Avoid beyond bounds copy while caching ACL
[zen-stable.git] / drivers / spi / spi-topcliff-pch.c
blob47815f7de631dbf88465d06eb19ba8ec6036656e
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
53 #define PCH_TX_THOLD 2
55 #define PCH_MAX_BAUDRATE 5000000
56 #define PCH_MAX_FIFO_DEPTH 16
58 #define STATUS_RUNNING 1
59 #define STATUS_EXITING 2
60 #define PCH_SLEEP_TIME 10
62 #define SSN_LOW 0x02U
63 #define SSN_HIGH 0x03U
64 #define SSN_NO_CONTROL 0x00U
65 #define PCH_MAX_CS 0xFF
66 #define PCI_DEVICE_ID_GE_SPI 0x8816
68 #define SPCR_SPE_BIT (1 << 0)
69 #define SPCR_MSTR_BIT (1 << 1)
70 #define SPCR_LSBF_BIT (1 << 4)
71 #define SPCR_CPHA_BIT (1 << 5)
72 #define SPCR_CPOL_BIT (1 << 6)
73 #define SPCR_TFIE_BIT (1 << 8)
74 #define SPCR_RFIE_BIT (1 << 9)
75 #define SPCR_FIE_BIT (1 << 10)
76 #define SPCR_ORIE_BIT (1 << 11)
77 #define SPCR_MDFIE_BIT (1 << 12)
78 #define SPCR_FICLR_BIT (1 << 24)
79 #define SPSR_TFI_BIT (1 << 0)
80 #define SPSR_RFI_BIT (1 << 1)
81 #define SPSR_FI_BIT (1 << 2)
82 #define SPSR_ORF_BIT (1 << 3)
83 #define SPBRR_SIZE_BIT (1 << 10)
85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
88 #define SPCR_RFIC_FIELD 20
89 #define SPCR_TFIC_FIELD 16
91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
95 #define PCH_CLOCK_HZ 50000000
96 #define PCH_MAX_SPBR 1023
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM 0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
105 * Set the number of SPI instance max
106 * Intel EG20T PCH : 1ch
107 * LAPIS Semiconductor ML7213 IOH : 2ch
108 * LAPIS Semiconductor ML7223 IOH : 1ch
109 * LAPIS Semiconductor ML7831 IOH : 1ch
111 #define PCH_SPI_MAX_DEV 2
113 #define PCH_BUF_SIZE 4096
114 #define PCH_DMA_TRANS_SIZE 12
116 static int use_dma = 1;
118 struct pch_spi_dma_ctrl {
119 struct dma_async_tx_descriptor *desc_tx;
120 struct dma_async_tx_descriptor *desc_rx;
121 struct pch_dma_slave param_tx;
122 struct pch_dma_slave param_rx;
123 struct dma_chan *chan_tx;
124 struct dma_chan *chan_rx;
125 struct scatterlist *sg_tx_p;
126 struct scatterlist *sg_rx_p;
127 struct scatterlist sg_tx;
128 struct scatterlist sg_rx;
129 int nent;
130 void *tx_buf_virt;
131 void *rx_buf_virt;
132 dma_addr_t tx_buf_dma;
133 dma_addr_t rx_buf_dma;
136 * struct pch_spi_data - Holds the SPI channel specific details
137 * @io_remap_addr: The remapped PCI base address
138 * @master: Pointer to the SPI master structure
139 * @work: Reference to work queue handler
140 * @wk: Workqueue for carrying out execution of the
141 * requests
142 * @wait: Wait queue for waking up upon receiving an
143 * interrupt.
144 * @transfer_complete: Status of SPI Transfer
145 * @bcurrent_msg_processing: Status flag for message processing
146 * @lock: Lock for protecting this structure
147 * @queue: SPI Message queue
148 * @status: Status of the SPI driver
149 * @bpw_len: Length of data to be transferred in bits per
150 * word
151 * @transfer_active: Flag showing active transfer
152 * @tx_index: Transmit data count; for bookkeeping during
153 * transfer
154 * @rx_index: Receive data count; for bookkeeping during
155 * transfer
156 * @tx_buff: Buffer for data to be transmitted
157 * @rx_index: Buffer for Received data
158 * @n_curnt_chip: The chip number that this SPI driver currently
159 * operates on
160 * @current_chip: Reference to the current chip that this SPI
161 * driver currently operates on
162 * @current_msg: The current message that this SPI driver is
163 * handling
164 * @cur_trans: The current transfer that this SPI driver is
165 * handling
166 * @board_dat: Reference to the SPI device data structure
167 * @plat_dev: platform_device structure
168 * @ch: SPI channel number
169 * @irq_reg_sts: Status of IRQ registration
171 struct pch_spi_data {
172 void __iomem *io_remap_addr;
173 unsigned long io_base_addr;
174 struct spi_master *master;
175 struct work_struct work;
176 struct workqueue_struct *wk;
177 wait_queue_head_t wait;
178 u8 transfer_complete;
179 u8 bcurrent_msg_processing;
180 spinlock_t lock;
181 struct list_head queue;
182 u8 status;
183 u32 bpw_len;
184 u8 transfer_active;
185 u32 tx_index;
186 u32 rx_index;
187 u16 *pkt_tx_buff;
188 u16 *pkt_rx_buff;
189 u8 n_curnt_chip;
190 struct spi_device *current_chip;
191 struct spi_message *current_msg;
192 struct spi_transfer *cur_trans;
193 struct pch_spi_board_data *board_dat;
194 struct platform_device *plat_dev;
195 int ch;
196 struct pch_spi_dma_ctrl dma;
197 int use_dma;
198 u8 irq_reg_sts;
199 int save_total_len;
203 * struct pch_spi_board_data - Holds the SPI device specific details
204 * @pdev: Pointer to the PCI device
205 * @suspend_sts: Status of suspend
206 * @num: The number of SPI device instance
208 struct pch_spi_board_data {
209 struct pci_dev *pdev;
210 u8 suspend_sts;
211 int num;
214 struct pch_pd_dev_save {
215 int num;
216 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 struct pch_spi_board_data *board_dat;
220 static struct pci_device_id pch_spi_pcidev_id[] = {
221 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
222 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
229 * pch_spi_writereg() - Performs register writes
230 * @master: Pointer to struct spi_master.
