phy_id_mask = 0x1F;
1082 nic->mii.reg_num_mask = 0x1F;
1083 nic->mii.dev = nic->netdev;
1084 nic->mii.mdio_read = mdio_read;
1085 nic->mii.mdio_write = mdio_write;
1088 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1090 struct config *config = &cb->u.config;
1091 u8 *c = (u8 *)config;
1093 cb->command = cpu_to_le16(cb_config);
1095 memset(config, 0, sizeof(struct config));
1097 config->byte_count = 0x16; /* bytes in this struct */
1098 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1099 config->direct_rx_dma = 0x1; /* reserved */
1100 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1101 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1102 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1103 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1104 if (e100_phy_supports_mii(nic))
1105 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1106 config->pad10 = 0x6;
1107 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1108 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1109 config->ifs = 0x6; /* x16 = inter frame spacing */
1110 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1111 config->pad15_1 = 0x1;
1112 config->pad15_2 = 0x1;
1113 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1114 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1115 config->tx_padding = 0x1; /* 1=pad short frames */
1116 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1117 config->pad18 = 0x1;
1118 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1119 config->pad20_1 = 0x1F;
1120 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1121 config->pad21_1 = 0x5;
1123 config->adaptive_ifs = nic->adaptive_ifs;
1124 config->loopback = nic->loopback;
1126 if (nic->mii.force_media && nic->mii.full_duplex)
1127 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1129 if (nic->flags & promiscuous || nic->loopback) {
1130 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1131 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1132 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1135 if (nic->flags & multicast_all)
1136 config->multicast_all = 0x1; /* 1=accept, 0=no */
1138 /* disable WoL when up */
1139 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1140 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1142 if (nic->mac >= mac_82558_D101_A4) {
1143 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1144 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1145 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1146 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1147 if (nic->mac >= mac_82559_D101M) {
1148 config->tno_intr = 0x1; /* TCO stats enable */
1149 /* Enable TCO in extended config */
1150 if (nic->mac >= mac_82551_10) {
1151 config->byte_count = 0x20; /* extended bytes */
1152 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1154 } else {
1155 config->standard_stat_counter = 0x0;
1159 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1160 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1162 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1163 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1165 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1166 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1170 /*************************************************************************
1171 * CPUSaver parameters
1173 * All CPUSaver parameters are 16-bit literals that are part of a
1174 * "move immediate value" instruction. By changing the value of
1175 * the literal in the instruction before the code is loaded, the
1176 * driver can change the algorithm.
1178 * INTDELAY - This loads the dead-man timer with its initial value.
1179 * When this timer expires the interrupt is asserted, and the
1180 * timer is reset each time a new packet is received. (see
1181 * BUNDLEMAX below to set the limit on number of chained packets)
1182 * The current default is 0x600 or 1536. Experiments show that
1183 * the value should probably stay within the 0x200 - 0x1000.
1185 * BUNDLEMAX -
1186 * This sets the maximum number of frames that will be bundled. In
1187 * some situations, such as the TCP windowing algorithm, it may be
1188 * better to limit the growth of the bundle size than let it go as
1189 * high as it can, because that could cause too much added latency.
1190 * The default is six, because this is the number of packets in the
1191 * default TCP window size. A value of 1 would make CPUSaver indicate
1192 * an interrupt for every frame received. If you do not want to put
1193 * a limit on the bundle size, set this value to xFFFF.
1195 * BUNDLESMALL -
1196 * This contains a bit-mask describing the minimum size frame that
1197 * will be bundled. The default masks the lower 7 bits, which means
1198 * that any frame less than 128 bytes in length will not be bundled,
1199 * but will instead immediately generate an interrupt. This does
1200 * not affect the current bundle in any way. Any frame that is 128
1201 * bytes or large will be bundled normally. This feature is meant
1202 * to provide immediate indication of ACK frames in a TCP environment.
1203 * Customers were seeing poor performance when a machine with CPUSaver
1204 * enabled was sending but not receiving. The delay introduced when
1205 * the ACKs were received was enough to reduce total throughput, because
1206 * the sender would sit idle until the ACK was finally seen.
1208 * The current default is 0xFF80, which masks out the lower 7 bits.
1209 * This means that any frame which is x7F (127) bytes or smaller
1210 * will cause an immediate interrupt. Because this value must be a
1211 * bit mask, there are only a few valid values that can be used. To
1212 * turn this feature off, the driver can write the value xFFFF to the
1213 * lower word of this instruction (in the same way that the other
1214 * parameters are used). Likewise, a value of 0xF800 (2047) would
1215 * cause an interrupt to be generated for every frame, because all
1216 * standard Ethernet frames are <= 2047 bytes in length.
1217 *************************************************************************/
1219 /* if you wish to disable the ucode functionality, while maintaining the
1220 * workarounds it provides, set the following defines to:
1221 * BUNDLESMALL 0
1222 * BUNDLEMAX 1
1223 * INTDELAY 1
1225 #define BUNDLESMALL 1
1226 #define BUNDLEMAX (u16)6
1227 #define INTDELAY (u16)1536 /* 0x600 */
1229 /* Initialize firmware */
1230 static const struct firmware *e100_request_firmware(struct nic *nic)
1232 const char *fw_name;
1233 const struct firmware *fw = nic->fw;
1234 u8 timer, bundle, min_size;
1235 int err = 0;
1237 /* do not load u-code for ICH devices */
1238 if (nic->flags & ich)
1239 return NULL;
1241 /* Search for ucode match against h/w revision */
1242 if (nic->mac == mac_82559_D101M)
1243 fw_name = FIRMWARE_D101M;
1244 else if (nic->mac == mac_82559_D101S)
1245 fw_name = FIRMWARE_D101S;
1246 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1247 fw_name = FIRMWARE_D102E;
1248 else /* No ucode on other devices */
1249 return NULL;
1251 /* If the firmware has not previously been loaded, request a pointer
1252 * to it. If it was previously loaded, we are reinitializing the
1253 * adapter, possibly in a resume from hibernate, in which case
1254 * request_firmware() cannot be used.
