2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 struct kmem_cache
*btrfs_trans_handle_cachep
;
75 struct kmem_cache
*btrfs_transaction_cachep
;
76 struct kmem_cache
*btrfs_path_cachep
;
77 struct kmem_cache
*btrfs_free_space_cachep
;
80 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
81 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
82 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
83 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
84 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
85 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
86 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
87 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
90 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
91 static int btrfs_truncate(struct inode
*inode
);
92 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
93 static noinline
int cow_file_range(struct inode
*inode
,
94 struct page
*locked_page
,
95 u64 start
, u64 end
, int *page_started
,
96 unsigned long *nr_written
, int unlock
);
97 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
101 struct inode
*inode
, struct inode
*dir
,
102 const struct qstr
*qstr
)
106 err
= btrfs_init_acl(trans
, inode
, dir
);
108 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
118 struct btrfs_root
*root
, struct inode
*inode
,
119 u64 start
, size_t size
, size_t compressed_size
,
121 struct page
**compressed_pages
)
123 struct btrfs_key key
;
124 struct btrfs_path
*path
;
125 struct extent_buffer
*leaf
;
126 struct page
*page
= NULL
;
129 struct btrfs_file_extent_item
*ei
;
132 size_t cur_size
= size
;
134 unsigned long offset
;
136 if (compressed_size
&& compressed_pages
)
137 cur_size
= compressed_size
;
139 path
= btrfs_alloc_path();
143 path
->leave_spinning
= 1;
145 key
.objectid
= btrfs_ino(inode
);
147 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
148 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
150 inode_add_bytes(inode
, size
);
151 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
158 leaf
= path
->nodes
[0];
159 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
160 struct btrfs_file_extent_item
);
161 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
162 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
163 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
164 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
165 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
166 ptr
= btrfs_file_extent_inline_start(ei
);
168 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
171 while (compressed_size
> 0) {
172 cpage
= compressed_pages
[i
];
173 cur_size
= min_t(unsigned long, compressed_size
,
176 kaddr
= kmap_atomic(cpage
, KM_USER0
);
177 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
178 kunmap_atomic(kaddr
, KM_USER0
);
182 compressed_size
-= cur_size
;
184 btrfs_set_file_extent_compression(leaf
, ei
,
187 page
= find_get_page(inode
->i_mapping
,
188 start
>> PAGE_CACHE_SHIFT
);
189 btrfs_set_file_extent_compression(leaf
, ei
, 0);
190 kaddr
= kmap_atomic(page
, KM_USER0
);
191 offset
= start
& (PAGE_CACHE_SIZE
- 1);
192 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
193 kunmap_atomic(kaddr
, KM_USER0
);
194 page_cache_release(page
);
196 btrfs_mark_buffer_dirty(leaf
);
197 btrfs_free_path(path
);
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
208 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
209 btrfs_update_inode(trans
, root
, inode
);
213 btrfs_free_path(path
);
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
223 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
224 struct btrfs_root
*root
,
225 struct inode
*inode
, u64 start
, u64 end
,
226 size_t compressed_size
, int compress_type
,
227 struct page
**compressed_pages
)
229 u64 isize
= i_size_read(inode
);
230 u64 actual_end
= min(end
+ 1, isize
);
231 u64 inline_len
= actual_end
- start
;
232 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
233 ~((u64
)root
->sectorsize
- 1);
235 u64 data_len
= inline_len
;
239 data_len
= compressed_size
;
242 actual_end
>= PAGE_CACHE_SIZE
||
243 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
245 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
247 data_len
> root
->fs_info
->max_inline
) {
251 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
255 if (isize
> actual_end
)
256 inline_len
= min_t(u64
, isize
, actual_end
);
257 ret
= insert_inline_extent(trans
, root
, inode
, start
,
258 inline_len
, compressed_size
,
259 compress_type
, compressed_pages
);
261 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
262 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
266 struct async_extent
{
271 unsigned long nr_pages
;
273 struct list_head list
;
278 struct btrfs_root
*root
;
279 struct page
*locked_page
;
282 struct list_head extents
;
283 struct btrfs_work work
;
286 static noinline
int add_async_extent(struct async_cow
*cow
,
287 u64 start
, u64 ram_size
,
290 unsigned long nr_pages
,
293 struct async_extent
*async_extent
;
295 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
296 BUG_ON(!async_extent
);
297 async_extent
->start
= start
;
298 async_extent
->ram_size
= ram_size
;
299 async_extent
->compressed_size
= compressed_size
;
300 async_extent
->pages
= pages
;
301 async_extent
->nr_pages
= nr_pages
;
302 async_extent
->compress_type
= compress_type
;
303 list_add_tail(&async_extent
->list
, &cow
->extents
);
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
323 static noinline
int compress_file_range(struct inode
*inode
,
324 struct page
*locked_page
,
326 struct async_cow
*async_cow
,
329 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
330 struct btrfs_trans_handle
*trans
;
332 u64 blocksize
= root
->sectorsize
;
334 u64 isize
= i_size_read(inode
);
336 struct page
**pages
= NULL
;
337 unsigned long nr_pages
;
338 unsigned long nr_pages_ret
= 0;
339 unsigned long total_compressed
= 0;
340 unsigned long total_in
= 0;
341 unsigned long max_compressed
= 128 * 1024;
342 unsigned long max_uncompressed
= 128 * 1024;
345 int compress_type
= root
->fs_info
->compress_type
;
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL
, inode
);
351 actual_end
= min_t(u64
, isize
, end
+ 1);
354 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
355 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
367 if (actual_end
<= start
)
368 goto cleanup_and_bail_uncompressed
;
370 total_compressed
= actual_end
- start
;
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
382 total_compressed
= min(total_compressed
, max_uncompressed
);
383 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
384 num_bytes
= max(blocksize
, num_bytes
);
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
393 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
394 (btrfs_test_opt(root
, COMPRESS
) ||
395 (BTRFS_I(inode
)->force_compress
) ||
396 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
398 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
400 /* just bail out to the uncompressed code */
404 if (BTRFS_I(inode
)->force_compress
)
405 compress_type
= BTRFS_I(inode
)->force_compress
;
407 ret
= btrfs_compress_pages(compress_type
,
408 inode
->i_mapping
, start
,
409 total_compressed
, pages
,
410 nr_pages
, &nr_pages_ret
,
416 unsigned long offset
= total_compressed
&
417 (PAGE_CACHE_SIZE
- 1);
418 struct page
*page
= pages
[nr_pages_ret
- 1];
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
425 kaddr
= kmap_atomic(page
, KM_USER0
);
426 memset(kaddr
+ offset
, 0,
427 PAGE_CACHE_SIZE
- offset
);
428 kunmap_atomic(kaddr
, KM_USER0
);
435 trans
= btrfs_join_transaction(root
);
436 BUG_ON(IS_ERR(trans
));
437 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
439 /* lets try to make an inline extent */
440 if (ret
|| total_in
< (actual_end
- start
)) {
441 /* we didn't compress the entire range, try
442 * to make an uncompressed inline extent.
444 ret
= cow_file_range_inline(trans
, root
, inode
,
445 start
, end
, 0, 0, NULL
);
447 /* try making a compressed inline extent */
448 ret
= cow_file_range_inline(trans
, root
, inode
,
451 compress_type
, pages
);
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
459 extent_clear_unlock_delalloc(inode
,
460 &BTRFS_I(inode
)->io_tree
,
462 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
463 EXTENT_CLEAR_DELALLOC
|
464 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
466 btrfs_end_transaction(trans
, root
);
469 btrfs_end_transaction(trans
, root
);
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
478 total_compressed
= (total_compressed
+ blocksize
- 1) &
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
485 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
486 ~(PAGE_CACHE_SIZE
- 1);
487 if (total_compressed
>= total_in
) {
490 num_bytes
= total_in
;
493 if (!will_compress
&& pages
) {
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
498 for (i
= 0; i
< nr_pages_ret
; i
++) {
499 WARN_ON(pages
[i
]->mapping
);
500 page_cache_release(pages
[i
]);
504 total_compressed
= 0;
507 /* flag the file so we don't compress in the future */
508 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
509 !(BTRFS_I(inode
)->force_compress
)) {
510 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
520 add_async_extent(async_cow
, start
, num_bytes
,
521 total_compressed
, pages
, nr_pages_ret
,
524 if (start
+ num_bytes
< end
) {
531 cleanup_and_bail_uncompressed
:
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
539 if (page_offset(locked_page
) >= start
&&
540 page_offset(locked_page
) <= end
) {
541 __set_page_dirty_nobuffers(locked_page
);
542 /* unlocked later on in the async handlers */
544 add_async_extent(async_cow
, start
, end
- start
+ 1,
545 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
553 for (i
= 0; i
< nr_pages_ret
; i
++) {
554 WARN_ON(pages
[i
]->mapping
);
555 page_cache_release(pages
[i
]);
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
568 static noinline
int submit_compressed_extents(struct inode
*inode
,
569 struct async_cow
*async_cow
)
571 struct async_extent
*async_extent
;
573 struct btrfs_trans_handle
*trans
;
574 struct btrfs_key ins
;
575 struct extent_map
*em
;
576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
577 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
578 struct extent_io_tree
*io_tree
;
581 if (list_empty(&async_cow
->extents
))
585 while (!list_empty(&async_cow
->extents
)) {
586 async_extent
= list_entry(async_cow
->extents
.next
,
587 struct async_extent
, list
);
588 list_del(&async_extent
->list
);
590 io_tree
= &BTRFS_I(inode
)->io_tree
;
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent
->pages
) {
595 int page_started
= 0;
596 unsigned long nr_written
= 0;
598 lock_extent(io_tree
, async_extent
->start
,
599 async_extent
->start
+
600 async_extent
->ram_size
- 1, GFP_NOFS
);
602 /* allocate blocks */
603 ret
= cow_file_range(inode
, async_cow
->locked_page
,
605 async_extent
->start
+
606 async_extent
->ram_size
- 1,
607 &page_started
, &nr_written
, 0);
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
615 if (!page_started
&& !ret
)
616 extent_write_locked_range(io_tree
,
617 inode
, async_extent
->start
,
618 async_extent
->start
+
619 async_extent
->ram_size
- 1,
627 lock_extent(io_tree
, async_extent
->start
,
628 async_extent
->start
+ async_extent
->ram_size
- 1,
631 trans
= btrfs_join_transaction(root
);
632 BUG_ON(IS_ERR(trans
));
633 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
634 ret
= btrfs_reserve_extent(trans
, root
,
635 async_extent
->compressed_size
,
636 async_extent
->compressed_size
,
639 btrfs_end_transaction(trans
, root
);
643 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
644 WARN_ON(async_extent
->pages
[i
]->mapping
);
645 page_cache_release(async_extent
->pages
[i
]);
647 kfree(async_extent
->pages
);
648 async_extent
->nr_pages
= 0;
649 async_extent
->pages
= NULL
;
650 unlock_extent(io_tree
, async_extent
->start
,
651 async_extent
->start
+
652 async_extent
->ram_size
- 1, GFP_NOFS
);
657 * here we're doing allocation and writeback of the
660 btrfs_drop_extent_cache(inode
, async_extent
->start
,
661 async_extent
->start
+
662 async_extent
->ram_size
- 1, 0);
664 em
= alloc_extent_map();
666 em
->start
= async_extent
->start
;
667 em
->len
= async_extent
->ram_size
;
668 em
->orig_start
= em
->start
;
670 em
->block_start
= ins
.objectid
;
671 em
->block_len
= ins
.offset
;
672 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
673 em
->compress_type
= async_extent
->compress_type
;
674 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
675 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
678 write_lock(&em_tree
->lock
);
679 ret
= add_extent_mapping(em_tree
, em
);
680 write_unlock(&em_tree
->lock
);
681 if (ret
!= -EEXIST
) {
685 btrfs_drop_extent_cache(inode
, async_extent
->start
,
686 async_extent
->start
+
687 async_extent
->ram_size
- 1, 0);
690 ret
= btrfs_add_ordered_extent_compress(inode
,
693 async_extent
->ram_size
,
695 BTRFS_ORDERED_COMPRESSED
,
696 async_extent
->compress_type
);
700 * clear dirty, set writeback and unlock the pages.
702 extent_clear_unlock_delalloc(inode
,
703 &BTRFS_I(inode
)->io_tree
,
705 async_extent
->start
+
706 async_extent
->ram_size
- 1,
707 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
708 EXTENT_CLEAR_UNLOCK
|
709 EXTENT_CLEAR_DELALLOC
|
710 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
712 ret
= btrfs_submit_compressed_write(inode
,
714 async_extent
->ram_size
,
716 ins
.offset
, async_extent
->pages
,
717 async_extent
->nr_pages
);
720 alloc_hint
= ins
.objectid
+ ins
.offset
;
728 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
731 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
732 struct extent_map
*em
;
735 read_lock(&em_tree
->lock
);
736 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
743 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
745 em
= search_extent_mapping(em_tree
, 0, 0);
746 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
747 alloc_hint
= em
->block_start
;
751 alloc_hint
= em
->block_start
;
755 read_unlock(&em_tree
->lock
);
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
773 static noinline
int cow_file_range(struct inode
*inode
,
774 struct page
*locked_page
,
775 u64 start
, u64 end
, int *page_started
,
776 unsigned long *nr_written
,
779 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
780 struct btrfs_trans_handle
*trans
;
783 unsigned long ram_size
;
786 u64 blocksize
= root
->sectorsize
;
787 struct btrfs_key ins
;
788 struct extent_map
*em
;
789 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
792 BUG_ON(btrfs_is_free_space_inode(root
, inode
));
793 trans
= btrfs_join_transaction(root
);
794 BUG_ON(IS_ERR(trans
));
795 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
797 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
798 num_bytes
= max(blocksize
, num_bytes
);
799 disk_num_bytes
= num_bytes
;
802 /* if this is a small write inside eof, kick off defrag */
803 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
804 btrfs_add_inode_defrag(trans
, inode
);
807 /* lets try to make an inline extent */
808 ret
= cow_file_range_inline(trans
, root
, inode
,
809 start
, end
, 0, 0, NULL
);
811 extent_clear_unlock_delalloc(inode
,
812 &BTRFS_I(inode
)->io_tree
,
814 EXTENT_CLEAR_UNLOCK_PAGE
|
815 EXTENT_CLEAR_UNLOCK
|
816 EXTENT_CLEAR_DELALLOC
|
818 EXTENT_SET_WRITEBACK
|
819 EXTENT_END_WRITEBACK
);
821 *nr_written
= *nr_written
+
822 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
829 BUG_ON(disk_num_bytes
>
830 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
832 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
833 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
835 while (disk_num_bytes
> 0) {
838 cur_alloc_size
= disk_num_bytes
;
839 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
840 root
->sectorsize
, 0, alloc_hint
,
844 em
= alloc_extent_map();
847 em
->orig_start
= em
->start
;
848 ram_size
= ins
.offset
;
849 em
->len
= ins
.offset
;
851 em
->block_start
= ins
.objectid
;
852 em
->block_len
= ins
.offset
;
853 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
854 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
857 write_lock(&em_tree
->lock
);
858 ret
= add_extent_mapping(em_tree
, em
);
859 write_unlock(&em_tree
->lock
);
860 if (ret
!= -EEXIST
) {
864 btrfs_drop_extent_cache(inode
, start
,
865 start
+ ram_size
- 1, 0);
868 cur_alloc_size
= ins
.offset
;
869 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
870 ram_size
, cur_alloc_size
, 0);
873 if (root
->root_key
.objectid
==
874 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
875 ret
= btrfs_reloc_clone_csums(inode
, start
,
880 if (disk_num_bytes
< cur_alloc_size
)
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
890 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
891 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
894 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
895 start
, start
+ ram_size
- 1,
897 disk_num_bytes
-= cur_alloc_size
;
898 num_bytes
-= cur_alloc_size
;
899 alloc_hint
= ins
.objectid
+ ins
.offset
;
900 start
+= cur_alloc_size
;
904 btrfs_end_transaction(trans
, root
);
910 * work queue call back to started compression on a file and pages
912 static noinline
void async_cow_start(struct btrfs_work
*work
)
914 struct async_cow
*async_cow
;
916 async_cow
= container_of(work
, struct async_cow
, work
);
918 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
919 async_cow
->start
, async_cow
->end
, async_cow
,
922 async_cow
->inode
= NULL
;
926 * work queue call back to submit previously compressed pages
928 static noinline
void async_cow_submit(struct btrfs_work
*work
)
930 struct async_cow
*async_cow
;
931 struct btrfs_root
*root
;
932 unsigned long nr_pages
;
934 async_cow
= container_of(work
, struct async_cow
, work
);
936 root
= async_cow
->root
;
937 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
940 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
942 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
944 waitqueue_active(&root
->fs_info
->async_submit_wait
))
945 wake_up(&root
->fs_info
->async_submit_wait
);
947 if (async_cow
->inode
)
948 submit_compressed_extents(async_cow
->inode
, async_cow
);
951 static noinline
void async_cow_free(struct btrfs_work
*work
)
953 struct async_cow
*async_cow
;
954 async_cow
= container_of(work
, struct async_cow
, work
);
958 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
959 u64 start
, u64 end
, int *page_started
,
960 unsigned long *nr_written
)
962 struct async_cow
*async_cow
;
963 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
964 unsigned long nr_pages
;
966 int limit
= 10 * 1024 * 1042;
968 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
969 1, 0, NULL
, GFP_NOFS
);
970 while (start
< end
) {
971 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
973 async_cow
->inode
= inode
;
974 async_cow
->root
= root
;
975 async_cow
->locked_page
= locked_page
;
976 async_cow
->start
= start
;
978 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
981 cur_end
= min(end
, start
+ 512 * 1024 - 1);
983 async_cow
->end
= cur_end
;
984 INIT_LIST_HEAD(&async_cow
->extents
);
986 async_cow
->work
.func
= async_cow_start
;
987 async_cow
->work
.ordered_func
= async_cow_submit
;
988 async_cow
->work
.ordered_free
= async_cow_free
;
989 async_cow
->work
.flags
= 0;
991 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
993 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
995 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
998 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
999 wait_event(root
->fs_info
->async_submit_wait
,
1000 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1004 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1005 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1006 wait_event(root
->fs_info
->async_submit_wait
,
1007 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1011 *nr_written
+= nr_pages
;
1012 start
= cur_end
+ 1;
1018 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1019 u64 bytenr
, u64 num_bytes
)
1022 struct btrfs_ordered_sum
*sums
;
1025 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1026 bytenr
+ num_bytes
- 1, &list
, 0);
1027 if (ret
== 0 && list_empty(&list
))
1030 while (!list_empty(&list
)) {
1031 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1032 list_del(&sums
->list
);
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1042 * If no cow copies or snapshots exist, we write directly to the existing
1045 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1046 struct page
*locked_page
,
1047 u64 start
, u64 end
, int *page_started
, int force
,
1048 unsigned long *nr_written
)
1050 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1051 struct btrfs_trans_handle
*trans
;
1052 struct extent_buffer
*leaf
;
1053 struct btrfs_path
*path
;
1054 struct btrfs_file_extent_item
*fi
;
1055 struct btrfs_key found_key
;
1068 u64 ino
= btrfs_ino(inode
);
1070 path
= btrfs_alloc_path();
1074 nolock
= btrfs_is_free_space_inode(root
, inode
);
1077 trans
= btrfs_join_transaction_nolock(root
);
1079 trans
= btrfs_join_transaction(root
);
1081 BUG_ON(IS_ERR(trans
));
1082 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1084 cow_start
= (u64
)-1;
1087 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1090 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1091 leaf
= path
->nodes
[0];
1092 btrfs_item_key_to_cpu(leaf
, &found_key
,
1093 path
->slots
[0] - 1);
1094 if (found_key
.objectid
== ino
&&
1095 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1100 leaf
= path
->nodes
[0];
1101 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1102 ret
= btrfs_next_leaf(root
, path
);
1107 leaf
= path
->nodes
[0];
1113 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1115 if (found_key
.objectid
> ino
||
1116 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1117 found_key
.offset
> end
)
1120 if (found_key
.offset
> cur_offset
) {
1121 extent_end
= found_key
.offset
;
1126 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1127 struct btrfs_file_extent_item
);