231 * @idx: Register offset.
232 * @val: Value to be written to register.
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
236 struct pch_spi_data *data = spi_master_get_devdata(master);
237 iowrite32(val, (data->io_remap_addr + idx));
241 * pch_spi_readreg() - Performs register reads
242 * @master: Pointer to struct spi_master.
243 * @idx: Register offset.
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
247 struct pch_spi_data *data = spi_master_get_devdata(master);
248 return ioread32(data->io_remap_addr + idx);
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 u32 set, u32 clr)
254 u32 tmp = pch_spi_readreg(master, idx);
255 tmp = (tmp & ~clr) | set;
256 pch_spi_writereg(master, idx, tmp);
259 static void pch_spi_set_master_mode(struct spi_master *master)
261 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266 * @master: Pointer to struct spi_master.
268 static void pch_spi_clear_fifo(struct spi_master *master)
270 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 void __iomem *io_remap_addr)
277 u32 n_read, tx_index, rx_index, bpw_len;
278 u16 *pkt_rx_buffer, *pkt_tx_buff;
279 int read_cnt;
280 u32 reg_spcr_val;
281 void __iomem *spsr;
282 void __iomem *spdrr;
283 void __iomem *spdwr;
285 spsr = io_remap_addr + PCH_SPSR;
286 iowrite32(reg_spsr_val, spsr);
288 if (data->transfer_active) {
289 rx_index = data->rx_index;
290 tx_index = data->tx_index;
291 bpw_len = data->bpw_len;
292 pkt_rx_buffer = data->pkt_rx_buff;
293 pkt_tx_buff = data->pkt_tx_buff;
295 spdrr = io_remap_addr + PCH_SPDRR;
296 spdwr = io_remap_addr + PCH_SPDWR;
298 n_read = PCH_READABLE(reg_spsr_val);
300 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 if (tx_index < bpw_len)
303 iowrite32(pkt_tx_buff[tx_index++], spdwr);
306 /* disable RFI if not needed */
307 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
311 /* reset rx threshold */
312 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
315 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
318 /* update counts */
319 data->tx_index = tx_index;
320 data->rx_index = rx_index;
322 /* if transfer complete interrupt */
323 if (reg_spsr_val & SPSR_FI_BIT) {
324 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 /* disable interrupts */
326 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 PCH_ALL);
329 /* transfer is completed;
330 inform pch_spi_process_messages */
331 data->transfer_complete = true;
332 data->transfer_active = false;
333 wake_up(&data->wait);
334 } else {
335 dev_err(&data->master->dev,
336 "%s : Transfer is not completed",
337 __func__);
344 * pch_spi_handler() - Interrupt handler
345 * @irq: The interrupt number.
346 * @dev_id: Pointer to struct pch_spi_board_data.
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
350 u32 reg_spsr_val;
351 void __iomem *spsr;
352 void __iomem *io_remap_addr;
353 irqreturn_t ret = IRQ_NONE;
354 struct pch_spi_data *data = dev_id;
355 struct pch_spi_board_data *board_dat = data->board_dat;
357 if (board_dat->suspend_sts) {
358 dev_dbg(&board_dat->pdev->dev,
359 "%s returning due to suspend\n", __func__);
360 return IRQ_NONE;
363 io_remap_addr = data->io_remap_addr;
364 spsr = io_remap_addr + PCH_SPSR;
366 reg_spsr_val = ioread32(spsr);
368 if (reg_spsr_val & SPSR_ORF_BIT) {
369 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 if (data->current_msg->complete != 0) {
371 data->transfer_complete = true;
372 data->current_msg->status = -EIO;
373 data->current_msg->complete(data->current_msg->context);
374 data->bcurrent_msg_processing = false;
375 data->current_msg = NULL;
376 data->cur_trans = NULL;
380 if (data->use_dma)
381 return IRQ_NONE;
383 /* Check if the interrupt is for SPI device */
384 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 ret = IRQ_HANDLED;
389 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 __func__, ret);
392 return ret;
396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397 * @master: Pointer to struct spi_master.
398 * @speed_hz: Baud rate.
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
402 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
404 /* if baud rate is less than we can support limit it */
405 if (n_spbr > PCH_MAX_SPBR)
406 n_spbr = PCH_MAX_SPBR;
408 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413 * @master: Pointer to struct spi_master.
414 * @bits_per_word: Bits per word for SPI transfer.
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 u8 bits_per_word)
419 if (bits_per_word == 8)
420 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 else
422 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427 * @spi: Pointer to struct spi_device.
429 static void pch_spi_setup_transfer(struct spi_device *spi)
431 u32 flags = 0;
433 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 spi->max_speed_hz);
436 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
438 /* set bits per word */
439 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
441 if (!(spi->mode & SPI_LSB_FIRST))
442 flags |= SPCR_LSBF_BIT;
443 if (spi->mode & SPI_CPOL)
444 flags |= SPCR_CPOL_BIT;
445 if (spi->mode & SPI_CPHA)
446 flags |= SPCR_CPHA_BIT;
447 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
450 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
451 pch_spi_clear_fifo(spi->master);
455 * pch_spi_reset() - Clears SPI registers
456 * @master: Pointer to struct spi_master.