1256 if (!fw)
1257 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1259 if (err) {
1260 netif_err(nic, probe, nic->netdev,
1261 "Failed to load firmware \"%s\": %d\n",
1262 fw_name, err);
1263 return ERR_PTR(err);
1266 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268 if (fw->size != UCODE_SIZE * 4 + 3) {
1269 netif_err(nic, probe, nic->netdev,
1270 "Firmware \"%s\" has wrong size %zu\n",
1271 fw_name, fw->size);
1272 release_firmware(fw);
1273 return ERR_PTR(-EINVAL);
1276 /* Read timer, bundle and min_size from end of firmware blob */
1277 timer = fw->data[UCODE_SIZE * 4];
1278 bundle = fw->data[UCODE_SIZE * 4 + 1];
1279 min_size = fw->data[UCODE_SIZE * 4 + 2];
1281 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1282 min_size >= UCODE_SIZE) {
1283 netif_err(nic, probe, nic->netdev,
1284 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285 fw_name, timer, bundle, min_size);
1286 release_firmware(fw);
1287 return ERR_PTR(-EINVAL);
1290 /* OK, firmware is validated and ready to use. Save a pointer
1291 * to it in the nic */
1292 nic->fw = fw;
1293 return fw;
1296 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1297 struct sk_buff *skb)
1299 const struct firmware *fw = (void *)skb;
1300 u8 timer, bundle, min_size;
1302 /* It's not a real skb; we just abused the fact that e100_exec_cb
1303 will pass it through to here... */
1304 cb->skb = NULL;
1306 /* firmware is stored as little endian already */
1307 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1309 /* Read timer, bundle and min_size from end of firmware blob */
1310 timer = fw->data[UCODE_SIZE * 4];
1311 bundle = fw->data[UCODE_SIZE * 4 + 1];
1312 min_size = fw->data[UCODE_SIZE * 4 + 2];
1314 /* Insert user-tunable settings in cb->u.ucode */
1315 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1316 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1317 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1318 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1319 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1320 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1322 cb->command = cpu_to_le16(cb_ucode | cb_el);
1325 static inline int e100_load_ucode_wait(struct nic *nic)
1327 const struct firmware *fw;
1328 int err = 0, counter = 50;
1329 struct cb *cb = nic->cb_to_clean;
1331 fw = e100_request_firmware(nic);
1332 /* If it's NULL, then no ucode is required */
1333 if (!fw || IS_ERR(fw))
1334 return PTR_ERR(fw);
1336 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1337 netif_err(nic, probe, nic->netdev,
1338 "ucode cmd failed with error %d\n", err);
1340 /* must restart cuc */
1341 nic->cuc_cmd = cuc_start;
1343 /* wait for completion */
1344 e100_write_flush(nic);
1345 udelay(10);
1347 /* wait for possibly (ouch) 500ms */
1348 while (!(cb->status & cpu_to_le16(cb_complete))) {
1349 msleep(10);
1350 if (!--counter) break;
1353 /* ack any interrupts, something could have been set */
1354 iowrite8(~0, &nic->csr->scb.stat_ack);
1356 /* if the command failed, or is not OK, notify and return */
1357 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1358 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1359 err = -EPERM;
1362 return err;
1365 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1366 struct sk_buff *skb)
1368 cb->command = cpu_to_le16(cb_iaaddr);
1369 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1372 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1374 cb->command = cpu_to_le16(cb_dump);
1375 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1376 offsetof(struct mem, dump_buf));
1379 static int e100_phy_check_without_mii(struct nic *nic)
1381 u8 phy_type;
1382 int without_mii;
1384 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1386 switch (phy_type) {
1387 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1388 case I82503: /* Non-MII PHY; UNTESTED! */
1389 case S80C24: /* Non-MII PHY; tested and working */
1390 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392 * doesn't have a programming interface of any sort. The
1393 * media is sensed automatically based on how the link partner
1394 * is configured. This is, in essence, manual configuration.
1396 netif_info(nic, probe, nic->netdev,
1397 "found MII-less i82503 or 80c24 or other PHY\n");
1399 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1400 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1402 /* these might be needed for certain MII-less cards...
1403 * nic->flags |= ich;
1404 * nic->flags |= ich_10h_workaround; */
1406 without_mii = 1;
1407 break;
1408 default:
1409 without_mii = 0;
1410 break;
1412 return without_mii;
1415 #define NCONFIG_AUTO_SWITCH 0x0080
1416 #define MII_NSC_CONG MII_RESV1
1417 #define NSC_CONG_ENABLE 0x0100
1418 #define NSC_CONG_TXREADY 0x0400
1419 #define ADVERTISE_FC_SUPPORTED 0x0400
1420 static int e100_phy_init(struct nic *nic)
1422 struct net_device *netdev = nic->netdev;
1423 u32 addr;
1424 u16 bmcr, stat, id_lo, id_hi, cong;
1426 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1427 for (addr = 0; addr < 32; addr++) {
1428 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1429 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1430 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1431 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1432 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1433 break;
1435 if (addr == 32) {
1436 /* uhoh, no PHY detected: check whether we seem to be some
1437 * weird, rare variant which is *known* to not have any MII.
1438 * But do this AFTER MII checking only, since this does
1439 * lookup of EEPROM values which may easily be unreliable. */
1440 if (e100_phy_check_without_mii(nic))
1441 return 0; /* simply return and hope for the best */
1442 else {
1443 /* for unknown cases log a fatal error */
1444 netif_err(nic, hw, nic->netdev,
1445 "Failed to locate any known PHY, aborting\n");
1446 return -EAGAIN;
1448 } else
1449 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1450 "phy_addr = %d\n", nic->mii.phy_id);
1452 /* Get phy ID */
1453 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1454 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1455 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1456 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1457 "phy ID = 0x%08X\n", nic->phy);
1459 /* Select the phy and isolate the rest */
1460 for (addr = 0; addr < 32; addr++) {
1461 if (addr != nic->mii.phy_id) {
1462 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1463 } else if (nic->phy != phy_82552_v) {
1464 bmcr = mdio_read(netdev, addr, MII_BMCR);
1465 mdio_write(netdev, addr, MII_BMCR,
1466 bmcr & ~BMCR_ISOLATE);
1470 * Workaround for 82552:
1471 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472 * other phy_id's) using bmcr value from addr discovery loop above.
1474 if (nic->phy == phy_82552_v)
1475 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1476 bmcr & ~BMCR_ISOLATE);
1478 /* Handle National tx phys */
1479 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1480 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1481 /* Disable congestion control */
1482 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1483 cong |= NSC_CONG_TXREADY;
1484 cong &= ~NSC_CONG_ENABLE;
1485 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1488 if (nic->phy == phy_82552_v) {
1489 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1491 /* assign special tweaked mdio_ctrl() function */
1492 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1494 /* Workaround Si not advertising flow-control during autoneg */
1495 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1498 /* Reset for the above changes to take effect */
1499 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1500 bmcr |= BMCR_RESET;
1501 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1502 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1503 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1504 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1505 /* enable/disable MDI/MDI-X auto-switching. */
1506 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1507 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1510 return 0;
1513 static int e100_hw_init(struct nic *nic)
1515 int err = 0;
1517 e100_hw_reset(nic);
1519 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1520 if (!in_interrupt() && (err = e100_self_test(nic)))
1521 return err;
1523 if ((err = e100_phy_init(nic)))
1524 return err;
1525 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1526 return err;
1527 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1528 return err;
1529 if ((err = e100_load_ucode_wait(nic)))
1530 return err;
1531 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1532 return err;
