Avoid beyond bounds copy while caching ACL
[zen-stable.git] / mm / slab.c
blobf0bd7857ab3bed2adf6649e60dda6ad712ef0b92
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
124 #include <trace/events/kmem.h>
127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
136 #ifdef CONFIG_DEBUG_SLAB
137 #define DEBUG 1
138 #define STATS 1
139 #define FORCED_DEBUG 1
140 #else
141 #define DEBUG 0
142 #define STATS 0
143 #define FORCED_DEBUG 0
144 #endif
146 /* Shouldn't this be in a header file somewhere? */
147 #define BYTES_PER_WORD sizeof(void *)
148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
150 #ifndef ARCH_KMALLOC_FLAGS
151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 #endif
154 /* Legal flag mask for kmem_cache_create(). */
155 #if DEBUG
156 # define CREATE_MASK (SLAB_RED_ZONE | \
157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_CACHE_DMA | \
159 SLAB_STORE_USER | \
160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
163 #else
164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
165 SLAB_CACHE_DMA | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
169 #endif
172 * kmem_bufctl_t:
174 * Bufctl's are used for linking objs within a slab
175 * linked offsets.
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
190 typedef unsigned int kmem_bufctl_t;
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
197 * struct slab_rcu
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
210 struct slab_rcu {
211 struct rcu_head head;
212 struct kmem_cache *cachep;
213 void *addr;
217 * struct slab
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct slab {
224 union {
225 struct {
226 struct list_head list;
227 unsigned long colouroff;
228 void *s_mem; /* including colour offset */
229 unsigned int inuse; /* num of objs active in slab */
230 kmem_bufctl_t free;
231 unsigned short nodeid;
233 struct slab_rcu __slab_cover_slab_rcu;
238 * struct array_cache
240 * Purpose:
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
245 * The limit is stored in the per-cpu structure to reduce the data cache
246 * footprint.
249 struct array_cache {
250 unsigned int avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int touched;
254 spinlock_t lock;
255 void *entry[]; /*
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
258 * the entries.
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
266 #define BOOT_CPUCACHE_ENTRIES 1
267 struct arraycache_init {
268 struct array_cache cache;
269 void *entries[BOOT_CPUCACHE_ENTRIES];
273 * The slab lists for all objects.
275 struct kmem_list3 {
276 struct list_head slabs_partial; /* partial list first, better asm code */
277 struct list_head slabs_full;
278 struct list_head slabs_free;
279 unsigned long free_objects;
280 unsigned int free_limit;
281 unsigned int colour_next; /* Per-node cache coloring */
282 spinlock_t list_lock;
283 struct array_cache *shared; /* shared per node */
284 struct array_cache **alien; /* on other nodes */
285 unsigned long next_reap; /* updated without locking */
286 int free_touched; /* updated without locking */
290 * Need this for bootstrapping a per node allocator.
292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
294 #define CACHE_CACHE 0
295 #define SIZE_AC MAX_NUMNODES
296 #define SIZE_L3 (2 * MAX_NUMNODES)
298 static int drain_freelist(struct kmem_cache *cache,
299 struct kmem_list3 *l3, int tofree);
300 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
301 int node);
302 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
303 static void cache_reap(struct work_struct *unused);
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
309 static __always_inline int index_of(const size_t size)
311 extern void __bad_size(void);
313 if (__builtin_constant_p(size)) {
314 int i = 0;
316 #define CACHE(x) \
317 if (size <=x) \
318 return i; \
319 else \
320 i++;
321 #include <linux/kmalloc_sizes.h>
322 #undef CACHE
323 __bad_size();
324 } else
325 __bad_size();
326 return 0;
329 static int slab_early_init = 1;
331 #define INDEX_AC index_of(sizeof(struct arraycache_init))
332 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
334 static void kmem_list3_init(struct kmem_list3 *parent)
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
341 parent->colour_next = 0;
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
347 #define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 } while (0)
353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
360 #define CFLGS_OFF_SLAB (0x80000000UL)
361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
363 #define BATCHREFILL_LIMIT 16
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
368 * OTOH the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
374 #if STATS
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
380 #define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
385 #define STATS_INC_ERR(x) ((x)->errors++)
386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
389 #define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398 #else
399 #define STATS_INC_ACTIVE(x) do { } while (0)
400 #define STATS_DEC_ACTIVE(x) do { } while (0)
401 #define STATS_INC_ALLOCED(x) do { } while (0)
402 #define STATS_INC_GROWN(x) do { } while (0)
403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
404 #define STATS_SET_HIGH(x) do { } while (0)
405 #define STATS_INC_ERR(x) do { } while (0)
406 #define STATS_INC_NODEALLOCS(x) do { } while (0)
407 #define STATS_INC_NODEFREES(x) do { } while (0)
408 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
409 #define STATS_SET_FREEABLE(x, i) do { } while (0)
410 #define STATS_INC_ALLOCHIT(x) do { } while (0)
411 #define STATS_INC_ALLOCMISS(x) do { } while (0)
412 #define STATS_INC_FREEHIT(x) do { } while (0)
413 #define STATS_INC_FREEMISS(x) do { } while (0)
414 #endif
416 #if DEBUG
419 * memory layout of objects:
420 * 0 : objp
421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
425 * redzone word.
426 * cachep->obj_offset: The real object.
427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
429 * [BYTES_PER_WORD long]
431 static int obj_offset(struct kmem_cache *cachep)
433 return cachep->obj_offset;
436 static int obj_size(struct kmem_cache *cachep)
438 return cachep->obj_size;
441 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
444 return (unsigned long long*) (objp + obj_offset(cachep) -
445 sizeof(unsigned long long));
448 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
451 if (cachep->flags & SLAB_STORE_USER)
452 return (unsigned long long *)(objp + cachep->buffer_size -
453 sizeof(unsigned long long) -
454 REDZONE_ALIGN);
455 return (unsigned long long *) (objp + cachep->buffer_size -
456 sizeof(unsigned long long));
459 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
461 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
462 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
465 #else
467 #define obj_offset(x) 0
468 #define obj_size(cachep) (cachep->buffer_size)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
473 #endif
475 #ifdef CONFIG_TRACING
476 size_t slab_buffer_size(struct kmem_cache *cachep)
478 return cachep->buffer_size;
480 EXPORT_SYMBOL(slab_buffer_size);
481 #endif
484 * Do not go above this order unless 0 objects fit into the slab or
485 * overridden on the command line.
487 #define SLAB_MAX_ORDER_HI 1
488 #define SLAB_MAX_ORDER_LO 0
489 static int slab_max_order = SLAB_MAX_ORDER_LO;
490 static bool slab_max_order_set __initdata;
493 * Functions for storing/retrieving the cachep and or slab from the page
494 * allocator. These are used to find the slab an obj belongs to. With kfree(),
495 * these are used to find the cache which an obj belongs to.
497 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
499 page->lru.next = (struct list_head *)cache;
502 static inline struct kmem_cache *page_get_cache(struct page *page)
504 page = compound_head(page);
505 BUG_ON(!PageSlab(page));
506 return (struct kmem_cache *)page->lru.next;
509 static inline void page_set_slab(struct page *page, struct slab *slab)
511 page->lru.prev = (struct list_head *)slab;
514 static inline struct slab *page_get_slab(struct page *page)
516 BUG_ON(!PageSlab(page));
517 return (struct slab *)page->lru.prev;
520 static inline struct kmem_cache *virt_to_cache(const void *obj)
522 struct page *page = virt_to_head_page(obj);
523 return page_get_cache(page);
526 static inline struct slab *virt_to_slab(const void *obj)
528 struct page *page = virt_to_head_page(obj);
529 return page_get_slab(page);
532 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
535 return slab->s_mem + cache->buffer_size * idx;
539 * We want to avoid an expensive divide : (offset / cache->buffer_size)
540 * Using the fact that buffer_size is a constant for a particular cache,
541 * we can replace (offset / cache->buffer_size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
544 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
554 struct cache_sizes malloc_sizes[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558 #undef CACHE
560 EXPORT_SYMBOL(malloc_sizes);
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
563 struct cache_names {
564 char *name;
565 char *name_dma;
568 static struct cache_names __initdata cache_names[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
571 {NULL,}
572 #undef CACHE
575 static struct arraycache_init initarray_cache __initdata =
576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
577 static struct arraycache_init initarray_generic =
578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
580 /* internal cache of cache description objs */
581 static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582 static struct kmem_cache cache_cache = {
583 .nodelists = cache_cache_nodelists,
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
587 .buffer_size = sizeof(struct kmem_cache),
588 .name = "kmem_cache",
591 #define BAD_ALIEN_MAGIC 0x01020304ul
594 * chicken and egg problem: delay the per-cpu array allocation
595 * until the general caches are up.
597 static enum {
598 NONE,
599 PARTIAL_AC,
600 PARTIAL_L3,
601 EARLY,
602 LATE,
603 FULL
604 } g_cpucache_up;
607 * used by boot code to determine if it can use slab based allocator
609 int slab_is_available(void)
611 return g_cpucache_up >= EARLY;
614 #ifdef CONFIG_LOCKDEP
617 * Slab sometimes uses the kmalloc slabs to store the slab headers
618 * for other slabs "off slab".
619 * The locking for this is tricky in that it nests within the locks
620 * of all other slabs in a few places; to deal with this special
621 * locking we put on-slab caches into a separate lock-class.
623 * We set lock class for alien array caches which are up during init.
624 * The lock annotation will be lost if all cpus of a node goes down and
625 * then comes back up during hotplug
627 static struct lock_class_key on_slab_l3_key;
628 static struct lock_class_key on_slab_alc_key;
630 static struct lock_class_key debugobj_l3_key;
631 static struct lock_class_key debugobj_alc_key;
633 static void slab_set_lock_classes(struct kmem_cache *cachep,
634 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
635 int q)
637 struct array_cache **alc;
638 struct kmem_list3 *l3;
639 int r;
641 l3 = cachep->nodelists[q];
642 if (!l3)
643 return;
645 lockdep_set_class(&l3->list_lock, l3_key);
646 alc = l3->alien;
648 * FIXME: This check for BAD_ALIEN_MAGIC
649 * should go away when common slab code is taught to
650 * work even without alien caches.
651 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
652 * for alloc_alien_cache,
654 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
655 return;
656 for_each_node(r) {
657 if (alc[r])
658 lockdep_set_class(&alc[r]->lock, alc_key);
662 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
664 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
667 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
669 int node;
671 for_each_online_node(node)
672 slab_set_debugobj_lock_classes_node(cachep, node);
675 static void init_node_lock_keys(int q)
677 struct cache_sizes *s = malloc_sizes;
679 if (g_cpucache_up < LATE)
680 return;
682 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
683 struct kmem_list3 *l3;
685 l3 = s->cs_cachep->nodelists[q];
686 if (!l3 || OFF_SLAB(s->cs_cachep))
687 continue;
689 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
690 &on_slab_alc_key, q);
694 static inline void init_lock_keys(void)
696 int node;
698 for_each_node(node)
699 init_node_lock_keys(node);
701 #else
702 static void init_node_lock_keys(int q)
706 static inline void init_lock_keys(void)
710 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
714 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
717 #endif
720 * Guard access to the cache-chain.
722 static DEFINE_MUTEX(cache_chain_mutex);
723 static struct list_head cache_chain;
725 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
727 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
729 return cachep->array[smp_processor_id()];
732 static inline struct kmem_cache *__find_general_cachep(size_t size,
733 gfp_t gfpflags)
735 struct cache_sizes *csizep = malloc_sizes;
737 #if DEBUG
738 /* This happens if someone tries to call
739 * kmem_cache_create(), or __kmalloc(), before
740 * the generic caches are initialized.
742 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
743 #endif
744 if (!size)
745 return ZERO_SIZE_PTR;
747 while (size > csizep->cs_size)
748 csizep++;
751 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
752 * has cs_{dma,}cachep==NULL. Thus no special case
753 * for large kmalloc calls required.
755 #ifdef CONFIG_ZONE_DMA
756 if (unlikely(gfpflags & GFP_DMA))
757 return csizep->cs_dmacachep;
758 #endif
759 return csizep->cs_cachep;
762 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
764 return __find_general_cachep(size, gfpflags);
767 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
769 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
773 * Calculate the number of objects and left-over bytes for a given buffer size.
775 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
776 size_t align, int flags, size_t *left_over,
777 unsigned int *num)
779 int nr_objs;
780 size_t mgmt_size;
781 size_t slab_size = PAGE_SIZE << gfporder;
784 * The slab management structure can be either off the slab or
785 * on it. For the latter case, the memory allocated for a
786 * slab is used for:
788 * - The struct slab
789 * - One kmem_bufctl_t for each object
790 * - Padding to respect alignment of @align
791 * - @buffer_size bytes for each object
793 * If the slab management structure is off the slab, then the
794 * alignment will already be calculated into the size. Because
795 * the slabs are all pages aligned, the objects will be at the
796 * correct alignment when allocated.
798 if (flags & CFLGS_OFF_SLAB) {
799 mgmt_size = 0;
800 nr_objs = slab_size / buffer_size;
802 if (nr_objs > SLAB_LIMIT)
803 nr_objs = SLAB_LIMIT;
804 } else {
806 * Ignore padding for the initial guess. The padding
807 * is at most @align-1 bytes, and @buffer_size is at
808 * least @align. In the worst case, this result will
809 * be one greater than the number of objects that fit
810 * into the memory allocation when taking the padding
811 * into account.
813 nr_objs = (slab_size - sizeof(struct slab)) /
814 (buffer_size + sizeof(kmem_bufctl_t));
817 * This calculated number will be either the right
818 * amount, or one greater than what we want.
820 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
821 > slab_size)
822 nr_objs--;
824 if (nr_objs > SLAB_LIMIT)
825 nr_objs = SLAB_LIMIT;
827 mgmt_size = slab_mgmt_size(nr_objs, align);
829 *num = nr_objs;
830 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
833 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
835 static void __slab_error(const char *function, struct kmem_cache *cachep,
836 char *msg)
838 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
839 function, cachep->name, msg);
840 dump_stack();
844 * By default on NUMA we use alien caches to stage the freeing of
845 * objects allocated from other nodes. This causes massive memory
846 * inefficiencies when using fake NUMA setup to split memory into a
847 * large number of small nodes, so it can be disabled on the command
848 * line
851 static int use_alien_caches __read_mostly = 1;
852 static int __init noaliencache_setup(char *s)
854 use_alien_caches = 0;
855 return 1;
857 __setup("noaliencache", noaliencache_setup);
859 static int __init slab_max_order_setup(char *str)
861 get_option(&str, &slab_max_order);
862 slab_max_order = slab_max_order < 0 ? 0 :
863 min(slab_max_order, MAX_ORDER - 1);
864 slab_max_order_set = true;
866 return 1;
868 __setup("slab_max_order=", slab_max_order_setup);
870 #ifdef CONFIG_NUMA
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
877 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
879 static void init_reap_node(int cpu)
881 int node;
883 node = next_node(cpu_to_mem(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
885 node = first_node(node_online_map);
887 per_cpu(slab_reap_node, cpu) = node;
890 static void next_reap_node(void)
892 int node = __this_cpu_read(slab_reap_node);
894 node = next_node(node, node_online_map);
895 if (unlikely(node >= MAX_NUMNODES))
896 node = first_node(node_online_map);
897 __this_cpu_write(slab_reap_node, node);
900 #else
901 #define init_reap_node(cpu) do { } while (0)
902 #define next_reap_node(void) do { } while (0)
903 #endif
906 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
907 * via the workqueue/eventd.