458 static void pch_spi_reset(struct spi_master *master)
460 /* write 1 to reset SPI */
461 pch_spi_writereg(master, PCH_SRST, 0x1);
463 /* clear reset */
464 pch_spi_writereg(master, PCH_SRST, 0x0);
467 static int pch_spi_setup(struct spi_device *pspi)
469 /* check bits per word */
470 if (pspi->bits_per_word == 0) {
471 pspi->bits_per_word = 8;
472 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
475 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
476 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
477 return -EINVAL;
480 /* Check baud rate setting */
481 /* if baud rate of chip is greater than
482 max we can support,return error */
483 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
484 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
486 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
487 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
489 return 0;
492 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
495 struct spi_transfer *transfer;
496 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
497 int retval;
498 unsigned long flags;
500 /* validate spi message and baud rate */
501 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
502 dev_err(&pspi->dev, "%s list empty\n", __func__);
503 retval = -EINVAL;
504 goto err_out;
507 if (unlikely(pspi->max_speed_hz == 0)) {
508 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
509 __func__, pspi->max_speed_hz);
510 retval = -EINVAL;
511 goto err_out;
514 dev_dbg(&pspi->dev, "%s Transfer List not empty. "
515 "Transfer Speed is set.\n", __func__);
517 spin_lock_irqsave(&data->lock, flags);
518 /* validate Tx/Rx buffers and Transfer length */
519 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
520 if (!transfer->tx_buf && !transfer->rx_buf) {
521 dev_err(&pspi->dev,
522 "%s Tx and Rx buffer NULL\n", __func__);
523 retval = -EINVAL;
524 goto err_return_spinlock;
527 if (!transfer->len) {
528 dev_err(&pspi->dev, "%s Transfer length invalid\n",
529 __func__);
530 retval = -EINVAL;
531 goto err_return_spinlock;
534 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
535 " valid\n", __func__);
537 /* if baud rate has been specified validate the same */
538 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
539 transfer->speed_hz = PCH_MAX_BAUDRATE;
541 /* if bits per word has been specified validate the same */
542 if (transfer->bits_per_word) {
543 if ((transfer->bits_per_word != 8)
544 && (transfer->bits_per_word != 16)) {
545 retval = -EINVAL;
546 dev_err(&pspi->dev,
547 "%s Invalid bits per word\n", __func__);
548 goto err_return_spinlock;
552 spin_unlock_irqrestore(&data->lock, flags);
554 /* We won't process any messages if we have been asked to terminate */
555 if (data->status == STATUS_EXITING) {
556 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
557 retval = -ESHUTDOWN;
558 goto err_out;
561 /* If suspended ,return -EINVAL */
562 if (data->board_dat->suspend_sts) {
563 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
564 retval = -EINVAL;
565 goto err_out;
568 /* set status of message */
569 pmsg->actual_length = 0;
570 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
572 pmsg->status = -EINPROGRESS;
573 spin_lock_irqsave(&data->lock, flags);
574 /* add message to queue */
575 list_add_tail(&pmsg->queue, &data->queue);
576 spin_unlock_irqrestore(&data->lock, flags);
578 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
580 /* schedule work queue to run */
581 queue_work(data->wk, &data->work);
582 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
584 retval = 0;
586 err_out:
587 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
588 return retval;
589 err_return_spinlock:
590 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
591 spin_unlock_irqrestore(&data->lock, flags);
592 return retval;
595 static inline void pch_spi_select_chip(struct pch_spi_data *data,
596 struct spi_device *pspi)
598 if (data->current_chip != NULL) {
599 if (pspi->chip_select != data->n_curnt_chip) {
600 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
601 data->current_chip = NULL;
605 data->current_chip = pspi;
607 data->n_curnt_chip = data->current_chip->chip_select;
609 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
610 pch_spi_setup_transfer(pspi);
613 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
615 int size;
616 u32 n_writes;
617 int j;
618 struct spi_message *pmsg;
619 const u8 *tx_buf;
620 const u16 *tx_sbuf;
622 /* set baud rate if needed */
623 if (data->cur_trans->speed_hz) {
624 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
625 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
628 /* set bits per word if needed */
629 if (data->cur_trans->bits_per_word &&
630 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
631 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
632 pch_spi_set_bits_per_word(data->master,
633 data->cur_trans->bits_per_word);
634 *bpw = data->cur_trans->bits_per_word;
635 } else {
636 *bpw = data->current_msg->spi->bits_per_word;
639 /* reset Tx/Rx index */
640 data->tx_index = 0;
641 data->rx_index = 0;
643 data->bpw_len = data->cur_trans->len / (*bpw / 8);
645 /* find alloc size */
646 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
648 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
649 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
650 if (data->pkt_tx_buff != NULL) {
651 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
652 if (!data->pkt_rx_buff)
653 kfree(data->pkt_tx_buff);
656 if (!data->pkt_rx_buff) {
657 /* flush queue and set status of all transfers to -ENOMEM */
658 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
659 list_for_each_entry(pmsg, data->queue.next, queue) {
660 pmsg->status = -ENOMEM;
662 if (pmsg->complete != 0)
663 pmsg->complete(pmsg->context);
665 /* delete from queue */
666 list_del_init(&pmsg->queue);
668 return;
671 /* copy Tx Data */
672 if (data->cur_trans->tx_buf != NULL) {
673 if (*bpw == 8) {
674 tx_buf = data->cur_trans->tx_buf;
675 for (j = 0; j < data->bpw_len; j++)
676 data->pkt_tx_buff[j] = *tx_buf++;
677 } else {
678 tx_sbuf = data->cur_trans->tx_buf;
679 for (j = 0; j < data->bpw_len; j++)
680 data->pkt_tx_buff[j] = *tx_sbuf++;
684 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
685 n_writes = data->bpw_len;