1533 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1534 return err;
1535 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1536 nic->dma_addr + offsetof(struct mem, stats))))
1537 return err;
1538 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1539 return err;
1541 e100_disable_irq(nic);
1543 return 0;
1546 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1548 struct net_device *netdev = nic->netdev;
1549 struct netdev_hw_addr *ha;
1550 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1552 cb->command = cpu_to_le16(cb_multi);
1553 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1554 i = 0;
1555 netdev_for_each_mc_addr(ha, netdev) {
1556 if (i == count)
1557 break;
1558 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1559 ETH_ALEN);
1563 static void e100_set_multicast_list(struct net_device *netdev)
1565 struct nic *nic = netdev_priv(netdev);
1567 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1568 "mc_count=%d, flags=0x%04X\n",
1569 netdev_mc_count(netdev), netdev->flags);
1571 if (netdev->flags & IFF_PROMISC)
1572 nic->flags |= promiscuous;
1573 else
1574 nic->flags &= ~promiscuous;
1576 if (netdev->flags & IFF_ALLMULTI ||
1577 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1578 nic->flags |= multicast_all;
1579 else
1580 nic->flags &= ~multicast_all;
1582 e100_exec_cb(nic, NULL, e100_configure);
1583 e100_exec_cb(nic, NULL, e100_multi);
1586 static void e100_update_stats(struct nic *nic)
1588 struct net_device *dev = nic->netdev;
1589 struct net_device_stats *ns = &dev->stats;
1590 struct stats *s = &nic->mem->stats;
1591 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1592 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1593 &s->complete;
1595 /* Device's stats reporting may take several microseconds to
1596 * complete, so we're always waiting for results of the
1597 * previous command. */
1599 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1600 *complete = 0;
1601 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1602 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1603 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1604 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1605 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1606 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1607 ns->collisions += nic->tx_collisions;
1608 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1609 le32_to_cpu(s->tx_lost_crs);
1610 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1611 nic->rx_over_length_errors;
1612 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1613 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1614 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1615 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1616 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1617 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1618 le32_to_cpu(s->rx_alignment_errors) +
1619 le32_to_cpu(s->rx_short_frame_errors) +
1620 le32_to_cpu(s->rx_cdt_errors);
1621 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1622 nic->tx_single_collisions +=
1623 le32_to_cpu(s->tx_single_collisions);
1624 nic->tx_multiple_collisions +=
1625 le32_to_cpu(s->tx_multiple_collisions);
1626 if (nic->mac >= mac_82558_D101_A4) {
1627 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1628 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1629 nic->rx_fc_unsupported +=
1630 le32_to_cpu(s->fc_rcv_unsupported);
1631 if (nic->mac >= mac_82559_D101M) {
1632 nic->tx_tco_frames +=
1633 le16_to_cpu(s->xmt_tco_frames);
1634 nic->rx_tco_frames +=
1635 le16_to_cpu(s->rcv_tco_frames);
1641 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1642 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1643 "exec cuc_dump_reset failed\n");
1646 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1648 /* Adjust inter-frame-spacing (IFS) between two transmits if
1649 * we're getting collisions on a half-duplex connection. */
1651 if (duplex == DUPLEX_HALF) {
1652 u32 prev = nic->adaptive_ifs;
1653 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1655 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1656 (nic->tx_frames > min_frames)) {
1657 if (nic->adaptive_ifs < 60)
1658 nic->adaptive_ifs += 5;
1659 } else if (nic->tx_frames < min_frames) {
1660 if (nic->adaptive_ifs >= 5)
1661 nic->adaptive_ifs -= 5;
1663 if (nic->adaptive_ifs != prev)
1664 e100_exec_cb(nic, NULL, e100_configure);
1668 static void e100_watchdog(unsigned long data)
1670 struct nic *nic = (struct nic *)data;
1671 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1672 u32 speed;
1674 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1675 "right now = %ld\n", jiffies);
1677 /* mii library handles link maintenance tasks */
1679 mii_ethtool_gset(&nic->mii, &cmd);
1680 speed = ethtool_cmd_speed(&cmd);
1682 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1683 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1684 speed == SPEED_100 ? 100 : 10,
1685 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1686 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1687 netdev_info(nic->netdev, "NIC Link is Down\n");
1690 mii_check_link(&nic->mii);
1692 /* Software generated interrupt to recover from (rare) Rx
1693 * allocation failure.
1694 * Unfortunately have to use a spinlock to not re-enable interrupts
1695 * accidentally, due to hardware that shares a register between the
1696 * interrupt mask bit and the SW Interrupt generation bit */
1697 spin_lock_irq(&nic->cmd_lock);
1698 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1699 e100_write_flush(nic);
1700 spin_unlock_irq(&nic->cmd_lock);
1702 e100_update_stats(nic);
1703 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1705 if (nic->mac <= mac_82557_D100_C)
1706 /* Issue a multicast command to workaround a 557 lock up */
1707 e100_set_multicast_list(nic->netdev);
1709 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1710 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1711 nic->flags |= ich_10h_workaround;
1712 else
1713 nic->flags &= ~ich_10h_workaround;
1715 mod_timer(&nic->watchdog,
1716 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1719 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1720 struct sk_buff *skb)
1722 cb->command = nic->tx_command;
1723 /* interrupt every 16 packets regardless of delay */
1724 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1725 cb->command |= cpu_to_le16(cb_i);
1726 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1727 cb->u.tcb.tcb_byte_count = 0;
1728 cb->u.tcb.threshold = nic->tx_threshold;
1729 cb->u.tcb.tbd_count = 1;
1730 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1731 skb->data, skb->len, PCI_DMA_TODEVICE));
1732 /* check for mapping failure? */
1733 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1736 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1737 struct net_device *netdev)
1739 struct nic *nic = netdev_priv(netdev);
1740 int err;
1742 if (nic->flags & ich_10h_workaround) {
1743 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1744 Issue a NOP command followed by a 1us delay before
1745 issuing the Tx command. */
1746 if (e100_exec_cmd(nic, cuc_nop, 0))
1747 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1748 "exec cuc_nop failed\n");
1749 udelay(1);
1752 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1754 switch (err) {
1755 case -ENOSPC:
1756 /* We queued the skb, but now we're out of space. */
1757 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1758 "No space for CB\n");
1759 netif_stop_queue(netdev);
1760 break;
1761 case -ENOMEM:
1762 /* This is a hard error - log it. */
1763 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1764 "Out of Tx resources, returning skb\n");
1765 netif_stop_queue(netdev);
1766 return NETDEV_TX_BUSY;
1769 return NETDEV_TX_OK;
1772 static int e100_tx_clean(struct nic *nic)
1774 struct net_device *dev = nic->netdev;
1775 struct cb *cb;
1776 int tx_cleaned = 0;
1778 spin_lock(&nic->cb_lock);
1780 /* Clean CBs marked complete */
1781 for (cb = nic->cb_to_clean;
1782 cb->status & cpu_to_le16(cb_complete);
1783 cb = nic->cb_to_clean = cb->next) {
1784 rmb(); /* read skb after status */
1785 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1786 "cb[%d]->status = 0x%04X\n",
1787 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1788 cb->status);
1790 if (likely(cb->skb != NULL)) {
1791 dev->stats.tx_packets++;
1792 dev->stats.tx_bytes += cb->skb->len;
1794 pci_unmap_single(nic->pdev,
1795 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1796 le16_to_cpu(cb->u.tcb.tbd.size),
1797 PCI_DMA_TODEVICE);
1798 dev_kfree_skb_any(cb->skb);
1799 cb->skb = NULL;
1800 tx_cleaned = 1;
1802 cb->status = 0;
1803 nic->cbs_avail++;
1806 spin_unlock(&nic->cb_lock);