908 * Add the CPU number into the expiration time to minimize the possibility of
909 * the CPUs getting into lockstep and contending for the global cache chain
910 * lock.
912 static void __cpuinit start_cpu_timer(int cpu)
914 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
917 * When this gets called from do_initcalls via cpucache_init(),
918 * init_workqueues() has already run, so keventd will be setup
919 * at that time.
921 if (keventd_up() && reap_work->work.func == NULL) {
922 init_reap_node(cpu);
923 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
924 schedule_delayed_work_on(cpu, reap_work,
925 __round_jiffies_relative(HZ, cpu));
929 static struct array_cache *alloc_arraycache(int node, int entries,
930 int batchcount, gfp_t gfp)
932 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
933 struct array_cache *nc = NULL;
935 nc = kmalloc_node(memsize, gfp, node);
937 * The array_cache structures contain pointers to free object.
938 * However, when such objects are allocated or transferred to another
939 * cache the pointers are not cleared and they could be counted as
940 * valid references during a kmemleak scan. Therefore, kmemleak must
941 * not scan such objects.
943 kmemleak_no_scan(nc);
944 if (nc) {
945 nc->avail = 0;
946 nc->limit = entries;
947 nc->batchcount = batchcount;
948 nc->touched = 0;
949 spin_lock_init(&nc->lock);
951 return nc;
955 * Transfer objects in one arraycache to another.
956 * Locking must be handled by the caller.
958 * Return the number of entries transferred.
960 static int transfer_objects(struct array_cache *to,
961 struct array_cache *from, unsigned int max)
963 /* Figure out how many entries to transfer */
964 int nr = min3(from->avail, max, to->limit - to->avail);
966 if (!nr)
967 return 0;
969 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
970 sizeof(void *) *nr);
972 from->avail -= nr;
973 to->avail += nr;
974 return nr;
977 #ifndef CONFIG_NUMA
979 #define drain_alien_cache(cachep, alien) do { } while (0)
980 #define reap_alien(cachep, l3) do { } while (0)
982 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
984 return (struct array_cache **)BAD_ALIEN_MAGIC;
987 static inline void free_alien_cache(struct array_cache **ac_ptr)
991 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
993 return 0;
996 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
997 gfp_t flags)
999 return NULL;
1002 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1003 gfp_t flags, int nodeid)
1005 return NULL;
1008 #else /* CONFIG_NUMA */
1010 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1011 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1013 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1015 struct array_cache **ac_ptr;
1016 int memsize = sizeof(void *) * nr_node_ids;
1017 int i;
1019 if (limit > 1)
1020 limit = 12;
1021 ac_ptr = kzalloc_node(memsize, gfp, node);
1022 if (ac_ptr) {
1023 for_each_node(i) {
1024 if (i == node || !node_online(i))
1025 continue;
1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1027 if (!ac_ptr[i]) {
1028 for (i--; i >= 0; i--)
1029 kfree(ac_ptr[i]);
1030 kfree(ac_ptr);
1031 return NULL;
1035 return ac_ptr;
1038 static void free_alien_cache(struct array_cache **ac_ptr)
1040 int i;
1042 if (!ac_ptr)
1043 return;
1044 for_each_node(i)
1045 kfree(ac_ptr[i]);
1046 kfree(ac_ptr);
1049 static void __drain_alien_cache(struct kmem_cache *cachep,
1050 struct array_cache *ac, int node)
1052 struct kmem_list3 *rl3 = cachep->nodelists[node];
1054 if (ac->avail) {
1055 spin_lock(&rl3->list_lock);
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1061 if (rl3->shared)
1062 transfer_objects(rl3->shared, ac, ac->limit);
1064 free_block(cachep, ac->entry, ac->avail, node);
1065 ac->avail = 0;
1066 spin_unlock(&rl3->list_lock);
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1073 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1075 int node = __this_cpu_read(slab_reap_node);
1077 if (l3->alien) {
1078 struct array_cache *ac = l3->alien[node];
1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081 __drain_alien_cache(cachep, ac, node);
1082 spin_unlock_irq(&ac->lock);
1087 static void drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache **alien)
1090 int i = 0;
1091 struct array_cache *ac;
1092 unsigned long flags;
1094 for_each_online_node(i) {
1095 ac = alien[i];
1096 if (ac) {
1097 spin_lock_irqsave(&ac->lock, flags);
1098 __drain_alien_cache(cachep, ac, i);
1099 spin_unlock_irqrestore(&ac->lock, flags);
1104 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1106 struct slab *slabp = virt_to_slab(objp);
1107 int nodeid = slabp->nodeid;
1108 struct kmem_list3 *l3;
1109 struct array_cache *alien = NULL;
1110 int node;
1112 node = numa_mem_id();
1115 * Make sure we are not freeing a object from another node to the array
1116 * cache on this cpu.
1118 if (likely(slabp->nodeid == node))
1119 return 0;
1121 l3 = cachep->nodelists[node];
1122 STATS_INC_NODEFREES(cachep);
1123 if (l3->alien && l3->alien[nodeid]) {
1124 alien = l3->alien[nodeid];
1125 spin_lock(&alien->lock);
1126 if (unlikely(alien->avail == alien->limit)) {
1127 STATS_INC_ACOVERFLOW(cachep);
1128 __drain_alien_cache(cachep, alien, nodeid);
1130 alien->entry[alien->avail++] = objp;
1131 spin_unlock(&alien->lock);
1132 } else {
1133 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1134 free_block(cachep, &objp, 1, nodeid);
1135 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1137 return 1;
1139 #endif
1142 * Allocates and initializes nodelists for a node on each slab cache, used for
1143 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1144 * will be allocated off-node since memory is not yet online for the new node.
1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1146 * already in use.
1148 * Must hold cache_chain_mutex.
1150 static int init_cache_nodelists_node(int node)
1152 struct kmem_cache *cachep;
1153 struct kmem_list3 *l3;
1154 const int memsize = sizeof(struct kmem_list3);
1156 list_for_each_entry(cachep, &cache_chain, next) {
1158 * Set up the size64 kmemlist for cpu before we can
1159 * begin anything. Make sure some other cpu on this
1160 * node has not already allocated this
1162 if (!cachep->nodelists[node]) {
1163 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1164 if (!l3)
1165 return -ENOMEM;
1166 kmem_list3_init(l3);
1167 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1168 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1171 * The l3s don't come and go as CPUs come and
1172 * go. cache_chain_mutex is sufficient
1173 * protection here.
1175 cachep->nodelists[node] = l3;
1178 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1179 cachep->nodelists[node]->free_limit =
1180 (1 + nr_cpus_node(node)) *
1181 cachep->batchcount + cachep->num;
1182 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1184 return 0;
1187 static void __cpuinit cpuup_canceled(long cpu)
1189 struct kmem_cache *cachep;
1190 struct kmem_list3 *l3 = NULL;
1191 int node = cpu_to_mem(cpu);
1192 const struct cpumask *mask = cpumask_of_node(node);
1194 list_for_each_entry(cachep, &cache_chain, next) {
1195 struct array_cache *nc;
1196 struct array_cache *shared;
1197 struct array_cache **alien;
1199 /* cpu is dead; no one can alloc from it. */
1200 nc = cachep->array[cpu];
1201 cachep->array[cpu] = NULL;
1202 l3 = cachep->nodelists[node];
1204 if (!l3)
1205 goto free_array_cache;
1207 spin_lock_irq(&l3->list_lock);
1209 /* Free limit for this kmem_list3 */
1210 l3->free_limit -= cachep->batchcount;
1211 if (nc)
1212 free_block(cachep, nc->entry, nc->avail, node);
1214 if (!cpumask_empty(mask)) {
1215 spin_unlock_irq(&l3->list_lock);
1216 goto free_array_cache;
1219 shared = l3->shared;
1220 if (shared) {
1221 free_block(cachep, shared->entry,
1222 shared->avail, node);
1223 l3->shared = NULL;
1226 alien = l3->alien;
1227 l3->alien = NULL;
1229 spin_unlock_irq(&l3->list_lock);
1231 kfree(shared);
1232 if (alien) {
1233 drain_alien_cache(cachep, alien);
1234 free_alien_cache(alien);
1236 free_array_cache:
1237 kfree(nc);
1240 * In the previous loop, all the objects were freed to
1241 * the respective cache's slabs, now we can go ahead and
1242 * shrink each nodelist to its limit.
1244 list_for_each_entry(cachep, &cache_chain, next) {
1245 l3 = cachep->nodelists[node];
1246 if (!l3)
1247 continue;
1248 drain_freelist(cachep, l3, l3->free_objects);
1252 static int __cpuinit cpuup_prepare(long cpu)
1254 struct kmem_cache *cachep;
1255 struct kmem_list3 *l3 = NULL;
1256 int node = cpu_to_mem(cpu);
1257 int err;
1260 * We need to do this right in the beginning since
1261 * alloc_arraycache's are going to use this list.
1262 * kmalloc_node allows us to add the slab to the right
1263 * kmem_list3 and not this cpu's kmem_list3
1265 err = init_cache_nodelists_node(node);
1266 if (err < 0)
1267 goto bad;
1270 * Now we can go ahead with allocating the shared arrays and
1271 * array caches
1273 list_for_each_entry(cachep, &cache_chain, next) {
1274 struct array_cache *nc;
1275 struct array_cache *shared = NULL;
1276 struct array_cache **alien = NULL;
1278 nc = alloc_arraycache(node, cachep->limit,
1279 cachep->batchcount, GFP_KERNEL);
1280 if (!nc)
1281 goto bad;
1282 if (cachep->shared) {
1283 shared = alloc_arraycache(node,
1284 cachep->shared * cachep->batchcount,
1285 0xbaadf00d, GFP_KERNEL);
1286 if (!shared) {
1287 kfree(nc);
1288 goto bad;
1291 if (use_alien_caches) {
1292 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1293 if (!alien) {
1294 kfree(shared);
1295 kfree(nc);
1296 goto bad;
1299 cachep->array[cpu] = nc;
1300 l3 = cachep->nodelists[node];
1301 BUG_ON(!l3);
1303 spin_lock_irq(&l3->list_lock);
1304 if (!l3->shared) {
1306 * We are serialised from CPU_DEAD or
1307 * CPU_UP_CANCELLED by the cpucontrol lock
1309 l3->shared = shared;
1310 shared = NULL;
1312 #ifdef CONFIG_NUMA
1313 if (!l3->alien) {
1314 l3->alien = alien;
1315 alien = NULL;
1317 #endif
1318 spin_unlock_irq(&l3->list_lock);
1319 kfree(shared);
1320 free_alien_cache(alien);
1321 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1322 slab_set_debugobj_lock_classes_node(cachep, node);
1324 init_node_lock_keys(node);
1326 return 0;
1327 bad:
1328 cpuup_canceled(cpu);
1329 return -ENOMEM;
1332 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1333 unsigned long action, void *hcpu)
1335 long cpu = (long)hcpu;
1336 int err = 0;
1338 switch (action) {
1339 case CPU_UP_PREPARE:
1340 case CPU_UP_PREPARE_FROZEN:
1341 mutex_lock(&cache_chain_mutex);
1342 err = cpuup_prepare(cpu);
1343 mutex_unlock(&cache_chain_mutex);
1344 break;
1345 case CPU_ONLINE:
1346 case CPU_ONLINE_FROZEN:
1347 start_cpu_timer(cpu);
1348 break;
1349 #ifdef CONFIG_HOTPLUG_CPU
1350 case CPU_DOWN_PREPARE:
1351 case CPU_DOWN_PREPARE_FROZEN:
1353 * Shutdown cache reaper. Note that the cache_chain_mutex is
1354 * held so that if cache_reap() is invoked it cannot do
1355 * anything expensive but will only modify reap_work
1356 * and reschedule the timer.
1358 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1359 /* Now the cache_reaper is guaranteed to be not running. */
1360 per_cpu(slab_reap_work, cpu).work.func = NULL;
1361 break;
1362 case CPU_DOWN_FAILED:
1363 case CPU_DOWN_FAILED_FROZEN:
1364 start_cpu_timer(cpu);
1365 break;
1366 case CPU_DEAD:
1367 case CPU_DEAD_FROZEN:
1369 * Even if all the cpus of a node are down, we don't free the
1370 * kmem_list3 of any cache. This to avoid a race between
1371 * cpu_down, and a kmalloc allocation from another cpu for
1372 * memory from the node of the cpu going down. The list3
1373 * structure is usually allocated from kmem_cache_create() and
1374 * gets destroyed at kmem_cache_destroy().
1376 /* fall through */
1377 #endif
1378 case CPU_UP_CANCELED:
1379 case CPU_UP_CANCELED_FROZEN:
1380 mutex_lock(&cache_chain_mutex);
1381 cpuup_canceled(cpu);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1385 return notifier_from_errno(err);
1388 static struct notifier_block __cpuinitdata cpucache_notifier = {
1389 &cpuup_callback, NULL, 0
1392 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1394 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1395 * Returns -EBUSY if all objects cannot be drained so that the node is not
1396 * removed.
1398 * Must hold cache_chain_mutex.