686 if (n_writes > PCH_MAX_FIFO_DEPTH)
687 n_writes = PCH_MAX_FIFO_DEPTH;
689 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
690 "0x2 to SSNXCR\n", __func__);
691 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
693 for (j = 0; j < n_writes; j++)
694 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
696 /* update tx_index */
697 data->tx_index = j;
699 /* reset transfer complete flag */
700 data->transfer_complete = false;
701 data->transfer_active = true;
704 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
706 struct spi_message *pmsg;
707 dev_dbg(&data->master->dev, "%s called\n", __func__);
708 /* Invoke complete callback
709 * [To the spi core..indicating end of transfer] */
710 data->current_msg->status = 0;
712 if (data->current_msg->complete != 0) {
713 dev_dbg(&data->master->dev,
714 "%s:Invoking callback of SPI core\n", __func__);
715 data->current_msg->complete(data->current_msg->context);
718 /* update status in global variable */
719 data->bcurrent_msg_processing = false;
721 dev_dbg(&data->master->dev,
722 "%s:data->bcurrent_msg_processing = false\n", __func__);
724 data->current_msg = NULL;
725 data->cur_trans = NULL;
727 /* check if we have items in list and not suspending
728 * return 1 if list empty */
729 if ((list_empty(&data->queue) == 0) &&
730 (!data->board_dat->suspend_sts) &&
731 (data->status != STATUS_EXITING)) {
732 /* We have some more work to do (either there is more tranint
733 * bpw;sfer requests in the current message or there are
734 *more messages)
736 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
737 queue_work(data->wk, &data->work);
738 } else if (data->board_dat->suspend_sts ||
739 data->status == STATUS_EXITING) {
740 dev_dbg(&data->master->dev,
741 "%s suspend/remove initiated, flushing queue\n",
742 __func__);
743 list_for_each_entry(pmsg, data->queue.next, queue) {
744 pmsg->status = -EIO;
746 if (pmsg->complete)
747 pmsg->complete(pmsg->context);
749 /* delete from queue */
750 list_del_init(&pmsg->queue);
755 static void pch_spi_set_ir(struct pch_spi_data *data)
757 /* enable interrupts, set threshold, enable SPI */
758 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
759 /* set receive threshold to PCH_RX_THOLD */
760 pch_spi_setclr_reg(data->master, PCH_SPCR,
761 PCH_RX_THOLD << SPCR_RFIC_FIELD |
762 SPCR_FIE_BIT | SPCR_RFIE_BIT |
763 SPCR_ORIE_BIT | SPCR_SPE_BIT,
764 MASK_RFIC_SPCR_BITS | PCH_ALL);
765 else
766 /* set receive threshold to maximum */
767 pch_spi_setclr_reg(data->master, PCH_SPCR,
768 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
769 SPCR_FIE_BIT | SPCR_ORIE_BIT |
770 SPCR_SPE_BIT,
771 MASK_RFIC_SPCR_BITS | PCH_ALL);
773 /* Wait until the transfer completes; go to sleep after
774 initiating the transfer. */
775 dev_dbg(&data->master->dev,
776 "%s:waiting for transfer to get over\n", __func__);
778 wait_event_interruptible(data->wait, data->transfer_complete);
780 /* clear all interrupts */
781 pch_spi_writereg(data->master, PCH_SPSR,
782 pch_spi_readreg(data->master, PCH_SPSR));
783 /* Disable interrupts and SPI transfer */
784 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
785 /* clear FIFO */
786 pch_spi_clear_fifo(data->master);
789 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
791 int j;
792 u8 *rx_buf;
793 u16 *rx_sbuf;
795 /* copy Rx Data */
796 if (!data->cur_trans->rx_buf)
797 return;
799 if (bpw == 8) {
800 rx_buf = data->cur_trans->rx_buf;
801 for (j = 0; j < data->bpw_len; j++)
802 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
803 } else {
804 rx_sbuf = data->cur_trans->rx_buf;
805 for (j = 0; j < data->bpw_len; j++)
806 *rx_sbuf++ = data->pkt_rx_buff[j];
810 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
812 int j;
813 u8 *rx_buf;
814 u16 *rx_sbuf;
815 const u8 *rx_dma_buf;
816 const u16 *rx_dma_sbuf;
818 /* copy Rx Data */
819 if (!data->cur_trans->rx_buf)
820 return;
822 if (bpw == 8) {
823 rx_buf = data->cur_trans->rx_buf;
824 rx_dma_buf = data->dma.rx_buf_virt;
825 for (j = 0; j < data->bpw_len; j++)
826 *rx_buf++ = *rx_dma_buf++ & 0xFF;
827 data->cur_trans->rx_buf = rx_buf;
828 } else {
829 rx_sbuf = data->cur_trans->rx_buf;
830 rx_dma_sbuf = data->dma.rx_buf_virt;
831 for (j = 0; j < data->bpw_len; j++)
832 *rx_sbuf++ = *rx_dma_sbuf++;
833 data->cur_trans->rx_buf = rx_sbuf;
837 static int pch_spi_start_transfer(struct pch_spi_data *data)
839 struct pch_spi_dma_ctrl *dma;
840 unsigned long flags;
841 int rtn;
843 dma = &data->dma;
845 spin_lock_irqsave(&data->lock, flags);
847 /* disable interrupts, SPI set enable */
848 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
850 spin_unlock_irqrestore(&data->lock, flags);
852 /* Wait until the transfer completes; go to sleep after
853 initiating the transfer. */
854 dev_dbg(&data->master->dev,
855 "%s:waiting for transfer to get over\n", __func__);
856 rtn = wait_event_interruptible_timeout(data->wait,
857 data->transfer_complete,
858 msecs_to_jiffies(2 * HZ));
859 if (!rtn)
860 dev_err(&data->master->dev,
861 "%s wait-event timeout\n", __func__);
863 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
864 DMA_FROM_DEVICE);
866 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
867 DMA_FROM_DEVICE);
868 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
870 async_tx_ack(dma->desc_rx);
871 async_tx_ack(dma->desc_tx);
872 kfree(dma->sg_tx_p);
873 kfree(dma->sg_rx_p);
875 spin_lock_irqsave(&data->lock, flags);
877 /* clear fifo threshold, disable interrupts, disable SPI transfer */
878 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
879 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
880 SPCR_SPE_BIT);
881 /* clear all interrupts */
882 pch_spi_writereg(data->master, PCH_SPSR,
883 pch_spi_readreg(data->master, PCH_SPSR));
884 /* clear FIFO */
885 pch_spi_clear_fifo(data->master);
887 spin_unlock_irqrestore(&data->lock, flags);
889 return rtn;
892 static void pch_dma_rx_complete(void *arg)
894 struct pch_spi_data *data = arg;
896 /* transfer is completed;inform pch_spi_process_messages_dma */
897 data->transfer_complete = true;
898 wake_up_interruptible(&data->wait);
901 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
903 struct pch_dma_slave *param = slave;
905 if ((chan->chan_id == param->chan_id) &&
906 (param->dma_dev == chan->device->dev)) {
907 chan->private = param;