1128 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1130 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1131 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1132 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1133 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1134 extent_end
= found_key
.offset
+
1135 btrfs_file_extent_num_bytes(leaf
, fi
);
1136 if (extent_end
<= start
) {
1140 if (disk_bytenr
== 0)
1142 if (btrfs_file_extent_compression(leaf
, fi
) ||
1143 btrfs_file_extent_encryption(leaf
, fi
) ||
1144 btrfs_file_extent_other_encoding(leaf
, fi
))
1146 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1148 if (btrfs_extent_readonly(root
, disk_bytenr
))
1150 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1152 extent_offset
, disk_bytenr
))
1154 disk_bytenr
+= extent_offset
;
1155 disk_bytenr
+= cur_offset
- found_key
.offset
;
1156 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1162 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1165 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1166 extent_end
= found_key
.offset
+
1167 btrfs_file_extent_inline_len(leaf
, fi
);
1168 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1173 if (extent_end
<= start
) {
1178 if (cow_start
== (u64
)-1)
1179 cow_start
= cur_offset
;
1180 cur_offset
= extent_end
;
1181 if (cur_offset
> end
)
1187 btrfs_release_path(path
);
1188 if (cow_start
!= (u64
)-1) {
1189 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1190 found_key
.offset
- 1, page_started
,
1193 cow_start
= (u64
)-1;
1196 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1197 struct extent_map
*em
;
1198 struct extent_map_tree
*em_tree
;
1199 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1200 em
= alloc_extent_map();
1202 em
->start
= cur_offset
;
1203 em
->orig_start
= em
->start
;
1204 em
->len
= num_bytes
;
1205 em
->block_len
= num_bytes
;
1206 em
->block_start
= disk_bytenr
;
1207 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1208 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1210 write_lock(&em_tree
->lock
);
1211 ret
= add_extent_mapping(em_tree
, em
);
1212 write_unlock(&em_tree
->lock
);
1213 if (ret
!= -EEXIST
) {
1214 free_extent_map(em
);
1217 btrfs_drop_extent_cache(inode
, em
->start
,
1218 em
->start
+ em
->len
- 1, 0);
1220 type
= BTRFS_ORDERED_PREALLOC
;
1222 type
= BTRFS_ORDERED_NOCOW
;
1225 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1226 num_bytes
, num_bytes
, type
);
1229 if (root
->root_key
.objectid
==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1231 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1236 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1237 cur_offset
, cur_offset
+ num_bytes
- 1,
1238 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1239 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1240 EXTENT_SET_PRIVATE2
);
1241 cur_offset
= extent_end
;
1242 if (cur_offset
> end
)
1245 btrfs_release_path(path
);
1247 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1248 cow_start
= cur_offset
;
1249 if (cow_start
!= (u64
)-1) {
1250 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1251 page_started
, nr_written
, 1);
1256 ret
= btrfs_end_transaction_nolock(trans
, root
);
1259 ret
= btrfs_end_transaction(trans
, root
);
1262 btrfs_free_path(path
);
1267 * extent_io.c call back to do delayed allocation processing
1269 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1270 u64 start
, u64 end
, int *page_started
,
1271 unsigned long *nr_written
)
1274 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1276 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1277 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1278 page_started
, 1, nr_written
);
1279 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1280 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1281 page_started
, 0, nr_written
);
1282 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1283 !(BTRFS_I(inode
)->force_compress
) &&
1284 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1285 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1286 page_started
, nr_written
, 1);
1288 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1289 page_started
, nr_written
);
1293 static void btrfs_split_extent_hook(struct inode
*inode
,
1294 struct extent_state
*orig
, u64 split
)
1296 /* not delalloc, ignore it */
1297 if (!(orig
->state
& EXTENT_DELALLOC
))
1300 spin_lock(&BTRFS_I(inode
)->lock
);
1301 BTRFS_I(inode
)->outstanding_extents
++;
1302 spin_unlock(&BTRFS_I(inode
)->lock
);
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1311 static void btrfs_merge_extent_hook(struct inode
*inode
,
1312 struct extent_state
*new,
1313 struct extent_state
*other
)
1315 /* not delalloc, ignore it */
1316 if (!(other
->state
& EXTENT_DELALLOC
))
1319 spin_lock(&BTRFS_I(inode
)->lock
);
1320 BTRFS_I(inode
)->outstanding_extents
--;
1321 spin_unlock(&BTRFS_I(inode
)->lock
);
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1329 static void btrfs_set_bit_hook(struct inode
*inode
,
1330 struct extent_state
*state
, int *bits
)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1340 u64 len
= state
->end
+ 1 - state
->start
;
1341 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1343 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1344 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1346 spin_lock(&BTRFS_I(inode
)->lock
);
1347 BTRFS_I(inode
)->outstanding_extents
++;
1348 spin_unlock(&BTRFS_I(inode
)->lock
);
1351 spin_lock(&root
->fs_info
->delalloc_lock
);
1352 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1353 root
->fs_info
->delalloc_bytes
+= len
;
1354 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1355 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1356 &root
->fs_info
->delalloc_inodes
);
1358 spin_unlock(&root
->fs_info
->delalloc_lock
);
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1365 static void btrfs_clear_bit_hook(struct inode
*inode
,
1366 struct extent_state
*state
, int *bits
)
1369 * set_bit and clear bit hooks normally require _irqsave/restore
1370 * but in this case, we are only testing for the DELALLOC
1371 * bit, which is only set or cleared with irqs on
1373 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1375 u64 len
= state
->end
+ 1 - state
->start
;
1376 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1378 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1379 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1380 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1381 spin_lock(&BTRFS_I(inode
)->lock
);
1382 BTRFS_I(inode
)->outstanding_extents
--;
1383 spin_unlock(&BTRFS_I(inode
)->lock
);
1386 if (*bits
& EXTENT_DO_ACCOUNTING
)
1387 btrfs_delalloc_release_metadata(inode
, len
);
1389 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1391 btrfs_free_reserved_data_space(inode
, len
);
1393 spin_lock(&root
->fs_info
->delalloc_lock
);
1394 root
->fs_info
->delalloc_bytes
-= len
;
1395 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1397 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1398 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1399 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1401 spin_unlock(&root
->fs_info
->delalloc_lock
);
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1409 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1410 size_t size
, struct bio
*bio
,
1411 unsigned long bio_flags
)
1413 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1414 struct btrfs_mapping_tree
*map_tree
;
1415 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1420 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1423 length
= bio
->bi_size
;
1424 map_tree
= &root
->fs_info
->mapping_tree
;
1425 map_length
= length
;
1426 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1427 &map_length
, NULL
, 0);
1429 if (map_length
< length
+ size
)
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1442 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1443 struct bio
*bio
, int mirror_num
,
1444 unsigned long bio_flags
,
1447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1450 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1463 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1464 int mirror_num
, unsigned long bio_flags
,
1467 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1468 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
1475 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1476 int mirror_num
, unsigned long bio_flags
,
1479 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1483 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1485 if (btrfs_is_free_space_inode(root
, inode
))
1486 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1488 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1491 if (!(rw
& REQ_WRITE
)) {
1492 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1493 return btrfs_submit_compressed_read(inode
, bio
,
1494 mirror_num
, bio_flags
);
1495 } else if (!skip_sum
) {
1496 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1501 } else if (!skip_sum
) {
1502 /* csum items have already been cloned */
1503 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1507 inode
, rw
, bio
, mirror_num
,
1508 bio_flags
, bio_offset
,
1509 __btrfs_submit_bio_start
,
1510 __btrfs_submit_bio_done
);
1514 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1521 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1522 struct inode
*inode
, u64 file_offset
,
1523 struct list_head
*list
)
1525 struct btrfs_ordered_sum
*sum
;
1527 list_for_each_entry(sum
, list
, list
) {
1528 btrfs_csum_file_blocks(trans
,
1529 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1534 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1535 struct extent_state
**cached_state
)
1537 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1539 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1540 cached_state
, GFP_NOFS
);
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup
{
1546 struct btrfs_work work
;
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1551 struct btrfs_writepage_fixup
*fixup
;
1552 struct btrfs_ordered_extent
*ordered
;
1553 struct extent_state
*cached_state
= NULL
;
1555 struct inode
*inode
;
1560 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1564 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1565 ClearPageChecked(page
);
1569 inode
= page
->mapping
->host
;
1570 page_start
= page_offset(page
);
1571 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1573 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1574 &cached_state
, GFP_NOFS
);
1576 /* already ordered? We're done */
1577 if (PagePrivate2(page
))
1580 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1582 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1583 page_end
, &cached_state
, GFP_NOFS
);
1585 btrfs_start_ordered_extent(inode
, ordered
, 1);
1586 btrfs_put_ordered_extent(ordered
);
1590 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1592 mapping_set_error(page
->mapping
, ret
);
1593 end_extent_writepage(page
, ret
, page_start
, page_end
);
1594 ClearPageChecked(page
);
1598 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1599 ClearPageChecked(page
);
1600 set_page_dirty(page
);
1602 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1603 &cached_state
, GFP_NOFS
);
1606 page_cache_release(page
);
1611 * There are a few paths in the higher layers of the kernel that directly
1612 * set the page dirty bit without asking the filesystem if it is a
1613 * good idea. This causes problems because we want to make sure COW
1614 * properly happens and the data=ordered rules are followed.
1616 * In our case any range that doesn't have the ORDERED bit set
1617 * hasn't been properly setup for IO. We kick off an async process
1618 * to fix it up. The async helper will wait for ordered extents, set
1619 * the delalloc bit and make it safe to write the page.
1621 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1623 struct inode
*inode
= page
->mapping
->host
;
1624 struct btrfs_writepage_fixup
*fixup
;
1625 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1627 /* this page is properly in the ordered list */
1628 if (TestClearPagePrivate2(page
))
1631 if (PageChecked(page
))
1634 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1638 SetPageChecked(page
);
1639 page_cache_get(page
);
1640 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1642 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1646 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1647 struct inode
*inode
, u64 file_pos
,
1648 u64 disk_bytenr
, u64 disk_num_bytes
,
1649 u64 num_bytes
, u64 ram_bytes
,
1650 u8 compression
, u8 encryption
,
1651 u16 other_encoding
, int extent_type
)
1653 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1654 struct btrfs_file_extent_item
*fi
;
1655 struct btrfs_path
*path
;
1656 struct extent_buffer
*leaf
;
1657 struct btrfs_key ins
;
1661 path
= btrfs_alloc_path();
1665 path
->leave_spinning
= 1;
1668 * we may be replacing one extent in the tree with another.
1669 * The new extent is pinned in the extent map, and we don't want
1670 * to drop it from the cache until it is completely in the btree.
1672 * So, tell btrfs_drop_extents to leave this extent in the cache.
1673 * the caller is expected to unpin it and allow it to be merged
1676 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1680 ins
.objectid
= btrfs_ino(inode
);
1681 ins
.offset
= file_pos
;
1682 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1683 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1685 leaf
= path
->nodes
[0];
1686 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1687 struct btrfs_file_extent_item
);
1688 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1689 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1690 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1691 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1692 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1693 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1694 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1695 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1696 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1697 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1699 btrfs_unlock_up_safe(path
, 1);
1700 btrfs_set_lock_blocking(leaf
);
1702 btrfs_mark_buffer_dirty(leaf
);
1704 inode_add_bytes(inode
, num_bytes
);
1706 ins
.objectid
= disk_bytenr
;
1707 ins
.offset
= disk_num_bytes
;
1708 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1709 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1710 root
->root_key
.objectid
,
1711 btrfs_ino(inode
), file_pos
, &ins
);
1713 btrfs_free_path(path
);
1719 * helper function for btrfs_finish_ordered_io, this
1720 * just reads in some of the csum leaves to prime them into ram
1721 * before we start the transaction. It limits the amount of btree
1722 * reads required while inside the transaction.
1724 /* as ordered data IO finishes, this gets called so we can finish
1725 * an ordered extent if the range of bytes in the file it covers are
1728 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1730 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1731 struct btrfs_trans_handle
*trans
= NULL
;
1732 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1733 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1734 struct extent_state
*cached_state
= NULL
;
1735 int compress_type
= 0;
1739 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1743 BUG_ON(!ordered_extent
);
1745 nolock
= btrfs_is_free_space_inode(root
, inode
);
1747 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1748 BUG_ON(!list_empty(&ordered_extent
->list
));
1749 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1752 trans
= btrfs_join_transaction_nolock(root
);
1754 trans
= btrfs_join_transaction(root
);
1755 BUG_ON(IS_ERR(trans
));
1756 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1757 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1763 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1764 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1765 0, &cached_state
, GFP_NOFS
);
1768 trans
= btrfs_join_transaction_nolock(root
);
1770 trans
= btrfs_join_transaction(root
);
1771 BUG_ON(IS_ERR(trans
));
1772 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1774 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1775 compress_type
= ordered_extent
->compress_type
;
1776 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1777 BUG_ON(compress_type
);
1778 ret
= btrfs_mark_extent_written(trans
, inode
,
1779 ordered_extent
->file_offset
,
1780 ordered_extent
->file_offset
+
1781 ordered_extent
->len
);
1784 BUG_ON(root
== root
->fs_info
->tree_root
);
1785 ret
= insert_reserved_file_extent(trans
, inode
,
1786 ordered_extent
->file_offset
,
1787 ordered_extent
->start
,
1788 ordered_extent
->disk_len
,
1789 ordered_extent
->len
,
1790 ordered_extent
->len
,
1791 compress_type
, 0, 0,
1792 BTRFS_FILE_EXTENT_REG
);
1793 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1794 ordered_extent
->file_offset
,
1795 ordered_extent
->len
);
1798 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1799 ordered_extent
->file_offset
+
1800 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1802 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1803 &ordered_extent
->list
);
1805 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1806 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1807 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1812 if (root
!= root
->fs_info
->tree_root
)
1813 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1816 btrfs_end_transaction_nolock(trans
, root
);
1818 btrfs_end_transaction(trans
, root
);
1822 btrfs_put_ordered_extent(ordered_extent
);
1823 /* once for the tree */
1824 btrfs_put_ordered_extent(ordered_extent
);
1829 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1830 struct extent_state
*state
, int uptodate
)
1832 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1834 ClearPagePrivate2(page
);
1835 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1839 * when reads are done, we need to check csums to verify the data is correct
1840 * if there's a match, we allow the bio to finish. If not, the code in
1841 * extent_io.c will try to find good copies for us.
1843 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1844 struct extent_state
*state
)
1846 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1847 struct inode
*inode
= page
->mapping
->host
;
1848 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1850 u64
private = ~(u32
)0;
1852 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1855 if (PageChecked(page
)) {
1856 ClearPageChecked(page
);
1860 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1863 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1864 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1865 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1870 if (state
&& state
->start
== start
) {
1871 private = state
->private;
1874 ret
= get_state_private(io_tree
, start
, &private);
1876 kaddr
= kmap_atomic(page
, KM_USER0
);
1880 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1881 btrfs_csum_final(csum
, (char *)&csum
);
1882 if (csum
!= private)
1885 kunmap_atomic(kaddr
, KM_USER0
);
1890 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
1892 (unsigned long long)btrfs_ino(page
->mapping
->host
),
1893 (unsigned long long)start
, csum
,
1894 (unsigned long long)private);
1895 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1896 flush_dcache_page(page
);
1897 kunmap_atomic(kaddr
, KM_USER0
);
1903 struct delayed_iput
{
1904 struct list_head list
;
1905 struct inode
*inode
;
1908 void btrfs_add_delayed_iput(struct inode
*inode
)
1910 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1911 struct delayed_iput
*delayed
;
1913 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1916 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1917 delayed
->inode
= inode
;
1919 spin_lock(&fs_info
->delayed_iput_lock
);
1920 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
1921 spin_unlock(&fs_info
->delayed_iput_lock
);
1924 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
1927 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1928 struct delayed_iput
*delayed
;
1931 spin_lock(&fs_info
->delayed_iput_lock
);
1932 empty
= list_empty(&fs_info
->delayed_iputs
);
1933 spin_unlock(&fs_info
->delayed_iput_lock
);
1937 down_read(&root
->fs_info
->cleanup_work_sem
);
1938 spin_lock(&fs_info
->delayed_iput_lock
);
1939 list_splice_init(&fs_info
->delayed_iputs
, &list
);
1940 spin_unlock(&fs_info
->delayed_iput_lock
);
1942 while (!list_empty(&list
)) {
1943 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
1944 list_del(&delayed
->list
);
1945 iput(delayed
->inode
);
1948 up_read(&root
->fs_info
->cleanup_work_sem
);
1951 enum btrfs_orphan_cleanup_state
{
1952 ORPHAN_CLEANUP_STARTED
= 1,
1953 ORPHAN_CLEANUP_DONE
= 2,
1957 * This is called in transaction commit time. If there are no orphan
1958 * files in the subvolume, it removes orphan item and frees block_rsv
1961 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
1962 struct btrfs_root
*root
)
1964 struct btrfs_block_rsv
*block_rsv
;
1967 if (!list_empty(&root
->orphan_list
) ||
1968 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
1971 spin_lock(&root
->orphan_lock
);
1972 if (!list_empty(&root
->orphan_list
)) {
1973 spin_unlock(&root
->orphan_lock
);
1977 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
1978 spin_unlock(&root
->orphan_lock
);
1982 block_rsv
= root
->orphan_block_rsv
;
1983 root
->orphan_block_rsv
= NULL
;
1984 spin_unlock(&root
->orphan_lock
);
1986 if (root
->orphan_item_inserted
&&
1987 btrfs_root_refs(&root
->root_item
) > 0) {
1988 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
1989 root
->root_key
.objectid
);
1991 root
->orphan_item_inserted
= 0;
1995 WARN_ON(block_rsv
->size
> 0);
1996 btrfs_free_block_rsv(root
, block_rsv
);
2001 * This creates an orphan entry for the given inode in case something goes
2002 * wrong in the middle of an unlink/truncate.
