Avoid beyond bounds copy while caching ACL
[zen-stable.git] / drivers / net / ethernet / sfc / bitfield.h
blob098ac2ad757d717aec1b04aa3ee8bec9f35e12f7
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #ifndef EFX_BITFIELD_H
12 #define EFX_BITFIELD_H
15 * Efx bitfield access
17 * Efx NICs make extensive use of bitfields up to 128 bits
18 * wide. Since there is no native 128-bit datatype on most systems,
19 * and since 64-bit datatypes are inefficient on 32-bit systems and
20 * vice versa, we wrap accesses in a way that uses the most efficient
21 * datatype.
23 * The NICs are PCI devices and therefore little-endian. Since most
24 * of the quantities that we deal with are DMAed to/from host memory,
25 * we define our datatypes (efx_oword_t, efx_qword_t and
26 * efx_dword_t) to be little-endian.
29 /* Lowest bit numbers and widths */
30 #define EFX_DUMMY_FIELD_LBN 0
31 #define EFX_DUMMY_FIELD_WIDTH 0
32 #define EFX_DWORD_0_LBN 0
33 #define EFX_DWORD_0_WIDTH 32
34 #define EFX_DWORD_1_LBN 32
35 #define EFX_DWORD_1_WIDTH 32
36 #define EFX_DWORD_2_LBN 64
37 #define EFX_DWORD_2_WIDTH 32
38 #define EFX_DWORD_3_LBN 96
39 #define EFX_DWORD_3_WIDTH 32
40 #define EFX_QWORD_0_LBN 0
41 #define EFX_QWORD_0_WIDTH 64
43 /* Specified attribute (e.g. LBN) of the specified field */
44 #define EFX_VAL(field, attribute) field ## _ ## attribute
45 /* Low bit number of the specified field */
46 #define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
47 /* Bit width of the specified field */
48 #define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
49 /* High bit number of the specified field */
50 #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
51 /* Mask equal in width to the specified field.
53 * For example, a field with width 5 would have a mask of 0x1f.
55 * The maximum width mask that can be generated is 64 bits.
57 #define EFX_MASK64(width) \
58 ((width) == 64 ? ~((u64) 0) : \
59 (((((u64) 1) << (width))) - 1))
61 /* Mask equal in width to the specified field.
63 * For example, a field with width 5 would have a mask of 0x1f.
65 * The maximum width mask that can be generated is 32 bits. Use
66 * EFX_MASK64 for higher width fields.
68 #define EFX_MASK32(width) \
69 ((width) == 32 ? ~((u32) 0) : \
70 (((((u32) 1) << (width))) - 1))
72 /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
73 typedef union efx_dword {
74 __le32 u32[1];
75 } efx_dword_t;
77 /* A quadword (i.e. 8 byte) datatype - little-endian in HW */
78 typedef union efx_qword {
79 __le64 u64[1];
80 __le32 u32[2];
81 efx_dword_t dword[2];
82 } efx_qword_t;
84 /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
85 typedef union efx_oword {
86 __le64 u64[2];
87 efx_qword_t qword[2];
88 __le32 u32[4];
89 efx_dword_t dword[4];
90 } efx_oword_t;
92 /* Format string and value expanders for printk */
93 #define EFX_DWORD_FMT "%08x"
94 #define EFX_QWORD_FMT "%08x:%08x"
95 #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
96 #define EFX_DWORD_VAL(dword) \
97 ((unsigned int) le32_to_cpu((dword).u32[0]))
98 #define EFX_QWORD_VAL(qword) \
99 ((unsigned int) le32_to_cpu((qword).u32[1])), \
100 ((unsigned int) le32_to_cpu((qword).u32[0]))
101 #define EFX_OWORD_VAL(oword) \
102 ((unsigned int) le32_to_cpu((oword).u32[3])), \
103 ((unsigned int) le32_to_cpu((oword).u32[2])), \
104 ((unsigned int) le32_to_cpu((oword).u32[1])), \
105 ((unsigned int) le32_to_cpu((oword).u32[0]))
108 * Extract bit field portion [low,high) from the native-endian element
109 * which contains bits [min,max).
111 * For example, suppose "element" represents the high 32 bits of a
112 * 64-bit value, and we wish to extract the bits belonging to the bit
113 * field occupying bits 28-45 of this 64-bit value.
115 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
117 * ( element ) << 4
119 * The result will contain the relevant bits filled in in the range
120 * [0,high-low), with garbage in bits [high-low+1,...).