1400 static int __meminit drain_cache_nodelists_node(int node)
1402 struct kmem_cache *cachep;
1403 int ret = 0;
1405 list_for_each_entry(cachep, &cache_chain, next) {
1406 struct kmem_list3 *l3;
1408 l3 = cachep->nodelists[node];
1409 if (!l3)
1410 continue;
1412 drain_freelist(cachep, l3, l3->free_objects);
1414 if (!list_empty(&l3->slabs_full) ||
1415 !list_empty(&l3->slabs_partial)) {
1416 ret = -EBUSY;
1417 break;
1420 return ret;
1423 static int __meminit slab_memory_callback(struct notifier_block *self,
1424 unsigned long action, void *arg)
1426 struct memory_notify *mnb = arg;
1427 int ret = 0;
1428 int nid;
1430 nid = mnb->status_change_nid;
1431 if (nid < 0)
1432 goto out;
1434 switch (action) {
1435 case MEM_GOING_ONLINE:
1436 mutex_lock(&cache_chain_mutex);
1437 ret = init_cache_nodelists_node(nid);
1438 mutex_unlock(&cache_chain_mutex);
1439 break;
1440 case MEM_GOING_OFFLINE:
1441 mutex_lock(&cache_chain_mutex);
1442 ret = drain_cache_nodelists_node(nid);
1443 mutex_unlock(&cache_chain_mutex);
1444 break;
1445 case MEM_ONLINE:
1446 case MEM_OFFLINE:
1447 case MEM_CANCEL_ONLINE:
1448 case MEM_CANCEL_OFFLINE:
1449 break;
1451 out:
1452 return notifier_from_errno(ret);
1454 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1457 * swap the static kmem_list3 with kmalloced memory
1459 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1460 int nodeid)
1462 struct kmem_list3 *ptr;
1464 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1465 BUG_ON(!ptr);
1467 memcpy(ptr, list, sizeof(struct kmem_list3));
1469 * Do not assume that spinlocks can be initialized via memcpy:
1471 spin_lock_init(&ptr->list_lock);
1473 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1474 cachep->nodelists[nodeid] = ptr;
1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1479 * size of kmem_list3.
1481 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1483 int node;
1485 for_each_online_node(node) {
1486 cachep->nodelists[node] = &initkmem_list3[index + node];
1487 cachep->nodelists[node]->next_reap = jiffies +
1488 REAPTIMEOUT_LIST3 +
1489 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1494 * Initialisation. Called after the page allocator have been initialised and
1495 * before smp_init().
1497 void __init kmem_cache_init(void)
1499 size_t left_over;
1500 struct cache_sizes *sizes;
1501 struct cache_names *names;
1502 int i;
1503 int order;
1504 int node;
1506 if (num_possible_nodes() == 1)
1507 use_alien_caches = 0;
1509 for (i = 0; i < NUM_INIT_LISTS; i++) {
1510 kmem_list3_init(&initkmem_list3[i]);
1511 if (i < MAX_NUMNODES)
1512 cache_cache.nodelists[i] = NULL;
1514 set_up_list3s(&cache_cache, CACHE_CACHE);
1517 * Fragmentation resistance on low memory - only use bigger
1518 * page orders on machines with more than 32MB of memory if
1519 * not overridden on the command line.
1521 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1522 slab_max_order = SLAB_MAX_ORDER_HI;
1524 /* Bootstrap is tricky, because several objects are allocated
1525 * from caches that do not exist yet:
1526 * 1) initialize the cache_cache cache: it contains the struct
1527 * kmem_cache structures of all caches, except cache_cache itself:
1528 * cache_cache is statically allocated.
1529 * Initially an __init data area is used for the head array and the
1530 * kmem_list3 structures, it's replaced with a kmalloc allocated
1531 * array at the end of the bootstrap.
1532 * 2) Create the first kmalloc cache.
1533 * The struct kmem_cache for the new cache is allocated normally.
1534 * An __init data area is used for the head array.
1535 * 3) Create the remaining kmalloc caches, with minimally sized
1536 * head arrays.
1537 * 4) Replace the __init data head arrays for cache_cache and the first
1538 * kmalloc cache with kmalloc allocated arrays.
1539 * 5) Replace the __init data for kmem_list3 for cache_cache and
1540 * the other cache's with kmalloc allocated memory.
1541 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1544 node = numa_mem_id();
1546 /* 1) create the cache_cache */
1547 INIT_LIST_HEAD(&cache_chain);
1548 list_add(&cache_cache.next, &cache_chain);
1549 cache_cache.colour_off = cache_line_size();
1550 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1551 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1554 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1556 cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1557 nr_node_ids * sizeof(struct kmem_list3 *);
1558 #if DEBUG
1559 cache_cache.obj_size = cache_cache.buffer_size;
1560 #endif
1561 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1562 cache_line_size());
1563 cache_cache.reciprocal_buffer_size =
1564 reciprocal_value(cache_cache.buffer_size);
1566 for (order = 0; order < MAX_ORDER; order++) {
1567 cache_estimate(order, cache_cache.buffer_size,
1568 cache_line_size(), 0, &left_over, &cache_cache.num);
1569 if (cache_cache.num)
1570 break;
1572 BUG_ON(!cache_cache.num);
1573 cache_cache.gfporder = order;
1574 cache_cache.colour = left_over / cache_cache.colour_off;
1575 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1576 sizeof(struct slab), cache_line_size());
1578 /* 2+3) create the kmalloc caches */
1579 sizes = malloc_sizes;
1580 names = cache_names;
1583 * Initialize the caches that provide memory for the array cache and the
1584 * kmem_list3 structures first. Without this, further allocations will
1585 * bug.
1588 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1589 sizes[INDEX_AC].cs_size,
1590 ARCH_KMALLOC_MINALIGN,
1591 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1592 NULL);
1594 if (INDEX_AC != INDEX_L3) {
1595 sizes[INDEX_L3].cs_cachep =
1596 kmem_cache_create(names[INDEX_L3].name,
1597 sizes[INDEX_L3].cs_size,
1598 ARCH_KMALLOC_MINALIGN,
1599 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1600 NULL);
1603 slab_early_init = 0;
1605 while (sizes->cs_size != ULONG_MAX) {
1607 * For performance, all the general caches are L1 aligned.
1608 * This should be particularly beneficial on SMP boxes, as it
1609 * eliminates "false sharing".
1610 * Note for systems short on memory removing the alignment will
1611 * allow tighter packing of the smaller caches.
1613 if (!sizes->cs_cachep) {
1614 sizes->cs_cachep = kmem_cache_create(names->name,
1615 sizes->cs_size,
1616 ARCH_KMALLOC_MINALIGN,
1617 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1618 NULL);
1620 #ifdef CONFIG_ZONE_DMA
1621 sizes->cs_dmacachep = kmem_cache_create(
1622 names->name_dma,
1623 sizes->cs_size,
1624 ARCH_KMALLOC_MINALIGN,
1625 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1626 SLAB_PANIC,
1627 NULL);
1628 #endif
1629 sizes++;
1630 names++;
1632 /* 4) Replace the bootstrap head arrays */
1634 struct array_cache *ptr;
1636 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1638 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1639 memcpy(ptr, cpu_cache_get(&cache_cache),
1640 sizeof(struct arraycache_init));
1642 * Do not assume that spinlocks can be initialized via memcpy:
1644 spin_lock_init(&ptr->lock);
1646 cache_cache.array[smp_processor_id()] = ptr;
1648 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1650 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1651 != &initarray_generic.cache);
1652 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1653 sizeof(struct arraycache_init));
1655 * Do not assume that spinlocks can be initialized via memcpy:
1657 spin_lock_init(&ptr->lock);
1659 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1660 ptr;
1662 /* 5) Replace the bootstrap kmem_list3's */
1664 int nid;
1666 for_each_online_node(nid) {
1667 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1669 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1670 &initkmem_list3[SIZE_AC + nid], nid);
1672 if (INDEX_AC != INDEX_L3) {
1673 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1674 &initkmem_list3[SIZE_L3 + nid], nid);
1679 g_cpucache_up = EARLY;
1682 void __init kmem_cache_init_late(void)
1684 struct kmem_cache *cachep;
1686 g_cpucache_up = LATE;
1688 /* Annotate slab for lockdep -- annotate the malloc caches */
1689 init_lock_keys();
1691 /* 6) resize the head arrays to their final sizes */
1692 mutex_lock(&cache_chain_mutex);
1693 list_for_each_entry(cachep, &cache_chain, next)
1694 if (enable_cpucache(cachep, GFP_NOWAIT))
1695 BUG();
1696 mutex_unlock(&cache_chain_mutex);
1698 /* Done! */
1699 g_cpucache_up = FULL;
1702 * Register a cpu startup notifier callback that initializes
1703 * cpu_cache_get for all new cpus
1705 register_cpu_notifier(&cpucache_notifier);
1707 #ifdef CONFIG_NUMA
1709 * Register a memory hotplug callback that initializes and frees
1710 * nodelists.
1712 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1713 #endif
1716 * The reap timers are started later, with a module init call: That part
1717 * of the kernel is not yet operational.
1721 static int __init cpucache_init(void)
1723 int cpu;
1726 * Register the timers that return unneeded pages to the page allocator
1728 for_each_online_cpu(cpu)
1729 start_cpu_timer(cpu);
1730 return 0;
1732 __initcall(cpucache_init);
1735 * Interface to system's page allocator. No need to hold the cache-lock.
1737 * If we requested dmaable memory, we will get it. Even if we
1738 * did not request dmaable memory, we might get it, but that
1739 * would be relatively rare and ignorable.
1741 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1743 struct page *page;
1744 int nr_pages;
1745 int i;
1747 #ifndef CONFIG_MMU
1749 * Nommu uses slab's for process anonymous memory allocations, and thus
1750 * requires __GFP_COMP to properly refcount higher order allocations
1752 flags |= __GFP_COMP;
1753 #endif
1755 flags |= cachep->gfpflags;
1756 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1757 flags |= __GFP_RECLAIMABLE;
1759 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1760 if (!page)
1761 return NULL;
1763 nr_pages = (1 << cachep->gfporder);
1764 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1765 add_zone_page_state(page_zone(page),
1766 NR_SLAB_RECLAIMABLE, nr_pages);
1767 else
1768 add_zone_page_state(page_zone(page),
1769 NR_SLAB_UNRECLAIMABLE, nr_pages);
1770 for (i = 0; i < nr_pages; i++)
1771 __SetPageSlab(page + i);
1773 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1774 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1776 if (cachep->ctor)
1777 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1778 else
1779 kmemcheck_mark_unallocated_pages(page, nr_pages);
1782 return page_address(page);
1786 * Interface to system's page release.
1788 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1790 unsigned long i = (1 << cachep->gfporder);
1791 struct page *page = virt_to_page(addr);
1792 const unsigned long nr_freed = i;
1794 kmemcheck_free_shadow(page, cachep->gfporder);
1796 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1797 sub_zone_page_state(page_zone(page),
1798 NR_SLAB_RECLAIMABLE, nr_freed);
1799 else
1800 sub_zone_page_state(page_zone(page),
1801 NR_SLAB_UNRECLAIMABLE, nr_freed);
1802 while (i--) {
1803 BUG_ON(!PageSlab(page));
1804 __ClearPageSlab(page);
1805 page++;
1807 if (current->reclaim_state)
1808 current->reclaim_state->reclaimed_slab += nr_freed;
1809 free_pages((unsigned long)addr, cachep->gfporder);
1812 static void kmem_rcu_free(struct rcu_head *head)
1814 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1815 struct kmem_cache *cachep = slab_rcu->cachep;
1817 kmem_freepages(cachep, slab_rcu->addr);
1818 if (OFF_SLAB(cachep))
1819 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1822 #if DEBUG
1824 #ifdef CONFIG_DEBUG_PAGEALLOC
1825 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1826 unsigned long caller)
1828 int size = obj_size(cachep);
1830 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1832 if (size < 5 * sizeof(unsigned long))
1833 return;
1835 *addr++ = 0x12345678;
1836 *addr++ = caller;
1837 *addr++ = smp_processor_id();
1838 size -= 3 * sizeof(unsigned long);
1840 unsigned long *sptr = &caller;
1841 unsigned long svalue;
1843 while (!kstack_end(sptr)) {
1844 svalue = *sptr++;
1845 if (kernel_text_address(svalue)) {
1846 *addr++ = svalue;
1847 size -= sizeof(unsigned long);
1848 if (size <= sizeof(unsigned long))
1849 break;
1854 *addr++ = 0x87654321;
1856 #endif
1858 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1860 int size = obj_size(cachep);
1861 addr = &((char *)addr)[obj_offset(cachep)];
1863 memset(addr, val, size);
1864 *(unsigned char *)(addr + size - 1) = POISON_END;
1867 static void dump_line(char *data, int offset, int limit)
1869 int i;
1870 unsigned char error = 0;
1871 int bad_count = 0;
1873 printk(KERN_ERR "%03x: ", offset);
1874 for (i = 0; i < limit; i++) {
1875 if (data[offset + i] != POISON_FREE) {
1876 error = data[offset + i];
1877 bad_count++;
1880 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1881 &data[offset], limit, 1);
1883 if (bad_count == 1) {
1884 error ^= POISON_FREE;
1885 if (!(error & (error - 1))) {
1886 printk(KERN_ERR "Single bit error detected. Probably "
1887 "bad RAM.\n");
1888 #ifdef CONFIG_X86
1889 printk(KERN_ERR "Run memtest86+ or a similar memory "
1890 "test tool.\n");
1891 #else
1892 printk(KERN_ERR "Run a memory test tool.\n");
1893 #endif
1897 #endif
1899 #if DEBUG
1901 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1903 int i, size;
1904 char *realobj;
1906 if (cachep->flags & SLAB_RED_ZONE) {
1907 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1908 *dbg_redzone1(cachep, objp),
1909 *dbg_redzone2(cachep, objp));
1912 if (cachep->flags & SLAB_STORE_USER) {
1913 printk(KERN_ERR "Last user: [<%p>]",
1914 *dbg_userword(cachep, objp));
1915 print_symbol("(%s)",
1916 (unsigned long)*dbg_userword(cachep, objp));
1917 printk("\n");
1919 realobj = (char *)objp + obj_offset(cachep);
1920 size = obj_size(cachep);
1921 for (i = 0; i < size && lines; i += 16, lines--) {
1922 int limit;
1923 limit = 16;
1924 if (i + limit > size)
1925 limit = size - i;
1926 dump_line(realobj, i, limit);
1930 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1932 char *realobj;
1933 int size, i;
1934 int lines = 0;
1936 realobj = (char *)objp + obj_offset(cachep);
1937 size = obj_size(cachep);
1939 for (i = 0; i < size; i++) {
1940 char exp = POISON_FREE;
1941 if (i == size - 1)
1942 exp = POISON_END;
1943 if (realobj[i] != exp) {
1944 int limit;
1945 /* Mismatch ! */
1946 /* Print header */
1947 if (lines == 0) {
1948 printk(KERN_ERR
1949 "Slab corruption (%s): %s start=%p, len=%d\n",
1950 print_tainted(), cachep->name, realobj, size);
1951 print_objinfo(cachep, objp, 0);
1953 /* Hexdump the affected line */
1954 i = (i / 16) * 16;
1955 limit = 16;
1956 if (i + limit > size)
1957 limit = size - i;
1958 dump_line(realobj, i, limit);
1959 i += 16;
1960 lines++;
1961 /* Limit to 5 lines */
1962 if (lines > 5)
1963 break;
1966 if (lines != 0) {
1967 /* Print some data about the neighboring objects, if they
1968 * exist:
1970 struct slab *slabp = virt_to_slab(objp);
1971 unsigned int objnr;
1973 objnr = obj_to_index(cachep, slabp, objp);
1974 if (objnr) {
1975 objp = index_to_obj(cachep, slabp, objnr - 1);
1976 realobj = (char *)objp + obj_offset(cachep);
1977 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1978 realobj, size);
1979 print_objinfo(cachep, objp, 2);
1981 if (objnr + 1 < cachep->num) {
1982 objp = index_to_obj(cachep, slabp, objnr + 1);
1983 realobj = (char *)objp + obj_offset(cachep);
1984 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1985 realobj, size);
1986 print_objinfo(cachep, objp, 2);
1990 #endif
1992 #if DEBUG
1993 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1995 int i;
1996 for (i = 0; i < cachep->num; i++) {
1997 void *objp = index_to_obj(cachep, slabp, i);
1999 if (cachep->flags & SLAB_POISON) {
2000 #ifdef CONFIG_DEBUG_PAGEALLOC
2001 if (cachep->buffer_size % PAGE_SIZE == 0 &&
2002 OFF_SLAB(cachep))
2003 kernel_map_pages(virt_to_page(objp),
2004 cachep->buffer_size / PAGE_SIZE, 1);
2005 else
2006 check_poison_obj(cachep, objp);
2007 #else
2008 check_poison_obj(cachep, objp);
2009 #endif
2011 if (cachep->flags & SLAB_RED_ZONE) {
2012 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2013 slab_error(cachep, "start of a freed object "
2014 "was overwritten");
2015 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2016 slab_error(cachep, "end of a freed object "
2017 "was overwritten");
2021 #else
2022 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2025 #endif
2028 * slab_destroy - destroy and release all objects in a slab
2029 * @cachep: cache pointer being destroyed
2030 * @slabp: slab pointer being destroyed
2032 * Destroy all the objs in a slab, and release the mem back to the system.