2004 * NOTE: caller of this function should reserve 5 units of metadata for
2007 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2009 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2010 struct btrfs_block_rsv
*block_rsv
= NULL
;
2015 if (!root
->orphan_block_rsv
) {
2016 block_rsv
= btrfs_alloc_block_rsv(root
);
2021 spin_lock(&root
->orphan_lock
);
2022 if (!root
->orphan_block_rsv
) {
2023 root
->orphan_block_rsv
= block_rsv
;
2024 } else if (block_rsv
) {
2025 btrfs_free_block_rsv(root
, block_rsv
);
2029 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2030 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2033 * For proper ENOSPC handling, we should do orphan
2034 * cleanup when mounting. But this introduces backward
2035 * compatibility issue.
2037 if (!xchg(&root
->orphan_item_inserted
, 1))
2045 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2046 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2049 spin_unlock(&root
->orphan_lock
);
2051 /* grab metadata reservation from transaction handle */
2053 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2057 /* insert an orphan item to track this unlinked/truncated file */
2059 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2060 BUG_ON(ret
&& ret
!= -EEXIST
);
2063 /* insert an orphan item to track subvolume contains orphan files */
2065 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2066 root
->root_key
.objectid
);
2073 * We have done the truncate/delete so we can go ahead and remove the orphan
2074 * item for this particular inode.
2076 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2078 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2079 int delete_item
= 0;
2080 int release_rsv
= 0;
2083 spin_lock(&root
->orphan_lock
);
2084 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2085 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2089 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2090 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2093 spin_unlock(&root
->orphan_lock
);
2095 if (trans
&& delete_item
) {
2096 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2101 btrfs_orphan_release_metadata(inode
);
2107 * this cleans up any orphans that may be left on the list from the last use
2110 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2112 struct btrfs_path
*path
;
2113 struct extent_buffer
*leaf
;
2114 struct btrfs_key key
, found_key
;
2115 struct btrfs_trans_handle
*trans
;
2116 struct inode
*inode
;
2117 u64 last_objectid
= 0;
2118 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2120 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2123 path
= btrfs_alloc_path();
2130 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2131 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2132 key
.offset
= (u64
)-1;
2135 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2140 * if ret == 0 means we found what we were searching for, which
2141 * is weird, but possible, so only screw with path if we didn't
2142 * find the key and see if we have stuff that matches
2146 if (path
->slots
[0] == 0)
2151 /* pull out the item */
2152 leaf
= path
->nodes
[0];
2153 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2155 /* make sure the item matches what we want */
2156 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2158 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2161 /* release the path since we're done with it */
2162 btrfs_release_path(path
);
2165 * this is where we are basically btrfs_lookup, without the
2166 * crossing root thing. we store the inode number in the
2167 * offset of the orphan item.
2170 if (found_key
.offset
== last_objectid
) {
2171 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2172 "stopping orphan cleanup\n");
2177 last_objectid
= found_key
.offset
;
2179 found_key
.objectid
= found_key
.offset
;
2180 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2181 found_key
.offset
= 0;
2182 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2183 ret
= PTR_RET(inode
);
2184 if (ret
&& ret
!= -ESTALE
)
2187 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2188 struct btrfs_root
*dead_root
;
2189 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2190 int is_dead_root
= 0;
2193 * this is an orphan in the tree root. Currently these
2194 * could come from 2 sources:
2195 * a) a snapshot deletion in progress
2196 * b) a free space cache inode
2197 * We need to distinguish those two, as the snapshot
2198 * orphan must not get deleted.
2199 * find_dead_roots already ran before us, so if this
2200 * is a snapshot deletion, we should find the root
2201 * in the dead_roots list
2203 spin_lock(&fs_info
->trans_lock
);
2204 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2206 if (dead_root
->root_key
.objectid
==
2207 found_key
.objectid
) {
2212 spin_unlock(&fs_info
->trans_lock
);
2214 /* prevent this orphan from being found again */
2215 key
.offset
= found_key
.objectid
- 1;
2220 * Inode is already gone but the orphan item is still there,
2221 * kill the orphan item.
2223 if (ret
== -ESTALE
) {
2224 trans
= btrfs_start_transaction(root
, 1);
2225 if (IS_ERR(trans
)) {
2226 ret
= PTR_ERR(trans
);
2229 ret
= btrfs_del_orphan_item(trans
, root
,
2230 found_key
.objectid
);
2232 btrfs_end_transaction(trans
, root
);
2237 * add this inode to the orphan list so btrfs_orphan_del does
2238 * the proper thing when we hit it
2240 spin_lock(&root
->orphan_lock
);
2241 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2242 spin_unlock(&root
->orphan_lock
);
2244 /* if we have links, this was a truncate, lets do that */
2245 if (inode
->i_nlink
) {
2246 if (!S_ISREG(inode
->i_mode
)) {
2252 ret
= btrfs_truncate(inode
);
2257 /* this will do delete_inode and everything for us */
2262 /* release the path since we're done with it */
2263 btrfs_release_path(path
);
2265 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2267 if (root
->orphan_block_rsv
)
2268 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2271 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2272 trans
= btrfs_join_transaction(root
);
2274 btrfs_end_transaction(trans
, root
);
2278 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2280 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2284 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2285 btrfs_free_path(path
);
2290 * very simple check to peek ahead in the leaf looking for xattrs. If we
2291 * don't find any xattrs, we know there can't be any acls.
2293 * slot is the slot the inode is in, objectid is the objectid of the inode
2295 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2296 int slot
, u64 objectid
)
2298 u32 nritems
= btrfs_header_nritems(leaf
);
2299 struct btrfs_key found_key
;
2303 while (slot
< nritems
) {
2304 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2306 /* we found a different objectid, there must not be acls */
2307 if (found_key
.objectid
!= objectid
)
2310 /* we found an xattr, assume we've got an acl */
2311 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2315 * we found a key greater than an xattr key, there can't
2316 * be any acls later on
2318 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2325 * it goes inode, inode backrefs, xattrs, extents,
2326 * so if there are a ton of hard links to an inode there can
2327 * be a lot of backrefs. Don't waste time searching too hard,
2328 * this is just an optimization
2333 /* we hit the end of the leaf before we found an xattr or
2334 * something larger than an xattr. We have to assume the inode
2341 * read an inode from the btree into the in-memory inode
2343 static void btrfs_read_locked_inode(struct inode
*inode
)
2345 struct btrfs_path
*path
;
2346 struct extent_buffer
*leaf
;
2347 struct btrfs_inode_item
*inode_item
;
2348 struct btrfs_timespec
*tspec
;
2349 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2350 struct btrfs_key location
;
2354 bool filled
= false;
2356 ret
= btrfs_fill_inode(inode
, &rdev
);
2360 path
= btrfs_alloc_path();
2364 path
->leave_spinning
= 1;
2365 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2367 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2371 leaf
= path
->nodes
[0];
2376 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2377 struct btrfs_inode_item
);
2378 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2379 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2380 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2381 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2382 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2384 tspec
= btrfs_inode_atime(inode_item
);
2385 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2386 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2388 tspec
= btrfs_inode_mtime(inode_item
);
2389 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2390 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2392 tspec
= btrfs_inode_ctime(inode_item
);
2393 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2394 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2396 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2397 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2398 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2399 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2401 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2403 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2404 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2407 * try to precache a NULL acl entry for files that don't have
2408 * any xattrs or acls
2410 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2413 cache_no_acl(inode
);
2415 btrfs_free_path(path
);
2417 switch (inode
->i_mode
& S_IFMT
) {
2419 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2420 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2421 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2422 inode
->i_fop
= &btrfs_file_operations
;
2423 inode
->i_op
= &btrfs_file_inode_operations
;
2426 inode
->i_fop
= &btrfs_dir_file_operations
;
2427 if (root
== root
->fs_info
->tree_root
)
2428 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2430 inode
->i_op
= &btrfs_dir_inode_operations
;
2433 inode
->i_op
= &btrfs_symlink_inode_operations
;
2434 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2435 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2438 inode
->i_op
= &btrfs_special_inode_operations
;
2439 init_special_inode(inode
, inode
->i_mode
, rdev
);
2443 btrfs_update_iflags(inode
);
2447 btrfs_free_path(path
);
2448 make_bad_inode(inode
);
2452 * given a leaf and an inode, copy the inode fields into the leaf
2454 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2455 struct extent_buffer
*leaf
,
2456 struct btrfs_inode_item
*item
,
2457 struct inode
*inode
)
2459 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2460 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2461 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2462 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2463 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2465 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2466 inode
->i_atime
.tv_sec
);
2467 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2468 inode
->i_atime
.tv_nsec
);
2470 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2471 inode
->i_mtime
.tv_sec
);
2472 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2473 inode
->i_mtime
.tv_nsec
);
2475 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2476 inode
->i_ctime
.tv_sec
);
2477 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2478 inode
->i_ctime
.tv_nsec
);
2480 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2481 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2482 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2483 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2484 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2485 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2486 btrfs_set_inode_block_group(leaf
, item
, 0);
2490 * copy everything in the in-memory inode into the btree.
2492 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2493 struct btrfs_root
*root
, struct inode
*inode
)
2495 struct btrfs_inode_item
*inode_item
;
2496 struct btrfs_path
*path
;
2497 struct extent_buffer
*leaf
;
2500 path
= btrfs_alloc_path();
2504 path
->leave_spinning
= 1;
2505 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2513 btrfs_unlock_up_safe(path
, 1);
2514 leaf
= path
->nodes
[0];
2515 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2516 struct btrfs_inode_item
);
2518 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2519 btrfs_mark_buffer_dirty(leaf
);
2520 btrfs_set_inode_last_trans(trans
, inode
);
2523 btrfs_free_path(path
);
2528 * copy everything in the in-memory inode into the btree.
2530 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2531 struct btrfs_root
*root
, struct inode
*inode
)
2536 * If the inode is a free space inode, we can deadlock during commit
2537 * if we put it into the delayed code.
2539 * The data relocation inode should also be directly updated
2542 if (!btrfs_is_free_space_inode(root
, inode
)
2543 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2544 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2546 btrfs_set_inode_last_trans(trans
, inode
);
2550 return btrfs_update_inode_item(trans
, root
, inode
);
2553 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2554 struct btrfs_root
*root
, struct inode
*inode
)
2558 ret
= btrfs_update_inode(trans
, root
, inode
);
2560 return btrfs_update_inode_item(trans
, root
, inode
);
2565 * unlink helper that gets used here in inode.c and in the tree logging
2566 * recovery code. It remove a link in a directory with a given name, and
2567 * also drops the back refs in the inode to the directory
2569 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2570 struct btrfs_root
*root
,
2571 struct inode
*dir
, struct inode
*inode
,
2572 const char *name
, int name_len
)
2574 struct btrfs_path
*path
;
2576 struct extent_buffer
*leaf
;
2577 struct btrfs_dir_item
*di
;
2578 struct btrfs_key key
;
2580 u64 ino
= btrfs_ino(inode
);
2581 u64 dir_ino
= btrfs_ino(dir
);
2583 path
= btrfs_alloc_path();
2589 path
->leave_spinning
= 1;
2590 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2591 name
, name_len
, -1);
2600 leaf
= path
->nodes
[0];
2601 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2602 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2605 btrfs_release_path(path
);
2607 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2610 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2611 "inode %llu parent %llu\n", name_len
, name
,
2612 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2616 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2620 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2622 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2624 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2629 btrfs_free_path(path
);
2633 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2634 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2635 btrfs_update_inode(trans
, root
, dir
);
2640 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2641 struct btrfs_root
*root
,
2642 struct inode
*dir
, struct inode
*inode
,
2643 const char *name
, int name_len
)
2646 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2648 btrfs_drop_nlink(inode
);
2649 ret
= btrfs_update_inode(trans
, root
, inode
);
2655 /* helper to check if there is any shared block in the path */
2656 static int check_path_shared(struct btrfs_root
*root
,
2657 struct btrfs_path
*path
)
2659 struct extent_buffer
*eb
;
2663 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2666 if (!path
->nodes
[level
])
2668 eb
= path
->nodes
[level
];
2669 if (!btrfs_block_can_be_shared(root
, eb
))
2671 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2680 * helper to start transaction for unlink and rmdir.
2682 * unlink and rmdir are special in btrfs, they do not always free space.
2683 * so in enospc case, we should make sure they will free space before
2684 * allowing them to use the global metadata reservation.
2686 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2687 struct dentry
*dentry
)
2689 struct btrfs_trans_handle
*trans
;
2690 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2691 struct btrfs_path
*path
;
2692 struct btrfs_inode_ref
*ref
;
2693 struct btrfs_dir_item
*di
;
2694 struct inode
*inode
= dentry
->d_inode
;
2699 u64 ino
= btrfs_ino(inode
);
2700 u64 dir_ino
= btrfs_ino(dir
);
2703 * 1 for the possible orphan item
2704 * 1 for the dir item
2705 * 1 for the dir index
2706 * 1 for the inode ref
2707 * 1 for the inode ref in the tree log
2708 * 2 for the dir entries in the log
2711 trans
= btrfs_start_transaction(root
, 8);
2712 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2715 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2716 return ERR_PTR(-ENOSPC
);
2718 /* check if there is someone else holds reference */
2719 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2720 return ERR_PTR(-ENOSPC
);
2722 if (atomic_read(&inode
->i_count
) > 2)
2723 return ERR_PTR(-ENOSPC
);
2725 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2726 return ERR_PTR(-ENOSPC
);
2728 path
= btrfs_alloc_path();
2730 root
->fs_info
->enospc_unlink
= 0;
2731 return ERR_PTR(-ENOMEM
);
2734 /* 1 for the orphan item */
2735 trans
= btrfs_start_transaction(root
, 1);
2736 if (IS_ERR(trans
)) {
2737 btrfs_free_path(path
);
2738 root
->fs_info
->enospc_unlink
= 0;
2742 path
->skip_locking
= 1;
2743 path
->search_commit_root
= 1;
2745 ret
= btrfs_lookup_inode(trans
, root
, path
,
2746 &BTRFS_I(dir
)->location
, 0);
2752 if (check_path_shared(root
, path
))
2757 btrfs_release_path(path
);
2759 ret
= btrfs_lookup_inode(trans
, root
, path
,
2760 &BTRFS_I(inode
)->location
, 0);
2766 if (check_path_shared(root
, path
))
2771 btrfs_release_path(path
);
2773 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2774 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2781 if (check_path_shared(root
, path
))
2783 btrfs_release_path(path
);
2791 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2792 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2798 if (check_path_shared(root
, path
))
2804 btrfs_release_path(path
);
2806 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2807 dentry
->d_name
.name
, dentry
->d_name
.len
,
2814 if (check_path_shared(root
, path
))
2816 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2817 btrfs_release_path(path
);
2820 * This is a commit root search, if we can lookup inode item and other
2821 * relative items in the commit root, it means the transaction of
2822 * dir/file creation has been committed, and the dir index item that we
2823 * delay to insert has also been inserted into the commit root. So
2824 * we needn't worry about the delayed insertion of the dir index item
2827 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2828 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2833 BUG_ON(ret
== -ENOENT
);
2834 if (check_path_shared(root
, path
))
2839 btrfs_free_path(path
);
2840 /* Migrate the orphan reservation over */
2842 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
2843 &root
->fs_info
->global_block_rsv
,
2844 trans
->bytes_reserved
);
2847 btrfs_end_transaction(trans
, root
);
2848 root
->fs_info
->enospc_unlink
= 0;
2849 return ERR_PTR(err
);
2852 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2856 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2857 struct btrfs_root
*root
)
2859 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2860 btrfs_block_rsv_release(root
, trans
->block_rsv
,
2861 trans
->bytes_reserved
);
2862 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2863 BUG_ON(!root
->fs_info
->enospc_unlink
);
2864 root
->fs_info
->enospc_unlink
= 0;
2866 btrfs_end_transaction(trans
, root
);
2869 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2871 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2872 struct btrfs_trans_handle
*trans
;
2873 struct inode
*inode
= dentry
->d_inode
;
2875 unsigned long nr
= 0;
2877 trans
= __unlink_start_trans(dir
, dentry
);
2879 return PTR_ERR(trans
);
2881 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2883 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2884 dentry
->d_name
.name
, dentry
->d_name
.len
);
2888 if (inode
->i_nlink
== 0) {
2889 ret
= btrfs_orphan_add(trans
, inode
);
2895 nr
= trans
->blocks_used
;
2896 __unlink_end_trans(trans
, root
);
2897 btrfs_btree_balance_dirty(root
, nr
);
2901 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2902 struct btrfs_root
*root
,
2903 struct inode
*dir
, u64 objectid
,
2904 const char *name
, int name_len
)
2906 struct btrfs_path
*path
;
2907 struct extent_buffer
*leaf
;
2908 struct btrfs_dir_item
*di
;
2909 struct btrfs_key key
;
2912 u64 dir_ino
= btrfs_ino(dir
);
2914 path
= btrfs_alloc_path();
2918 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2919 name
, name_len
, -1);
2920 BUG_ON(IS_ERR_OR_NULL(di
));
2922 leaf
= path
->nodes
[0];
2923 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2924 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2925 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2927 btrfs_release_path(path
);
2929 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2930 objectid
, root
->root_key
.objectid
,
2931 dir_ino
, &index
, name
, name_len
);
2933 BUG_ON(ret
!= -ENOENT
);
2934 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
2936 BUG_ON(IS_ERR_OR_NULL(di
));
2938 leaf
= path
->nodes
[0];
2939 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2940 btrfs_release_path(path
);
2943 btrfs_release_path(path
);
2945 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2948 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2949 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2950 ret
= btrfs_update_inode(trans
, root
, dir
);
2953 btrfs_free_path(path
);
2957 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2959 struct inode
*inode
= dentry
->d_inode
;
2961 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2962 struct btrfs_trans_handle
*trans
;
2963 unsigned long nr
= 0;
2965 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2966 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
2969 trans
= __unlink_start_trans(dir
, dentry
);
2971 return PTR_ERR(trans
);
2973 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2974 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2975 BTRFS_I(inode
)->location
.objectid
,
2976 dentry
->d_name
.name
,
2977 dentry
->d_name
.len
);
2981 err
= btrfs_orphan_add(trans
, inode
);
2985 /* now the directory is empty */
2986 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2987 dentry
->d_name
.name
, dentry
->d_name
.len
);
2989 btrfs_i_size_write(inode
, 0);
2991 nr
= trans
->blocks_used
;
2992 __unlink_end_trans(trans
, root
);
2993 btrfs_btree_balance_dirty(root
, nr
);
2999 * this can truncate away extent items, csum items and directory items.