122 #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
123 (((low > max) || (high < min)) ? 0 : \
124 ((low > min) ? \
125 ((native_element) >> (low - min)) : \
126 ((native_element) << (min - low))))
129 * Extract bit field portion [low,high) from the 64-bit little-endian
130 * element which contains bits [min,max)
132 #define EFX_EXTRACT64(element, min, max, low, high) \
133 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
136 * Extract bit field portion [low,high) from the 32-bit little-endian
137 * element which contains bits [min,max)
139 #define EFX_EXTRACT32(element, min, max, low, high) \
140 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
142 #define EFX_EXTRACT_OWORD64(oword, low, high) \
143 ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
144 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \
145 EFX_MASK64(high + 1 - low))
147 #define EFX_EXTRACT_QWORD64(qword, low, high) \
148 (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \
149 EFX_MASK64(high + 1 - low))
151 #define EFX_EXTRACT_OWORD32(oword, low, high) \
152 ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
153 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
154 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
155 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \
156 EFX_MASK32(high + 1 - low))
158 #define EFX_EXTRACT_QWORD32(qword, low, high) \
159 ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
160 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \
161 EFX_MASK32(high + 1 - low))
163 #define EFX_EXTRACT_DWORD(dword, low, high) \
164 (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \
165 EFX_MASK32(high + 1 - low))
167 #define EFX_OWORD_FIELD64(oword, field) \
168 EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \
169 EFX_HIGH_BIT(field))
171 #define EFX_QWORD_FIELD64(qword, field) \
172 EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \
173 EFX_HIGH_BIT(field))
175 #define EFX_OWORD_FIELD32(oword, field) \
176 EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \
177 EFX_HIGH_BIT(field))
179 #define EFX_QWORD_FIELD32(qword, field) \
180 EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \
181 EFX_HIGH_BIT(field))
183 #define EFX_DWORD_FIELD(dword, field) \
184 EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \
185 EFX_HIGH_BIT(field))
187 #define EFX_OWORD_IS_ZERO64(oword) \
188 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
190 #define EFX_QWORD_IS_ZERO64(qword) \
191 (((qword).u64[0]) == (__force __le64) 0)
193 #define EFX_OWORD_IS_ZERO32(oword) \
194 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
195 == (__force __le32) 0)
197 #define EFX_QWORD_IS_ZERO32(qword) \
198 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
200 #define EFX_DWORD_IS_ZERO(dword) \
201 (((dword).u32[0]) == (__force __le32) 0)
203 #define EFX_OWORD_IS_ALL_ONES64(oword) \
204 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
206 #define EFX_QWORD_IS_ALL_ONES64(qword) \
207 ((qword).u64[0] == ~((__force __le64) 0))
209 #define EFX_OWORD_IS_ALL_ONES32(oword) \
210 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
211 == ~((__force __le32) 0))
213 #define EFX_QWORD_IS_ALL_ONES32(qword) \
214 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
216 #define EFX_DWORD_IS_ALL_ONES(dword) \
217 ((dword).u32[0] == ~((__force __le32) 0))
219 #if BITS_PER_LONG == 64
220 #define EFX_OWORD_FIELD EFX_OWORD_FIELD64
221 #define EFX_QWORD_FIELD EFX_QWORD_FIELD64
222 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
223 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
224 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
225 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
226 #else
227 #define EFX_OWORD_FIELD EFX_OWORD_FIELD32
228 #define EFX_QWORD_FIELD EFX_QWORD_FIELD32
229 #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
230 #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
231 #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
232 #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
233 #endif
236 * Construct bit field portion
238 * Creates the portion of the bit field [low,high) that lies within
239 * the range [min,max).
241 #define EFX_INSERT_NATIVE64(min, max, low, high, value) \
242 (((low > max) || (high < min)) ? 0 : \
243 ((low > min) ? \
244 (((u64) (value)) << (low - min)) : \
245 (((u64) (value)) >> (min - low))))
247 #define EFX_INSERT_NATIVE32(min, max, low, high, value) \
248 (((low > max) || (high < min)) ? 0 : \
249 ((low > min) ? \
250 (((u32) (value)) << (low - min)) : \
251 (((u32) (value)) >> (min - low))))
253 #define EFX_INSERT_NATIVE(min, max, low, high, value) \
254 ((((max - min) >= 32) || ((high - low) >= 32)) ? \
255 EFX_INSERT_NATIVE64(min, max, low, high, value) : \
256 EFX_INSERT_NATIVE32(min, max, low, high, value))
259 * Construct bit field portion
261 * Creates the portion of the named bit field that lies within the
262 * range [min,max).
264 #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
265 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
266 EFX_HIGH_BIT(field), value)
269 * Construct bit field
271 * Creates the portion of the named bit fields that lie within the
272 * range [min,max).