2033 * Before calling the slab must have been unlinked from the cache. The
2034 * cache-lock is not held/needed.
2036 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2038 void *addr = slabp->s_mem - slabp->colouroff;
2040 slab_destroy_debugcheck(cachep, slabp);
2041 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2042 struct slab_rcu *slab_rcu;
2044 slab_rcu = (struct slab_rcu *)slabp;
2045 slab_rcu->cachep = cachep;
2046 slab_rcu->addr = addr;
2047 call_rcu(&slab_rcu->head, kmem_rcu_free);
2048 } else {
2049 kmem_freepages(cachep, addr);
2050 if (OFF_SLAB(cachep))
2051 kmem_cache_free(cachep->slabp_cache, slabp);
2055 static void __kmem_cache_destroy(struct kmem_cache *cachep)
2057 int i;
2058 struct kmem_list3 *l3;
2060 for_each_online_cpu(i)
2061 kfree(cachep->array[i]);
2063 /* NUMA: free the list3 structures */
2064 for_each_online_node(i) {
2065 l3 = cachep->nodelists[i];
2066 if (l3) {
2067 kfree(l3->shared);
2068 free_alien_cache(l3->alien);
2069 kfree(l3);
2072 kmem_cache_free(&cache_cache, cachep);
2077 * calculate_slab_order - calculate size (page order) of slabs
2078 * @cachep: pointer to the cache that is being created
2079 * @size: size of objects to be created in this cache.
2080 * @align: required alignment for the objects.
2081 * @flags: slab allocation flags
2083 * Also calculates the number of objects per slab.
2085 * This could be made much more intelligent. For now, try to avoid using
2086 * high order pages for slabs. When the gfp() functions are more friendly
2087 * towards high-order requests, this should be changed.
2089 static size_t calculate_slab_order(struct kmem_cache *cachep,
2090 size_t size, size_t align, unsigned long flags)
2092 unsigned long offslab_limit;
2093 size_t left_over = 0;
2094 int gfporder;
2096 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2097 unsigned int num;
2098 size_t remainder;
2100 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2101 if (!num)
2102 continue;
2104 if (flags & CFLGS_OFF_SLAB) {
2106 * Max number of objs-per-slab for caches which
2107 * use off-slab slabs. Needed to avoid a possible
2108 * looping condition in cache_grow().
2110 offslab_limit = size - sizeof(struct slab);
2111 offslab_limit /= sizeof(kmem_bufctl_t);
2113 if (num > offslab_limit)
2114 break;
2117 /* Found something acceptable - save it away */
2118 cachep->num = num;
2119 cachep->gfporder = gfporder;
2120 left_over = remainder;
2123 * A VFS-reclaimable slab tends to have most allocations
2124 * as GFP_NOFS and we really don't want to have to be allocating
2125 * higher-order pages when we are unable to shrink dcache.
2127 if (flags & SLAB_RECLAIM_ACCOUNT)
2128 break;
2131 * Large number of objects is good, but very large slabs are
2132 * currently bad for the gfp()s.
2134 if (gfporder >= slab_max_order)
2135 break;
2138 * Acceptable internal fragmentation?
2140 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2141 break;
2143 return left_over;
2146 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2148 if (g_cpucache_up == FULL)
2149 return enable_cpucache(cachep, gfp);
2151 if (g_cpucache_up == NONE) {
2153 * Note: the first kmem_cache_create must create the cache
2154 * that's used by kmalloc(24), otherwise the creation of
2155 * further caches will BUG().
2157 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2160 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2161 * the first cache, then we need to set up all its list3s,
2162 * otherwise the creation of further caches will BUG().
2164 set_up_list3s(cachep, SIZE_AC);
2165 if (INDEX_AC == INDEX_L3)
2166 g_cpucache_up = PARTIAL_L3;
2167 else
2168 g_cpucache_up = PARTIAL_AC;
2169 } else {
2170 cachep->array[smp_processor_id()] =
2171 kmalloc(sizeof(struct arraycache_init), gfp);
2173 if (g_cpucache_up == PARTIAL_AC) {
2174 set_up_list3s(cachep, SIZE_L3);
2175 g_cpucache_up = PARTIAL_L3;
2176 } else {
2177 int node;
2178 for_each_online_node(node) {
2179 cachep->nodelists[node] =
2180 kmalloc_node(sizeof(struct kmem_list3),
2181 gfp, node);
2182 BUG_ON(!cachep->nodelists[node]);
2183 kmem_list3_init(cachep->nodelists[node]);
2187 cachep->nodelists[numa_mem_id()]->next_reap =
2188 jiffies + REAPTIMEOUT_LIST3 +
2189 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2191 cpu_cache_get(cachep)->avail = 0;
2192 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2193 cpu_cache_get(cachep)->batchcount = 1;
2194 cpu_cache_get(cachep)->touched = 0;
2195 cachep->batchcount = 1;
2196 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2197 return 0;
2201 * kmem_cache_create - Create a cache.
2202 * @name: A string which is used in /proc/slabinfo to identify this cache.
2203 * @size: The size of objects to be created in this cache.
2204 * @align: The required alignment for the objects.
2205 * @flags: SLAB flags
2206 * @ctor: A constructor for the objects.
2208 * Returns a ptr to the cache on success, NULL on failure.
2209 * Cannot be called within a int, but can be interrupted.
2210 * The @ctor is run when new pages are allocated by the cache.
2212 * @name must be valid until the cache is destroyed. This implies that
2213 * the module calling this has to destroy the cache before getting unloaded.
2215 * The flags are
2217 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2218 * to catch references to uninitialised memory.
2220 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2221 * for buffer overruns.
2223 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2224 * cacheline. This can be beneficial if you're counting cycles as closely
2225 * as davem.
2227 struct kmem_cache *
2228 kmem_cache_create (const char *name, size_t size, size_t align,
2229 unsigned long flags, void (*ctor)(void *))
2231 size_t left_over, slab_size, ralign;
2232 struct kmem_cache *cachep = NULL, *pc;
2233 gfp_t gfp;
2236 * Sanity checks... these are all serious usage bugs.
2238 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2239 size > KMALLOC_MAX_SIZE) {
2240 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2241 name);
2242 BUG();
2246 * We use cache_chain_mutex to ensure a consistent view of
2247 * cpu_online_mask as well. Please see cpuup_callback
2249 if (slab_is_available()) {
2250 get_online_cpus();
2251 mutex_lock(&cache_chain_mutex);
2254 list_for_each_entry(pc, &cache_chain, next) {
2255 char tmp;
2256 int res;
2259 * This happens when the module gets unloaded and doesn't
2260 * destroy its slab cache and no-one else reuses the vmalloc
2261 * area of the module. Print a warning.
2263 res = probe_kernel_address(pc->name, tmp);
2264 if (res) {
2265 printk(KERN_ERR
2266 "SLAB: cache with size %d has lost its name\n",
2267 pc->buffer_size);
2268 continue;
2271 if (!strcmp(pc->name, name)) {
2272 printk(KERN_ERR
2273 "kmem_cache_create: duplicate cache %s\n", name);
2274 dump_stack();
2275 goto oops;
2279 #if DEBUG
2280 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2281 #if FORCED_DEBUG
2283 * Enable redzoning and last user accounting, except for caches with
2284 * large objects, if the increased size would increase the object size
2285 * above the next power of two: caches with object sizes just above a
2286 * power of two have a significant amount of internal fragmentation.
2288 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2289 2 * sizeof(unsigned long long)))
2290 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2291 if (!(flags & SLAB_DESTROY_BY_RCU))
2292 flags |= SLAB_POISON;
2293 #endif
2294 if (flags & SLAB_DESTROY_BY_RCU)
2295 BUG_ON(flags & SLAB_POISON);
2296 #endif
2298 * Always checks flags, a caller might be expecting debug support which
2299 * isn't available.
2301 BUG_ON(flags & ~CREATE_MASK);
2304 * Check that size is in terms of words. This is needed to avoid
2305 * unaligned accesses for some archs when redzoning is used, and makes
2306 * sure any on-slab bufctl's are also correctly aligned.
2308 if (size & (BYTES_PER_WORD - 1)) {
2309 size += (BYTES_PER_WORD - 1);
2310 size &= ~(BYTES_PER_WORD - 1);
2313 /* calculate the final buffer alignment: */
2315 /* 1) arch recommendation: can be overridden for debug */
2316 if (flags & SLAB_HWCACHE_ALIGN) {
2318 * Default alignment: as specified by the arch code. Except if
2319 * an object is really small, then squeeze multiple objects into
2320 * one cacheline.
2322 ralign = cache_line_size();
2323 while (size <= ralign / 2)
2324 ralign /= 2;
2325 } else {
2326 ralign = BYTES_PER_WORD;
2330 * Redzoning and user store require word alignment or possibly larger.
2331 * Note this will be overridden by architecture or caller mandated
2332 * alignment if either is greater than BYTES_PER_WORD.
2334 if (flags & SLAB_STORE_USER)
2335 ralign = BYTES_PER_WORD;
2337 if (flags & SLAB_RED_ZONE) {
2338 ralign = REDZONE_ALIGN;
2339 /* If redzoning, ensure that the second redzone is suitably
2340 * aligned, by adjusting the object size accordingly. */
2341 size += REDZONE_ALIGN - 1;
2342 size &= ~(REDZONE_ALIGN - 1);
2345 /* 2) arch mandated alignment */
2346 if (ralign < ARCH_SLAB_MINALIGN) {
2347 ralign = ARCH_SLAB_MINALIGN;
2349 /* 3) caller mandated alignment */
2350 if (ralign < align) {
2351 ralign = align;
2353 /* disable debug if necessary */
2354 if (ralign > __alignof__(unsigned long long))
2355 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2357 * 4) Store it.
2359 align = ralign;
2361 if (slab_is_available())
2362 gfp = GFP_KERNEL;
2363 else
2364 gfp = GFP_NOWAIT;
2366 /* Get cache's description obj. */
2367 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2368 if (!cachep)
2369 goto oops;
2371 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2372 #if DEBUG
2373 cachep->obj_size = size;
2376 * Both debugging options require word-alignment which is calculated
2377 * into align above.
2379 if (flags & SLAB_RED_ZONE) {
2380 /* add space for red zone words */
2381 cachep->obj_offset += sizeof(unsigned long long);
2382 size += 2 * sizeof(unsigned long long);
2384 if (flags & SLAB_STORE_USER) {
2385 /* user store requires one word storage behind the end of
2386 * the real object. But if the second red zone needs to be
2387 * aligned to 64 bits, we must allow that much space.
2389 if (flags & SLAB_RED_ZONE)
2390 size += REDZONE_ALIGN;
2391 else
2392 size += BYTES_PER_WORD;
2394 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2395 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2396 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2397 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2398 size = PAGE_SIZE;
2400 #endif
2401 #endif
2404 * Determine if the slab management is 'on' or 'off' slab.
2405 * (bootstrapping cannot cope with offslab caches so don't do
2406 * it too early on. Always use on-slab management when
2407 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2409 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2410 !(flags & SLAB_NOLEAKTRACE))
2412 * Size is large, assume best to place the slab management obj
2413 * off-slab (should allow better packing of objs).
2415 flags |= CFLGS_OFF_SLAB;
2417 size = ALIGN(size, align);
2419 left_over = calculate_slab_order(cachep, size, align, flags);
2421 if (!cachep->num) {
2422 printk(KERN_ERR
2423 "kmem_cache_create: couldn't create cache %s.\n", name);
2424 kmem_cache_free(&cache_cache, cachep);
2425 cachep = NULL;
2426 goto oops;
2428 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2429 + sizeof(struct slab), align);
2432 * If the slab has been placed off-slab, and we have enough space then
2433 * move it on-slab. This is at the expense of any extra colouring.
2435 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2436 flags &= ~CFLGS_OFF_SLAB;
2437 left_over -= slab_size;
2440 if (flags & CFLGS_OFF_SLAB) {
2441 /* really off slab. No need for manual alignment */
2442 slab_size =
2443 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2445 #ifdef CONFIG_PAGE_POISONING
2446 /* If we're going to use the generic kernel_map_pages()
2447 * poisoning, then it's going to smash the contents of
2448 * the redzone and userword anyhow, so switch them off.