908 return true;
909 } else {
910 return false;
914 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
916 dma_cap_mask_t mask;
917 struct dma_chan *chan;
918 struct pci_dev *dma_dev;
919 struct pch_dma_slave *param;
920 struct pch_spi_dma_ctrl *dma;
921 unsigned int width;
923 if (bpw == 8)
924 width = PCH_DMA_WIDTH_1_BYTE;
925 else
926 width = PCH_DMA_WIDTH_2_BYTES;
928 dma = &data->dma;
929 dma_cap_zero(mask);
930 dma_cap_set(DMA_SLAVE, mask);
932 /* Get DMA's dev information */
933 dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
934 PCI_DEVFN(12, 0));
936 /* Set Tx DMA */
937 param = &dma->param_tx;
938 param->dma_dev = &dma_dev->dev;
939 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
940 param->tx_reg = data->io_base_addr + PCH_SPDWR;
941 param->width = width;
942 chan = dma_request_channel(mask, pch_spi_filter, param);
943 if (!chan) {
944 dev_err(&data->master->dev,
945 "ERROR: dma_request_channel FAILS(Tx)\n");
946 data->use_dma = 0;
947 return;
949 dma->chan_tx = chan;
951 /* Set Rx DMA */
952 param = &dma->param_rx;
953 param->dma_dev = &dma_dev->dev;
954 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
955 param->rx_reg = data->io_base_addr + PCH_SPDRR;
956 param->width = width;
957 chan = dma_request_channel(mask, pch_spi_filter, param);
958 if (!chan) {
959 dev_err(&data->master->dev,
960 "ERROR: dma_request_channel FAILS(Rx)\n");
961 dma_release_channel(dma->chan_tx);
962 dma->chan_tx = NULL;
963 data->use_dma = 0;
964 return;
966 dma->chan_rx = chan;
969 static void pch_spi_release_dma(struct pch_spi_data *data)
971 struct pch_spi_dma_ctrl *dma;
973 dma = &data->dma;
974 if (dma->chan_tx) {
975 dma_release_channel(dma->chan_tx);
976 dma->chan_tx = NULL;
978 if (dma->chan_rx) {
979 dma_release_channel(dma->chan_rx);
980 dma->chan_rx = NULL;
982 return;
985 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
987 const u8 *tx_buf;
988 const u16 *tx_sbuf;
989 u8 *tx_dma_buf;
990 u16 *tx_dma_sbuf;
991 struct scatterlist *sg;
992 struct dma_async_tx_descriptor *desc_tx;
993 struct dma_async_tx_descriptor *desc_rx;
994 int num;
995 int i;
996 int size;
997 int rem;
998 int head;
999 unsigned long flags;
1000 struct pch_spi_dma_ctrl *dma;
1002 dma = &data->dma;
1004 /* set baud rate if needed */
1005 if (data->cur_trans->speed_hz) {
1006 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
1007 spin_lock_irqsave(&data->lock, flags);
1008 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1009 spin_unlock_irqrestore(&data->lock, flags);
1012 /* set bits per word if needed */
1013 if (data->cur_trans->bits_per_word &&
1014 (data->current_msg->spi->bits_per_word !=
1015 data->cur_trans->bits_per_word)) {
1016 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1017 spin_lock_irqsave(&data->lock, flags);
1018 pch_spi_set_bits_per_word(data->master,
1019 data->cur_trans->bits_per_word);
1020 spin_unlock_irqrestore(&data->lock, flags);
1021 *bpw = data->cur_trans->bits_per_word;
1022 } else {
1023 *bpw = data->current_msg->spi->bits_per_word;
1025 data->bpw_len = data->cur_trans->len / (*bpw / 8);
1027 if (data->bpw_len > PCH_BUF_SIZE) {
1028 data->bpw_len = PCH_BUF_SIZE;
1029 data->cur_trans->len -= PCH_BUF_SIZE;
1032 /* copy Tx Data */
1033 if (data->cur_trans->tx_buf != NULL) {
1034 if (*bpw == 8) {
1035 tx_buf = data->cur_trans->tx_buf;
1036 tx_dma_buf = dma->tx_buf_virt;
1037 for (i = 0; i < data->bpw_len; i++)
1038 *tx_dma_buf++ = *tx_buf++;
1039 } else {
1040 tx_sbuf = data->cur_trans->tx_buf;
1041 tx_dma_sbuf = dma->tx_buf_virt;
1042 for (i = 0; i < data->bpw_len; i++)
1043 *tx_dma_sbuf++ = *tx_sbuf++;
1047 /* Calculate Rx parameter for DMA transmitting */
1048 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1049 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1050 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1051 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1052 } else {
1053 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1054 rem = PCH_DMA_TRANS_SIZE;
1056 size = PCH_DMA_TRANS_SIZE;
1057 } else {
1058 num = 1;
1059 size = data->bpw_len;
1060 rem = data->bpw_len;
1062 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1063 __func__, num, size, rem);
1064 spin_lock_irqsave(&data->lock, flags);
1066 /* set receive fifo threshold and transmit fifo threshold */
1067 pch_spi_setclr_reg(data->master, PCH_SPCR,
1068 ((size - 1) << SPCR_RFIC_FIELD) |
1069 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1070 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1072 spin_unlock_irqrestore(&data->lock, flags);
1074 /* RX */
1075 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1076 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1077 /* offset, length setting */
1078 sg = dma->sg_rx_p;
1079 for (i = 0; i < num; i++, sg++) {
1080 if (i == (num - 2)) {
1081 sg->offset = size * i;
1082 sg->offset = sg->offset * (*bpw / 8);
1083 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1084 sg->offset);
1085 sg_dma_len(sg) = rem;
1086 } else if (i == (num - 1)) {
1087 sg->offset = size * (i - 1) + rem;
1088 sg->offset = sg->offset * (*bpw / 8);
1089 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1090 sg->offset);
1091 sg_dma_len(sg) = size;
1092 } else {
1093 sg->offset = size * i;
1094 sg->offset = sg->offset * (*bpw / 8);
1095 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1096 sg->offset);
1097 sg_dma_len(sg) = size;
1099 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1101 sg = dma->sg_rx_p;
1102 desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1103 num, DMA_DEV_TO_MEM,
1104 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1105 if (!desc_rx) {
1106 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1107 __func__);
1108 return;
1110 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1111 desc_rx->callback = pch_dma_rx_complete;
1112 desc_rx->callback_param = data;
1113 dma->nent = num;
1114 dma->desc_rx = desc_rx;
1116 /* Calculate Tx parameter for DMA transmitting */
1117 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1118 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1119 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1120 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1121 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1122 } else {