3000 * It starts at a high offset and removes keys until it can't find
3001 * any higher than new_size
3003 * csum items that cross the new i_size are truncated to the new size
3006 * min_type is the minimum key type to truncate down to. If set to 0, this
3007 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3009 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3010 struct btrfs_root
*root
,
3011 struct inode
*inode
,
3012 u64 new_size
, u32 min_type
)
3014 struct btrfs_path
*path
;
3015 struct extent_buffer
*leaf
;
3016 struct btrfs_file_extent_item
*fi
;
3017 struct btrfs_key key
;
3018 struct btrfs_key found_key
;
3019 u64 extent_start
= 0;
3020 u64 extent_num_bytes
= 0;
3021 u64 extent_offset
= 0;
3023 u64 mask
= root
->sectorsize
- 1;
3024 u32 found_type
= (u8
)-1;
3027 int pending_del_nr
= 0;
3028 int pending_del_slot
= 0;
3029 int extent_type
= -1;
3032 u64 ino
= btrfs_ino(inode
);
3034 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3036 path
= btrfs_alloc_path();
3041 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3042 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3045 * This function is also used to drop the items in the log tree before
3046 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3047 * it is used to drop the loged items. So we shouldn't kill the delayed
3050 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3051 btrfs_kill_delayed_inode_items(inode
);
3054 key
.offset
= (u64
)-1;
3058 path
->leave_spinning
= 1;
3059 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3066 /* there are no items in the tree for us to truncate, we're
3069 if (path
->slots
[0] == 0)
3076 leaf
= path
->nodes
[0];
3077 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3078 found_type
= btrfs_key_type(&found_key
);
3080 if (found_key
.objectid
!= ino
)
3083 if (found_type
< min_type
)
3086 item_end
= found_key
.offset
;
3087 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3088 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3089 struct btrfs_file_extent_item
);
3090 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3091 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3093 btrfs_file_extent_num_bytes(leaf
, fi
);
3094 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3095 item_end
+= btrfs_file_extent_inline_len(leaf
,
3100 if (found_type
> min_type
) {
3103 if (item_end
< new_size
)
3105 if (found_key
.offset
>= new_size
)
3111 /* FIXME, shrink the extent if the ref count is only 1 */
3112 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3115 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3117 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3119 u64 orig_num_bytes
=
3120 btrfs_file_extent_num_bytes(leaf
, fi
);
3121 extent_num_bytes
= new_size
-
3122 found_key
.offset
+ root
->sectorsize
- 1;
3123 extent_num_bytes
= extent_num_bytes
&
3124 ~((u64
)root
->sectorsize
- 1);
3125 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3127 num_dec
= (orig_num_bytes
-
3129 if (root
->ref_cows
&& extent_start
!= 0)
3130 inode_sub_bytes(inode
, num_dec
);
3131 btrfs_mark_buffer_dirty(leaf
);
3134 btrfs_file_extent_disk_num_bytes(leaf
,
3136 extent_offset
= found_key
.offset
-
3137 btrfs_file_extent_offset(leaf
, fi
);
3139 /* FIXME blocksize != 4096 */
3140 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3141 if (extent_start
!= 0) {
3144 inode_sub_bytes(inode
, num_dec
);
3147 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3149 * we can't truncate inline items that have had
3153 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3154 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3155 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3156 u32 size
= new_size
- found_key
.offset
;
3158 if (root
->ref_cows
) {
3159 inode_sub_bytes(inode
, item_end
+ 1 -
3163 btrfs_file_extent_calc_inline_size(size
);
3164 ret
= btrfs_truncate_item(trans
, root
, path
,
3166 } else if (root
->ref_cows
) {
3167 inode_sub_bytes(inode
, item_end
+ 1 -
3173 if (!pending_del_nr
) {
3174 /* no pending yet, add ourselves */
3175 pending_del_slot
= path
->slots
[0];
3177 } else if (pending_del_nr
&&
3178 path
->slots
[0] + 1 == pending_del_slot
) {
3179 /* hop on the pending chunk */
3181 pending_del_slot
= path
->slots
[0];
3188 if (found_extent
&& (root
->ref_cows
||
3189 root
== root
->fs_info
->tree_root
)) {
3190 btrfs_set_path_blocking(path
);
3191 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3192 extent_num_bytes
, 0,
3193 btrfs_header_owner(leaf
),
3194 ino
, extent_offset
, 0);
3198 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3201 if (path
->slots
[0] == 0 ||
3202 path
->slots
[0] != pending_del_slot
) {
3203 if (root
->ref_cows
&&
3204 BTRFS_I(inode
)->location
.objectid
!=
3205 BTRFS_FREE_INO_OBJECTID
) {
3209 if (pending_del_nr
) {
3210 ret
= btrfs_del_items(trans
, root
, path
,
3216 btrfs_release_path(path
);
3223 if (pending_del_nr
) {
3224 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3228 btrfs_free_path(path
);
3233 * taken from block_truncate_page, but does cow as it zeros out
3234 * any bytes left in the last page in the file.
3236 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3238 struct inode
*inode
= mapping
->host
;
3239 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3240 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3241 struct btrfs_ordered_extent
*ordered
;
3242 struct extent_state
*cached_state
= NULL
;
3244 u32 blocksize
= root
->sectorsize
;
3245 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3246 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3248 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3253 if ((offset
& (blocksize
- 1)) == 0)
3255 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3261 page
= find_or_create_page(mapping
, index
, mask
);
3263 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3267 page_start
= page_offset(page
);
3268 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3270 if (!PageUptodate(page
)) {
3271 ret
= btrfs_readpage(NULL
, page
);
3273 if (page
->mapping
!= mapping
) {
3275 page_cache_release(page
);
3278 if (!PageUptodate(page
)) {
3283 wait_on_page_writeback(page
);
3285 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3287 set_page_extent_mapped(page
);
3289 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3291 unlock_extent_cached(io_tree
, page_start
, page_end
,
3292 &cached_state
, GFP_NOFS
);
3294 page_cache_release(page
);
3295 btrfs_start_ordered_extent(inode
, ordered
, 1);
3296 btrfs_put_ordered_extent(ordered
);
3300 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3301 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3302 0, 0, &cached_state
, GFP_NOFS
);
3304 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3307 unlock_extent_cached(io_tree
, page_start
, page_end
,
3308 &cached_state
, GFP_NOFS
);
3313 if (offset
!= PAGE_CACHE_SIZE
) {
3315 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3316 flush_dcache_page(page
);
3319 ClearPageChecked(page
);
3320 set_page_dirty(page
);
3321 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3326 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3328 page_cache_release(page
);
3334 * This function puts in dummy file extents for the area we're creating a hole
3335 * for. So if we are truncating this file to a larger size we need to insert
3336 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3337 * the range between oldsize and size
3339 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3341 struct btrfs_trans_handle
*trans
;
3342 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3343 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3344 struct extent_map
*em
= NULL
;
3345 struct extent_state
*cached_state
= NULL
;
3346 u64 mask
= root
->sectorsize
- 1;
3347 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3348 u64 block_end
= (size
+ mask
) & ~mask
;
3354 if (size
<= hole_start
)
3358 struct btrfs_ordered_extent
*ordered
;
3359 btrfs_wait_ordered_range(inode
, hole_start
,
3360 block_end
- hole_start
);
3361 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3362 &cached_state
, GFP_NOFS
);
3363 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3366 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3367 &cached_state
, GFP_NOFS
);
3368 btrfs_put_ordered_extent(ordered
);
3371 cur_offset
= hole_start
;
3373 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3374 block_end
- cur_offset
, 0);
3375 BUG_ON(IS_ERR_OR_NULL(em
));
3376 last_byte
= min(extent_map_end(em
), block_end
);
3377 last_byte
= (last_byte
+ mask
) & ~mask
;
3378 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3380 hole_size
= last_byte
- cur_offset
;
3382 trans
= btrfs_start_transaction(root
, 3);
3383 if (IS_ERR(trans
)) {
3384 err
= PTR_ERR(trans
);
3388 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3389 cur_offset
+ hole_size
,
3392 btrfs_update_inode(trans
, root
, inode
);
3393 btrfs_end_transaction(trans
, root
);
3397 err
= btrfs_insert_file_extent(trans
, root
,
3398 btrfs_ino(inode
), cur_offset
, 0,
3399 0, hole_size
, 0, hole_size
,
3402 btrfs_update_inode(trans
, root
, inode
);
3403 btrfs_end_transaction(trans
, root
);
3407 btrfs_drop_extent_cache(inode
, hole_start
,
3410 btrfs_update_inode(trans
, root
, inode
);
3411 btrfs_end_transaction(trans
, root
);
3413 free_extent_map(em
);
3415 cur_offset
= last_byte
;
3416 if (cur_offset
>= block_end
)
3420 free_extent_map(em
);
3421 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3426 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3428 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3429 struct btrfs_trans_handle
*trans
;
3430 loff_t oldsize
= i_size_read(inode
);
3433 if (newsize
== oldsize
)
3436 if (newsize
> oldsize
) {
3437 truncate_pagecache(inode
, oldsize
, newsize
);
3438 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3442 trans
= btrfs_start_transaction(root
, 1);
3444 return PTR_ERR(trans
);
3446 i_size_write(inode
, newsize
);
3447 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3448 ret
= btrfs_update_inode(trans
, root
, inode
);
3449 btrfs_end_transaction(trans
, root
);
3453 * We're truncating a file that used to have good data down to
3454 * zero. Make sure it gets into the ordered flush list so that
3455 * any new writes get down to disk quickly.
3458 BTRFS_I(inode
)->ordered_data_close
= 1;
3460 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3461 truncate_setsize(inode
, newsize
);
3462 ret
= btrfs_truncate(inode
);
3468 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3470 struct inode
*inode
= dentry
->d_inode
;
3471 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3474 if (btrfs_root_readonly(root
))
3477 err
= inode_change_ok(inode
, attr
);
3481 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3482 err
= btrfs_setsize(inode
, attr
->ia_size
);
3487 if (attr
->ia_valid
) {
3488 setattr_copy(inode
, attr
);
3489 err
= btrfs_dirty_inode(inode
);
3491 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3492 err
= btrfs_acl_chmod(inode
);
3498 void btrfs_evict_inode(struct inode
*inode
)
3500 struct btrfs_trans_handle
*trans
;
3501 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3502 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3503 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3507 trace_btrfs_inode_evict(inode
);
3509 truncate_inode_pages(&inode
->i_data
, 0);
3510 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3511 btrfs_is_free_space_inode(root
, inode
)))
3514 if (is_bad_inode(inode
)) {
3515 btrfs_orphan_del(NULL
, inode
);
3518 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3519 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3521 if (root
->fs_info
->log_root_recovering
) {
3522 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3526 if (inode
->i_nlink
> 0) {
3527 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3531 rsv
= btrfs_alloc_block_rsv(root
);
3533 btrfs_orphan_del(NULL
, inode
);
3536 rsv
->size
= min_size
;
3537 global_rsv
= &root
->fs_info
->global_block_rsv
;
3539 btrfs_i_size_write(inode
, 0);
3542 * This is a bit simpler than btrfs_truncate since
3544 * 1) We've already reserved our space for our orphan item in the
3546 * 2) We're going to delete the inode item, so we don't need to update
3549 * So we just need to reserve some slack space in case we add bytes when
3550 * doing the truncate.
3553 ret
= btrfs_block_rsv_refill_noflush(root
, rsv
, min_size
);
3556 * Try and steal from the global reserve since we will
3557 * likely not use this space anyway, we want to try as
3558 * hard as possible to get this to work.
3561 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3564 printk(KERN_WARNING
"Could not get space for a "
3565 "delete, will truncate on mount %d\n", ret
);
3566 btrfs_orphan_del(NULL
, inode
);
3567 btrfs_free_block_rsv(root
, rsv
);
3571 trans
= btrfs_start_transaction(root
, 0);
3572 if (IS_ERR(trans
)) {
3573 btrfs_orphan_del(NULL
, inode
);
3574 btrfs_free_block_rsv(root
, rsv
);
3578 trans
->block_rsv
= rsv
;
3580 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3584 nr
= trans
->blocks_used
;
3585 btrfs_end_transaction(trans
, root
);
3587 btrfs_btree_balance_dirty(root
, nr
);
3590 btrfs_free_block_rsv(root
, rsv
);
3593 trans
->block_rsv
= root
->orphan_block_rsv
;
3594 ret
= btrfs_orphan_del(trans
, inode
);
3598 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3599 if (!(root
== root
->fs_info
->tree_root
||
3600 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3601 btrfs_return_ino(root
, btrfs_ino(inode
));
3603 nr
= trans
->blocks_used
;
3604 btrfs_end_transaction(trans
, root
);
3605 btrfs_btree_balance_dirty(root
, nr
);
3607 end_writeback(inode
);
3612 * this returns the key found in the dir entry in the location pointer.
3613 * If no dir entries were found, location->objectid is 0.
3615 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3616 struct btrfs_key
*location
)
3618 const char *name
= dentry
->d_name
.name
;
3619 int namelen
= dentry
->d_name
.len
;
3620 struct btrfs_dir_item
*di
;
3621 struct btrfs_path
*path
;
3622 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3625 path
= btrfs_alloc_path();
3629 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3634 if (IS_ERR_OR_NULL(di
))
3637 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3639 btrfs_free_path(path
);
3642 location
->objectid
= 0;
3647 * when we hit a tree root in a directory, the btrfs part of the inode
3648 * needs to be changed to reflect the root directory of the tree root. This
3649 * is kind of like crossing a mount point.
3651 static int fixup_tree_root_location(struct btrfs_root
*root
,
3653 struct dentry
*dentry
,
3654 struct btrfs_key
*location
,
3655 struct btrfs_root
**sub_root
)
3657 struct btrfs_path
*path
;
3658 struct btrfs_root
*new_root
;
3659 struct btrfs_root_ref
*ref
;
3660 struct extent_buffer
*leaf
;
3664 path
= btrfs_alloc_path();
3671 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3672 BTRFS_I(dir
)->root
->root_key
.objectid
,
3673 location
->objectid
);
3680 leaf
= path
->nodes
[0];
3681 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3682 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3683 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3686 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3687 (unsigned long)(ref
+ 1),
3688 dentry
->d_name
.len
);
3692 btrfs_release_path(path
);
3694 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3695 if (IS_ERR(new_root
)) {
3696 err
= PTR_ERR(new_root
);
3700 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3705 *sub_root
= new_root
;
3706 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3707 location
->type
= BTRFS_INODE_ITEM_KEY
;
3708 location
->offset
= 0;
3711 btrfs_free_path(path
);
3715 static void inode_tree_add(struct inode
*inode
)
3717 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3718 struct btrfs_inode
*entry
;
3720 struct rb_node
*parent
;
3721 u64 ino
= btrfs_ino(inode
);
3723 p
= &root
->inode_tree
.rb_node
;
3726 if (inode_unhashed(inode
))
3729 spin_lock(&root
->inode_lock
);
3732 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3734 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3735 p
= &parent
->rb_left
;
3736 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3737 p
= &parent
->rb_right
;
3739 WARN_ON(!(entry
->vfs_inode
.i_state
&
3740 (I_WILL_FREE
| I_FREEING
)));
3741 rb_erase(parent
, &root
->inode_tree
);
3742 RB_CLEAR_NODE(parent
);
3743 spin_unlock(&root
->inode_lock
);
3747 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3748 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3749 spin_unlock(&root
->inode_lock
);
3752 static void inode_tree_del(struct inode
*inode
)
3754 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3757 spin_lock(&root
->inode_lock
);
3758 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3759 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3760 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3761 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3763 spin_unlock(&root
->inode_lock
);
3766 * Free space cache has inodes in the tree root, but the tree root has a
3767 * root_refs of 0, so this could end up dropping the tree root as a
3768 * snapshot, so we need the extra !root->fs_info->tree_root check to
3769 * make sure we don't drop it.
3771 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3772 root
!= root
->fs_info
->tree_root
) {
3773 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3774 spin_lock(&root
->inode_lock
);
3775 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3776 spin_unlock(&root
->inode_lock
);
3778 btrfs_add_dead_root(root
);
3782 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3784 struct rb_node
*node
;
3785 struct rb_node
*prev
;
3786 struct btrfs_inode
*entry
;
3787 struct inode
*inode
;
3790 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3792 spin_lock(&root
->inode_lock
);
3794 node
= root
->inode_tree
.rb_node
;
3798 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3800 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3801 node
= node
->rb_left
;
3802 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3803 node
= node
->rb_right
;
3809 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3810 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3814 prev
= rb_next(prev
);
3818 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3819 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3820 inode
= igrab(&entry
->vfs_inode
);
3822 spin_unlock(&root
->inode_lock
);
3823 if (atomic_read(&inode
->i_count
) > 1)
3824 d_prune_aliases(inode
);
3826 * btrfs_drop_inode will have it removed from
3827 * the inode cache when its usage count
3832 spin_lock(&root
->inode_lock
);
3836 if (cond_resched_lock(&root
->inode_lock
))
3839 node
= rb_next(node
);
3841 spin_unlock(&root
->inode_lock
);
3845 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3847 struct btrfs_iget_args
*args
= p
;
3848 inode
->i_ino
= args
->ino
;
3849 BTRFS_I(inode
)->root
= args
->root
;
3850 btrfs_set_inode_space_info(args
->root
, inode
);
3854 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3856 struct btrfs_iget_args
*args
= opaque
;
3857 return args
->ino
== btrfs_ino(inode
) &&
3858 args
->root
== BTRFS_I(inode
)->root
;
3861 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3863 struct btrfs_root
*root
)
3865 struct inode
*inode
;
3866 struct btrfs_iget_args args
;
3867 args
.ino
= objectid
;
3870 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3871 btrfs_init_locked_inode
,
3876 /* Get an inode object given its location and corresponding root.