2450 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2451 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2452 #endif
2455 cachep->colour_off = cache_line_size();
2456 /* Offset must be a multiple of the alignment. */
2457 if (cachep->colour_off < align)
2458 cachep->colour_off = align;
2459 cachep->colour = left_over / cachep->colour_off;
2460 cachep->slab_size = slab_size;
2461 cachep->flags = flags;
2462 cachep->gfpflags = 0;
2463 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2464 cachep->gfpflags |= GFP_DMA;
2465 cachep->buffer_size = size;
2466 cachep->reciprocal_buffer_size = reciprocal_value(size);
2468 if (flags & CFLGS_OFF_SLAB) {
2469 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2471 * This is a possibility for one of the malloc_sizes caches.
2472 * But since we go off slab only for object size greater than
2473 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2474 * this should not happen at all.
2475 * But leave a BUG_ON for some lucky dude.
2477 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2479 cachep->ctor = ctor;
2480 cachep->name = name;
2482 if (setup_cpu_cache(cachep, gfp)) {
2483 __kmem_cache_destroy(cachep);
2484 cachep = NULL;
2485 goto oops;
2488 if (flags & SLAB_DEBUG_OBJECTS) {
2490 * Would deadlock through slab_destroy()->call_rcu()->
2491 * debug_object_activate()->kmem_cache_alloc().
2493 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2495 slab_set_debugobj_lock_classes(cachep);
2498 /* cache setup completed, link it into the list */
2499 list_add(&cachep->next, &cache_chain);
2500 oops:
2501 if (!cachep && (flags & SLAB_PANIC))
2502 panic("kmem_cache_create(): failed to create slab `%s'\n",
2503 name);
2504 if (slab_is_available()) {
2505 mutex_unlock(&cache_chain_mutex);
2506 put_online_cpus();
2508 return cachep;
2510 EXPORT_SYMBOL(kmem_cache_create);
2512 #if DEBUG
2513 static void check_irq_off(void)
2515 BUG_ON(!irqs_disabled());
2518 static void check_irq_on(void)
2520 BUG_ON(irqs_disabled());
2523 static void check_spinlock_acquired(struct kmem_cache *cachep)
2525 #ifdef CONFIG_SMP
2526 check_irq_off();
2527 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2528 #endif
2531 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2533 #ifdef CONFIG_SMP
2534 check_irq_off();
2535 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2536 #endif
2539 #else
2540 #define check_irq_off() do { } while(0)
2541 #define check_irq_on() do { } while(0)
2542 #define check_spinlock_acquired(x) do { } while(0)
2543 #define check_spinlock_acquired_node(x, y) do { } while(0)
2544 #endif
2546 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2547 struct array_cache *ac,
2548 int force, int node);
2550 static void do_drain(void *arg)
2552 struct kmem_cache *cachep = arg;
2553 struct array_cache *ac;
2554 int node = numa_mem_id();
2556 check_irq_off();
2557 ac = cpu_cache_get(cachep);
2558 spin_lock(&cachep->nodelists[node]->list_lock);
2559 free_block(cachep, ac->entry, ac->avail, node);
2560 spin_unlock(&cachep->nodelists[node]->list_lock);
2561 ac->avail = 0;
2564 static void drain_cpu_caches(struct kmem_cache *cachep)
2566 struct kmem_list3 *l3;
2567 int node;
2569 on_each_cpu(do_drain, cachep, 1);
2570 check_irq_on();
2571 for_each_online_node(node) {
2572 l3 = cachep->nodelists[node];
2573 if (l3 && l3->alien)
2574 drain_alien_cache(cachep, l3->alien);
2577 for_each_online_node(node) {
2578 l3 = cachep->nodelists[node];
2579 if (l3)
2580 drain_array(cachep, l3, l3->shared, 1, node);
2585 * Remove slabs from the list of free slabs.
2586 * Specify the number of slabs to drain in tofree.
2588 * Returns the actual number of slabs released.
2590 static int drain_freelist(struct kmem_cache *cache,
2591 struct kmem_list3 *l3, int tofree)
2593 struct list_head *p;
2594 int nr_freed;
2595 struct slab *slabp;
2597 nr_freed = 0;
2598 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2600 spin_lock_irq(&l3->list_lock);
2601 p = l3->slabs_free.prev;
2602 if (p == &l3->slabs_free) {
2603 spin_unlock_irq(&l3->list_lock);
2604 goto out;
2607 slabp = list_entry(p, struct slab, list);
2608 #if DEBUG
2609 BUG_ON(slabp->inuse);
2610 #endif
2611 list_del(&slabp->list);
2613 * Safe to drop the lock. The slab is no longer linked
2614 * to the cache.
2616 l3->free_objects -= cache->num;
2617 spin_unlock_irq(&l3->list_lock);
2618 slab_destroy(cache, slabp);
2619 nr_freed++;
2621 out:
2622 return nr_freed;
2625 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2626 static int __cache_shrink(struct kmem_cache *cachep)
2628 int ret = 0, i = 0;
2629 struct kmem_list3 *l3;
2631 drain_cpu_caches(cachep);
2633 check_irq_on();
2634 for_each_online_node(i) {
2635 l3 = cachep->nodelists[i];
2636 if (!l3)
2637 continue;
2639 drain_freelist(cachep, l3, l3->free_objects);
2641 ret += !list_empty(&l3->slabs_full) ||
2642 !list_empty(&l3->slabs_partial);
2644 return (ret ? 1 : 0);
2648 * kmem_cache_shrink - Shrink a cache.
2649 * @cachep: The cache to shrink.
2651 * Releases as many slabs as possible for a cache.
2652 * To help debugging, a zero exit status indicates all slabs were released.
2654 int kmem_cache_shrink(struct kmem_cache *cachep)
2656 int ret;
2657 BUG_ON(!cachep || in_interrupt());
2659 get_online_cpus();
2660 mutex_lock(&cache_chain_mutex);
2661 ret = __cache_shrink(cachep);
2662 mutex_unlock(&cache_chain_mutex);
2663 put_online_cpus();
2664 return ret;
2666 EXPORT_SYMBOL(kmem_cache_shrink);
2669 * kmem_cache_destroy - delete a cache
2670 * @cachep: the cache to destroy
2672 * Remove a &struct kmem_cache object from the slab cache.
2674 * It is expected this function will be called by a module when it is
2675 * unloaded. This will remove the cache completely, and avoid a duplicate
2676 * cache being allocated each time a module is loaded and unloaded, if the
2677 * module doesn't have persistent in-kernel storage across loads and unloads.
2679 * The cache must be empty before calling this function.
2681 * The caller must guarantee that no one will allocate memory from the cache
2682 * during the kmem_cache_destroy().
2684 void kmem_cache_destroy(struct kmem_cache *cachep)
2686 BUG_ON(!cachep || in_interrupt());
2688 /* Find the cache in the chain of caches. */
2689 get_online_cpus();
2690 mutex_lock(&cache_chain_mutex);
2692 * the chain is never empty, cache_cache is never destroyed
2694 list_del(&cachep->next);
2695 if (__cache_shrink(cachep)) {
2696 slab_error(cachep, "Can't free all objects");
2697 list_add(&cachep->next, &cache_chain);
2698 mutex_unlock(&cache_chain_mutex);
2699 put_online_cpus();
2700 return;
2703 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2704 rcu_barrier();
2706 __kmem_cache_destroy(cachep);
2707 mutex_unlock(&cache_chain_mutex);
2708 put_online_cpus();
2710 EXPORT_SYMBOL(kmem_cache_destroy);
2713 * Get the memory for a slab management obj.
2714 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2715 * always come from malloc_sizes caches. The slab descriptor cannot
2716 * come from the same cache which is getting created because,
2717 * when we are searching for an appropriate cache for these
2718 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2719 * If we are creating a malloc_sizes cache here it would not be visible to
2720 * kmem_find_general_cachep till the initialization is complete.
2721 * Hence we cannot have slabp_cache same as the original cache.
2723 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2724 int colour_off, gfp_t local_flags,
2725 int nodeid)
2727 struct slab *slabp;
2729 if (OFF_SLAB(cachep)) {
2730 /* Slab management obj is off-slab. */
2731 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2732 local_flags, nodeid);
2734 * If the first object in the slab is leaked (it's allocated
2735 * but no one has a reference to it), we want to make sure
2736 * kmemleak does not treat the ->s_mem pointer as a reference
2737 * to the object. Otherwise we will not report the leak.
2739 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2740 local_flags);
2741 if (!slabp)
2742 return NULL;
2743 } else {
2744 slabp = objp + colour_off;
2745 colour_off += cachep->slab_size;
2747 slabp->inuse = 0;
2748 slabp->colouroff = colour_off;
2749 slabp->s_mem = objp + colour_off;
2750 slabp->nodeid = nodeid;
2751 slabp->free = 0;
2752 return slabp;
2755 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2757 return (kmem_bufctl_t *) (slabp + 1);
2760 static void cache_init_objs(struct kmem_cache *cachep,
2761 struct slab *slabp)
2763 int i;
2765 for (i = 0; i < cachep->num; i++) {
2766 void *objp = index_to_obj(cachep, slabp, i);
2767 #if DEBUG
2768 /* need to poison the objs? */
2769 if (cachep->flags & SLAB_POISON)
2770 poison_obj(cachep, objp, POISON_FREE);
2771 if (cachep->flags & SLAB_STORE_USER)
2772 *dbg_userword(cachep, objp) = NULL;
2774 if (cachep->flags & SLAB_RED_ZONE) {
2775 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2776 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2779 * Constructors are not allowed to allocate memory from the same
2780 * cache which they are a constructor for. Otherwise, deadlock.
2781 * They must also be threaded.
2783 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2784 cachep->ctor(objp + obj_offset(cachep));
2786 if (cachep->flags & SLAB_RED_ZONE) {
2787 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2788 slab_error(cachep, "constructor overwrote the"
2789 " end of an object");
2790 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2791 slab_error(cachep, "constructor overwrote the"
2792 " start of an object");
2794 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2795 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2796 kernel_map_pages(virt_to_page(objp),
2797 cachep->buffer_size / PAGE_SIZE, 0);
2798 #else
2799 if (cachep->ctor)
2800 cachep->ctor(objp);
2801 #endif
2802 slab_bufctl(slabp)[i] = i + 1;
2804 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2807 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2809 if (CONFIG_ZONE_DMA_FLAG) {
2810 if (flags & GFP_DMA)
2811 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2812 else
2813 BUG_ON(cachep->gfpflags & GFP_DMA);
2817 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2818 int nodeid)
2820 void *objp = index_to_obj(cachep, slabp, slabp->free);
2821 kmem_bufctl_t next;
2823 slabp->inuse++;
2824 next = slab_bufctl(slabp)[slabp->free];
2825 #if DEBUG
2826 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2827 WARN_ON(slabp->nodeid != nodeid);
2828 #endif
2829 slabp->free = next;
2831 return objp;
2834 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2835 void *objp, int nodeid)
2837 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2839 #if DEBUG
2840 /* Verify that the slab belongs to the intended node */
2841 WARN_ON(slabp->nodeid != nodeid);
2843 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2844 printk(KERN_ERR "slab: double free detected in cache "
2845 "'%s', objp %p\n", cachep->name, objp);
2846 BUG();
2848 #endif
2849 slab_bufctl(slabp)[objnr] = slabp->free;
2850 slabp->free = objnr;
2851 slabp->inuse--;
2855 * Map pages beginning at addr to the given cache and slab. This is required
2856 * for the slab allocator to be able to lookup the cache and slab of a
2857 * virtual address for kfree, ksize, and slab debugging.
2859 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2860 void *addr)
2862 int nr_pages;
2863 struct page *page;
2865 page = virt_to_page(addr);
2867 nr_pages = 1;
2868 if (likely(!PageCompound(page)))
2869 nr_pages <<= cache->gfporder;
2871 do {
2872 page_set_cache(page, cache);
2873 page_set_slab(page, slab);
2874 page++;
2875 } while (--nr_pages);
2879 * Grow (by 1) the number of slabs within a cache. This is called by
2880 * kmem_cache_alloc() when there are no active objs left in a cache.
2882 static int cache_grow(struct kmem_cache *cachep,
2883 gfp_t flags, int nodeid, void *objp)
2885 struct slab *slabp;
2886 size_t offset;
2887 gfp_t local_flags;
2888 struct kmem_list3 *l3;
2891 * Be lazy and only check for valid flags here, keeping it out of the
2892 * critical path in kmem_cache_alloc().
2894 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2895 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2897 /* Take the l3 list lock to change the colour_next on this node */
2898 check_irq_off();
2899 l3 = cachep->nodelists[nodeid];
2900 spin_lock(&l3->list_lock);
2902 /* Get colour for the slab, and cal the next value. */
2903 offset = l3->colour_next;
2904 l3->colour_next++;
2905 if (l3->colour_next >= cachep->colour)
2906 l3->colour_next = 0;
2907 spin_unlock(&l3->list_lock);
2909 offset *= cachep->colour_off;
2911 if (local_flags & __GFP_WAIT)
2912 local_irq_enable();
2915 * The test for missing atomic flag is performed here, rather than
2916 * the more obvious place, simply to reduce the critical path length
2917 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2918 * will eventually be caught here (where it matters).
2920 kmem_flagcheck(cachep, flags);
2923 * Get mem for the objs. Attempt to allocate a physical page from
2924 * 'nodeid'.
2926 if (!objp)
2927 objp = kmem_getpages(cachep, local_flags, nodeid);
2928 if (!objp)
2929 goto failed;
2931 /* Get slab management. */
2932 slabp = alloc_slabmgmt(cachep, objp, offset,
2933 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2934 if (!slabp)
2935 goto opps1;
2937 slab_map_pages(cachep, slabp, objp);
2939 cache_init_objs(cachep, slabp);
2941 if (local_flags & __GFP_WAIT)
2942 local_irq_disable();
2943 check_irq_off();
2944 spin_lock(&l3->list_lock);
2946 /* Make slab active. */
2947 list_add_tail(&slabp->list, &(l3->slabs_free));
2948 STATS_INC_GROWN(cachep);
2949 l3->free_objects += cachep->num;
2950 spin_unlock(&l3->list_lock);
2951 return 1;
2952 opps1:
2953 kmem_freepages(cachep, objp);
2954 failed:
2955 if (local_flags & __GFP_WAIT)
2956 local_irq_disable();
2957 return 0;
2960 #if DEBUG
2963 * Perform extra freeing checks:
2964 * - detect bad pointers.
2965 * - POISON/RED_ZONE checking
2967 static void kfree_debugcheck(const void *objp)
2969 if (!virt_addr_valid(objp)) {
2970 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2971 (unsigned long)objp);
2972 BUG();
2976 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2978 unsigned long long redzone1, redzone2;
2980 redzone1 = *dbg_redzone1(cache, obj);
2981 redzone2 = *dbg_redzone2(cache, obj);
2984 * Redzone is ok.