274 #define EFX_INSERT_FIELDS_NATIVE(min, max, \
275 field1, value1, \
276 field2, value2, \
277 field3, value3, \
278 field4, value4, \
279 field5, value5, \
280 field6, value6, \
281 field7, value7, \
282 field8, value8, \
283 field9, value9, \
284 field10, value10) \
285 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
286 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
287 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
288 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
289 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
290 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
291 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
292 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
293 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
294 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
296 #define EFX_INSERT_FIELDS64(...) \
297 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
299 #define EFX_INSERT_FIELDS32(...) \
300 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
302 #define EFX_POPULATE_OWORD64(oword, ...) do { \
303 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
304 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
305 } while (0)
307 #define EFX_POPULATE_QWORD64(qword, ...) do { \
308 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
309 } while (0)
311 #define EFX_POPULATE_OWORD32(oword, ...) do { \
312 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
313 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
314 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
315 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
316 } while (0)
318 #define EFX_POPULATE_QWORD32(qword, ...) do { \
319 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
320 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
321 } while (0)
323 #define EFX_POPULATE_DWORD(dword, ...) do { \
324 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
325 } while (0)
327 #if BITS_PER_LONG == 64
328 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
329 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
330 #else
331 #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
332 #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
333 #endif
335 /* Populate an octword field with various numbers of arguments */
336 #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
337 #define EFX_POPULATE_OWORD_9(oword, ...) \
338 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
339 #define EFX_POPULATE_OWORD_8(oword, ...) \
340 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
341 #define EFX_POPULATE_OWORD_7(oword, ...) \
342 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
343 #define EFX_POPULATE_OWORD_6(oword, ...) \
344 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
345 #define EFX_POPULATE_OWORD_5(oword, ...) \
346 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
347 #define EFX_POPULATE_OWORD_4(oword, ...) \
348 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
349 #define EFX_POPULATE_OWORD_3(oword, ...) \
350 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
351 #define EFX_POPULATE_OWORD_2(oword, ...) \
352 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
353 #define EFX_POPULATE_OWORD_1(oword, ...) \
354 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
355 #define EFX_ZERO_OWORD(oword) \
356 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
357 #define EFX_SET_OWORD(oword) \
358 EFX_POPULATE_OWORD_4(oword, \
359 EFX_DWORD_0, 0xffffffff, \
360 EFX_DWORD_1, 0xffffffff, \
361 EFX_DWORD_2, 0xffffffff, \
362 EFX_DWORD_3, 0xffffffff)
364 /* Populate a quadword field with various numbers of arguments */
365 #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
366 #define EFX_POPULATE_QWORD_9(qword, ...) \
367 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
368 #define EFX_POPULATE_QWORD_8(qword, ...) \
369 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
370 #define EFX_POPULATE_QWORD_7(qword, ...) \
371 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
372 #define EFX_POPULATE_QWORD_6(qword, ...) \
373 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
374 #define EFX_POPULATE_QWORD_5(qword, ...) \
375 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
376 #define EFX_POPULATE_QWORD_4(qword, ...) \
377 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
378 #define EFX_POPULATE_QWORD_3(qword, ...) \
379 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
380 #define EFX_POPULATE_QWORD_2(qword, ...) \
381 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
382 #define EFX_POPULATE_QWORD_1(qword, ...) \
383 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
384 #define EFX_ZERO_QWORD(qword) \
385 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
386 #define EFX_SET_QWORD(qword) \
387 EFX_POPULATE_QWORD_2(qword, \
388 EFX_DWORD_0, 0xffffffff, \
389 EFX_DWORD_1, 0xffffffff)
391 /* Populate a dword field with various numbers of arguments */
392 #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
393 #define EFX_POPULATE_DWORD_9(dword, ...) \
394 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
395 #define EFX_POPULATE_DWORD_8(dword, ...) \
396 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
397 #define EFX_POPULATE_DWORD_7(dword, ...) \
398 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
399 #define EFX_POPULATE_DWORD_6(dword, ...) \
400 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
401 #define EFX_POPULATE_DWORD_5(dword, ...) \
402 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
403 #define EFX_POPULATE_DWORD_4(dword, ...) \
404 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
405 #define EFX_POPULATE_DWORD_3(dword, ...) \
406 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
407 #define EFX_POPULATE_DWORD_2(dword, ...) \
408 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
409 #define EFX_POPULATE_DWORD_1(dword, ...) \
410 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
411 #define EFX_ZERO_DWORD(dword) \
412 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
413 #define EFX_SET_DWORD(dword) \
414 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
417 * Modify a named field within an already-populated structure. Used
418 * for read-modify-write operations.