3877 * Returns in *is_new if the inode was read from disk
3879 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3880 struct btrfs_root
*root
, int *new)
3882 struct inode
*inode
;
3884 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3886 return ERR_PTR(-ENOMEM
);
3888 if (inode
->i_state
& I_NEW
) {
3889 BTRFS_I(inode
)->root
= root
;
3890 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3891 btrfs_read_locked_inode(inode
);
3892 if (!is_bad_inode(inode
)) {
3893 inode_tree_add(inode
);
3894 unlock_new_inode(inode
);
3898 unlock_new_inode(inode
);
3900 inode
= ERR_PTR(-ESTALE
);
3907 static struct inode
*new_simple_dir(struct super_block
*s
,
3908 struct btrfs_key
*key
,
3909 struct btrfs_root
*root
)
3911 struct inode
*inode
= new_inode(s
);
3914 return ERR_PTR(-ENOMEM
);
3916 BTRFS_I(inode
)->root
= root
;
3917 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3918 BTRFS_I(inode
)->dummy_inode
= 1;
3920 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3921 inode
->i_op
= &simple_dir_inode_operations
;
3922 inode
->i_fop
= &simple_dir_operations
;
3923 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3924 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3929 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3931 struct inode
*inode
;
3932 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3933 struct btrfs_root
*sub_root
= root
;
3934 struct btrfs_key location
;
3938 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3939 return ERR_PTR(-ENAMETOOLONG
);
3941 if (unlikely(d_need_lookup(dentry
))) {
3942 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
3943 kfree(dentry
->d_fsdata
);
3944 dentry
->d_fsdata
= NULL
;
3945 /* This thing is hashed, drop it for now */
3948 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3952 return ERR_PTR(ret
);
3954 if (location
.objectid
== 0)
3957 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3958 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
3962 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3964 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3965 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3966 &location
, &sub_root
);
3969 inode
= ERR_PTR(ret
);
3971 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3973 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
3975 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3977 if (!IS_ERR(inode
) && root
!= sub_root
) {
3978 down_read(&root
->fs_info
->cleanup_work_sem
);
3979 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
3980 ret
= btrfs_orphan_cleanup(sub_root
);
3981 up_read(&root
->fs_info
->cleanup_work_sem
);
3983 inode
= ERR_PTR(ret
);
3989 static int btrfs_dentry_delete(const struct dentry
*dentry
)
3991 struct btrfs_root
*root
;
3993 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3994 dentry
= dentry
->d_parent
;
3996 if (dentry
->d_inode
) {
3997 root
= BTRFS_I(dentry
->d_inode
)->root
;
3998 if (btrfs_root_refs(&root
->root_item
) == 0)
4004 static void btrfs_dentry_release(struct dentry
*dentry
)
4006 if (dentry
->d_fsdata
)
4007 kfree(dentry
->d_fsdata
);
4010 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4011 struct nameidata
*nd
)
4015 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4016 if (unlikely(d_need_lookup(dentry
))) {
4017 spin_lock(&dentry
->d_lock
);
4018 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
4019 spin_unlock(&dentry
->d_lock
);
4024 unsigned char btrfs_filetype_table
[] = {
4025 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4028 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4031 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4032 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4033 struct btrfs_item
*item
;
4034 struct btrfs_dir_item
*di
;
4035 struct btrfs_key key
;
4036 struct btrfs_key found_key
;
4037 struct btrfs_path
*path
;
4038 struct list_head ins_list
;
4039 struct list_head del_list
;
4042 struct extent_buffer
*leaf
;
4044 unsigned char d_type
;
4049 int key_type
= BTRFS_DIR_INDEX_KEY
;
4053 int is_curr
= 0; /* filp->f_pos points to the current index? */
4055 /* FIXME, use a real flag for deciding about the key type */
4056 if (root
->fs_info
->tree_root
== root
)
4057 key_type
= BTRFS_DIR_ITEM_KEY
;
4059 /* special case for "." */
4060 if (filp
->f_pos
== 0) {
4061 over
= filldir(dirent
, ".", 1,
4062 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4067 /* special case for .., just use the back ref */
4068 if (filp
->f_pos
== 1) {
4069 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4070 over
= filldir(dirent
, "..", 2,
4071 filp
->f_pos
, pino
, DT_DIR
);
4076 path
= btrfs_alloc_path();
4082 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4083 INIT_LIST_HEAD(&ins_list
);
4084 INIT_LIST_HEAD(&del_list
);
4085 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4088 btrfs_set_key_type(&key
, key_type
);
4089 key
.offset
= filp
->f_pos
;
4090 key
.objectid
= btrfs_ino(inode
);
4092 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4097 leaf
= path
->nodes
[0];
4098 slot
= path
->slots
[0];
4099 if (slot
>= btrfs_header_nritems(leaf
)) {
4100 ret
= btrfs_next_leaf(root
, path
);
4108 item
= btrfs_item_nr(leaf
, slot
);
4109 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4111 if (found_key
.objectid
!= key
.objectid
)
4113 if (btrfs_key_type(&found_key
) != key_type
)
4115 if (found_key
.offset
< filp
->f_pos
)
4117 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4118 btrfs_should_delete_dir_index(&del_list
,
4122 filp
->f_pos
= found_key
.offset
;
4125 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4127 di_total
= btrfs_item_size(leaf
, item
);
4129 while (di_cur
< di_total
) {
4130 struct btrfs_key location
;
4133 if (verify_dir_item(root
, leaf
, di
))
4136 name_len
= btrfs_dir_name_len(leaf
, di
);
4137 if (name_len
<= sizeof(tmp_name
)) {
4138 name_ptr
= tmp_name
;
4140 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4146 read_extent_buffer(leaf
, name_ptr
,
4147 (unsigned long)(di
+ 1), name_len
);
4149 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4150 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4154 q
.hash
= full_name_hash(q
.name
, q
.len
);
4155 tmp
= d_lookup(filp
->f_dentry
, &q
);
4157 struct btrfs_key
*newkey
;
4159 newkey
= kzalloc(sizeof(struct btrfs_key
),
4163 tmp
= d_alloc(filp
->f_dentry
, &q
);
4169 memcpy(newkey
, &location
,
4170 sizeof(struct btrfs_key
));
4171 tmp
->d_fsdata
= newkey
;
4172 tmp
->d_flags
|= DCACHE_NEED_LOOKUP
;
4179 /* is this a reference to our own snapshot? If so
4182 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4183 location
.objectid
== root
->root_key
.objectid
) {
4187 over
= filldir(dirent
, name_ptr
, name_len
,
4188 found_key
.offset
, location
.objectid
,
4192 if (name_ptr
!= tmp_name
)
4197 di_len
= btrfs_dir_name_len(leaf
, di
) +
4198 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4200 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4206 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4209 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4215 /* Reached end of directory/root. Bump pos past the last item. */
4216 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4218 * 32-bit glibc will use getdents64, but then strtol -
4219 * so the last number we can serve is this.
4221 filp
->f_pos
= 0x7fffffff;
4227 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4228 btrfs_put_delayed_items(&ins_list
, &del_list
);
4229 btrfs_free_path(path
);
4233 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4235 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4236 struct btrfs_trans_handle
*trans
;
4238 bool nolock
= false;
4240 if (BTRFS_I(inode
)->dummy_inode
)
4243 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(root
, inode
))
4246 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4248 trans
= btrfs_join_transaction_nolock(root
);
4250 trans
= btrfs_join_transaction(root
);
4252 return PTR_ERR(trans
);
4254 ret
= btrfs_end_transaction_nolock(trans
, root
);
4256 ret
= btrfs_commit_transaction(trans
, root
);
4262 * This is somewhat expensive, updating the tree every time the
4263 * inode changes. But, it is most likely to find the inode in cache.
4264 * FIXME, needs more benchmarking...there are no reasons other than performance
4265 * to keep or drop this code.
4267 int btrfs_dirty_inode(struct inode
*inode
)
4269 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4270 struct btrfs_trans_handle
*trans
;
4273 if (BTRFS_I(inode
)->dummy_inode
)
4276 trans
= btrfs_join_transaction(root
);
4278 return PTR_ERR(trans
);
4280 ret
= btrfs_update_inode(trans
, root
, inode
);
4281 if (ret
&& ret
== -ENOSPC
) {
4282 /* whoops, lets try again with the full transaction */
4283 btrfs_end_transaction(trans
, root
);
4284 trans
= btrfs_start_transaction(root
, 1);
4286 return PTR_ERR(trans
);
4288 ret
= btrfs_update_inode(trans
, root
, inode
);
4290 btrfs_end_transaction(trans
, root
);
4291 if (BTRFS_I(inode
)->delayed_node
)
4292 btrfs_balance_delayed_items(root
);
4298 * This is a copy of file_update_time. We need this so we can return error on
4299 * ENOSPC for updating the inode in the case of file write and mmap writes.
4301 int btrfs_update_time(struct file
*file
)
4303 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4304 struct timespec now
;
4306 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
4308 /* First try to exhaust all avenues to not sync */
4309 if (IS_NOCMTIME(inode
))
4312 now
= current_fs_time(inode
->i_sb
);
4313 if (!timespec_equal(&inode
->i_mtime
, &now
))
4316 if (!timespec_equal(&inode
->i_ctime
, &now
))
4319 if (IS_I_VERSION(inode
))
4320 sync_it
|= S_VERSION
;
4325 /* Finally allowed to write? Takes lock. */
4326 if (mnt_want_write_file(file
))
4329 /* Only change inode inside the lock region */
4330 if (sync_it
& S_VERSION
)
4331 inode_inc_iversion(inode
);
4332 if (sync_it
& S_CTIME
)
4333 inode
->i_ctime
= now
;
4334 if (sync_it
& S_MTIME
)
4335 inode
->i_mtime
= now
;
4336 ret
= btrfs_dirty_inode(inode
);
4338 mark_inode_dirty_sync(inode
);
4339 mnt_drop_write(file
->f_path
.mnt
);
4344 * find the highest existing sequence number in a directory
4345 * and then set the in-memory index_cnt variable to reflect
4346 * free sequence numbers
4348 static int btrfs_set_inode_index_count(struct inode
*inode
)
4350 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4351 struct btrfs_key key
, found_key
;
4352 struct btrfs_path
*path
;
4353 struct extent_buffer
*leaf
;
4356 key
.objectid
= btrfs_ino(inode
);
4357 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4358 key
.offset
= (u64
)-1;
4360 path
= btrfs_alloc_path();
4364 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4367 /* FIXME: we should be able to handle this */
4373 * MAGIC NUMBER EXPLANATION:
4374 * since we search a directory based on f_pos we have to start at 2
4375 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4376 * else has to start at 2
4378 if (path
->slots
[0] == 0) {
4379 BTRFS_I(inode
)->index_cnt
= 2;
4385 leaf
= path
->nodes
[0];
4386 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4388 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4389 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4390 BTRFS_I(inode
)->index_cnt
= 2;
4394 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4396 btrfs_free_path(path
);
4401 * helper to find a free sequence number in a given directory. This current
4402 * code is very simple, later versions will do smarter things in the btree
4404 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4408 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4409 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4411 ret
= btrfs_set_inode_index_count(dir
);
4417 *index
= BTRFS_I(dir
)->index_cnt
;
4418 BTRFS_I(dir
)->index_cnt
++;
4423 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4424 struct btrfs_root
*root
,
4426 const char *name
, int name_len
,
4427 u64 ref_objectid
, u64 objectid
,
4428 umode_t mode
, u64
*index
)
4430 struct inode
*inode
;
4431 struct btrfs_inode_item
*inode_item
;
4432 struct btrfs_key
*location
;
4433 struct btrfs_path
*path
;
4434 struct btrfs_inode_ref
*ref
;
4435 struct btrfs_key key
[2];
4441 path
= btrfs_alloc_path();
4443 return ERR_PTR(-ENOMEM
);
4445 inode
= new_inode(root
->fs_info
->sb
);
4447 btrfs_free_path(path
);
4448 return ERR_PTR(-ENOMEM
);
4452 * we have to initialize this early, so we can reclaim the inode
4453 * number if we fail afterwards in this function.
4455 inode
->i_ino
= objectid
;
4458 trace_btrfs_inode_request(dir
);
4460 ret
= btrfs_set_inode_index(dir
, index
);
4462 btrfs_free_path(path
);
4464 return ERR_PTR(ret
);
4468 * index_cnt is ignored for everything but a dir,
4469 * btrfs_get_inode_index_count has an explanation for the magic
4472 BTRFS_I(inode
)->index_cnt
= 2;
4473 BTRFS_I(inode
)->root
= root
;
4474 BTRFS_I(inode
)->generation
= trans
->transid
;
4475 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4476 btrfs_set_inode_space_info(root
, inode
);
4483 key
[0].objectid
= objectid
;
4484 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4487 key
[1].objectid
= objectid
;
4488 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4489 key
[1].offset
= ref_objectid
;
4491 sizes
[0] = sizeof(struct btrfs_inode_item
);
4492 sizes
[1] = name_len
+ sizeof(*ref
);
4494 path
->leave_spinning
= 1;
4495 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4499 inode_init_owner(inode
, dir
, mode
);
4500 inode_set_bytes(inode
, 0);
4501 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4502 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4503 struct btrfs_inode_item
);
4504 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4506 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4507 struct btrfs_inode_ref
);
4508 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4509 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4510 ptr
= (unsigned long)(ref
+ 1);
4511 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4513 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4514 btrfs_free_path(path
);
4516 location
= &BTRFS_I(inode
)->location
;
4517 location
->objectid
= objectid
;
4518 location
->offset
= 0;
4519 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4521 btrfs_inherit_iflags(inode
, dir
);
4523 if (S_ISREG(mode
)) {
4524 if (btrfs_test_opt(root
, NODATASUM
))
4525 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4526 if (btrfs_test_opt(root
, NODATACOW
) ||
4527 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4528 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4531 insert_inode_hash(inode
);
4532 inode_tree_add(inode
);
4534 trace_btrfs_inode_new(inode
);
4535 btrfs_set_inode_last_trans(trans
, inode
);
4540 BTRFS_I(dir
)->index_cnt
--;
4541 btrfs_free_path(path
);
4543 return ERR_PTR(ret
);
4546 static inline u8
btrfs_inode_type(struct inode
*inode
)
4548 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4552 * utility function to add 'inode' into 'parent_inode' with
4553 * a give name and a given sequence number.
4554 * if 'add_backref' is true, also insert a backref from the
4555 * inode to the parent directory.
4557 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4558 struct inode
*parent_inode
, struct inode
*inode
,
4559 const char *name
, int name_len
, int add_backref
, u64 index
)
4562 struct btrfs_key key
;
4563 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4564 u64 ino
= btrfs_ino(inode
);
4565 u64 parent_ino
= btrfs_ino(parent_inode
);
4567 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4568 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4571 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4575 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4576 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4577 key
.objectid
, root
->root_key
.objectid
,
4578 parent_ino
, index
, name
, name_len
);
4579 } else if (add_backref
) {
4580 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4585 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4587 btrfs_inode_type(inode
), index
);
4591 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4593 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4594 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4599 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4602 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4603 key
.objectid
, root
->root_key
.objectid
,
4604 parent_ino
, &local_index
, name
, name_len
);
4606 } else if (add_backref
) {
4610 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
4611 ino
, parent_ino
, &local_index
);
4616 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4617 struct inode
*dir
, struct dentry
*dentry
,
4618 struct inode
*inode
, int backref
, u64 index
)
4620 int err
= btrfs_add_link(trans
, dir
, inode
,
4621 dentry
->d_name
.name
, dentry
->d_name
.len
,
4628 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4629 umode_t mode
, dev_t rdev
)
4631 struct btrfs_trans_handle
*trans
;
4632 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4633 struct inode
*inode
= NULL
;
4637 unsigned long nr
= 0;
4640 if (!new_valid_dev(rdev
))
4644 * 2 for inode item and ref
4646 * 1 for xattr if selinux is on
4648 trans
= btrfs_start_transaction(root
, 5);
4650 return PTR_ERR(trans
);
4652 err
= btrfs_find_free_ino(root
, &objectid
);
4656 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4657 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4659 if (IS_ERR(inode
)) {
4660 err
= PTR_ERR(inode
);
4664 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4671 * If the active LSM wants to access the inode during
4672 * d_instantiate it needs these. Smack checks to see
4673 * if the filesystem supports xattrs by looking at the
4677 inode
->i_op
= &btrfs_special_inode_operations
;
4678 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4682 init_special_inode(inode
, inode
->i_mode
, rdev
);
4683 btrfs_update_inode(trans
, root
, inode
);
4684 d_instantiate(dentry
, inode
);
4687 nr
= trans
->blocks_used
;
4688 btrfs_end_transaction(trans
, root
);
4689 btrfs_btree_balance_dirty(root
, nr
);
4691 inode_dec_link_count(inode
);
4697 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4698 umode_t mode
, struct nameidata
*nd
)
4700 struct btrfs_trans_handle
*trans
;
4701 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4702 struct inode
*inode
= NULL
;
4705 unsigned long nr
= 0;
4710 * 2 for inode item and ref
4712 * 1 for xattr if selinux is on
4714 trans
= btrfs_start_transaction(root
, 5);
4716 return PTR_ERR(trans
);
4718 err
= btrfs_find_free_ino(root
, &objectid
);
4722 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4723 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4725 if (IS_ERR(inode
)) {
4726 err
= PTR_ERR(inode
);
4730 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4737 * If the active LSM wants to access the inode during
4738 * d_instantiate it needs these. Smack checks to see
4739 * if the filesystem supports xattrs by looking at the
4742 inode
->i_fop
= &btrfs_file_operations
;
4743 inode
->i_op
= &btrfs_file_inode_operations
;
4745 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4749 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4750 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4751 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4752 d_instantiate(dentry
, inode
);
4755 nr
= trans
->blocks_used
;
4756 btrfs_end_transaction(trans
, root
);
4758 inode_dec_link_count(inode
);
4761 btrfs_btree_balance_dirty(root
, nr
);
4765 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4766 struct dentry
*dentry
)
4768 struct btrfs_trans_handle
*trans
;
4769 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4770 struct inode
*inode
= old_dentry
->d_inode
;
4772 unsigned long nr
= 0;
4776 /* do not allow sys_link's with other subvols of the same device */
4777 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4780 if (inode
->i_nlink
== ~0U)
4783 err
= btrfs_set_inode_index(dir
, &index
);
4788 * 2 items for inode and inode ref
4789 * 2 items for dir items
4790 * 1 item for parent inode
4792 trans
= btrfs_start_transaction(root
, 5);
4793 if (IS_ERR(trans
)) {
4794 err
= PTR_ERR(trans
);
4798 btrfs_inc_nlink(inode
);
4799 inode
->i_ctime
= CURRENT_TIME
;
4802 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4807 struct dentry
*parent
= dentry
->d_parent
;
4808 err
= btrfs_update_inode(trans
, root
, inode
);
4810 d_instantiate(dentry
, inode
);
4811 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4814 nr
= trans
->blocks_used
;
4815 btrfs_end_transaction(trans
, root
);
4818 inode_dec_link_count(inode
);
4821 btrfs_btree_balance_dirty(root
, nr
);
4825 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4827 struct inode
*inode
= NULL
;
4828 struct btrfs_trans_handle
*trans
;
4829 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4831 int drop_on_err
= 0;
4834 unsigned long nr
= 1;
4837 * 2 items for inode and ref
4838 * 2 items for dir items
4839 * 1 for xattr if selinux is on
4841 trans
= btrfs_start_transaction(root
, 5);
4843 return PTR_ERR(trans
);
4845 err
= btrfs_find_free_ino(root
, &objectid
);
4849 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4850 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4851 S_IFDIR
| mode
, &index
);
4852 if (IS_ERR(inode
)) {
4853 err
= PTR_ERR(inode
);
4859 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4863 inode
->i_op
= &btrfs_dir_inode_operations
;
4864 inode
->i_fop
= &btrfs_dir_file_operations
;
4866 btrfs_i_size_write(inode
, 0);
4867 err
= btrfs_update_inode(trans
, root
, inode
);
4871 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4872 dentry
->d_name
.len
, 0, index
);
4876 d_instantiate(dentry
, inode
);
4880 nr
= trans
->blocks_used
;
4881 btrfs_end_transaction(trans
, root
);
4884 btrfs_btree_balance_dirty(root
, nr
);
4888 /* helper for btfs_get_extent. Given an existing extent in the tree,
4889 * and an extent that you want to insert, deal with overlap and insert
4890 * the new extent into the tree.