2986 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2987 return;
2989 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2990 slab_error(cache, "double free detected");
2991 else
2992 slab_error(cache, "memory outside object was overwritten");
2994 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2995 obj, redzone1, redzone2);
2998 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2999 void *caller)
3001 struct page *page;
3002 unsigned int objnr;
3003 struct slab *slabp;
3005 BUG_ON(virt_to_cache(objp) != cachep);
3007 objp -= obj_offset(cachep);
3008 kfree_debugcheck(objp);
3009 page = virt_to_head_page(objp);
3011 slabp = page_get_slab(page);
3013 if (cachep->flags & SLAB_RED_ZONE) {
3014 verify_redzone_free(cachep, objp);
3015 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3016 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3018 if (cachep->flags & SLAB_STORE_USER)
3019 *dbg_userword(cachep, objp) = caller;
3021 objnr = obj_to_index(cachep, slabp, objp);
3023 BUG_ON(objnr >= cachep->num);
3024 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3026 #ifdef CONFIG_DEBUG_SLAB_LEAK
3027 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3028 #endif
3029 if (cachep->flags & SLAB_POISON) {
3030 #ifdef CONFIG_DEBUG_PAGEALLOC
3031 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3032 store_stackinfo(cachep, objp, (unsigned long)caller);
3033 kernel_map_pages(virt_to_page(objp),
3034 cachep->buffer_size / PAGE_SIZE, 0);
3035 } else {
3036 poison_obj(cachep, objp, POISON_FREE);
3038 #else
3039 poison_obj(cachep, objp, POISON_FREE);
3040 #endif
3042 return objp;
3045 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3047 kmem_bufctl_t i;
3048 int entries = 0;
3050 /* Check slab's freelist to see if this obj is there. */
3051 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3052 entries++;
3053 if (entries > cachep->num || i >= cachep->num)
3054 goto bad;
3056 if (entries != cachep->num - slabp->inuse) {
3057 bad:
3058 printk(KERN_ERR "slab: Internal list corruption detected in "
3059 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3060 cachep->name, cachep->num, slabp, slabp->inuse,
3061 print_tainted());
3062 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3063 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3065 BUG();
3068 #else
3069 #define kfree_debugcheck(x) do { } while(0)
3070 #define cache_free_debugcheck(x,objp,z) (objp)
3071 #define check_slabp(x,y) do { } while(0)
3072 #endif
3074 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3076 int batchcount;
3077 struct kmem_list3 *l3;
3078 struct array_cache *ac;
3079 int node;
3081 retry:
3082 check_irq_off();
3083 node = numa_mem_id();
3084 ac = cpu_cache_get(cachep);
3085 batchcount = ac->batchcount;
3086 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3088 * If there was little recent activity on this cache, then
3089 * perform only a partial refill. Otherwise we could generate
3090 * refill bouncing.
3092 batchcount = BATCHREFILL_LIMIT;
3094 l3 = cachep->nodelists[node];
3096 BUG_ON(ac->avail > 0 || !l3);
3097 spin_lock(&l3->list_lock);
3099 /* See if we can refill from the shared array */
3100 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3101 l3->shared->touched = 1;
3102 goto alloc_done;
3105 while (batchcount > 0) {
3106 struct list_head *entry;
3107 struct slab *slabp;
3108 /* Get slab alloc is to come from. */
3109 entry = l3->slabs_partial.next;
3110 if (entry == &l3->slabs_partial) {
3111 l3->free_touched = 1;
3112 entry = l3->slabs_free.next;
3113 if (entry == &l3->slabs_free)
3114 goto must_grow;
3117 slabp = list_entry(entry, struct slab, list);
3118 check_slabp(cachep, slabp);
3119 check_spinlock_acquired(cachep);
3122 * The slab was either on partial or free list so
3123 * there must be at least one object available for
3124 * allocation.
3126 BUG_ON(slabp->inuse >= cachep->num);
3128 while (slabp->inuse < cachep->num && batchcount--) {
3129 STATS_INC_ALLOCED(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3133 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3134 node);
3136 check_slabp(cachep, slabp);
3138 /* move slabp to correct slabp list: */
3139 list_del(&slabp->list);
3140 if (slabp->free == BUFCTL_END)
3141 list_add(&slabp->list, &l3->slabs_full);
3142 else
3143 list_add(&slabp->list, &l3->slabs_partial);
3146 must_grow:
3147 l3->free_objects -= ac->avail;
3148 alloc_done:
3149 spin_unlock(&l3->list_lock);
3151 if (unlikely(!ac->avail)) {
3152 int x;
3153 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3155 /* cache_grow can reenable interrupts, then ac could change. */
3156 ac = cpu_cache_get(cachep);
3157 if (!x && ac->avail == 0) /* no objects in sight? abort */
3158 return NULL;
3160 if (!ac->avail) /* objects refilled by interrupt? */
3161 goto retry;
3163 ac->touched = 1;
3164 return ac->entry[--ac->avail];
3167 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3168 gfp_t flags)
3170 might_sleep_if(flags & __GFP_WAIT);
3171 #if DEBUG
3172 kmem_flagcheck(cachep, flags);
3173 #endif
3176 #if DEBUG
3177 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3178 gfp_t flags, void *objp, void *caller)
3180 if (!objp)
3181 return objp;
3182 if (cachep->flags & SLAB_POISON) {
3183 #ifdef CONFIG_DEBUG_PAGEALLOC
3184 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3185 kernel_map_pages(virt_to_page(objp),
3186 cachep->buffer_size / PAGE_SIZE, 1);
3187 else
3188 check_poison_obj(cachep, objp);
3189 #else
3190 check_poison_obj(cachep, objp);
3191 #endif
3192 poison_obj(cachep, objp, POISON_INUSE);
3194 if (cachep->flags & SLAB_STORE_USER)
3195 *dbg_userword(cachep, objp) = caller;
3197 if (cachep->flags & SLAB_RED_ZONE) {
3198 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3199 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3200 slab_error(cachep, "double free, or memory outside"
3201 " object was overwritten");
3202 printk(KERN_ERR
3203 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3204 objp, *dbg_redzone1(cachep, objp),
3205 *dbg_redzone2(cachep, objp));
3207 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3208 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3210 #ifdef CONFIG_DEBUG_SLAB_LEAK
3212 struct slab *slabp;
3213 unsigned objnr;
3215 slabp = page_get_slab(virt_to_head_page(objp));
3216 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3217 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3219 #endif
3220 objp += obj_offset(cachep);
3221 if (cachep->ctor && cachep->flags & SLAB_POISON)
3222 cachep->ctor(objp);
3223 if (ARCH_SLAB_MINALIGN &&
3224 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3225 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3226 objp, (int)ARCH_SLAB_MINALIGN);
3228 return objp;
3230 #else
3231 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3232 #endif
3234 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3236 if (cachep == &cache_cache)
3237 return false;
3239 return should_failslab(obj_size(cachep), flags, cachep->flags);
3242 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3244 void *objp;
3245 struct array_cache *ac;
3247 check_irq_off();
3249 ac = cpu_cache_get(cachep);
3250 if (likely(ac->avail)) {
3251 STATS_INC_ALLOCHIT(cachep);
3252 ac->touched = 1;
3253 objp = ac->entry[--ac->avail];
3254 } else {
3255 STATS_INC_ALLOCMISS(cachep);
3256 objp = cache_alloc_refill(cachep, flags);
3258 * the 'ac' may be updated by cache_alloc_refill(),
3259 * and kmemleak_erase() requires its correct value.
3261 ac = cpu_cache_get(cachep);
3264 * To avoid a false negative, if an object that is in one of the
3265 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3266 * treat the array pointers as a reference to the object.
3268 if (objp)
3269 kmemleak_erase(&ac->entry[ac->avail]);
3270 return objp;
3273 #ifdef CONFIG_NUMA
3275 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3277 * If we are in_interrupt, then process context, including cpusets and
3278 * mempolicy, may not apply and should not be used for allocation policy.
3280 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3282 int nid_alloc, nid_here;
3284 if (in_interrupt() || (flags & __GFP_THISNODE))
3285 return NULL;
3286 nid_alloc = nid_here = numa_mem_id();
3287 get_mems_allowed();
3288 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3289 nid_alloc = cpuset_slab_spread_node();
3290 else if (current->mempolicy)
3291 nid_alloc = slab_node(current->mempolicy);
3292 put_mems_allowed();
3293 if (nid_alloc != nid_here)
3294 return ____cache_alloc_node(cachep, flags, nid_alloc);
3295 return NULL;
3299 * Fallback function if there was no memory available and no objects on a
3300 * certain node and fall back is permitted. First we scan all the
3301 * available nodelists for available objects. If that fails then we
3302 * perform an allocation without specifying a node. This allows the page
3303 * allocator to do its reclaim / fallback magic. We then insert the
3304 * slab into the proper nodelist and then allocate from it.
3306 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3308 struct zonelist *zonelist;
3309 gfp_t local_flags;
3310 struct zoneref *z;
3311 struct zone *zone;
3312 enum zone_type high_zoneidx = gfp_zone(flags);
3313 void *obj = NULL;
3314 int nid;
3316 if (flags & __GFP_THISNODE)
3317 return NULL;
3319 get_mems_allowed();
3320 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3321 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3323 retry:
3325 * Look through allowed nodes for objects available
3326 * from existing per node queues.
3328 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3329 nid = zone_to_nid(zone);
3331 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3332 cache->nodelists[nid] &&
3333 cache->nodelists[nid]->free_objects) {
3334 obj = ____cache_alloc_node(cache,
3335 flags | GFP_THISNODE, nid);
3336 if (obj)
3337 break;
3341 if (!obj) {
3343 * This allocation will be performed within the constraints
3344 * of the current cpuset / memory policy requirements.
3345 * We may trigger various forms of reclaim on the allowed
3346 * set and go into memory reserves if necessary.
3348 if (local_flags & __GFP_WAIT)
3349 local_irq_enable();
3350 kmem_flagcheck(cache, flags);
3351 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3352 if (local_flags & __GFP_WAIT)
3353 local_irq_disable();
3354 if (obj) {
3356 * Insert into the appropriate per node queues
3358 nid = page_to_nid(virt_to_page(obj));
3359 if (cache_grow(cache, flags, nid, obj)) {
3360 obj = ____cache_alloc_node(cache,
3361 flags | GFP_THISNODE, nid);
3362 if (!obj)
3364 * Another processor may allocate the
3365 * objects in the slab since we are
3366 * not holding any locks.
3368 goto retry;
3369 } else {
3370 /* cache_grow already freed obj */
3371 obj = NULL;
3375 put_mems_allowed();
3376 return obj;
3380 * A interface to enable slab creation on nodeid
3382 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3383 int nodeid)
3385 struct list_head *entry;
3386 struct slab *slabp;
3387 struct kmem_list3 *l3;
3388 void *obj;
3389 int x;
3391 l3 = cachep->nodelists[nodeid];
3392 BUG_ON(!l3);
3394 retry:
3395 check_irq_off();
3396 spin_lock(&l3->list_lock);
3397 entry = l3->slabs_partial.next;
3398 if (entry == &l3->slabs_partial) {
3399 l3->free_touched = 1;
3400 entry = l3->slabs_free.next;
3401 if (entry == &l3->slabs_free)
3402 goto must_grow;
3405 slabp = list_entry(entry, struct slab, list);
3406 check_spinlock_acquired_node(cachep, nodeid);
3407 check_slabp(cachep, slabp);
3409 STATS_INC_NODEALLOCS(cachep);
3410 STATS_INC_ACTIVE(cachep);
3411 STATS_SET_HIGH(cachep);
3413 BUG_ON(slabp->inuse == cachep->num);
3415 obj = slab_get_obj(cachep, slabp, nodeid);
3416 check_slabp(cachep, slabp);
3417 l3->free_objects--;
3418 /* move slabp to correct slabp list: */
3419 list_del(&slabp->list);
3421 if (slabp->free == BUFCTL_END)
3422 list_add(&slabp->list, &l3->slabs_full);
3423 else
3424 list_add(&slabp->list, &l3->slabs_partial);
3426 spin_unlock(&l3->list_lock);
3427 goto done;
3429 must_grow:
3430 spin_unlock(&l3->list_lock);
3431 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3432 if (x)
3433 goto retry;
3435 return fallback_alloc(cachep, flags);
3437 done:
3438 return obj;
3442 * kmem_cache_alloc_node - Allocate an object on the specified node
3443 * @cachep: The cache to allocate from.
3444 * @flags: See kmalloc().
3445 * @nodeid: node number of the target node.
3446 * @caller: return address of caller, used for debug information
3448 * Identical to kmem_cache_alloc but it will allocate memory on the given
3449 * node, which can improve the performance for cpu bound structures.
3451 * Fallback to other node is possible if __GFP_THISNODE is not set.
3453 static __always_inline void *
3454 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3455 void *caller)
3457 unsigned long save_flags;
3458 void *ptr;
3459 int slab_node = numa_mem_id();
3461 flags &= gfp_allowed_mask;
3463 lockdep_trace_alloc(flags);
3465 if (slab_should_failslab(cachep, flags))
3466 return NULL;
3468 cache_alloc_debugcheck_before(cachep, flags);
3469 local_irq_save(save_flags);
3471 if (nodeid == NUMA_NO_NODE)
3472 nodeid = slab_node;
3474 if (unlikely(!cachep->nodelists[nodeid])) {
3475 /* Node not bootstrapped yet */
3476 ptr = fallback_alloc(cachep, flags);
3477 goto out;
3480 if (nodeid == slab_node) {
3482 * Use the locally cached objects if possible.
3483 * However ____cache_alloc does not allow fallback
3484 * to other nodes. It may fail while we still have
3485 * objects on other nodes available.
3487 ptr = ____cache_alloc(cachep, flags);
3488 if (ptr)
3489 goto out;
3491 /* ___cache_alloc_node can fall back to other nodes */
3492 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3493 out:
3494 local_irq_restore(save_flags);
3495 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3496 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3497 flags);
3499 if (likely(ptr))
3500 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3502 if (unlikely((flags & __GFP_ZERO) && ptr))
3503 memset(ptr, 0, obj_size(cachep));
3505 return ptr;
3508 static __always_inline void *
3509 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3511 void *objp;
3513 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3514 objp = alternate_node_alloc(cache, flags);
3515 if (objp)
3516 goto out;
3518 objp = ____cache_alloc(cache, flags);
3521 * We may just have run out of memory on the local node.