421 #define EFX_INVERT_OWORD(oword) do { \
422 (oword).u64[0] = ~((oword).u64[0]); \
423 (oword).u64[1] = ~((oword).u64[1]); \
424 } while (0)
426 #define EFX_AND_OWORD(oword, from, mask) \
427 do { \
428 (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \
429 (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \
430 } while (0)
432 #define EFX_OR_OWORD(oword, from, mask) \
433 do { \
434 (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \
435 (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \
436 } while (0)
438 #define EFX_INSERT64(min, max, low, high, value) \
439 cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value))
441 #define EFX_INSERT32(min, max, low, high, value) \
442 cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value))
444 #define EFX_INPLACE_MASK64(min, max, low, high) \
445 EFX_INSERT64(min, max, low, high, EFX_MASK64(high + 1 - low))
447 #define EFX_INPLACE_MASK32(min, max, low, high) \
448 EFX_INSERT32(min, max, low, high, EFX_MASK32(high + 1 - low))
450 #define EFX_SET_OWORD64(oword, low, high, value) do { \
451 (oword).u64[0] = (((oword).u64[0] \
452 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
453 | EFX_INSERT64(0, 63, low, high, value)); \
454 (oword).u64[1] = (((oword).u64[1] \
455 & ~EFX_INPLACE_MASK64(64, 127, low, high)) \
456 | EFX_INSERT64(64, 127, low, high, value)); \
457 } while (0)
459 #define EFX_SET_QWORD64(qword, low, high, value) do { \
460 (qword).u64[0] = (((qword).u64[0] \
461 & ~EFX_INPLACE_MASK64(0, 63, low, high)) \
462 | EFX_INSERT64(0, 63, low, high, value)); \
463 } while (0)
465 #define EFX_SET_OWORD32(oword, low, high, value) do { \
466 (oword).u32[0] = (((oword).u32[0] \
467 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
468 | EFX_INSERT32(0, 31, low, high, value)); \
469 (oword).u32[1] = (((oword).u32[1] \
470 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
471 | EFX_INSERT32(32, 63, low, high, value)); \
472 (oword).u32[2] = (((oword).u32[2] \
473 & ~EFX_INPLACE_MASK32(64, 95, low, high)) \
474 | EFX_INSERT32(64, 95, low, high, value)); \
475 (oword).u32[3] = (((oword).u32[3] \
476 & ~EFX_INPLACE_MASK32(96, 127, low, high)) \
477 | EFX_INSERT32(96, 127, low, high, value)); \
478 } while (0)
480 #define EFX_SET_QWORD32(qword, low, high, value) do { \
481 (qword).u32[0] = (((qword).u32[0] \
482 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
483 | EFX_INSERT32(0, 31, low, high, value)); \
484 (qword).u32[1] = (((qword).u32[1] \
485 & ~EFX_INPLACE_MASK32(32, 63, low, high)) \
486 | EFX_INSERT32(32, 63, low, high, value)); \
487 } while (0)
489 #define EFX_SET_DWORD32(dword, low, high, value) do { \
490 (dword).u32[0] = (((dword).u32[0] \
491 & ~EFX_INPLACE_MASK32(0, 31, low, high)) \
492 | EFX_INSERT32(0, 31, low, high, value)); \
493 } while (0)
495 #define EFX_SET_OWORD_FIELD64(oword, field, value) \
496 EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \
497 EFX_HIGH_BIT(field), value)
499 #define EFX_SET_QWORD_FIELD64(qword, field, value) \
500 EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \
501 EFX_HIGH_BIT(field), value)
503 #define EFX_SET_OWORD_FIELD32(oword, field, value) \
504 EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \
505 EFX_HIGH_BIT(field), value)
507 #define EFX_SET_QWORD_FIELD32(qword, field, value) \
508 EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \
509 EFX_HIGH_BIT(field), value)
511 #define EFX_SET_DWORD_FIELD(dword, field, value) \
512 EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \
513 EFX_HIGH_BIT(field), value)
517 #if BITS_PER_LONG == 64
518 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
519 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
520 #else
521 #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
522 #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
523 #endif
525 /* Used to avoid compiler warnings about shift range exceeding width
526 * of the data types when dma_addr_t is only 32 bits wide.
528 #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
529 #define EFX_DMA_TYPE_WIDTH(width) \
530 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
533 /* Static initialiser */
534 #define EFX_OWORD32(a, b, c, d) \
535 { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \
536 cpu_to_le32(c), cpu_to_le32(d) } }
538 #endif /* EFX_BITFIELD_H */