1808 /* Recover from running out of Tx resources in xmit_frame */
1809 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1810 netif_wake_queue(nic->netdev);
1812 return tx_cleaned;
1815 static void e100_clean_cbs(struct nic *nic)
1817 if (nic->cbs) {
1818 while (nic->cbs_avail != nic->params.cbs.count) {
1819 struct cb *cb = nic->cb_to_clean;
1820 if (cb->skb) {
1821 pci_unmap_single(nic->pdev,
1822 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1823 le16_to_cpu(cb->u.tcb.tbd.size),
1824 PCI_DMA_TODEVICE);
1825 dev_kfree_skb(cb->skb);
1827 nic->cb_to_clean = nic->cb_to_clean->next;
1828 nic->cbs_avail++;
1830 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1831 nic->cbs = NULL;
1832 nic->cbs_avail = 0;
1834 nic->cuc_cmd = cuc_start;
1835 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1836 nic->cbs;
1839 static int e100_alloc_cbs(struct nic *nic)
1841 struct cb *cb;
1842 unsigned int i, count = nic->params.cbs.count;
1844 nic->cuc_cmd = cuc_start;
1845 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1846 nic->cbs_avail = 0;
1848 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1849 &nic->cbs_dma_addr);
1850 if (!nic->cbs)
1851 return -ENOMEM;
1852 memset(nic->cbs, 0, count * sizeof(struct cb));
1854 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1855 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1856 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1858 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1859 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1860 ((i+1) % count) * sizeof(struct cb));
1863 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1864 nic->cbs_avail = count;
1866 return 0;
1869 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1871 if (!nic->rxs) return;
1872 if (RU_SUSPENDED != nic->ru_running) return;
1874 /* handle init time starts */
1875 if (!rx) rx = nic->rxs;
1877 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1878 if (rx->skb) {
1879 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1880 nic->ru_running = RU_RUNNING;
1884 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1885 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1887 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1888 return -ENOMEM;
1890 /* Init, and map the RFD. */
1891 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1892 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1893 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1895 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1896 dev_kfree_skb_any(rx->skb);
1897 rx->skb = NULL;
1898 rx->dma_addr = 0;
1899 return -ENOMEM;
1902 /* Link the RFD to end of RFA by linking previous RFD to
1903 * this one. We are safe to touch the previous RFD because
1904 * it is protected by the before last buffer's el bit being set */
1905 if (rx->prev->skb) {
1906 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1907 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1908 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1909 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1912 return 0;
1915 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1916 unsigned int *work_done, unsigned int work_to_do)
1918 struct net_device *dev = nic->netdev;
1919 struct sk_buff *skb = rx->skb;
1920 struct rfd *rfd = (struct rfd *)skb->data;
1921 u16 rfd_status, actual_size;
1923 if (unlikely(work_done && *work_done >= work_to_do))
1924 return -EAGAIN;
1926 /* Need to sync before taking a peek at cb_complete bit */
1927 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1928 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1929 rfd_status = le16_to_cpu(rfd->status);
1931 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1932 "status=0x%04X\n", rfd_status);
1933 rmb(); /* read size after status bit */
1935 /* If data isn't ready, nothing to indicate */
1936 if (unlikely(!(rfd_status & cb_complete))) {
1937 /* If the next buffer has the el bit, but we think the receiver
1938 * is still running, check to see if it really stopped while
1939 * we had interrupts off.
1940 * This allows for a fast restart without re-enabling
1941 * interrupts */
1942 if ((le16_to_cpu(rfd->command) & cb_el) &&
1943 (RU_RUNNING == nic->ru_running))
1945 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1946 nic->ru_running = RU_SUSPENDED;
1947 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1948 sizeof(struct rfd),
1949 PCI_DMA_FROMDEVICE);
1950 return -ENODATA;
1953 /* Get actual data size */
1954 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1955 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1956 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1958 /* Get data */
1959 pci_unmap_single(nic->pdev, rx->dma_addr,
1960 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1962 /* If this buffer has the el bit, but we think the receiver
1963 * is still running, check to see if it really stopped while
1964 * we had interrupts off.
1965 * This allows for a fast restart without re-enabling interrupts.
1966 * This can happen when the RU sees the size change but also sees
1967 * the el bit set. */
1968 if ((le16_to_cpu(rfd->command) & cb_el) &&
1969 (RU_RUNNING == nic->ru_running)) {
1971 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1972 nic->ru_running = RU_SUSPENDED;
1975 /* Pull off the RFD and put the actual data (minus eth hdr) */
1976 skb_reserve(skb, sizeof(struct rfd));
1977 skb_put(skb, actual_size);
1978 skb->protocol = eth_type_trans(skb, nic->netdev);
1980 if (unlikely(!(rfd_status & cb_ok))) {
1981 /* Don't indicate if hardware indicates errors */
1982 dev_kfree_skb_any(skb);
1983 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1984 /* Don't indicate oversized frames */
1985 nic->rx_over_length_errors++;
1986 dev_kfree_skb_any(skb);
1987 } else {
1988 dev->stats.rx_packets++;
1989 dev->stats.rx_bytes += actual_size;
1990 netif_receive_skb(skb);
1991 if (work_done)
1992 (*work_done)++;
1995 rx->skb = NULL;
1997 return 0;
2000 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2001 unsigned int work_to_do)
2003 struct rx *rx;
2004 int restart_required = 0, err = 0;
2005 struct rx *old_before_last_rx, *new_before_last_rx;
2006 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2008 /* Indicate newly arrived packets */
2009 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2010 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2011 /* Hit quota or no more to clean */
2012 if (-EAGAIN == err || -ENODATA == err)
2013 break;
2017 /* On EAGAIN, hit quota so have more work to do, restart once
2018 * cleanup is complete.
2019 * Else, are we already rnr? then pay attention!!! this ensures that
2020 * the state machine progression never allows a start with a
2021 * partially cleaned list, avoiding a race between hardware
2022 * and rx_to_clean when in NAPI mode */
2023 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2024 restart_required = 1;
2026 old_before_last_rx = nic->rx_to_use->prev->prev;
2027 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2029 /* Alloc new skbs to refill list */
2030 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2031 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2032 break; /* Better luck next time (see watchdog) */
2035 new_before_last_rx = nic->rx_to_use->prev->prev;
2036 if (new_before_last_rx != old_before_last_rx) {
2037 /* Set the el-bit on the buffer that is before the last buffer.
2038 * This lets us update the next pointer on the last buffer
2039 * without worrying about hardware touching it.
2040 * We set the size to 0 to prevent hardware from touching this
2041 * buffer.
2042 * When the hardware hits the before last buffer with el-bit
2043 * and size of 0, it will RNR interrupt, the RUS will go into
2044 * the No Resources state. It will not complete nor write to
2045 * this buffer. */
2046 new_before_last_rfd =
2047 (struct rfd *)new_before_last_rx->skb->data;
2048 new_before_last_rfd->size = 0;
2049 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2050 pci_dma_sync_single_for_device(nic->pdev,
2051 new_before_last_rx->dma_addr, sizeof(struct rfd),
2052 PCI_DMA_BIDIRECTIONAL);
2054 /* Now that we have a new stopping point, we can clear the old
2055 * stopping point. We must sync twice to get the proper
2056 * ordering on the hardware side of things. */
2057 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2058 pci_dma_sync_single_for_device(nic->pdev,
2059 old_before_last_rx->dma_addr, sizeof(struct rfd),
2060 PCI_DMA_BIDIRECTIONAL);
2061 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2062 pci_dma_sync_single_for_device(nic->pdev,
2063 old_before_last_rx->dma_addr, sizeof(struct rfd),
2064 PCI_DMA_BIDIRECTIONAL);
2067 if (restart_required) {
2068 // ack the rnr?