3522 * ____cache_alloc_node() knows how to locate memory on other nodes
3524 if (!objp)
3525 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3527 out:
3528 return objp;
3530 #else
3532 static __always_inline void *
3533 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3535 return ____cache_alloc(cachep, flags);
3538 #endif /* CONFIG_NUMA */
3540 static __always_inline void *
3541 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3543 unsigned long save_flags;
3544 void *objp;
3546 flags &= gfp_allowed_mask;
3548 lockdep_trace_alloc(flags);
3550 if (slab_should_failslab(cachep, flags))
3551 return NULL;
3553 cache_alloc_debugcheck_before(cachep, flags);
3554 local_irq_save(save_flags);
3555 objp = __do_cache_alloc(cachep, flags);
3556 local_irq_restore(save_flags);
3557 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3558 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3559 flags);
3560 prefetchw(objp);
3562 if (likely(objp))
3563 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3565 if (unlikely((flags & __GFP_ZERO) && objp))
3566 memset(objp, 0, obj_size(cachep));
3568 return objp;
3572 * Caller needs to acquire correct kmem_list's list_lock
3574 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3575 int node)
3577 int i;
3578 struct kmem_list3 *l3;
3580 for (i = 0; i < nr_objects; i++) {
3581 void *objp = objpp[i];
3582 struct slab *slabp;
3584 slabp = virt_to_slab(objp);
3585 l3 = cachep->nodelists[node];
3586 list_del(&slabp->list);
3587 check_spinlock_acquired_node(cachep, node);
3588 check_slabp(cachep, slabp);
3589 slab_put_obj(cachep, slabp, objp, node);
3590 STATS_DEC_ACTIVE(cachep);
3591 l3->free_objects++;
3592 check_slabp(cachep, slabp);
3594 /* fixup slab chains */
3595 if (slabp->inuse == 0) {
3596 if (l3->free_objects > l3->free_limit) {
3597 l3->free_objects -= cachep->num;
3598 /* No need to drop any previously held
3599 * lock here, even if we have a off-slab slab
3600 * descriptor it is guaranteed to come from
3601 * a different cache, refer to comments before
3602 * alloc_slabmgmt.
3604 slab_destroy(cachep, slabp);
3605 } else {
3606 list_add(&slabp->list, &l3->slabs_free);
3608 } else {
3609 /* Unconditionally move a slab to the end of the
3610 * partial list on free - maximum time for the
3611 * other objects to be freed, too.
3613 list_add_tail(&slabp->list, &l3->slabs_partial);
3618 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3620 int batchcount;
3621 struct kmem_list3 *l3;
3622 int node = numa_mem_id();
3624 batchcount = ac->batchcount;
3625 #if DEBUG
3626 BUG_ON(!batchcount || batchcount > ac->avail);
3627 #endif
3628 check_irq_off();
3629 l3 = cachep->nodelists[node];
3630 spin_lock(&l3->list_lock);
3631 if (l3->shared) {
3632 struct array_cache *shared_array = l3->shared;
3633 int max = shared_array->limit - shared_array->avail;
3634 if (max) {
3635 if (batchcount > max)
3636 batchcount = max;
3637 memcpy(&(shared_array->entry[shared_array->avail]),
3638 ac->entry, sizeof(void *) * batchcount);
3639 shared_array->avail += batchcount;
3640 goto free_done;
3644 free_block(cachep, ac->entry, batchcount, node);
3645 free_done:
3646 #if STATS
3648 int i = 0;
3649 struct list_head *p;
3651 p = l3->slabs_free.next;
3652 while (p != &(l3->slabs_free)) {
3653 struct slab *slabp;
3655 slabp = list_entry(p, struct slab, list);
3656 BUG_ON(slabp->inuse);
3658 i++;
3659 p = p->next;
3661 STATS_SET_FREEABLE(cachep, i);
3663 #endif
3664 spin_unlock(&l3->list_lock);
3665 ac->avail -= batchcount;
3666 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3670 * Release an obj back to its cache. If the obj has a constructed state, it must
3671 * be in this state _before_ it is released. Called with disabled ints.
3673 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3674 void *caller)
3676 struct array_cache *ac = cpu_cache_get(cachep);
3678 check_irq_off();
3679 kmemleak_free_recursive(objp, cachep->flags);
3680 objp = cache_free_debugcheck(cachep, objp, caller);
3682 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3685 * Skip calling cache_free_alien() when the platform is not numa.
3686 * This will avoid cache misses that happen while accessing slabp (which
3687 * is per page memory reference) to get nodeid. Instead use a global
3688 * variable to skip the call, which is mostly likely to be present in
3689 * the cache.
3691 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3692 return;
3694 if (likely(ac->avail < ac->limit)) {
3695 STATS_INC_FREEHIT(cachep);
3696 ac->entry[ac->avail++] = objp;
3697 return;
3698 } else {
3699 STATS_INC_FREEMISS(cachep);
3700 cache_flusharray(cachep, ac);
3701 ac->entry[ac->avail++] = objp;
3706 * kmem_cache_alloc - Allocate an object
3707 * @cachep: The cache to allocate from.
3708 * @flags: See kmalloc().
3710 * Allocate an object from this cache. The flags are only relevant
3711 * if the cache has no available objects.
3713 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3715 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3717 trace_kmem_cache_alloc(_RET_IP_, ret,
3718 obj_size(cachep), cachep->buffer_size, flags);
3720 return ret;
3722 EXPORT_SYMBOL(kmem_cache_alloc);
3724 #ifdef CONFIG_TRACING
3725 void *
3726 kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3728 void *ret;
3730 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3732 trace_kmalloc(_RET_IP_, ret,
3733 size, slab_buffer_size(cachep), flags);
3734 return ret;
3736 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3737 #endif
3739 #ifdef CONFIG_NUMA
3740 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3742 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3743 __builtin_return_address(0));
3745 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3746 obj_size(cachep), cachep->buffer_size,
3747 flags, nodeid);
3749 return ret;
3751 EXPORT_SYMBOL(kmem_cache_alloc_node);
3753 #ifdef CONFIG_TRACING
3754 void *kmem_cache_alloc_node_trace(size_t size,
3755 struct kmem_cache *cachep,
3756 gfp_t flags,
3757 int nodeid)
3759 void *ret;
3761 ret = __cache_alloc_node(cachep, flags, nodeid,
3762 __builtin_return_address(0));
3763 trace_kmalloc_node(_RET_IP_, ret,
3764 size, slab_buffer_size(cachep),
3765 flags, nodeid);
3766 return ret;
3768 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3769 #endif
3771 static __always_inline void *
3772 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3774 struct kmem_cache *cachep;
3776 cachep = kmem_find_general_cachep(size, flags);
3777 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3778 return cachep;
3779 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3782 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3783 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3785 return __do_kmalloc_node(size, flags, node,
3786 __builtin_return_address(0));
3788 EXPORT_SYMBOL(__kmalloc_node);
3790 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3791 int node, unsigned long caller)
3793 return __do_kmalloc_node(size, flags, node, (void *)caller);
3795 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3796 #else
3797 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3799 return __do_kmalloc_node(size, flags, node, NULL);
3801 EXPORT_SYMBOL(__kmalloc_node);
3802 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3803 #endif /* CONFIG_NUMA */
3806 * __do_kmalloc - allocate memory
3807 * @size: how many bytes of memory are required.
3808 * @flags: the type of memory to allocate (see kmalloc).
3809 * @caller: function caller for debug tracking of the caller
3811 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3812 void *caller)
3814 struct kmem_cache *cachep;
3815 void *ret;
3817 /* If you want to save a few bytes .text space: replace
3818 * __ with kmem_.
3819 * Then kmalloc uses the uninlined functions instead of the inline
3820 * functions.
3822 cachep = __find_general_cachep(size, flags);
3823 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3824 return cachep;
3825 ret = __cache_alloc(cachep, flags, caller);
3827 trace_kmalloc((unsigned long) caller, ret,
3828 size, cachep->buffer_size, flags);
3830 return ret;
3834 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3835 void *__kmalloc(size_t size, gfp_t flags)
3837 return __do_kmalloc(size, flags, __builtin_return_address(0));
3839 EXPORT_SYMBOL(__kmalloc);
3841 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3843 return __do_kmalloc(size, flags, (void *)caller);
3845 EXPORT_SYMBOL(__kmalloc_track_caller);
3847 #else
3848 void *__kmalloc(size_t size, gfp_t flags)
3850 return __do_kmalloc(size, flags, NULL);
3852 EXPORT_SYMBOL(__kmalloc);
3853 #endif
3856 * kmem_cache_free - Deallocate an object
3857 * @cachep: The cache the allocation was from.
3858 * @objp: The previously allocated object.
3860 * Free an object which was previously allocated from this
3861 * cache.
3863 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3865 unsigned long flags;
3867 local_irq_save(flags);
3868 debug_check_no_locks_freed(objp, obj_size(cachep));
3869 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3870 debug_check_no_obj_freed(objp, obj_size(cachep));
3871 __cache_free(cachep, objp, __builtin_return_address(0));
3872 local_irq_restore(flags);
3874 trace_kmem_cache_free(_RET_IP_, objp);
3876 EXPORT_SYMBOL(kmem_cache_free);
3879 * kfree - free previously allocated memory
3880 * @objp: pointer returned by kmalloc.
3882 * If @objp is NULL, no operation is performed.
3884 * Don't free memory not originally allocated by kmalloc()
3885 * or you will run into trouble.
3887 void kfree(const void *objp)
3889 struct kmem_cache *c;
3890 unsigned long flags;
3892 trace_kfree(_RET_IP_, objp);
3894 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3895 return;
3896 local_irq_save(flags);
3897 kfree_debugcheck(objp);
3898 c = virt_to_cache(objp);
3899 debug_check_no_locks_freed(objp, obj_size(c));
3900 debug_check_no_obj_freed(objp, obj_size(c));
3901 __cache_free(c, (void *)objp, __builtin_return_address(0));
3902 local_irq_restore(flags);
3904 EXPORT_SYMBOL(kfree);
3906 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3908 return obj_size(cachep);
3910 EXPORT_SYMBOL(kmem_cache_size);
3913 * This initializes kmem_list3 or resizes various caches for all nodes.
3915 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3917 int node;
3918 struct kmem_list3 *l3;
3919 struct array_cache *new_shared;
3920 struct array_cache **new_alien = NULL;
3922 for_each_online_node(node) {
3924 if (use_alien_caches) {
3925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3926 if (!new_alien)
3927 goto fail;
3930 new_shared = NULL;
3931 if (cachep->shared) {
3932 new_shared = alloc_arraycache(node,
3933 cachep->shared*cachep->batchcount,
3934 0xbaadf00d, gfp);
3935 if (!new_shared) {
3936 free_alien_cache(new_alien);
3937 goto fail;
3941 l3 = cachep->nodelists[node];
3942 if (l3) {
3943 struct array_cache *shared = l3->shared;
3945 spin_lock_irq(&l3->list_lock);
3947 if (shared)
3948 free_block(cachep, shared->entry,
3949 shared->avail, node);
3951 l3->shared = new_shared;
3952 if (!l3->alien) {
3953 l3->alien = new_alien;
3954 new_alien = NULL;
3956 l3->free_limit = (1 + nr_cpus_node(node)) *
3957 cachep->batchcount + cachep->num;
3958 spin_unlock_irq(&l3->list_lock);
3959 kfree(shared);
3960 free_alien_cache(new_alien);
3961 continue;
3963 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3964 if (!l3) {
3965 free_alien_cache(new_alien);
3966 kfree(new_shared);
3967 goto fail;
3970 kmem_list3_init(l3);
3971 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3972 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3973 l3->shared = new_shared;
3974 l3->alien = new_alien;
3975 l3->free_limit = (1 + nr_cpus_node(node)) *
3976 cachep->batchcount + cachep->num;
3977 cachep->nodelists[node] = l3;
3979 return 0;
3981 fail:
3982 if (!cachep->next.next) {
3983 /* Cache is not active yet. Roll back what we did */
3984 node--;
3985 while (node >= 0) {
3986 if (cachep->nodelists[node]) {
3987 l3 = cachep->nodelists[node];
3989 kfree(l3->shared);
3990 free_alien_cache(l3->alien);
3991 kfree(l3);
3992 cachep->nodelists[node] = NULL;
3994 node--;
3997 return -ENOMEM;
4000 struct ccupdate_struct {
4001 struct kmem_cache *cachep;
4002 struct array_cache *new[0];
4005 static void do_ccupdate_local(void *info)
4007 struct ccupdate_struct *new = info;
4008 struct array_cache *old;
4010 check_irq_off();
4011 old = cpu_cache_get(new->cachep);
4013 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4014 new->new[smp_processor_id()] = old;
4017 /* Always called with the cache_chain_mutex held */
4018 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4019 int batchcount, int shared, gfp_t gfp)
4021 struct ccupdate_struct *new;
4022 int i;
4024 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4025 gfp);
4026 if (!new)
4027 return -ENOMEM;
4029 for_each_online_cpu(i) {
4030 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4031 batchcount, gfp);
4032 if (!new->new[i]) {
4033 for (i--; i >= 0; i--)
4034 kfree(new->new[i]);
4035 kfree(new);
4036 return -ENOMEM;
4039 new->cachep = cachep;
4041 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4043 check_irq_on();
4044 cachep->batchcount = batchcount;
4045 cachep->limit = limit;
4046 cachep->shared = shared;
4048 for_each_online_cpu(i) {
4049 struct array_cache *ccold = new->new[i];
4050 if (!ccold)
4051 continue;
4052 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4053 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4054 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4055 kfree(ccold);
4057 kfree(new);
4058 return alloc_kmemlist(cachep, gfp);
4061 /* Called with cache_chain_mutex held always */
4062 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4064 int err;
4065 int limit, shared;
4068 * The head array serves three purposes:
4069 * - create a LIFO ordering, i.e. return objects that are cache-warm
4070 * - reduce the number of spinlock operations.
4071 * - reduce the number of linked list operations on the slab and
4072 * bufctl chains: array operations are cheaper.
4073 * The numbers are guessed, we should auto-tune as described by
4074 * Bonwick.
4076 if (cachep->buffer_size > 131072)
4077 limit = 1;
4078 else if (cachep->buffer_size > PAGE_SIZE)
4079 limit = 8;
4080 else if (cachep->buffer_size > 1024)
4081 limit = 24;
4082 else if (cachep->buffer_size > 256)
4083 limit = 54;
4084 else
4085 limit = 120;
4088 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4089 * allocation behaviour: Most allocs on one cpu, most free operations
4090 * on another cpu. For these cases, an efficient object passing between
4091 * cpus is necessary. This is provided by a shared array. The array
4092 * replaces Bonwick's magazine layer.