4892 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4893 struct extent_map
*existing
,
4894 struct extent_map
*em
,
4895 u64 map_start
, u64 map_len
)
4899 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4900 start_diff
= map_start
- em
->start
;
4901 em
->start
= map_start
;
4903 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4904 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4905 em
->block_start
+= start_diff
;
4906 em
->block_len
-= start_diff
;
4908 return add_extent_mapping(em_tree
, em
);
4911 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4912 struct inode
*inode
, struct page
*page
,
4913 size_t pg_offset
, u64 extent_offset
,
4914 struct btrfs_file_extent_item
*item
)
4917 struct extent_buffer
*leaf
= path
->nodes
[0];
4920 unsigned long inline_size
;
4924 WARN_ON(pg_offset
!= 0);
4925 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4926 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4927 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4928 btrfs_item_nr(leaf
, path
->slots
[0]));
4929 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4932 ptr
= btrfs_file_extent_inline_start(item
);
4934 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4936 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4937 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4938 extent_offset
, inline_size
, max_size
);
4940 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4941 unsigned long copy_size
= min_t(u64
,
4942 PAGE_CACHE_SIZE
- pg_offset
,
4943 max_size
- extent_offset
);
4944 memset(kaddr
+ pg_offset
, 0, copy_size
);
4945 kunmap_atomic(kaddr
, KM_USER0
);
4952 * a bit scary, this does extent mapping from logical file offset to the disk.
4953 * the ugly parts come from merging extents from the disk with the in-ram
4954 * representation. This gets more complex because of the data=ordered code,
4955 * where the in-ram extents might be locked pending data=ordered completion.
4957 * This also copies inline extents directly into the page.
4960 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4961 size_t pg_offset
, u64 start
, u64 len
,
4967 u64 extent_start
= 0;
4969 u64 objectid
= btrfs_ino(inode
);
4971 struct btrfs_path
*path
= NULL
;
4972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4973 struct btrfs_file_extent_item
*item
;
4974 struct extent_buffer
*leaf
;
4975 struct btrfs_key found_key
;
4976 struct extent_map
*em
= NULL
;
4977 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4978 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4979 struct btrfs_trans_handle
*trans
= NULL
;
4983 read_lock(&em_tree
->lock
);
4984 em
= lookup_extent_mapping(em_tree
, start
, len
);
4986 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4987 read_unlock(&em_tree
->lock
);
4990 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4991 free_extent_map(em
);
4992 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4993 free_extent_map(em
);
4997 em
= alloc_extent_map();
5002 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5003 em
->start
= EXTENT_MAP_HOLE
;
5004 em
->orig_start
= EXTENT_MAP_HOLE
;
5006 em
->block_len
= (u64
)-1;
5009 path
= btrfs_alloc_path();
5015 * Chances are we'll be called again, so go ahead and do
5021 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5022 objectid
, start
, trans
!= NULL
);
5029 if (path
->slots
[0] == 0)
5034 leaf
= path
->nodes
[0];
5035 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5036 struct btrfs_file_extent_item
);
5037 /* are we inside the extent that was found? */
5038 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5039 found_type
= btrfs_key_type(&found_key
);
5040 if (found_key
.objectid
!= objectid
||
5041 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5045 found_type
= btrfs_file_extent_type(leaf
, item
);
5046 extent_start
= found_key
.offset
;
5047 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5048 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5049 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5050 extent_end
= extent_start
+
5051 btrfs_file_extent_num_bytes(leaf
, item
);
5052 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5054 size
= btrfs_file_extent_inline_len(leaf
, item
);
5055 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5056 ~((u64
)root
->sectorsize
- 1);
5059 if (start
>= extent_end
) {
5061 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5062 ret
= btrfs_next_leaf(root
, path
);
5069 leaf
= path
->nodes
[0];
5071 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5072 if (found_key
.objectid
!= objectid
||
5073 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5075 if (start
+ len
<= found_key
.offset
)
5078 em
->len
= found_key
.offset
- start
;
5082 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5083 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5084 em
->start
= extent_start
;
5085 em
->len
= extent_end
- extent_start
;
5086 em
->orig_start
= extent_start
-
5087 btrfs_file_extent_offset(leaf
, item
);
5088 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5090 em
->block_start
= EXTENT_MAP_HOLE
;
5093 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5094 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5095 em
->compress_type
= compress_type
;
5096 em
->block_start
= bytenr
;
5097 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5100 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5101 em
->block_start
= bytenr
;
5102 em
->block_len
= em
->len
;
5103 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5104 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5107 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5111 size_t extent_offset
;
5114 em
->block_start
= EXTENT_MAP_INLINE
;
5115 if (!page
|| create
) {
5116 em
->start
= extent_start
;
5117 em
->len
= extent_end
- extent_start
;
5121 size
= btrfs_file_extent_inline_len(leaf
, item
);
5122 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5123 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5124 size
- extent_offset
);
5125 em
->start
= extent_start
+ extent_offset
;
5126 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5127 ~((u64
)root
->sectorsize
- 1);
5128 em
->orig_start
= EXTENT_MAP_INLINE
;
5129 if (compress_type
) {
5130 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5131 em
->compress_type
= compress_type
;
5133 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5134 if (create
== 0 && !PageUptodate(page
)) {
5135 if (btrfs_file_extent_compression(leaf
, item
) !=
5136 BTRFS_COMPRESS_NONE
) {
5137 ret
= uncompress_inline(path
, inode
, page
,
5139 extent_offset
, item
);
5143 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5145 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5146 memset(map
+ pg_offset
+ copy_size
, 0,
5147 PAGE_CACHE_SIZE
- pg_offset
-
5152 flush_dcache_page(page
);
5153 } else if (create
&& PageUptodate(page
)) {
5157 free_extent_map(em
);
5160 btrfs_release_path(path
);
5161 trans
= btrfs_join_transaction(root
);
5164 return ERR_CAST(trans
);
5168 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5171 btrfs_mark_buffer_dirty(leaf
);
5173 set_extent_uptodate(io_tree
, em
->start
,
5174 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5177 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5184 em
->block_start
= EXTENT_MAP_HOLE
;
5185 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5187 btrfs_release_path(path
);
5188 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5189 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5190 "[%llu %llu]\n", (unsigned long long)em
->start
,
5191 (unsigned long long)em
->len
,
5192 (unsigned long long)start
,
5193 (unsigned long long)len
);
5199 write_lock(&em_tree
->lock
);
5200 ret
= add_extent_mapping(em_tree
, em
);
5201 /* it is possible that someone inserted the extent into the tree
5202 * while we had the lock dropped. It is also possible that
5203 * an overlapping map exists in the tree
5205 if (ret
== -EEXIST
) {
5206 struct extent_map
*existing
;
5210 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5211 if (existing
&& (existing
->start
> start
||
5212 existing
->start
+ existing
->len
<= start
)) {
5213 free_extent_map(existing
);
5217 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5220 err
= merge_extent_mapping(em_tree
, existing
,
5223 free_extent_map(existing
);
5225 free_extent_map(em
);
5230 free_extent_map(em
);
5234 free_extent_map(em
);
5239 write_unlock(&em_tree
->lock
);
5242 trace_btrfs_get_extent(root
, em
);
5245 btrfs_free_path(path
);
5247 ret
= btrfs_end_transaction(trans
, root
);
5252 free_extent_map(em
);
5253 return ERR_PTR(err
);
5258 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5259 size_t pg_offset
, u64 start
, u64 len
,
5262 struct extent_map
*em
;
5263 struct extent_map
*hole_em
= NULL
;
5264 u64 range_start
= start
;
5270 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5275 * if our em maps to a hole, there might
5276 * actually be delalloc bytes behind it
5278 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5284 /* check to see if we've wrapped (len == -1 or similar) */
5293 /* ok, we didn't find anything, lets look for delalloc */
5294 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5295 end
, len
, EXTENT_DELALLOC
, 1);
5296 found_end
= range_start
+ found
;
5297 if (found_end
< range_start
)
5298 found_end
= (u64
)-1;
5301 * we didn't find anything useful, return
5302 * the original results from get_extent()
5304 if (range_start
> end
|| found_end
<= start
) {
5310 /* adjust the range_start to make sure it doesn't
5311 * go backwards from the start they passed in
5313 range_start
= max(start
,range_start
);
5314 found
= found_end
- range_start
;
5317 u64 hole_start
= start
;
5320 em
= alloc_extent_map();
5326 * when btrfs_get_extent can't find anything it
5327 * returns one huge hole
5329 * make sure what it found really fits our range, and
5330 * adjust to make sure it is based on the start from
5334 u64 calc_end
= extent_map_end(hole_em
);
5336 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5337 free_extent_map(hole_em
);
5340 hole_start
= max(hole_em
->start
, start
);
5341 hole_len
= calc_end
- hole_start
;
5345 if (hole_em
&& range_start
> hole_start
) {
5346 /* our hole starts before our delalloc, so we
5347 * have to return just the parts of the hole
5348 * that go until the delalloc starts
5350 em
->len
= min(hole_len
,
5351 range_start
- hole_start
);
5352 em
->start
= hole_start
;
5353 em
->orig_start
= hole_start
;
5355 * don't adjust block start at all,
5356 * it is fixed at EXTENT_MAP_HOLE
5358 em
->block_start
= hole_em
->block_start
;
5359 em
->block_len
= hole_len
;
5361 em
->start
= range_start
;
5363 em
->orig_start
= range_start
;
5364 em
->block_start
= EXTENT_MAP_DELALLOC
;
5365 em
->block_len
= found
;
5367 } else if (hole_em
) {
5372 free_extent_map(hole_em
);
5374 free_extent_map(em
);
5375 return ERR_PTR(err
);
5380 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5381 struct extent_map
*em
,
5384 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5385 struct btrfs_trans_handle
*trans
;
5386 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5387 struct btrfs_key ins
;
5390 bool insert
= false;
5393 * Ok if the extent map we looked up is a hole and is for the exact
5394 * range we want, there is no reason to allocate a new one, however if
5395 * it is not right then we need to free this one and drop the cache for
5398 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5400 free_extent_map(em
);
5403 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5406 trans
= btrfs_join_transaction(root
);
5408 return ERR_CAST(trans
);
5410 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5411 btrfs_add_inode_defrag(trans
, inode
);
5413 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5415 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5416 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5417 alloc_hint
, (u64
)-1, &ins
, 1);
5424 em
= alloc_extent_map();
5426 em
= ERR_PTR(-ENOMEM
);
5432 em
->orig_start
= em
->start
;
5433 em
->len
= ins
.offset
;
5435 em
->block_start
= ins
.objectid
;
5436 em
->block_len
= ins
.offset
;
5437 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5440 * We need to do this because if we're using the original em we searched
5441 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5444 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5447 write_lock(&em_tree
->lock
);
5448 ret
= add_extent_mapping(em_tree
, em
);
5449 write_unlock(&em_tree
->lock
);
5452 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5455 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5456 ins
.offset
, ins
.offset
, 0);
5458 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5462 btrfs_end_transaction(trans
, root
);
5467 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5468 * block must be cow'd
5470 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5471 struct inode
*inode
, u64 offset
, u64 len
)
5473 struct btrfs_path
*path
;
5475 struct extent_buffer
*leaf
;
5476 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5477 struct btrfs_file_extent_item
*fi
;
5478 struct btrfs_key key
;
5486 path
= btrfs_alloc_path();
5490 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5495 slot
= path
->slots
[0];
5498 /* can't find the item, must cow */
5505 leaf
= path
->nodes
[0];
5506 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5507 if (key
.objectid
!= btrfs_ino(inode
) ||
5508 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5509 /* not our file or wrong item type, must cow */
5513 if (key
.offset
> offset
) {
5514 /* Wrong offset, must cow */
5518 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5519 found_type
= btrfs_file_extent_type(leaf
, fi
);
5520 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5521 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5522 /* not a regular extent, must cow */
5525 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5526 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5528 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5529 if (extent_end
< offset
+ len
) {
5530 /* extent doesn't include our full range, must cow */
5534 if (btrfs_extent_readonly(root
, disk_bytenr
))
5538 * look for other files referencing this extent, if we
5539 * find any we must cow
5541 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5542 key
.offset
- backref_offset
, disk_bytenr
))
5546 * adjust disk_bytenr and num_bytes to cover just the bytes
5547 * in this extent we are about to write. If there
5548 * are any csums in that range we have to cow in order
5549 * to keep the csums correct
5551 disk_bytenr
+= backref_offset
;
5552 disk_bytenr
+= offset
- key
.offset
;
5553 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5554 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5557 * all of the above have passed, it is safe to overwrite this extent
5562 btrfs_free_path(path
);
5566 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5567 struct buffer_head
*bh_result
, int create
)
5569 struct extent_map
*em
;
5570 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5571 u64 start
= iblock
<< inode
->i_blkbits
;
5572 u64 len
= bh_result
->b_size
;
5573 struct btrfs_trans_handle
*trans
;
5575 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5580 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5581 * io. INLINE is special, and we could probably kludge it in here, but
5582 * it's still buffered so for safety lets just fall back to the generic
5585 * For COMPRESSED we _have_ to read the entire extent in so we can
5586 * decompress it, so there will be buffering required no matter what we
5587 * do, so go ahead and fallback to buffered.
5589 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5590 * to buffered IO. Don't blame me, this is the price we pay for using
5593 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5594 em
->block_start
== EXTENT_MAP_INLINE
) {
5595 free_extent_map(em
);
5599 /* Just a good old fashioned hole, return */
5600 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5601 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5602 free_extent_map(em
);
5603 /* DIO will do one hole at a time, so just unlock a sector */
5604 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5605 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5610 * We don't allocate a new extent in the following cases
5612 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5614 * 2) The extent is marked as PREALLOC. We're good to go here and can
5615 * just use the extent.
5619 len
= em
->len
- (start
- em
->start
);
5623 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5624 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5625 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5630 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5631 type
= BTRFS_ORDERED_PREALLOC
;
5633 type
= BTRFS_ORDERED_NOCOW
;
5634 len
= min(len
, em
->len
- (start
- em
->start
));
5635 block_start
= em
->block_start
+ (start
- em
->start
);
5638 * we're not going to log anything, but we do need
5639 * to make sure the current transaction stays open
5640 * while we look for nocow cross refs
5642 trans
= btrfs_join_transaction(root
);
5646 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5647 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5648 block_start
, len
, len
, type
);
5649 btrfs_end_transaction(trans
, root
);
5651 free_extent_map(em
);
5656 btrfs_end_transaction(trans
, root
);
5660 * this will cow the extent, reset the len in case we changed
5663 len
= bh_result
->b_size
;
5664 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5667 len
= min(len
, em
->len
- (start
- em
->start
));
5669 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5670 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5673 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5675 bh_result
->b_size
= len
;
5676 bh_result
->b_bdev
= em
->bdev
;
5677 set_buffer_mapped(bh_result
);
5678 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5679 set_buffer_new(bh_result
);
5681 free_extent_map(em
);
5686 struct btrfs_dio_private
{
5687 struct inode
*inode
;
5694 /* number of bios pending for this dio */
5695 atomic_t pending_bios
;
5700 struct bio
*orig_bio
;
5703 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5705 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5706 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5707 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5708 struct inode
*inode
= dip
->inode
;
5709 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5711 u32
*private = dip
->csums
;
5713 start
= dip
->logical_offset
;
5715 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5716 struct page
*page
= bvec
->bv_page
;
5719 unsigned long flags
;
5721 local_irq_save(flags
);
5722 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5723 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5724 csum
, bvec
->bv_len
);
5725 btrfs_csum_final(csum
, (char *)&csum
);
5726 kunmap_atomic(kaddr
, KM_IRQ0
);
5727 local_irq_restore(flags
);
5729 flush_dcache_page(bvec
->bv_page
);
5730 if (csum
!= *private) {
5731 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5732 " %llu csum %u private %u\n",
5733 (unsigned long long)btrfs_ino(inode
),
5734 (unsigned long long)start
,
5740 start
+= bvec
->bv_len
;
5743 } while (bvec
<= bvec_end
);
5745 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5746 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5747 bio
->bi_private
= dip
->private;
5752 /* If we had a csum failure make sure to clear the uptodate flag */
5754 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5755 dio_end_io(bio
, err
);
5758 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5760 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5761 struct inode
*inode
= dip
->inode
;
5762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5763 struct btrfs_trans_handle
*trans
;
5764 struct btrfs_ordered_extent
*ordered
= NULL
;
5765 struct extent_state
*cached_state
= NULL
;
5766 u64 ordered_offset
= dip
->logical_offset
;
5767 u64 ordered_bytes
= dip
->bytes
;
5773 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5781 trans
= btrfs_join_transaction(root
);
5782 if (IS_ERR(trans
)) {
5786 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5788 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5789 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5791 err
= btrfs_update_inode_fallback(trans
, root
, inode
);
5795 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5796 ordered
->file_offset
+ ordered
->len
- 1, 0,
5797 &cached_state
, GFP_NOFS
);
5799 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5800 ret
= btrfs_mark_extent_written(trans
, inode
,
5801 ordered
->file_offset
,
5802 ordered
->file_offset
+
5809 ret
= insert_reserved_file_extent(trans
, inode
,
5810 ordered
->file_offset
,
5816 BTRFS_FILE_EXTENT_REG
);
5817 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5818 ordered
->file_offset
, ordered
->len
);
5826 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5827 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5828 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
))
5829 btrfs_update_inode_fallback(trans
, root
, inode
);
5832 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5833 ordered
->file_offset
+ ordered
->len
- 1,
5834 &cached_state
, GFP_NOFS
);
5836 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5837 btrfs_end_transaction(trans
, root
);
5838 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5839 btrfs_put_ordered_extent(ordered
);
5840 btrfs_put_ordered_extent(ordered
);
5844 * our bio might span multiple ordered extents. If we haven't
5845 * completed the accounting for the whole dio, go back and try again
5847 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5848 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5853 bio
->bi_private
= dip
->private;
5858 /* If we had an error make sure to clear the uptodate flag */
5860 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5861 dio_end_io(bio
, err
);
5864 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5865 struct bio
*bio
, int mirror_num
,
5866 unsigned long bio_flags
, u64 offset
)
5869 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5870 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5875 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5877 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5880 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5881 "sector %#Lx len %u err no %d\n",
5882 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5883 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5887 * before atomic variable goto zero, we must make sure
5888 * dip->errors is perceived to be set.