1123 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1124 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1125 PCH_DMA_TRANS_SIZE - head;
1127 size = PCH_DMA_TRANS_SIZE;
1128 } else {
1129 num = 1;
1130 size = data->bpw_len;
1131 rem = data->bpw_len;
1132 head = 0;
1135 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1136 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1137 /* offset, length setting */
1138 sg = dma->sg_tx_p;
1139 for (i = 0; i < num; i++, sg++) {
1140 if (i == 0) {
1141 sg->offset = 0;
1142 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1143 sg->offset);
1144 sg_dma_len(sg) = size + head;
1145 } else if (i == (num - 1)) {
1146 sg->offset = head + size * i;
1147 sg->offset = sg->offset * (*bpw / 8);
1148 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1149 sg->offset);
1150 sg_dma_len(sg) = rem;
1151 } else {
1152 sg->offset = head + size * i;
1153 sg->offset = sg->offset * (*bpw / 8);
1154 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1155 sg->offset);
1156 sg_dma_len(sg) = size;
1158 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1160 sg = dma->sg_tx_p;
1161 desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1162 sg, num, DMA_MEM_TO_DEV,
1163 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1164 if (!desc_tx) {
1165 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1166 __func__);
1167 return;
1169 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1170 desc_tx->callback = NULL;
1171 desc_tx->callback_param = data;
1172 dma->nent = num;
1173 dma->desc_tx = desc_tx;
1175 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1176 "0x2 to SSNXCR\n", __func__);
1178 spin_lock_irqsave(&data->lock, flags);
1179 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1180 desc_rx->tx_submit(desc_rx);
1181 desc_tx->tx_submit(desc_tx);
1182 spin_unlock_irqrestore(&data->lock, flags);
1184 /* reset transfer complete flag */
1185 data->transfer_complete = false;
1188 static void pch_spi_process_messages(struct work_struct *pwork)
1190 struct spi_message *pmsg;
1191 struct pch_spi_data *data;
1192 int bpw;
1194 data = container_of(pwork, struct pch_spi_data, work);
1195 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1197 spin_lock(&data->lock);
1198 /* check if suspend has been initiated;if yes flush queue */
1199 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1200 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1201 "flushing queue\n", __func__);
1202 list_for_each_entry(pmsg, data->queue.next, queue) {
1203 pmsg->status = -EIO;
1205 if (pmsg->complete != 0) {
1206 spin_unlock(&data->lock);
1207 pmsg->complete(pmsg->context);
1208 spin_lock(&data->lock);
1211 /* delete from queue */
1212 list_del_init(&pmsg->queue);
1215 spin_unlock(&data->lock);
1216 return;
1219 data->bcurrent_msg_processing = true;
1220 dev_dbg(&data->master->dev,
1221 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1223 /* Get the message from the queue and delete it from there. */
1224 data->current_msg = list_entry(data->queue.next, struct spi_message,
1225 queue);
1227 list_del_init(&data->current_msg->queue);
1229 data->current_msg->status = 0;
1231 pch_spi_select_chip(data, data->current_msg->spi);
1233 spin_unlock(&data->lock);
1235 if (data->use_dma)
1236 pch_spi_request_dma(data,
1237 data->current_msg->spi->bits_per_word);
1238 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1239 do {
1240 int cnt;
1241 /* If we are already processing a message get the next
1242 transfer structure from the message otherwise retrieve
1243 the 1st transfer request from the message. */
1244 spin_lock(&data->lock);
1245 if (data->cur_trans == NULL) {
1246 data->cur_trans =
1247 list_entry(data->current_msg->transfers.next,
1248 struct spi_transfer, transfer_list);
1249 dev_dbg(&data->master->dev, "%s "
1250 ":Getting 1st transfer message\n", __func__);
1251 } else {
1252 data->cur_trans =
1253 list_entry(data->cur_trans->transfer_list.next,
1254 struct spi_transfer, transfer_list);
1255 dev_dbg(&data->master->dev, "%s "
1256 ":Getting next transfer message\n", __func__);
1258 spin_unlock(&data->lock);
1260 if (!data->cur_trans->len)
1261 goto out;
1262 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1263 data->save_total_len = data->cur_trans->len;
1264 if (data->use_dma) {
1265 int i;
1266 char *save_rx_buf = data->cur_trans->rx_buf;
1267 for (i = 0; i < cnt; i ++) {
1268 pch_spi_handle_dma(data, &bpw);
1269 if (!pch_spi_start_transfer(data)) {
1270 data->transfer_complete = true;
1271 data->current_msg->status = -EIO;
1272 data->current_msg->complete
1273 (data->current_msg->context);
1274 data->bcurrent_msg_processing = false;
1275 data->current_msg = NULL;
1276 data->cur_trans = NULL;
1277 goto out;
1279 pch_spi_copy_rx_data_for_dma(data, bpw);
1281 data->cur_trans->rx_buf = save_rx_buf;
1282 } else {
1283 pch_spi_set_tx(data, &bpw);
1284 pch_spi_set_ir(data);
1285 pch_spi_copy_rx_data(data, bpw);
1286 kfree(data->pkt_rx_buff);
1287 data->pkt_rx_buff = NULL;
1288 kfree(data->pkt_tx_buff);
1289 data->pkt_tx_buff = NULL;
1291 /* increment message count */
1292 data->cur_trans->len = data->save_total_len;
1293 data->current_msg->actual_length += data->cur_trans->len;
1295 dev_dbg(&data->master->dev,
1296 "%s:data->current_msg->actual_length=%d\n",
1297 __func__, data->current_msg->actual_length);
1299 /* check for delay */
1300 if (data->cur_trans->delay_usecs) {
1301 dev_dbg(&data->master->dev, "%s:"
1302 "delay in usec=%d\n", __func__,
1303 data->cur_trans->delay_usecs);
1304 udelay(data->cur_trans->delay_usecs);
1307 spin_lock(&data->lock);
1309 /* No more transfer in this message. */
1310 if ((data->cur_trans->transfer_list.next) ==
1311 &(data->current_msg->transfers)) {
1312 pch_spi_nomore_transfer(data);
1315 spin_unlock(&data->lock);
1317 } while (data->cur_trans != NULL);
1319 out:
1320 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1321 if (data->use_dma)
1322 pch_spi_release_dma(data);
1325 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1326 struct pch_spi_data *data)
1328 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1330 /* free workqueue */
1331 if (data->wk != NULL) {
1332 destroy_workqueue(data->wk);
1333 data->wk = NULL;
1334 dev_dbg(&board_dat->pdev->dev,
1335 "%s destroy_workqueue invoked successfully\n",