2069 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2070 e100_start_receiver(nic, nic->rx_to_clean);
2071 if (work_done)
2072 (*work_done)++;
2076 static void e100_rx_clean_list(struct nic *nic)
2078 struct rx *rx;
2079 unsigned int i, count = nic->params.rfds.count;
2081 nic->ru_running = RU_UNINITIALIZED;
2083 if (nic->rxs) {
2084 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2085 if (rx->skb) {
2086 pci_unmap_single(nic->pdev, rx->dma_addr,
2087 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2088 dev_kfree_skb(rx->skb);
2091 kfree(nic->rxs);
2092 nic->rxs = NULL;
2095 nic->rx_to_use = nic->rx_to_clean = NULL;
2098 static int e100_rx_alloc_list(struct nic *nic)
2100 struct rx *rx;
2101 unsigned int i, count = nic->params.rfds.count;
2102 struct rfd *before_last;
2104 nic->rx_to_use = nic->rx_to_clean = NULL;
2105 nic->ru_running = RU_UNINITIALIZED;
2107 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2108 return -ENOMEM;
2110 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2111 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2112 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2113 if (e100_rx_alloc_skb(nic, rx)) {
2114 e100_rx_clean_list(nic);
2115 return -ENOMEM;
2118 /* Set the el-bit on the buffer that is before the last buffer.
2119 * This lets us update the next pointer on the last buffer without
2120 * worrying about hardware touching it.
2121 * We set the size to 0 to prevent hardware from touching this buffer.
2122 * When the hardware hits the before last buffer with el-bit and size
2123 * of 0, it will RNR interrupt, the RU will go into the No Resources
2124 * state. It will not complete nor write to this buffer. */
2125 rx = nic->rxs->prev->prev;
2126 before_last = (struct rfd *)rx->skb->data;
2127 before_last->command |= cpu_to_le16(cb_el);
2128 before_last->size = 0;
2129 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2130 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2132 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2133 nic->ru_running = RU_SUSPENDED;
2135 return 0;
2138 static irqreturn_t e100_intr(int irq, void *dev_id)
2140 struct net_device *netdev = dev_id;
2141 struct nic *nic = netdev_priv(netdev);
2142 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2144 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2145 "stat_ack = 0x%02X\n", stat_ack);
2147 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2148 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2149 return IRQ_NONE;
2151 /* Ack interrupt(s) */
2152 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2154 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2155 if (stat_ack & stat_ack_rnr)
2156 nic->ru_running = RU_SUSPENDED;
2158 if (likely(napi_schedule_prep(&nic->napi))) {
2159 e100_disable_irq(nic);
2160 __napi_schedule(&nic->napi);
2163 return IRQ_HANDLED;
2166 static int e100_poll(struct napi_struct *napi, int budget)
2168 struct nic *nic = container_of(napi, struct nic, napi);
2169 unsigned int work_done = 0;
2171 e100_rx_clean(nic, &work_done, budget);
2172 e100_tx_clean(nic);
2174 /* If budget not fully consumed, exit the polling mode */
2175 if (work_done < budget) {
2176 napi_complete(napi);
2177 e100_enable_irq(nic);
2180 return work_done;
2183 #ifdef CONFIG_NET_POLL_CONTROLLER
2184 static void e100_netpoll(struct net_device *netdev)
2186 struct nic *nic = netdev_priv(netdev);
2188 e100_disable_irq(nic);
2189 e100_intr(nic->pdev->irq, netdev);
2190 e100_tx_clean(nic);
2191 e100_enable_irq(nic);
2193 #endif
2195 static int e100_set_mac_address(struct net_device *netdev, void *p)
2197 struct nic *nic = netdev_priv(netdev);
2198 struct sockaddr *addr = p;
2200 if (!is_valid_ether_addr(addr->sa_data))
2201 return -EADDRNOTAVAIL;
2203 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2204 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2206 return 0;
2209 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2211 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2212 return -EINVAL;
2213 netdev->mtu = new_mtu;
2214 return 0;
2217 static int e100_asf(struct nic *nic)
2219 /* ASF can be enabled from eeprom */
2220 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2221 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2222 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2223 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2226 static int e100_up(struct nic *nic)
2228 int err;
2230 if ((err = e100_rx_alloc_list(nic)))
2231 return err;
2232 if ((err = e100_alloc_cbs(nic)))
2233 goto err_rx_clean_list;
2234 if ((err = e100_hw_init(nic)))
2235 goto err_clean_cbs;
2236 e100_set_multicast_list(nic->netdev);
2237 e100_start_receiver(nic, NULL);
2238 mod_timer(&nic->watchdog, jiffies);
2239 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2240 nic->netdev->name, nic->netdev)))
2241 goto err_no_irq;
2242 netif_wake_queue(nic->netdev);
2243 napi_enable(&nic->napi);
2244 /* enable ints _after_ enabling poll, preventing a race between
2245 * disable ints+schedule */
2246 e100_enable_irq(nic);
2247 return 0;
2249 err_no_irq:
2250 del_timer_sync(&nic->watchdog);
2251 err_clean_cbs:
2252 e100_clean_cbs(nic);
2253 err_rx_clean_list:
2254 e100_rx_clean_list(nic);
2255 return err;
2258 static void e100_down(struct nic *nic)
2260 /* wait here for poll to complete */
2261 napi_disable(&nic->napi);
2262 netif_stop_queue(nic->netdev);
2263 e100_hw_reset(nic);
2264 free_irq(nic->pdev->irq, nic->netdev);
2265 del_timer_sync(&nic->watchdog);
2266 netif_carrier_off(nic->netdev);
2267 e100_clean_cbs(nic);
2268 e100_rx_clean_list(nic);
2271 static void e100_tx_timeout(struct net_device *netdev)
2273 struct nic *nic = netdev_priv(netdev);
2275 /* Reset outside of interrupt context, to avoid request_irq
2276 * in interrupt context */
2277 schedule_work(&nic->tx_timeout_task);
2280 static void e100_tx_timeout_task(struct work_struct *work)
2282 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2283 struct net_device *netdev = nic->netdev;
2285 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2286 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2288 rtnl_lock();
2289 if (netif_running(netdev)) {
2290 e100_down(netdev_priv(netdev));
2291 e100_up(netdev_priv(netdev));
2293 rtnl_unlock();
2296 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2298 int err;
2299 struct sk_buff *skb;
2301 /* Use driver resources to perform internal MAC or PHY
2302 * loopback test. A single packet is prepared and transmitted
2303 * in loopback mode, and the test passes if the received
2304 * packet compares byte-for-byte to the transmitted packet. */
2306 if ((err = e100_rx_alloc_list(nic)))
2307 return err;
2308 if ((err = e100_alloc_cbs(nic)))
2309 goto err_clean_rx;
2311 /* ICH PHY loopback is broken so do MAC loopback instead */
2312 if (nic->flags & ich && loopback_mode == lb_phy)
2313 loopback_mode = lb_mac;
2315 nic->loopback = loopback_mode;
2316 if ((err = e100_hw_init(nic)))
2317 goto err_loopback_none;
2319 if (loopback_mode == lb_phy)
2320 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2321 BMCR_LOOPBACK);
2323 e100_start_receiver(nic, NULL);