5890 smp_mb__before_atomic_dec();
5893 /* if there are more bios still pending for this dio, just exit */
5894 if (!atomic_dec_and_test(&dip
->pending_bios
))
5898 bio_io_error(dip
->orig_bio
);
5900 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5901 bio_endio(dip
->orig_bio
, 0);
5907 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5908 u64 first_sector
, gfp_t gfp_flags
)
5910 int nr_vecs
= bio_get_nr_vecs(bdev
);
5911 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5914 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5915 int rw
, u64 file_offset
, int skip_sum
,
5916 u32
*csums
, int async_submit
)
5918 int write
= rw
& REQ_WRITE
;
5919 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5923 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5930 if (write
&& async_submit
) {
5931 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5932 inode
, rw
, bio
, 0, 0,
5934 __btrfs_submit_bio_start_direct_io
,
5935 __btrfs_submit_bio_done
);
5939 * If we aren't doing async submit, calculate the csum of the
5942 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5945 } else if (!skip_sum
) {
5946 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5947 file_offset
, csums
);
5953 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5959 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5962 struct inode
*inode
= dip
->inode
;
5963 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5964 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5966 struct bio
*orig_bio
= dip
->orig_bio
;
5967 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5968 u64 start_sector
= orig_bio
->bi_sector
;
5969 u64 file_offset
= dip
->logical_offset
;
5973 u32
*csums
= dip
->csums
;
5975 int async_submit
= 0;
5976 int write
= rw
& REQ_WRITE
;
5978 map_length
= orig_bio
->bi_size
;
5979 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5980 &map_length
, NULL
, 0);
5986 if (map_length
>= orig_bio
->bi_size
) {
5992 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5995 bio
->bi_private
= dip
;
5996 bio
->bi_end_io
= btrfs_end_dio_bio
;
5997 atomic_inc(&dip
->pending_bios
);
5999 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6000 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6001 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6002 bvec
->bv_offset
) < bvec
->bv_len
)) {
6004 * inc the count before we submit the bio so
6005 * we know the end IO handler won't happen before
6006 * we inc the count. Otherwise, the dip might get freed
6007 * before we're done setting it up
6009 atomic_inc(&dip
->pending_bios
);
6010 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6011 file_offset
, skip_sum
,
6012 csums
, async_submit
);
6015 atomic_dec(&dip
->pending_bios
);
6019 /* Write's use the ordered csums */
6020 if (!write
&& !skip_sum
)
6021 csums
= csums
+ nr_pages
;
6022 start_sector
+= submit_len
>> 9;
6023 file_offset
+= submit_len
;
6028 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6029 start_sector
, GFP_NOFS
);
6032 bio
->bi_private
= dip
;
6033 bio
->bi_end_io
= btrfs_end_dio_bio
;
6035 map_length
= orig_bio
->bi_size
;
6036 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6037 &map_length
, NULL
, 0);
6043 submit_len
+= bvec
->bv_len
;
6050 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6051 csums
, async_submit
);
6059 * before atomic variable goto zero, we must
6060 * make sure dip->errors is perceived to be set.
6062 smp_mb__before_atomic_dec();
6063 if (atomic_dec_and_test(&dip
->pending_bios
))
6064 bio_io_error(dip
->orig_bio
);
6066 /* bio_end_io() will handle error, so we needn't return it */
6070 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6073 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6074 struct btrfs_dio_private
*dip
;
6075 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6077 int write
= rw
& REQ_WRITE
;
6080 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6082 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6089 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6090 if (!write
&& !skip_sum
) {
6091 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6099 dip
->private = bio
->bi_private
;
6101 dip
->logical_offset
= file_offset
;
6105 dip
->bytes
+= bvec
->bv_len
;
6107 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6109 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6110 bio
->bi_private
= dip
;
6112 dip
->orig_bio
= bio
;
6113 atomic_set(&dip
->pending_bios
, 0);
6116 bio
->bi_end_io
= btrfs_endio_direct_write
;
6118 bio
->bi_end_io
= btrfs_endio_direct_read
;
6120 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6125 * If this is a write, we need to clean up the reserved space and kill
6126 * the ordered extent.
6129 struct btrfs_ordered_extent
*ordered
;
6130 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6131 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6132 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6133 btrfs_free_reserved_extent(root
, ordered
->start
,
6135 btrfs_put_ordered_extent(ordered
);
6136 btrfs_put_ordered_extent(ordered
);
6138 bio_endio(bio
, ret
);
6141 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6142 const struct iovec
*iov
, loff_t offset
,
6143 unsigned long nr_segs
)
6149 unsigned blocksize_mask
= root
->sectorsize
- 1;
6150 ssize_t retval
= -EINVAL
;
6151 loff_t end
= offset
;
6153 if (offset
& blocksize_mask
)
6156 /* Check the memory alignment. Blocks cannot straddle pages */
6157 for (seg
= 0; seg
< nr_segs
; seg
++) {
6158 addr
= (unsigned long)iov
[seg
].iov_base
;
6159 size
= iov
[seg
].iov_len
;
6161 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6164 /* If this is a write we don't need to check anymore */
6169 * Check to make sure we don't have duplicate iov_base's in this
6170 * iovec, if so return EINVAL, otherwise we'll get csum errors
6171 * when reading back.
6173 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6174 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6182 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6183 const struct iovec
*iov
, loff_t offset
,
6184 unsigned long nr_segs
)
6186 struct file
*file
= iocb
->ki_filp
;
6187 struct inode
*inode
= file
->f_mapping
->host
;
6188 struct btrfs_ordered_extent
*ordered
;
6189 struct extent_state
*cached_state
= NULL
;
6190 u64 lockstart
, lockend
;
6192 int writing
= rw
& WRITE
;
6194 size_t count
= iov_length(iov
, nr_segs
);
6196 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6202 lockend
= offset
+ count
- 1;
6205 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6211 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6212 0, &cached_state
, GFP_NOFS
);
6214 * We're concerned with the entire range that we're going to be
6215 * doing DIO to, so we need to make sure theres no ordered
6216 * extents in this range.
6218 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6219 lockend
- lockstart
+ 1);
6222 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6223 &cached_state
, GFP_NOFS
);
6224 btrfs_start_ordered_extent(inode
, ordered
, 1);
6225 btrfs_put_ordered_extent(ordered
);
6230 * we don't use btrfs_set_extent_delalloc because we don't want
6231 * the dirty or uptodate bits
6234 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6235 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6236 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6239 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6240 lockend
, EXTENT_LOCKED
| write_bits
,
6241 1, 0, &cached_state
, GFP_NOFS
);
6246 free_extent_state(cached_state
);
6247 cached_state
= NULL
;
6249 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6250 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6251 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6252 btrfs_submit_direct
, 0);
6254 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6255 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6256 offset
+ iov_length(iov
, nr_segs
) - 1,
6257 EXTENT_LOCKED
| write_bits
, 1, 0,
6258 &cached_state
, GFP_NOFS
);
6259 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6261 * We're falling back to buffered, unlock the section we didn't
6264 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6265 offset
+ iov_length(iov
, nr_segs
) - 1,
6266 EXTENT_LOCKED
| write_bits
, 1, 0,
6267 &cached_state
, GFP_NOFS
);
6270 free_extent_state(cached_state
);
6274 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6275 __u64 start
, __u64 len
)
6277 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6280 int btrfs_readpage(struct file
*file
, struct page
*page
)
6282 struct extent_io_tree
*tree
;
6283 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6284 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6287 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6289 struct extent_io_tree
*tree
;
6292 if (current
->flags
& PF_MEMALLOC
) {
6293 redirty_page_for_writepage(wbc
, page
);
6297 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6298 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6301 int btrfs_writepages(struct address_space
*mapping
,
6302 struct writeback_control
*wbc
)
6304 struct extent_io_tree
*tree
;
6306 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6307 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6311 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6312 struct list_head
*pages
, unsigned nr_pages
)
6314 struct extent_io_tree
*tree
;
6315 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6316 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6319 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6321 struct extent_io_tree
*tree
;
6322 struct extent_map_tree
*map
;
6325 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6326 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6327 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6329 ClearPagePrivate(page
);
6330 set_page_private(page
, 0);
6331 page_cache_release(page
);
6336 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6338 if (PageWriteback(page
) || PageDirty(page
))
6340 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6343 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6345 struct extent_io_tree
*tree
;
6346 struct btrfs_ordered_extent
*ordered
;
6347 struct extent_state
*cached_state
= NULL
;
6348 u64 page_start
= page_offset(page
);
6349 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6353 * we have the page locked, so new writeback can't start,
6354 * and the dirty bit won't be cleared while we are here.
6356 * Wait for IO on this page so that we can safely clear
6357 * the PagePrivate2 bit and do ordered accounting
6359 wait_on_page_writeback(page
);
6361 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6363 btrfs_releasepage(page
, GFP_NOFS
);
6366 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6368 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6372 * IO on this page will never be started, so we need
6373 * to account for any ordered extents now
6375 clear_extent_bit(tree
, page_start
, page_end
,
6376 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6377 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6378 &cached_state
, GFP_NOFS
);
6380 * whoever cleared the private bit is responsible
6381 * for the finish_ordered_io
6383 if (TestClearPagePrivate2(page
)) {
6384 btrfs_finish_ordered_io(page
->mapping
->host
,
6385 page_start
, page_end
);
6387 btrfs_put_ordered_extent(ordered
);
6388 cached_state
= NULL
;
6389 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6392 clear_extent_bit(tree
, page_start
, page_end
,
6393 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6394 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6395 __btrfs_releasepage(page
, GFP_NOFS
);
6397 ClearPageChecked(page
);
6398 if (PagePrivate(page
)) {
6399 ClearPagePrivate(page
);
6400 set_page_private(page
, 0);
6401 page_cache_release(page
);
6406 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6407 * called from a page fault handler when a page is first dirtied. Hence we must
6408 * be careful to check for EOF conditions here. We set the page up correctly
6409 * for a written page which means we get ENOSPC checking when writing into
6410 * holes and correct delalloc and unwritten extent mapping on filesystems that
6411 * support these features.
6413 * We are not allowed to take the i_mutex here so we have to play games to
6414 * protect against truncate races as the page could now be beyond EOF. Because
6415 * vmtruncate() writes the inode size before removing pages, once we have the
6416 * page lock we can determine safely if the page is beyond EOF. If it is not
6417 * beyond EOF, then the page is guaranteed safe against truncation until we
6420 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6422 struct page
*page
= vmf
->page
;
6423 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6424 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6425 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6426 struct btrfs_ordered_extent
*ordered
;
6427 struct extent_state
*cached_state
= NULL
;
6429 unsigned long zero_start
;
6436 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6438 ret
= btrfs_update_time(vma
->vm_file
);
6444 else /* -ENOSPC, -EIO, etc */
6445 ret
= VM_FAULT_SIGBUS
;
6451 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6454 size
= i_size_read(inode
);
6455 page_start
= page_offset(page
);
6456 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6458 if ((page
->mapping
!= inode
->i_mapping
) ||
6459 (page_start
>= size
)) {
6460 /* page got truncated out from underneath us */
6463 wait_on_page_writeback(page
);
6465 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6467 set_page_extent_mapped(page
);
6470 * we can't set the delalloc bits if there are pending ordered
6471 * extents. Drop our locks and wait for them to finish
6473 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6475 unlock_extent_cached(io_tree
, page_start
, page_end
,
6476 &cached_state
, GFP_NOFS
);
6478 btrfs_start_ordered_extent(inode
, ordered
, 1);
6479 btrfs_put_ordered_extent(ordered
);
6484 * XXX - page_mkwrite gets called every time the page is dirtied, even
6485 * if it was already dirty, so for space accounting reasons we need to
6486 * clear any delalloc bits for the range we are fixing to save. There
6487 * is probably a better way to do this, but for now keep consistent with
6488 * prepare_pages in the normal write path.
6490 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6491 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6492 0, 0, &cached_state
, GFP_NOFS
);
6494 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6497 unlock_extent_cached(io_tree
, page_start
, page_end
,
6498 &cached_state
, GFP_NOFS
);
6499 ret
= VM_FAULT_SIGBUS
;
6504 /* page is wholly or partially inside EOF */
6505 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6506 zero_start
= size
& ~PAGE_CACHE_MASK
;
6508 zero_start
= PAGE_CACHE_SIZE
;
6510 if (zero_start
!= PAGE_CACHE_SIZE
) {
6512 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6513 flush_dcache_page(page
);
6516 ClearPageChecked(page
);
6517 set_page_dirty(page
);
6518 SetPageUptodate(page
);
6520 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6521 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6523 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6527 return VM_FAULT_LOCKED
;
6530 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6535 static int btrfs_truncate(struct inode
*inode
)
6537 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6538 struct btrfs_block_rsv
*rsv
;
6541 struct btrfs_trans_handle
*trans
;
6543 u64 mask
= root
->sectorsize
- 1;
6544 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6546 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6550 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6551 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6554 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6555 * 3 things going on here
6557 * 1) We need to reserve space for our orphan item and the space to
6558 * delete our orphan item. Lord knows we don't want to have a dangling
6559 * orphan item because we didn't reserve space to remove it.
6561 * 2) We need to reserve space to update our inode.
6563 * 3) We need to have something to cache all the space that is going to
6564 * be free'd up by the truncate operation, but also have some slack
6565 * space reserved in case it uses space during the truncate (thank you
6566 * very much snapshotting).
6568 * And we need these to all be seperate. The fact is we can use alot of
6569 * space doing the truncate, and we have no earthly idea how much space
6570 * we will use, so we need the truncate reservation to be seperate so it
6571 * doesn't end up using space reserved for updating the inode or
6572 * removing the orphan item. We also need to be able to stop the
6573 * transaction and start a new one, which means we need to be able to
6574 * update the inode several times, and we have no idea of knowing how
6575 * many times that will be, so we can't just reserve 1 item for the
6576 * entirety of the opration, so that has to be done seperately as well.
6577 * Then there is the orphan item, which does indeed need to be held on
6578 * to for the whole operation, and we need nobody to touch this reserved
6579 * space except the orphan code.
6581 * So that leaves us with
6583 * 1) root->orphan_block_rsv - for the orphan deletion.
6584 * 2) rsv - for the truncate reservation, which we will steal from the
6585 * transaction reservation.
6586 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6587 * updating the inode.
6589 rsv
= btrfs_alloc_block_rsv(root
);
6592 rsv
->size
= min_size
;
6595 * 1 for the truncate slack space
6596 * 1 for the orphan item we're going to add
6597 * 1 for the orphan item deletion
6598 * 1 for updating the inode.
6600 trans
= btrfs_start_transaction(root
, 4);
6601 if (IS_ERR(trans
)) {
6602 err
= PTR_ERR(trans
);
6606 /* Migrate the slack space for the truncate to our reserve */
6607 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6611 ret
= btrfs_orphan_add(trans
, inode
);
6613 btrfs_end_transaction(trans
, root
);
6618 * setattr is responsible for setting the ordered_data_close flag,
6619 * but that is only tested during the last file release. That
6620 * could happen well after the next commit, leaving a great big
6621 * window where new writes may get lost if someone chooses to write
6622 * to this file after truncating to zero
6624 * The inode doesn't have any dirty data here, and so if we commit
6625 * this is a noop. If someone immediately starts writing to the inode
6626 * it is very likely we'll catch some of their writes in this
6627 * transaction, and the commit will find this file on the ordered
6628 * data list with good things to send down.
6630 * This is a best effort solution, there is still a window where
6631 * using truncate to replace the contents of the file will
6632 * end up with a zero length file after a crash.
6634 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6635 btrfs_add_ordered_operation(trans
, root
, inode
);
6638 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
);
6641 * This can only happen with the original transaction we
6642 * started above, every other time we shouldn't have a
6643 * transaction started yet.
6652 /* Just need the 1 for updating the inode */
6653 trans
= btrfs_start_transaction(root
, 1);
6654 if (IS_ERR(trans
)) {
6655 ret
= err
= PTR_ERR(trans
);
6661 trans
->block_rsv
= rsv
;
6663 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6665 BTRFS_EXTENT_DATA_KEY
);
6666 if (ret
!= -EAGAIN
) {
6671 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6672 ret
= btrfs_update_inode(trans
, root
, inode
);
6678 nr
= trans
->blocks_used
;
6679 btrfs_end_transaction(trans
, root
);
6681 btrfs_btree_balance_dirty(root
, nr
);
6684 if (ret
== 0 && inode
->i_nlink
> 0) {
6685 trans
->block_rsv
= root
->orphan_block_rsv
;
6686 ret
= btrfs_orphan_del(trans
, inode
);
6689 } else if (ret
&& inode
->i_nlink
> 0) {
6691 * Failed to do the truncate, remove us from the in memory
6694 ret
= btrfs_orphan_del(NULL
, inode
);
6698 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6699 ret
= btrfs_update_inode(trans
, root
, inode
);
6703 nr
= trans
->blocks_used
;
6704 ret
= btrfs_end_transaction(trans
, root
);
6705 btrfs_btree_balance_dirty(root
, nr
);
6709 btrfs_free_block_rsv(root
, rsv
);
6718 * create a new subvolume directory/inode (helper for the ioctl).