1336 __func__);
1340 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1341 struct pch_spi_data *data)
1343 int retval = 0;
1345 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1347 /* create workqueue */
1348 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1349 if (!data->wk) {
1350 dev_err(&board_dat->pdev->dev,
1351 "%s create_singlet hread_workqueue failed\n", __func__);
1352 retval = -EBUSY;
1353 goto err_return;
1356 /* reset PCH SPI h/w */
1357 pch_spi_reset(data->master);
1358 dev_dbg(&board_dat->pdev->dev,
1359 "%s pch_spi_reset invoked successfully\n", __func__);
1361 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1363 err_return:
1364 if (retval != 0) {
1365 dev_err(&board_dat->pdev->dev,
1366 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1367 pch_spi_free_resources(board_dat, data);
1370 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1372 return retval;
1375 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1376 struct pch_spi_data *data)
1378 struct pch_spi_dma_ctrl *dma;
1380 dma = &data->dma;
1381 if (dma->tx_buf_dma)
1382 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1383 dma->tx_buf_virt, dma->tx_buf_dma);
1384 if (dma->rx_buf_dma)
1385 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1386 dma->rx_buf_virt, dma->rx_buf_dma);
1387 return;
1390 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1391 struct pch_spi_data *data)
1393 struct pch_spi_dma_ctrl *dma;
1395 dma = &data->dma;
1396 /* Get Consistent memory for Tx DMA */
1397 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1398 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1399 /* Get Consistent memory for Rx DMA */
1400 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1401 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1404 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1406 int ret;
1407 struct spi_master *master;
1408 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1409 struct pch_spi_data *data;
1411 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1413 master = spi_alloc_master(&board_dat->pdev->dev,
1414 sizeof(struct pch_spi_data));
1415 if (!master) {
1416 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1417 plat_dev->id);
1418 return -ENOMEM;
1421 data = spi_master_get_devdata(master);
1422 data->master = master;
1424 platform_set_drvdata(plat_dev, data);
1426 /* baseaddress + address offset) */
1427 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1428 PCH_ADDRESS_SIZE * plat_dev->id;
1429 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1430 PCH_ADDRESS_SIZE * plat_dev->id;
1431 if (!data->io_remap_addr) {
1432 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1433 ret = -ENOMEM;
1434 goto err_pci_iomap;
1437 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1438 plat_dev->id, data->io_remap_addr);
1440 /* initialize members of SPI master */
1441 master->bus_num = -1;
1442 master->num_chipselect = PCH_MAX_CS;
1443 master->setup = pch_spi_setup;
1444 master->transfer = pch_spi_transfer;
1445 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1447 data->board_dat = board_dat;
1448 data->plat_dev = plat_dev;
1449 data->n_curnt_chip = 255;
1450 data->status = STATUS_RUNNING;
1451 data->ch = plat_dev->id;
1452 data->use_dma = use_dma;
1454 INIT_LIST_HEAD(&data->queue);
1455 spin_lock_init(&data->lock);
1456 INIT_WORK(&data->work, pch_spi_process_messages);
1457 init_waitqueue_head(&data->wait);
1459 ret = pch_spi_get_resources(board_dat, data);
1460 if (ret) {
1461 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1462 goto err_spi_get_resources;
1465 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1466 IRQF_SHARED, KBUILD_MODNAME, data);
1467 if (ret) {
1468 dev_err(&plat_dev->dev,
1469 "%s request_irq failed\n", __func__);
1470 goto err_request_irq;
1472 data->irq_reg_sts = true;
1474 pch_spi_set_master_mode(master);
1476 ret = spi_register_master(master);
1477 if (ret != 0) {
1478 dev_err(&plat_dev->dev,
1479 "%s spi_register_master FAILED\n", __func__);
1480 goto err_spi_register_master;
1483 if (use_dma) {
1484 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1485 pch_alloc_dma_buf(board_dat, data);
1488 return 0;
1490 err_spi_register_master:
1491 free_irq(board_dat->pdev->irq, board_dat);
1492 err_request_irq:
1493 pch_spi_free_resources(board_dat, data);
1494 err_spi_get_resources:
1495 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1496 err_pci_iomap:
1497 spi_master_put(master);
1499 return ret;
1502 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1504 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1505 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1506 int count;
1507 unsigned long flags;
1509 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1510 __func__, plat_dev->id, board_dat->pdev->irq);
1512 if (use_dma)
1513 pch_free_dma_buf(board_dat, data);
1515 /* check for any pending messages; no action is taken if the queue
1516 * is still full; but at least we tried. Unload anyway */
1517 count = 500;
1518 spin_lock_irqsave(&data->lock, flags);
1519 data->status = STATUS_EXITING;
1520 while ((list_empty(&data->queue) == 0) && --count) {
1521 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1522 __func__);
1523 spin_unlock_irqrestore(&data->lock, flags);
1524 msleep(PCH_SLEEP_TIME);
1525 spin_lock_irqsave(&data->lock, flags);
1527 spin_unlock_irqrestore(&data->lock, flags);
1529 pch_spi_free_resources(board_dat, data);
1530 /* disable interrupts & free IRQ */
1531 if (data->irq_reg_sts) {
1532 /* disable interrupts */
1533 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1534 data->irq_reg_sts = false;
1535 free_irq(board_dat->pdev->irq, data);
1538 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1539 spi_unregister_master(data->master);
1540 spi_master_put(data->master);
1541 platform_set_drvdata(plat_dev, NULL);
1543 return 0;
1545 #ifdef CONFIG_PM
1546 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1547 pm_message_t state)
1549 u8 count;
1550 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1551 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1553 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1555 if (!board_dat) {
1556 dev_err(&pd_dev->dev,
1557 "%s pci_get_drvdata returned NULL\n", __func__);