2325 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2326 err = -ENOMEM;
2327 goto err_loopback_none;
2329 skb_put(skb, ETH_DATA_LEN);
2330 memset(skb->data, 0xFF, ETH_DATA_LEN);
2331 e100_xmit_frame(skb, nic->netdev);
2333 msleep(10);
2335 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2336 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2338 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2339 skb->data, ETH_DATA_LEN))
2340 err = -EAGAIN;
2342 err_loopback_none:
2343 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2344 nic->loopback = lb_none;
2345 e100_clean_cbs(nic);
2346 e100_hw_reset(nic);
2347 err_clean_rx:
2348 e100_rx_clean_list(nic);
2349 return err;
2352 #define MII_LED_CONTROL 0x1B
2353 #define E100_82552_LED_OVERRIDE 0x19
2354 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2355 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2357 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2359 struct nic *nic = netdev_priv(netdev);
2360 return mii_ethtool_gset(&nic->mii, cmd);
2363 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2365 struct nic *nic = netdev_priv(netdev);
2366 int err;
2368 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2369 err = mii_ethtool_sset(&nic->mii, cmd);
2370 e100_exec_cb(nic, NULL, e100_configure);
2372 return err;
2375 static void e100_get_drvinfo(struct net_device *netdev,
2376 struct ethtool_drvinfo *info)
2378 struct nic *nic = netdev_priv(netdev);
2379 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2380 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2381 strlcpy(info->bus_info, pci_name(nic->pdev),
2382 sizeof(info->bus_info));
2385 #define E100_PHY_REGS 0x1C
2386 static int e100_get_regs_len(struct net_device *netdev)
2388 struct nic *nic = netdev_priv(netdev);
2389 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2392 static void e100_get_regs(struct net_device *netdev,
2393 struct ethtool_regs *regs, void *p)
2395 struct nic *nic = netdev_priv(netdev);
2396 u32 *buff = p;
2397 int i;
2399 regs->version = (1 << 24) | nic->pdev->revision;
2400 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2401 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2402 ioread16(&nic->csr->scb.status);
2403 for (i = E100_PHY_REGS; i >= 0; i--)
2404 buff[1 + E100_PHY_REGS - i] =
2405 mdio_read(netdev, nic->mii.phy_id, i);
2406 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2407 e100_exec_cb(nic, NULL, e100_dump);
2408 msleep(10);
2409 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2410 sizeof(nic->mem->dump_buf));
2413 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2415 struct nic *nic = netdev_priv(netdev);
2416 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2417 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2420 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2422 struct nic *nic = netdev_priv(netdev);
2424 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2425 !device_can_wakeup(&nic->pdev->dev))
2426 return -EOPNOTSUPP;
2428 if (wol->wolopts)
2429 nic->flags |= wol_magic;
2430 else
2431 nic->flags &= ~wol_magic;
2433 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2435 e100_exec_cb(nic, NULL, e100_configure);
2437 return 0;
2440 static u32 e100_get_msglevel(struct net_device *netdev)
2442 struct nic *nic = netdev_priv(netdev);
2443 return nic->msg_enable;
2446 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2448 struct nic *nic = netdev_priv(netdev);
2449 nic->msg_enable = value;
2452 static int e100_nway_reset(struct net_device *netdev)
2454 struct nic *nic = netdev_priv(netdev);
2455 return mii_nway_restart(&nic->mii);
2458 static u32 e100_get_link(struct net_device *netdev)
2460 struct nic *nic = netdev_priv(netdev);
2461 return mii_link_ok(&nic->mii);
2464 static int e100_get_eeprom_len(struct net_device *netdev)
2466 struct nic *nic = netdev_priv(netdev);
2467 return nic->eeprom_wc << 1;
2470 #define E100_EEPROM_MAGIC 0x1234
2471 static int e100_get_eeprom(struct net_device *netdev,
2472 struct ethtool_eeprom *eeprom, u8 *bytes)
2474 struct nic *nic = netdev_priv(netdev);
2476 eeprom->magic = E100_EEPROM_MAGIC;
2477 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2479 return 0;
2482 static int e100_set_eeprom(struct net_device *netdev,
2483 struct ethtool_eeprom *eeprom, u8 *bytes)
2485 struct nic *nic = netdev_priv(netdev);
2487 if (eeprom->magic != E100_EEPROM_MAGIC)
2488 return -EINVAL;
2490 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2492 return e100_eeprom_save(nic, eeprom->offset >> 1,
2493 (eeprom->len >> 1) + 1);
2496 static void e100_get_ringparam(struct net_device *netdev,
2497 struct ethtool_ringparam *ring)
2499 struct nic *nic = netdev_priv(netdev);
2500 struct param_range *rfds = &nic->params.rfds;
2501 struct param_range *cbs = &nic->params.cbs;
2503 ring->rx_max_pending = rfds->max;
2504 ring->tx_max_pending = cbs->max;
2505 ring->rx_pending = rfds->count;
2506 ring->tx_pending = cbs->count;
2509 static int e100_set_ringparam(struct net_device *netdev,
2510 struct ethtool_ringparam *ring)
2512 struct nic *nic = netdev_priv(netdev);
2513 struct param_range *rfds = &nic->params.rfds;
2514 struct param_range *cbs = &nic->params.cbs;
2516 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2517 return -EINVAL;
2519 if (netif_running(netdev))
2520 e100_down(nic);
2521 rfds->count = max(ring->rx_pending, rfds->min);
2522 rfds->count = min(rfds->count, rfds->max);
2523 cbs->count = max(ring->tx_pending, cbs->min);
2524 cbs->count = min(cbs->count, cbs->max);
2525 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2526 rfds->count, cbs->count);
2527 if (netif_running(netdev))
2528 e100_up(nic);
2530 return 0;
2533 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2534 "Link test (on/offline)",
2535 "Eeprom test (on/offline)",
2536 "Self test (offline)",
2537 "Mac loopback (offline)",
2538 "Phy loopback (offline)",
2540 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2542 static void e100_diag_test(struct net_device *netdev,
2543 struct ethtool_test *test, u64 *data)
2545 struct ethtool_cmd cmd;
2546 struct nic *nic = netdev_priv(netdev);
2547 int i, err;
2549 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2550 data[0] = !mii_link_ok(&nic->mii);
2551 data[1] = e100_eeprom_load(nic);
2552 if (test->flags & ETH_TEST_FL_OFFLINE) {
2554 /* save speed, duplex & autoneg settings */
2555 err = mii_ethtool_gset(&nic->mii, &cmd);
2557 if (netif_running(netdev))
2558 e100_down(nic);
2559 data[2] = e100_self_test(nic);
2560 data[3] = e100_loopback_test(nic, lb_mac);
2561 data[4] = e100_loopback_test(nic, lb_phy);
2563 /* restore speed, duplex & autoneg settings */
2564 err = mii_ethtool_sset(&nic->mii, &cmd);
2566 if (netif_running(netdev))
2567 e100_up(nic);
2569 for (i = 0; i < E100_TEST_LEN; i++)
2570 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2572 msleep_interruptible(4 * 1000);
2575 static int e100_set_phys_id(struct net_device *netdev,
2576 enum ethtool_phys_id_state state)
2578 struct nic *nic = netdev_priv(netdev);
2579 enum led_state {
2580 led_on = 0x01,
2581 led_off = 0x04,
2582 led_on_559 = 0x05,
2583 led_on_557 = 0x07,