4093 * On uniprocessor, it's functionally equivalent (but less efficient)
4094 * to a larger limit. Thus disabled by default.
4096 shared = 0;
4097 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4098 shared = 8;
4100 #if DEBUG
4102 * With debugging enabled, large batchcount lead to excessively long
4103 * periods with disabled local interrupts. Limit the batchcount
4105 if (limit > 32)
4106 limit = 32;
4107 #endif
4108 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4109 if (err)
4110 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4111 cachep->name, -err);
4112 return err;
4116 * Drain an array if it contains any elements taking the l3 lock only if
4117 * necessary. Note that the l3 listlock also protects the array_cache
4118 * if drain_array() is used on the shared array.
4120 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4121 struct array_cache *ac, int force, int node)
4123 int tofree;
4125 if (!ac || !ac->avail)
4126 return;
4127 if (ac->touched && !force) {
4128 ac->touched = 0;
4129 } else {
4130 spin_lock_irq(&l3->list_lock);
4131 if (ac->avail) {
4132 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4133 if (tofree > ac->avail)
4134 tofree = (ac->avail + 1) / 2;
4135 free_block(cachep, ac->entry, tofree, node);
4136 ac->avail -= tofree;
4137 memmove(ac->entry, &(ac->entry[tofree]),
4138 sizeof(void *) * ac->avail);
4140 spin_unlock_irq(&l3->list_lock);
4145 * cache_reap - Reclaim memory from caches.
4146 * @w: work descriptor
4148 * Called from workqueue/eventd every few seconds.
4149 * Purpose:
4150 * - clear the per-cpu caches for this CPU.
4151 * - return freeable pages to the main free memory pool.
4153 * If we cannot acquire the cache chain mutex then just give up - we'll try
4154 * again on the next iteration.
4156 static void cache_reap(struct work_struct *w)
4158 struct kmem_cache *searchp;
4159 struct kmem_list3 *l3;
4160 int node = numa_mem_id();
4161 struct delayed_work *work = to_delayed_work(w);
4163 if (!mutex_trylock(&cache_chain_mutex))
4164 /* Give up. Setup the next iteration. */
4165 goto out;
4167 list_for_each_entry(searchp, &cache_chain, next) {
4168 check_irq_on();
4171 * We only take the l3 lock if absolutely necessary and we
4172 * have established with reasonable certainty that
4173 * we can do some work if the lock was obtained.
4175 l3 = searchp->nodelists[node];
4177 reap_alien(searchp, l3);
4179 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4182 * These are racy checks but it does not matter
4183 * if we skip one check or scan twice.
4185 if (time_after(l3->next_reap, jiffies))
4186 goto next;
4188 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4190 drain_array(searchp, l3, l3->shared, 0, node);
4192 if (l3->free_touched)
4193 l3->free_touched = 0;
4194 else {
4195 int freed;
4197 freed = drain_freelist(searchp, l3, (l3->free_limit +
4198 5 * searchp->num - 1) / (5 * searchp->num));
4199 STATS_ADD_REAPED(searchp, freed);
4201 next:
4202 cond_resched();
4204 check_irq_on();
4205 mutex_unlock(&cache_chain_mutex);
4206 next_reap_node();
4207 out:
4208 /* Set up the next iteration */
4209 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4212 #ifdef CONFIG_SLABINFO
4214 static void print_slabinfo_header(struct seq_file *m)
4217 * Output format version, so at least we can change it
4218 * without _too_ many complaints.
4220 #if STATS
4221 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4222 #else
4223 seq_puts(m, "slabinfo - version: 2.1\n");
4224 #endif
4225 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4226 "<objperslab> <pagesperslab>");
4227 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4228 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4229 #if STATS
4230 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4231 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4232 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4233 #endif
4234 seq_putc(m, '\n');
4237 static void *s_start(struct seq_file *m, loff_t *pos)
4239 loff_t n = *pos;
4241 mutex_lock(&cache_chain_mutex);
4242 if (!n)
4243 print_slabinfo_header(m);
4245 return seq_list_start(&cache_chain, *pos);
4248 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4250 return seq_list_next(p, &cache_chain, pos);
4253 static void s_stop(struct seq_file *m, void *p)
4255 mutex_unlock(&cache_chain_mutex);
4258 static int s_show(struct seq_file *m, void *p)
4260 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4261 struct slab *slabp;
4262 unsigned long active_objs;
4263 unsigned long num_objs;
4264 unsigned long active_slabs = 0;
4265 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4266 const char *name;
4267 char *error = NULL;
4268 int node;
4269 struct kmem_list3 *l3;
4271 active_objs = 0;
4272 num_slabs = 0;
4273 for_each_online_node(node) {
4274 l3 = cachep->nodelists[node];
4275 if (!l3)
4276 continue;
4278 check_irq_on();
4279 spin_lock_irq(&l3->list_lock);
4281 list_for_each_entry(slabp, &l3->slabs_full, list) {
4282 if (slabp->inuse != cachep->num && !error)
4283 error = "slabs_full accounting error";
4284 active_objs += cachep->num;
4285 active_slabs++;
4287 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4288 if (slabp->inuse == cachep->num && !error)
4289 error = "slabs_partial inuse accounting error";
4290 if (!slabp->inuse && !error)
4291 error = "slabs_partial/inuse accounting error";
4292 active_objs += slabp->inuse;
4293 active_slabs++;
4295 list_for_each_entry(slabp, &l3->slabs_free, list) {
4296 if (slabp->inuse && !error)
4297 error = "slabs_free/inuse accounting error";
4298 num_slabs++;
4300 free_objects += l3->free_objects;
4301 if (l3->shared)
4302 shared_avail += l3->shared->avail;
4304 spin_unlock_irq(&l3->list_lock);
4306 num_slabs += active_slabs;
4307 num_objs = num_slabs * cachep->num;
4308 if (num_objs - active_objs != free_objects && !error)
4309 error = "free_objects accounting error";
4311 name = cachep->name;
4312 if (error)
4313 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4315 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4316 name, active_objs, num_objs, cachep->buffer_size,
4317 cachep->num, (1 << cachep->gfporder));
4318 seq_printf(m, " : tunables %4u %4u %4u",
4319 cachep->limit, cachep->batchcount, cachep->shared);
4320 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4321 active_slabs, num_slabs, shared_avail);
4322 #if STATS
4323 { /* list3 stats */
4324 unsigned long high = cachep->high_mark;
4325 unsigned long allocs = cachep->num_allocations;
4326 unsigned long grown = cachep->grown;
4327 unsigned long reaped = cachep->reaped;
4328 unsigned long errors = cachep->errors;
4329 unsigned long max_freeable = cachep->max_freeable;
4330 unsigned long node_allocs = cachep->node_allocs;
4331 unsigned long node_frees = cachep->node_frees;
4332 unsigned long overflows = cachep->node_overflow;
4334 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4335 "%4lu %4lu %4lu %4lu %4lu",
4336 allocs, high, grown,
4337 reaped, errors, max_freeable, node_allocs,
4338 node_frees, overflows);
4340 /* cpu stats */
4342 unsigned long allochit = atomic_read(&cachep->allochit);
4343 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4344 unsigned long freehit = atomic_read(&cachep->freehit);
4345 unsigned long freemiss = atomic_read(&cachep->freemiss);
4347 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4348 allochit, allocmiss, freehit, freemiss);
4350 #endif
4351 seq_putc(m, '\n');
4352 return 0;
4356 * slabinfo_op - iterator that generates /proc/slabinfo
4358 * Output layout:
4359 * cache-name
4360 * num-active-objs
4361 * total-objs
4362 * object size
4363 * num-active-slabs
4364 * total-slabs
4365 * num-pages-per-slab
4366 * + further values on SMP and with statistics enabled
4369 static const struct seq_operations slabinfo_op = {
4370 .start = s_start,
4371 .next = s_next,
4372 .stop = s_stop,
4373 .show = s_show,
4376 #define MAX_SLABINFO_WRITE 128
4378 * slabinfo_write - Tuning for the slab allocator
4379 * @file: unused
4380 * @buffer: user buffer
4381 * @count: data length
4382 * @ppos: unused
4384 static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4385 size_t count, loff_t *ppos)
4387 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4388 int limit, batchcount, shared, res;
4389 struct kmem_cache *cachep;
4391 if (count > MAX_SLABINFO_WRITE)
4392 return -EINVAL;
4393 if (copy_from_user(&kbuf, buffer, count))
4394 return -EFAULT;
4395 kbuf[MAX_SLABINFO_WRITE] = '\0';
4397 tmp = strchr(kbuf, ' ');
4398 if (!tmp)
4399 return -EINVAL;
4400 *tmp = '\0';
4401 tmp++;
4402 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4403 return -EINVAL;
4405 /* Find the cache in the chain of caches. */
4406 mutex_lock(&cache_chain_mutex);
4407 res = -EINVAL;
4408 list_for_each_entry(cachep, &cache_chain, next) {
4409 if (!strcmp(cachep->name, kbuf)) {
4410 if (limit < 1 || batchcount < 1 ||
4411 batchcount > limit || shared < 0) {
4412 res = 0;
4413 } else {
4414 res = do_tune_cpucache(cachep, limit,
4415 batchcount, shared,
4416 GFP_KERNEL);
4418 break;
4421 mutex_unlock(&cache_chain_mutex);
4422 if (res >= 0)
4423 res = count;
4424 return res;
4427 static int slabinfo_open(struct inode *inode, struct file *file)
4429 return seq_open(file, &slabinfo_op);
4432 static const struct file_operations proc_slabinfo_operations = {
4433 .open = slabinfo_open,
4434 .read = seq_read,
4435 .write = slabinfo_write,
4436 .llseek = seq_lseek,
4437 .release = seq_release,
4440 #ifdef CONFIG_DEBUG_SLAB_LEAK
4442 static void *leaks_start(struct seq_file *m, loff_t *pos)
4444 mutex_lock(&cache_chain_mutex);
4445 return seq_list_start(&cache_chain, *pos);
4448 static inline int add_caller(unsigned long *n, unsigned long v)
4450 unsigned long *p;
4451 int l;
4452 if (!v)
4453 return 1;
4454 l = n[1];
4455 p = n + 2;
4456 while (l) {
4457 int i = l/2;
4458 unsigned long *q = p + 2 * i;
4459 if (*q == v) {
4460 q[1]++;
4461 return 1;
4463 if (*q > v) {
4464 l = i;
4465 } else {
4466 p = q + 2;
4467 l -= i + 1;
4470 if (++n[1] == n[0])
4471 return 0;
4472 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4473 p[0] = v;
4474 p[1] = 1;
4475 return 1;
4478 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4480 void *p;
4481 int i;
4482 if (n[0] == n[1])
4483 return;
4484 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4485 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4486 continue;
4487 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4488 return;
4492 static void show_symbol(struct seq_file *m, unsigned long address)
4494 #ifdef CONFIG_KALLSYMS
4495 unsigned long offset, size;
4496 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4498 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4499 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4500 if (modname[0])
4501 seq_printf(m, " [%s]", modname);
4502 return;
4504 #endif
4505 seq_printf(m, "%p", (void *)address);
4508 static int leaks_show(struct seq_file *m, void *p)
4510 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4511 struct slab *slabp;
4512 struct kmem_list3 *l3;
4513 const char *name;
4514 unsigned long *n = m->private;
4515 int node;
4516 int i;
4518 if (!(cachep->flags & SLAB_STORE_USER))
4519 return 0;
4520 if (!(cachep->flags & SLAB_RED_ZONE))
4521 return 0;
4523 /* OK, we can do it */
4525 n[1] = 0;
4527 for_each_online_node(node) {
4528 l3 = cachep->nodelists[node];
4529 if (!l3)
4530 continue;
4532 check_irq_on();
4533 spin_lock_irq(&l3->list_lock);
4535 list_for_each_entry(slabp, &l3->slabs_full, list)
4536 handle_slab(n, cachep, slabp);
4537 list_for_each_entry(slabp, &l3->slabs_partial, list)
4538 handle_slab(n, cachep, slabp);
4539 spin_unlock_irq(&l3->list_lock);
4541 name = cachep->name;
4542 if (n[0] == n[1]) {
4543 /* Increase the buffer size */
4544 mutex_unlock(&cache_chain_mutex);
4545 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4546 if (!m->private) {
4547 /* Too bad, we are really out */
4548 m->private = n;
4549 mutex_lock(&cache_chain_mutex);
4550 return -ENOMEM;
4552 *(unsigned long *)m->private = n[0] * 2;
4553 kfree(n);
4554 mutex_lock(&cache_chain_mutex);
4555 /* Now make sure this entry will be retried */
4556 m->count = m->size;
4557 return 0;
4559 for (i = 0; i < n[1]; i++) {
4560 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4561 show_symbol(m, n[2*i+2]);
4562 seq_putc(m, '\n');
4565 return 0;
4568 static const struct seq_operations slabstats_op = {
4569 .start = leaks_start,
4570 .next = s_next,
4571 .stop = s_stop,
4572 .show = leaks_show,
4575 static int slabstats_open(struct inode *inode, struct file *file)
4577 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4578 int ret = -ENOMEM;
4579 if (n) {
4580 ret = seq_open(file, &slabstats_op);
4581 if (!ret) {
4582 struct seq_file *m = file->private_data;
4583 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4584 m->private = n;
4585 n = NULL;
4587 kfree(n);
4589 return ret;
4592 static const struct file_operations proc_slabstats_operations = {
4593 .open = slabstats_open,
4594 .read = seq_read,
4595 .llseek = seq_lseek,
4596 .release = seq_release_private,
4598 #endif
4600 static int __init slab_proc_init(void)
4602 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
4603 #ifdef CONFIG_DEBUG_SLAB_LEAK
4604 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4605 #endif
4606 return 0;
4608 module_init(slab_proc_init);
4609 #endif
4612 * ksize - get the actual amount of memory allocated for a given object
4613 * @objp: Pointer to the object
4615 * kmalloc may internally round up allocations and return more memory
4616 * than requested. ksize() can be used to determine the actual amount of
4617 * memory allocated. The caller may use this additional memory, even though
4618 * a smaller amount of memory was initially specified with the kmalloc call.
4619 * The caller must guarantee that objp points to a valid object previously
4620 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4621 * must not be freed during the duration of the call.
4623 size_t ksize(const void *objp)
4625 BUG_ON(!objp);
4626 if (unlikely(objp == ZERO_SIZE_PTR))
4627 return 0;
4629 return obj_size(virt_to_cache(objp));
4631 EXPORT_SYMBOL(ksize);