1558 return -EFAULT;
1561 /* check if the current message is processed:
1562 Only after thats done the transfer will be suspended */
1563 count = 255;
1564 while ((--count) > 0) {
1565 if (!(data->bcurrent_msg_processing))
1566 break;
1567 msleep(PCH_SLEEP_TIME);
1570 /* Free IRQ */
1571 if (data->irq_reg_sts) {
1572 /* disable all interrupts */
1573 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1574 pch_spi_reset(data->master);
1575 free_irq(board_dat->pdev->irq, data);
1577 data->irq_reg_sts = false;
1578 dev_dbg(&pd_dev->dev,
1579 "%s free_irq invoked successfully.\n", __func__);
1582 return 0;
1585 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1587 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1588 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1589 int retval;
1591 if (!board_dat) {
1592 dev_err(&pd_dev->dev,
1593 "%s pci_get_drvdata returned NULL\n", __func__);
1594 return -EFAULT;
1597 if (!data->irq_reg_sts) {
1598 /* register IRQ */
1599 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1600 IRQF_SHARED, KBUILD_MODNAME, data);
1601 if (retval < 0) {
1602 dev_err(&pd_dev->dev,
1603 "%s request_irq failed\n", __func__);
1604 return retval;
1607 /* reset PCH SPI h/w */
1608 pch_spi_reset(data->master);
1609 pch_spi_set_master_mode(data->master);
1610 data->irq_reg_sts = true;
1612 return 0;
1614 #else
1615 #define pch_spi_pd_suspend NULL
1616 #define pch_spi_pd_resume NULL
1617 #endif
1619 static struct platform_driver pch_spi_pd_driver = {
1620 .driver = {
1621 .name = "pch-spi",
1622 .owner = THIS_MODULE,
1624 .probe = pch_spi_pd_probe,
1625 .remove = __devexit_p(pch_spi_pd_remove),
1626 .suspend = pch_spi_pd_suspend,
1627 .resume = pch_spi_pd_resume
1630 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1631 const struct pci_device_id *id)
1633 struct pch_spi_board_data *board_dat;
1634 struct platform_device *pd_dev = NULL;
1635 int retval;
1636 int i;
1637 struct pch_pd_dev_save *pd_dev_save;
1639 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1640 if (!pd_dev_save) {
1641 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1642 return -ENOMEM;
1645 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1646 if (!board_dat) {
1647 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1648 retval = -ENOMEM;
1649 goto err_no_mem;
1652 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1653 if (retval) {
1654 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1655 goto pci_request_regions;
1658 board_dat->pdev = pdev;
1659 board_dat->num = id->driver_data;
1660 pd_dev_save->num = id->driver_data;
1661 pd_dev_save->board_dat = board_dat;
1663 retval = pci_enable_device(pdev);
1664 if (retval) {
1665 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1666 goto pci_enable_device;
1669 for (i = 0; i < board_dat->num; i++) {
1670 pd_dev = platform_device_alloc("pch-spi", i);
1671 if (!pd_dev) {
1672 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1673 goto err_platform_device;
1675 pd_dev_save->pd_save[i] = pd_dev;
1676 pd_dev->dev.parent = &pdev->dev;
1678 retval = platform_device_add_data(pd_dev, board_dat,
1679 sizeof(*board_dat));
1680 if (retval) {
1681 dev_err(&pdev->dev,
1682 "platform_device_add_data failed\n");
1683 platform_device_put(pd_dev);
1684 goto err_platform_device;
1687 retval = platform_device_add(pd_dev);
1688 if (retval) {
1689 dev_err(&pdev->dev, "platform_device_add failed\n");
1690 platform_device_put(pd_dev);
1691 goto err_platform_device;
1695 pci_set_drvdata(pdev, pd_dev_save);
1697 return 0;
1699 err_platform_device:
1700 pci_disable_device(pdev);
1701 pci_enable_device:
1702 pci_release_regions(pdev);
1703 pci_request_regions:
1704 kfree(board_dat);
1705 err_no_mem:
1706 kfree(pd_dev_save);
1708 return retval;
1711 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1713 int i;
1714 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1716 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1718 for (i = 0; i < pd_dev_save->num; i++)
1719 platform_device_unregister(pd_dev_save->pd_save[i]);
1721 pci_disable_device(pdev);
1722 pci_release_regions(pdev);
1723 kfree(pd_dev_save->board_dat);
1724 kfree(pd_dev_save);
1727 #ifdef CONFIG_PM
1728 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1730 int retval;
1731 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1733 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1735 pd_dev_save->board_dat->suspend_sts = true;
1737 /* save config space */
1738 retval = pci_save_state(pdev);
1739 if (retval == 0) {
1740 pci_enable_wake(pdev, PCI_D3hot, 0);
1741 pci_disable_device(pdev);
1742 pci_set_power_state(pdev, PCI_D3hot);
1743 } else {
1744 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1747 return retval;
1750 static int pch_spi_resume(struct pci_dev *pdev)
1752 int retval;
1753 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1754 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1756 pci_set_power_state(pdev, PCI_D0);
1757 pci_restore_state(pdev);
1759 retval = pci_enable_device(pdev);
1760 if (retval < 0) {
1761 dev_err(&pdev->dev,
1762 "%s pci_enable_device failed\n", __func__);
1763 } else {
1764 pci_enable_wake(pdev, PCI_D3hot, 0);
1766 /* set suspend status to false */
1767 pd_dev_save->board_dat->suspend_sts = false;
1770 return retval;
1772 #else
1773 #define pch_spi_suspend NULL
1774 #define pch_spi_resume NULL
1776 #endif
1778 static struct pci_driver pch_spi_pcidev_driver = {
1779 .name = "pch_spi",
1780 .id_table = pch_spi_pcidev_id,
1781 .probe = pch_spi_probe,
1782 .remove = pch_spi_remove,
1783 .suspend = pch_spi_suspend,
1784 .resume = pch_spi_resume,
1787 static int __init pch_spi_init(void)
1789 int ret;
1790 ret = platform_driver_register(&pch_spi_pd_driver);
1791 if (ret)
1792 return ret;
1794 ret = pci_register_driver(&pch_spi_pcidev_driver);
1795 if (ret)
1796 return ret;
1798 return 0;
1800 module_init(pch_spi_init);
1802 static void __exit pch_spi_exit(void)
1804 pci_unregister_driver(&pch_spi_pcidev_driver);
1805 platform_driver_unregister(&pch_spi_pd_driver);
1807 module_exit(pch_spi_exit);
1809 module_param(use_dma, int, 0644);
1810 MODULE_PARM_DESC(use_dma,
1811 "to use DMA for data transfers pass 1 else 0; default 1");
1813 MODULE_LICENSE("GPL");
1814 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");