2585 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2586 MII_LED_CONTROL;
2587 u16 leds = 0;
2589 switch (state) {
2590 case ETHTOOL_ID_ACTIVE:
2591 return 2;
2593 case ETHTOOL_ID_ON:
2594 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2595 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2596 break;
2598 case ETHTOOL_ID_OFF:
2599 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2600 break;
2602 case ETHTOOL_ID_INACTIVE:
2603 break;
2606 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2607 return 0;
2610 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2611 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2612 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2613 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2614 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2615 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2616 "tx_heartbeat_errors", "tx_window_errors",
2617 /* device-specific stats */
2618 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2619 "tx_flow_control_pause", "rx_flow_control_pause",
2620 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2622 #define E100_NET_STATS_LEN 21
2623 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2625 static int e100_get_sset_count(struct net_device *netdev, int sset)
2627 switch (sset) {
2628 case ETH_SS_TEST:
2629 return E100_TEST_LEN;
2630 case ETH_SS_STATS:
2631 return E100_STATS_LEN;
2632 default:
2633 return -EOPNOTSUPP;
2637 static void e100_get_ethtool_stats(struct net_device *netdev,
2638 struct ethtool_stats *stats, u64 *data)
2640 struct nic *nic = netdev_priv(netdev);
2641 int i;
2643 for (i = 0; i < E100_NET_STATS_LEN; i++)
2644 data[i] = ((unsigned long *)&netdev->stats)[i];
2646 data[i++] = nic->tx_deferred;
2647 data[i++] = nic->tx_single_collisions;
2648 data[i++] = nic->tx_multiple_collisions;
2649 data[i++] = nic->tx_fc_pause;
2650 data[i++] = nic->rx_fc_pause;
2651 data[i++] = nic->rx_fc_unsupported;
2652 data[i++] = nic->tx_tco_frames;
2653 data[i++] = nic->rx_tco_frames;
2656 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2658 switch (stringset) {
2659 case ETH_SS_TEST:
2660 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2661 break;
2662 case ETH_SS_STATS:
2663 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2664 break;
2668 static const struct ethtool_ops e100_ethtool_ops = {
2669 .get_settings = e100_get_settings,
2670 .set_settings = e100_set_settings,
2671 .get_drvinfo = e100_get_drvinfo,
2672 .get_regs_len = e100_get_regs_len,
2673 .get_regs = e100_get_regs,
2674 .get_wol = e100_get_wol,
2675 .set_wol = e100_set_wol,
2676 .get_msglevel = e100_get_msglevel,
2677 .set_msglevel = e100_set_msglevel,
2678 .nway_reset = e100_nway_reset,
2679 .get_link = e100_get_link,
2680 .get_eeprom_len = e100_get_eeprom_len,
2681 .get_eeprom = e100_get_eeprom,
2682 .set_eeprom = e100_set_eeprom,
2683 .get_ringparam = e100_get_ringparam,
2684 .set_ringparam = e100_set_ringparam,
2685 .self_test = e100_diag_test,
2686 .get_strings = e100_get_strings,
2687 .set_phys_id = e100_set_phys_id,
2688 .get_ethtool_stats = e100_get_ethtool_stats,
2689 .get_sset_count = e100_get_sset_count,
2692 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2694 struct nic *nic = netdev_priv(netdev);
2696 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2699 static int e100_alloc(struct nic *nic)
2701 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2702 &nic->dma_addr);
2703 return nic->mem ? 0 : -ENOMEM;
2706 static void e100_free(struct nic *nic)
2708 if (nic->mem) {
2709 pci_free_consistent(nic->pdev, sizeof(struct mem),
2710 nic->mem, nic->dma_addr);
2711 nic->mem = NULL;
2715 static int e100_open(struct net_device *netdev)
2717 struct nic *nic = netdev_priv(netdev);
2718 int err = 0;
2720 netif_carrier_off(netdev);
2721 if ((err = e100_up(nic)))
2722 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2723 return err;
2726 static int e100_close(struct net_device *netdev)
2728 e100_down(netdev_priv(netdev));
2729 return 0;
2732 static const struct net_device_ops e100_netdev_ops = {
2733 .ndo_open = e100_open,
2734 .ndo_stop = e100_close,
2735 .ndo_start_xmit = e100_xmit_frame,
2736 .ndo_validate_addr = eth_validate_addr,
2737 .ndo_set_rx_mode = e100_set_multicast_list,
2738 .ndo_set_mac_address = e100_set_mac_address,
2739 .ndo_change_mtu = e100_change_mtu,
2740 .ndo_do_ioctl = e100_do_ioctl,
2741 .ndo_tx_timeout = e100_tx_timeout,
2742 #ifdef CONFIG_NET_POLL_CONTROLLER
2743 .ndo_poll_controller = e100_netpoll,
2744 #endif
2747 static int __devinit e100_probe(struct pci_dev *pdev,
2748 const struct pci_device_id *ent)
2750 struct net_device *netdev;
2751 struct nic *nic;
2752 int err;
2754 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2755 if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2756 pr_err("Etherdev alloc failed, aborting\n");
2757 return -ENOMEM;
2760 netdev->netdev_ops = &e100_netdev_ops;
2761 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2762 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2763 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2765 nic = netdev_priv(netdev);
2766 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2767 nic->netdev = netdev;
2768 nic->pdev = pdev;
2769 nic->msg_enable = (1 << debug) - 1;
2770 nic->mdio_ctrl = mdio_ctrl_hw;
2771 pci_set_drvdata(pdev, netdev);
2773 if ((err = pci_enable_device(pdev))) {
2774 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2775 goto err_out_free_dev;
2778 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2779 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2780 err = -ENODEV;
2781 goto err_out_disable_pdev;
2784 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2785 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2786 goto err_out_disable_pdev;
2789 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2790 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2791 goto err_out_free_res;
2794 SET_NETDEV_DEV(netdev, &pdev->dev);
2796 if (use_io)
2797 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2799 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2800 if (!nic->csr) {
2801 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2802 err = -ENOMEM;
2803 goto err_out_free_res;
2806 if (ent->driver_data)
2807 nic->flags |= ich;
2808 else
2809 nic->flags &= ~ich;
2811 e100_get_defaults(nic);
2813 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2814 if (nic->mac < mac_82558_D101_A4)
2815 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2817 /* locks must be initialized before calling hw_reset */
2818 spin_lock_init(&nic->cb_lock);
2819 spin_lock_init(&nic->cmd_lock);
2820 spin_lock_init(&nic->mdio_lock);
2822 /* Reset the device before pci_set_master() in case device is in some
2823 * funky state and has an interrupt pending - hint: we don't have the
2824 * interrupt handler registered yet. */
2825 e100_hw_reset(nic);
2827 pci_set_master(pdev);
2829 init_timer(&nic->watchdog);
2830 nic->watchdog.function = e100_watchdog;
2831 nic->watchdog.data = (unsigned long)nic;
2833 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2835 if ((err = e100_alloc(nic))) {