6720 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6721 struct btrfs_root
*new_root
, u64 new_dirid
)
6723 struct inode
*inode
;
6727 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
6728 new_dirid
, new_dirid
,
6729 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
6732 return PTR_ERR(inode
);
6733 inode
->i_op
= &btrfs_dir_inode_operations
;
6734 inode
->i_fop
= &btrfs_dir_file_operations
;
6736 set_nlink(inode
, 1);
6737 btrfs_i_size_write(inode
, 0);
6739 err
= btrfs_update_inode(trans
, new_root
, inode
);
6746 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6748 struct btrfs_inode
*ei
;
6749 struct inode
*inode
;
6751 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6756 ei
->space_info
= NULL
;
6760 ei
->last_sub_trans
= 0;
6761 ei
->logged_trans
= 0;
6762 ei
->delalloc_bytes
= 0;
6763 ei
->disk_i_size
= 0;
6766 ei
->index_cnt
= (u64
)-1;
6767 ei
->last_unlink_trans
= 0;
6769 spin_lock_init(&ei
->lock
);
6770 ei
->outstanding_extents
= 0;
6771 ei
->reserved_extents
= 0;
6773 ei
->ordered_data_close
= 0;
6774 ei
->orphan_meta_reserved
= 0;
6775 ei
->dummy_inode
= 0;
6777 ei
->delalloc_meta_reserved
= 0;
6778 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6780 ei
->delayed_node
= NULL
;
6782 inode
= &ei
->vfs_inode
;
6783 extent_map_tree_init(&ei
->extent_tree
);
6784 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6785 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6786 mutex_init(&ei
->log_mutex
);
6787 mutex_init(&ei
->delalloc_mutex
);
6788 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6789 INIT_LIST_HEAD(&ei
->i_orphan
);
6790 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6791 INIT_LIST_HEAD(&ei
->ordered_operations
);
6792 RB_CLEAR_NODE(&ei
->rb_node
);
6797 static void btrfs_i_callback(struct rcu_head
*head
)
6799 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6800 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6803 void btrfs_destroy_inode(struct inode
*inode
)
6805 struct btrfs_ordered_extent
*ordered
;
6806 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6808 WARN_ON(!list_empty(&inode
->i_dentry
));
6809 WARN_ON(inode
->i_data
.nrpages
);
6810 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
6811 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6812 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
6813 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
6816 * This can happen where we create an inode, but somebody else also
6817 * created the same inode and we need to destroy the one we already
6824 * Make sure we're properly removed from the ordered operation
6828 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6829 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6830 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6831 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6834 spin_lock(&root
->orphan_lock
);
6835 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6836 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6837 (unsigned long long)btrfs_ino(inode
));
6838 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6840 spin_unlock(&root
->orphan_lock
);
6843 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6847 printk(KERN_ERR
"btrfs found ordered "
6848 "extent %llu %llu on inode cleanup\n",
6849 (unsigned long long)ordered
->file_offset
,
6850 (unsigned long long)ordered
->len
);
6851 btrfs_remove_ordered_extent(inode
, ordered
);
6852 btrfs_put_ordered_extent(ordered
);
6853 btrfs_put_ordered_extent(ordered
);
6856 inode_tree_del(inode
);
6857 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6859 btrfs_remove_delayed_node(inode
);
6860 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6863 int btrfs_drop_inode(struct inode
*inode
)
6865 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6867 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6868 !btrfs_is_free_space_inode(root
, inode
))
6871 return generic_drop_inode(inode
);
6874 static void init_once(void *foo
)
6876 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6878 inode_init_once(&ei
->vfs_inode
);
6881 void btrfs_destroy_cachep(void)
6883 if (btrfs_inode_cachep
)
6884 kmem_cache_destroy(btrfs_inode_cachep
);
6885 if (btrfs_trans_handle_cachep
)
6886 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6887 if (btrfs_transaction_cachep
)
6888 kmem_cache_destroy(btrfs_transaction_cachep
);
6889 if (btrfs_path_cachep
)
6890 kmem_cache_destroy(btrfs_path_cachep
);
6891 if (btrfs_free_space_cachep
)
6892 kmem_cache_destroy(btrfs_free_space_cachep
);
6895 int btrfs_init_cachep(void)
6897 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6898 sizeof(struct btrfs_inode
), 0,
6899 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6900 if (!btrfs_inode_cachep
)
6903 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6904 sizeof(struct btrfs_trans_handle
), 0,
6905 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6906 if (!btrfs_trans_handle_cachep
)
6909 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6910 sizeof(struct btrfs_transaction
), 0,
6911 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6912 if (!btrfs_transaction_cachep
)
6915 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6916 sizeof(struct btrfs_path
), 0,
6917 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6918 if (!btrfs_path_cachep
)
6921 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6922 sizeof(struct btrfs_free_space
), 0,
6923 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6924 if (!btrfs_free_space_cachep
)
6929 btrfs_destroy_cachep();
6933 static int btrfs_getattr(struct vfsmount
*mnt
,
6934 struct dentry
*dentry
, struct kstat
*stat
)
6936 struct inode
*inode
= dentry
->d_inode
;
6937 u32 blocksize
= inode
->i_sb
->s_blocksize
;
6939 generic_fillattr(inode
, stat
);
6940 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
6941 stat
->blksize
= PAGE_CACHE_SIZE
;
6942 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
6943 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
6948 * If a file is moved, it will inherit the cow and compression flags of the new
6951 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6953 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6954 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6956 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6957 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6959 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6961 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6962 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6964 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6967 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6968 struct inode
*new_dir
, struct dentry
*new_dentry
)
6970 struct btrfs_trans_handle
*trans
;
6971 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6972 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6973 struct inode
*new_inode
= new_dentry
->d_inode
;
6974 struct inode
*old_inode
= old_dentry
->d_inode
;
6975 struct timespec ctime
= CURRENT_TIME
;
6979 u64 old_ino
= btrfs_ino(old_inode
);
6981 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6984 /* we only allow rename subvolume link between subvolumes */
6985 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6988 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6989 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6992 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6993 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6996 * we're using rename to replace one file with another.
6997 * and the replacement file is large. Start IO on it now so
6998 * we don't add too much work to the end of the transaction
7000 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7001 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7002 filemap_flush(old_inode
->i_mapping
);
7004 /* close the racy window with snapshot create/destroy ioctl */
7005 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7006 down_read(&root
->fs_info
->subvol_sem
);
7008 * We want to reserve the absolute worst case amount of items. So if
7009 * both inodes are subvols and we need to unlink them then that would
7010 * require 4 item modifications, but if they are both normal inodes it
7011 * would require 5 item modifications, so we'll assume their normal
7012 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7013 * should cover the worst case number of items we'll modify.
7015 trans
= btrfs_start_transaction(root
, 20);
7016 if (IS_ERR(trans
)) {
7017 ret
= PTR_ERR(trans
);
7022 btrfs_record_root_in_trans(trans
, dest
);
7024 ret
= btrfs_set_inode_index(new_dir
, &index
);
7028 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7029 /* force full log commit if subvolume involved. */
7030 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7032 ret
= btrfs_insert_inode_ref(trans
, dest
,
7033 new_dentry
->d_name
.name
,
7034 new_dentry
->d_name
.len
,
7036 btrfs_ino(new_dir
), index
);
7040 * this is an ugly little race, but the rename is required
7041 * to make sure that if we crash, the inode is either at the
7042 * old name or the new one. pinning the log transaction lets
7043 * us make sure we don't allow a log commit to come in after
7044 * we unlink the name but before we add the new name back in.
7046 btrfs_pin_log_trans(root
);
7049 * make sure the inode gets flushed if it is replacing
7052 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7053 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7055 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7056 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7057 old_inode
->i_ctime
= ctime
;
7059 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7060 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7062 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7063 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7064 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7065 old_dentry
->d_name
.name
,
7066 old_dentry
->d_name
.len
);
7068 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7069 old_dentry
->d_inode
,
7070 old_dentry
->d_name
.name
,
7071 old_dentry
->d_name
.len
);
7073 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7078 new_inode
->i_ctime
= CURRENT_TIME
;
7079 if (unlikely(btrfs_ino(new_inode
) ==
7080 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7081 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7082 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7084 new_dentry
->d_name
.name
,
7085 new_dentry
->d_name
.len
);
7086 BUG_ON(new_inode
->i_nlink
== 0);
7088 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7089 new_dentry
->d_inode
,
7090 new_dentry
->d_name
.name
,
7091 new_dentry
->d_name
.len
);
7094 if (new_inode
->i_nlink
== 0) {
7095 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7100 fixup_inode_flags(new_dir
, old_inode
);
7102 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7103 new_dentry
->d_name
.name
,
7104 new_dentry
->d_name
.len
, 0, index
);
7107 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7108 struct dentry
*parent
= new_dentry
->d_parent
;
7109 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7110 btrfs_end_log_trans(root
);
7113 btrfs_end_transaction(trans
, root
);
7115 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7116 up_read(&root
->fs_info
->subvol_sem
);
7122 * some fairly slow code that needs optimization. This walks the list
7123 * of all the inodes with pending delalloc and forces them to disk.
7125 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7127 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7128 struct btrfs_inode
*binode
;
7129 struct inode
*inode
;
7131 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7134 spin_lock(&root
->fs_info
->delalloc_lock
);
7135 while (!list_empty(head
)) {
7136 binode
= list_entry(head
->next
, struct btrfs_inode
,
7138 inode
= igrab(&binode
->vfs_inode
);
7140 list_del_init(&binode
->delalloc_inodes
);
7141 spin_unlock(&root
->fs_info
->delalloc_lock
);
7143 filemap_flush(inode
->i_mapping
);
7145 btrfs_add_delayed_iput(inode
);
7150 spin_lock(&root
->fs_info
->delalloc_lock
);
7152 spin_unlock(&root
->fs_info
->delalloc_lock
);
7154 /* the filemap_flush will queue IO into the worker threads, but
7155 * we have to make sure the IO is actually started and that
7156 * ordered extents get created before we return
7158 atomic_inc(&root
->fs_info
->async_submit_draining
);
7159 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7160 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7161 wait_event(root
->fs_info
->async_submit_wait
,
7162 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7163 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7165 atomic_dec(&root
->fs_info
->async_submit_draining
);
7169 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7170 const char *symname
)
7172 struct btrfs_trans_handle
*trans
;
7173 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7174 struct btrfs_path
*path
;
7175 struct btrfs_key key
;
7176 struct inode
*inode
= NULL
;
7184 struct btrfs_file_extent_item
*ei
;
7185 struct extent_buffer
*leaf
;
7186 unsigned long nr
= 0;
7188 name_len
= strlen(symname
) + 1;
7189 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7190 return -ENAMETOOLONG
;
7193 * 2 items for inode item and ref
7194 * 2 items for dir items
7195 * 1 item for xattr if selinux is on
7197 trans
= btrfs_start_transaction(root
, 5);
7199 return PTR_ERR(trans
);
7201 err
= btrfs_find_free_ino(root
, &objectid
);
7205 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7206 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7207 S_IFLNK
|S_IRWXUGO
, &index
);
7208 if (IS_ERR(inode
)) {
7209 err
= PTR_ERR(inode
);
7213 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7220 * If the active LSM wants to access the inode during
7221 * d_instantiate it needs these. Smack checks to see
7222 * if the filesystem supports xattrs by looking at the
7225 inode
->i_fop
= &btrfs_file_operations
;
7226 inode
->i_op
= &btrfs_file_inode_operations
;
7228 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7232 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7233 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7234 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7239 path
= btrfs_alloc_path();
7245 key
.objectid
= btrfs_ino(inode
);
7247 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7248 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7249 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7253 btrfs_free_path(path
);
7256 leaf
= path
->nodes
[0];
7257 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7258 struct btrfs_file_extent_item
);
7259 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7260 btrfs_set_file_extent_type(leaf
, ei
,
7261 BTRFS_FILE_EXTENT_INLINE
);
7262 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7263 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7264 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7265 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7267 ptr
= btrfs_file_extent_inline_start(ei
);
7268 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7269 btrfs_mark_buffer_dirty(leaf
);
7270 btrfs_free_path(path
);
7272 inode
->i_op
= &btrfs_symlink_inode_operations
;
7273 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7274 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7275 inode_set_bytes(inode
, name_len
);
7276 btrfs_i_size_write(inode
, name_len
- 1);
7277 err
= btrfs_update_inode(trans
, root
, inode
);
7283 d_instantiate(dentry
, inode
);
7284 nr
= trans
->blocks_used
;
7285 btrfs_end_transaction(trans
, root
);
7287 inode_dec_link_count(inode
);
7290 btrfs_btree_balance_dirty(root
, nr
);
7294 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7295 u64 start
, u64 num_bytes
, u64 min_size
,
7296 loff_t actual_len
, u64
*alloc_hint
,
7297 struct btrfs_trans_handle
*trans
)
7299 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7300 struct btrfs_key ins
;
7301 u64 cur_offset
= start
;
7304 bool own_trans
= true;
7308 while (num_bytes
> 0) {
7310 trans
= btrfs_start_transaction(root
, 3);
7311 if (IS_ERR(trans
)) {
7312 ret
= PTR_ERR(trans
);
7317 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7318 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7321 btrfs_end_transaction(trans
, root
);
7325 ret
= insert_reserved_file_extent(trans
, inode
,
7326 cur_offset
, ins
.objectid
,
7327 ins
.offset
, ins
.offset
,
7328 ins
.offset
, 0, 0, 0,
7329 BTRFS_FILE_EXTENT_PREALLOC
);
7331 btrfs_drop_extent_cache(inode
, cur_offset
,
7332 cur_offset
+ ins
.offset
-1, 0);
7334 num_bytes
-= ins
.offset
;
7335 cur_offset
+= ins
.offset
;
7336 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7338 inode
->i_ctime
= CURRENT_TIME
;
7339 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7340 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7341 (actual_len
> inode
->i_size
) &&
7342 (cur_offset
> inode
->i_size
)) {
7343 if (cur_offset
> actual_len
)
7344 i_size
= actual_len
;
7346 i_size
= cur_offset
;
7347 i_size_write(inode
, i_size
);
7348 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7351 ret
= btrfs_update_inode(trans
, root
, inode
);
7355 btrfs_end_transaction(trans
, root
);
7360 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7361 u64 start
, u64 num_bytes
, u64 min_size
,
7362 loff_t actual_len
, u64
*alloc_hint
)
7364 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7365 min_size
, actual_len
, alloc_hint
,
7369 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7370 struct btrfs_trans_handle
*trans
, int mode
,
7371 u64 start
, u64 num_bytes
, u64 min_size
,
7372 loff_t actual_len
, u64
*alloc_hint
)
7374 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7375 min_size
, actual_len
, alloc_hint
, trans
);
7378 static int btrfs_set_page_dirty(struct page
*page
)
7380 return __set_page_dirty_nobuffers(page
);
7383 static int btrfs_permission(struct inode
*inode
, int mask
)
7385 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7386 umode_t mode
= inode
->i_mode
;
7388 if (mask
& MAY_WRITE
&&
7389 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7390 if (btrfs_root_readonly(root
))
7392 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7395 return generic_permission(inode
, mask
);
7398 static const struct inode_operations btrfs_dir_inode_operations
= {
7399 .getattr
= btrfs_getattr
,
7400 .lookup
= btrfs_lookup
,
7401 .create
= btrfs_create
,
7402 .unlink
= btrfs_unlink
,
7404 .mkdir
= btrfs_mkdir
,
7405 .rmdir
= btrfs_rmdir
,
7406 .rename
= btrfs_rename
,
7407 .symlink
= btrfs_symlink
,
7408 .setattr
= btrfs_setattr
,
7409 .mknod
= btrfs_mknod
,
7410 .setxattr
= btrfs_setxattr
,
7411 .getxattr
= btrfs_getxattr
,
7412 .listxattr
= btrfs_listxattr
,
7413 .removexattr
= btrfs_removexattr
,
7414 .permission
= btrfs_permission
,
7415 .get_acl
= btrfs_get_acl
,
7417 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7418 .lookup
= btrfs_lookup
,
7419 .permission
= btrfs_permission
,
7420 .get_acl
= btrfs_get_acl
,
7423 static const struct file_operations btrfs_dir_file_operations
= {
7424 .llseek
= generic_file_llseek
,
7425 .read
= generic_read_dir
,
7426 .readdir
= btrfs_real_readdir
,
7427 .unlocked_ioctl
= btrfs_ioctl
,
7428 #ifdef CONFIG_COMPAT
7429 .compat_ioctl
= btrfs_ioctl
,
7431 .release
= btrfs_release_file
,
7432 .fsync
= btrfs_sync_file
,
7435 static struct extent_io_ops btrfs_extent_io_ops
= {
7436 .fill_delalloc
= run_delalloc_range
,
7437 .submit_bio_hook
= btrfs_submit_bio_hook
,
7438 .merge_bio_hook
= btrfs_merge_bio_hook
,
7439 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7440 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7441 .writepage_start_hook
= btrfs_writepage_start_hook
,
7442 .set_bit_hook
= btrfs_set_bit_hook
,
7443 .clear_bit_hook
= btrfs_clear_bit_hook
,
7444 .merge_extent_hook
= btrfs_merge_extent_hook
,
7445 .split_extent_hook
= btrfs_split_extent_hook
,
7449 * btrfs doesn't support the bmap operation because swapfiles
7450 * use bmap to make a mapping of extents in the file. They assume
7451 * these extents won't change over the life of the file and they
7452 * use the bmap result to do IO directly to the drive.
7454 * the btrfs bmap call would return logical addresses that aren't
7455 * suitable for IO and they also will change frequently as COW
7456 * operations happen. So, swapfile + btrfs == corruption.
7458 * For now we're avoiding this by dropping bmap.
7460 static const struct address_space_operations btrfs_aops
= {
7461 .readpage
= btrfs_readpage
,
7462 .writepage
= btrfs_writepage
,
7463 .writepages
= btrfs_writepages
,
7464 .readpages
= btrfs_readpages
,
7465 .direct_IO
= btrfs_direct_IO
,
7466 .invalidatepage
= btrfs_invalidatepage
,
7467 .releasepage
= btrfs_releasepage
,
7468 .set_page_dirty
= btrfs_set_page_dirty
,
7469 .error_remove_page
= generic_error_remove_page
,
7472 static const struct address_space_operations btrfs_symlink_aops
= {
7473 .readpage
= btrfs_readpage
,
7474 .writepage
= btrfs_writepage
,
7475 .invalidatepage
= btrfs_invalidatepage
,
7476 .releasepage
= btrfs_releasepage
,
7479 static const struct inode_operations btrfs_file_inode_operations
= {
7480 .getattr
= btrfs_getattr
,
7481 .setattr
= btrfs_setattr
,
7482 .setxattr
= btrfs_setxattr
,
7483 .getxattr
= btrfs_getxattr
,
7484 .listxattr
= btrfs_listxattr
,
7485 .removexattr
= btrfs_removexattr
,
7486 .permission
= btrfs_permission
,
7487 .fiemap
= btrfs_fiemap
,
7488 .get_acl
= btrfs_get_acl
,
7490 static const struct inode_operations btrfs_special_inode_operations
= {
7491 .getattr
= btrfs_getattr
,
7492 .setattr
= btrfs_setattr
,
7493 .permission
= btrfs_permission
,
7494 .setxattr
= btrfs_setxattr
,
7495 .getxattr
= btrfs_getxattr
,
7496 .listxattr
= btrfs_listxattr
,
7497 .removexattr
= btrfs_removexattr
,
7498 .get_acl
= btrfs_get_acl
,
7500 static const struct inode_operations btrfs_symlink_inode_operations
= {
7501 .readlink
= generic_readlink
,
7502 .follow_link
= page_follow_link_light
,
7503 .put_link
= page_put_link
,
7504 .getattr
= btrfs_getattr
,
7505 .setattr
= btrfs_setattr
,
7506 .permission
= btrfs_permission
,
7507 .setxattr
= btrfs_setxattr
,
7508 .getxattr
= btrfs_getxattr
,
7509 .listxattr
= btrfs_listxattr
,
7510 .removexattr
= btrfs_removexattr
,
7511 .get_acl
= btrfs_get_acl
,
7514 const struct dentry_operations btrfs_dentry_operations
= {
7515 .d_delete
= btrfs_dentry_delete
,
7516 .d_release
= btrfs_dentry_release
,