2836 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2837 goto err_out_iounmap;
2840 if ((err = e100_eeprom_load(nic)))
2841 goto err_out_free;
2843 e100_phy_init(nic);
2845 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2846 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2847 if (!is_valid_ether_addr(netdev->perm_addr)) {
2848 if (!eeprom_bad_csum_allow) {
2849 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2850 err = -EAGAIN;
2851 goto err_out_free;
2852 } else {
2853 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2857 /* Wol magic packet can be enabled from eeprom */
2858 if ((nic->mac >= mac_82558_D101_A4) &&
2859 (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2860 nic->flags |= wol_magic;
2861 device_set_wakeup_enable(&pdev->dev, true);
2864 /* ack any pending wake events, disable PME */
2865 pci_pme_active(pdev, false);
2867 strcpy(netdev->name, "eth%d");
2868 if ((err = register_netdev(netdev))) {
2869 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2870 goto err_out_free;
2872 nic->cbs_pool = pci_pool_create(netdev->name,
2873 nic->pdev,
2874 nic->params.cbs.max * sizeof(struct cb),
2875 sizeof(u32),
2877 netif_info(nic, probe, nic->netdev,
2878 "addr 0x%llx, irq %d, MAC addr %pM\n",
2879 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2880 pdev->irq, netdev->dev_addr);
2882 return 0;
2884 err_out_free:
2885 e100_free(nic);
2886 err_out_iounmap:
2887 pci_iounmap(pdev, nic->csr);
2888 err_out_free_res:
2889 pci_release_regions(pdev);
2890 err_out_disable_pdev:
2891 pci_disable_device(pdev);
2892 err_out_free_dev:
2893 pci_set_drvdata(pdev, NULL);
2894 free_netdev(netdev);
2895 return err;
2898 static void __devexit e100_remove(struct pci_dev *pdev)
2900 struct net_device *netdev = pci_get_drvdata(pdev);
2902 if (netdev) {
2903 struct nic *nic = netdev_priv(netdev);
2904 unregister_netdev(netdev);
2905 e100_free(nic);
2906 pci_iounmap(pdev, nic->csr);
2907 pci_pool_destroy(nic->cbs_pool);
2908 free_netdev(netdev);
2909 pci_release_regions(pdev);
2910 pci_disable_device(pdev);
2911 pci_set_drvdata(pdev, NULL);
2915 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2916 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2917 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
2918 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2920 struct net_device *netdev = pci_get_drvdata(pdev);
2921 struct nic *nic = netdev_priv(netdev);
2923 if (netif_running(netdev))
2924 e100_down(nic);
2925 netif_device_detach(netdev);
2927 pci_save_state(pdev);
2929 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2930 /* enable reverse auto-negotiation */
2931 if (nic->phy == phy_82552_v) {
2932 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2933 E100_82552_SMARTSPEED);
2935 mdio_write(netdev, nic->mii.phy_id,
2936 E100_82552_SMARTSPEED, smartspeed |
2937 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2939 *enable_wake = true;
2940 } else {
2941 *enable_wake = false;
2944 pci_disable_device(pdev);
2947 static int __e100_power_off(struct pci_dev *pdev, bool wake)
2949 if (wake)
2950 return pci_prepare_to_sleep(pdev);
2952 pci_wake_from_d3(pdev, false);
2953 pci_set_power_state(pdev, PCI_D3hot);
2955 return 0;
2958 #ifdef CONFIG_PM
2959 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2961 bool wake;
2962 __e100_shutdown(pdev, &wake);
2963 return __e100_power_off(pdev, wake);
2966 static int e100_resume(struct pci_dev *pdev)
2968 struct net_device *netdev = pci_get_drvdata(pdev);
2969 struct nic *nic = netdev_priv(netdev);
2971 pci_set_power_state(pdev, PCI_D0);
2972 pci_restore_state(pdev);
2973 /* ack any pending wake events, disable PME */
2974 pci_enable_wake(pdev, 0, 0);
2976 /* disable reverse auto-negotiation */
2977 if (nic->phy == phy_82552_v) {
2978 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2979 E100_82552_SMARTSPEED);
2981 mdio_write(netdev, nic->mii.phy_id,
2982 E100_82552_SMARTSPEED,
2983 smartspeed & ~(E100_82552_REV_ANEG));
2986 netif_device_attach(netdev);
2987 if (netif_running(netdev))
2988 e100_up(nic);
2990 return 0;
2992 #endif /* CONFIG_PM */
2994 static void e100_shutdown(struct pci_dev *pdev)
2996 bool wake;
2997 __e100_shutdown(pdev, &wake);
2998 if (system_state == SYSTEM_POWER_OFF)
2999 __e100_power_off(pdev, wake);
3002 /* ------------------ PCI Error Recovery infrastructure -------------- */
3004 * e100_io_error_detected - called when PCI error is detected.
3005 * @pdev: Pointer to PCI device
3006 * @state: The current pci connection state
3008 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3010 struct net_device *netdev = pci_get_drvdata(pdev);
3011 struct nic *nic = netdev_priv(netdev);
3013 netif_device_detach(netdev);
3015 if (state == pci_channel_io_perm_failure)
3016 return PCI_ERS_RESULT_DISCONNECT;
3018 if (netif_running(netdev))
3019 e100_down(nic);
3020 pci_disable_device(pdev);
3022 /* Request a slot reset. */
3023 return PCI_ERS_RESULT_NEED_RESET;
3027 * e100_io_slot_reset - called after the pci bus has been reset.
3028 * @pdev: Pointer to PCI device
3030 * Restart the card from scratch.
3032 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3034 struct net_device *netdev = pci_get_drvdata(pdev);
3035 struct nic *nic = netdev_priv(netdev);
3037 if (pci_enable_device(pdev)) {
3038 pr_err("Cannot re-enable PCI device after reset\n");
3039 return PCI_ERS_RESULT_DISCONNECT;
3041 pci_set_master(pdev);
3043 /* Only one device per card can do a reset */
3044 if (0 != PCI_FUNC(pdev->devfn))
3045 return PCI_ERS_RESULT_RECOVERED;
3046 e100_hw_reset(nic);
3047 e100_phy_init(nic);
3049 return PCI_ERS_RESULT_RECOVERED;
3053 * e100_io_resume - resume normal operations
3054 * @pdev: Pointer to PCI device
3056 * Resume normal operations after an error recovery
3057 * sequence has been completed.
3059 static void e100_io_resume(struct pci_dev *pdev)
3061 struct net_device *netdev = pci_get_drvdata(pdev);
3062 struct nic *nic = netdev_priv(netdev);
3064 /* ack any pending wake events, disable PME */
3065 pci_enable_wake(pdev, 0, 0);
3067 netif_device_attach(netdev);
3068 if (netif_running(netdev)) {
3069 e100_open(netdev);
3070 mod_timer(&nic->watchdog, jiffies);
3074 static struct pci_error_handlers e100_err_handler = {
3075 .error_detected = e100_io_error_detected,
3076 .slot_reset = e100_io_slot_reset,
3077 .resume = e100_io_resume,
3080 static struct pci_driver e100_driver = {
3081 .name = DRV_NAME,
3082 .id_table = e100_id_table,
3083 .probe = e100_probe,
3084 .remove = __devexit_p(e100_remove),
3085 #ifdef CONFIG_PM
3086 /* Power Management hooks */
3087 .suspend = e100_suspend,
3088 .resume = e100_resume,
3089 #endif
3090 .shutdown = e100_shutdown,
3091 .err_handler = &e100_err_handler,
3094 static int __init e100_init_module(void)
3096 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3097 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3098 pr_info("%s\n", DRV_COPYRIGHT);
3100 return pci_register_driver(&e100_driver);
3103 static void __exit e100_cleanup_module(void)
3105 pci_unregister_driver(&e100_driver);
3108 module_init(e100_init_module);
3109 module_exit(e100_cleanup_module);