2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
34 #include <asm/div64.h>
36 #include <asm/sizes.h>
40 #define DRIVER_NAME "mmci-pl18x"
42 static unsigned int fmax
= 515633;
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 * is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 * is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
59 unsigned int clkreg_enable
;
60 unsigned int datalength_bits
;
61 unsigned int fifosize
;
62 unsigned int fifohalfsize
;
65 bool blksz_datactrl16
;
68 static struct variant_data variant_arm
= {
70 .fifohalfsize
= 8 * 4,
71 .datalength_bits
= 16,
74 static struct variant_data variant_arm_extended_fifo
= {
76 .fifohalfsize
= 64 * 4,
77 .datalength_bits
= 16,
80 static struct variant_data variant_u300
= {
82 .fifohalfsize
= 8 * 4,
83 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
84 .datalength_bits
= 16,
88 static struct variant_data variant_ux500
= {
90 .fifohalfsize
= 8 * 4,
91 .clkreg
= MCI_CLK_ENABLE
,
92 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
93 .datalength_bits
= 24,
98 static struct variant_data variant_ux500v2
= {
100 .fifohalfsize
= 8 * 4,
101 .clkreg
= MCI_CLK_ENABLE
,
102 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
103 .datalength_bits
= 24,
106 .blksz_datactrl16
= true,
110 * This must be called with host->lock held
112 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
114 struct variant_data
*variant
= host
->variant
;
115 u32 clk
= variant
->clkreg
;
118 if (desired
>= host
->mclk
) {
119 clk
= MCI_CLK_BYPASS
;
120 if (variant
->st_clkdiv
)
121 clk
|= MCI_ST_UX500_NEG_EDGE
;
122 host
->cclk
= host
->mclk
;
123 } else if (variant
->st_clkdiv
) {
125 * DB8500 TRM says f = mclk / (clkdiv + 2)
126 * => clkdiv = (mclk / f) - 2
127 * Round the divider up so we don't exceed the max
130 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
133 host
->cclk
= host
->mclk
/ (clk
+ 2);
136 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137 * => clkdiv = mclk / (2 * f) - 1
139 clk
= host
->mclk
/ (2 * desired
) - 1;
142 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
145 clk
|= variant
->clkreg_enable
;
146 clk
|= MCI_CLK_ENABLE
;
147 /* This hasn't proven to be worthwhile */
148 /* clk |= MCI_CLK_PWRSAVE; */
151 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
153 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
154 clk
|= MCI_ST_8BIT_BUS
;
156 writel(clk
, host
->base
+ MMCICLOCK
);
160 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
162 writel(0, host
->base
+ MMCICOMMAND
);
170 * Need to drop the host lock here; mmc_request_done may call
171 * back into the driver...
173 spin_unlock(&host
->lock
);
174 pm_runtime_put(mmc_dev(host
->mmc
));
175 mmc_request_done(host
->mmc
, mrq
);
176 spin_lock(&host
->lock
);
179 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
181 void __iomem
*base
= host
->base
;
183 if (host
->singleirq
) {
184 unsigned int mask0
= readl(base
+ MMCIMASK0
);
186 mask0
&= ~MCI_IRQ1MASK
;
189 writel(mask0
, base
+ MMCIMASK0
);
192 writel(mask
, base
+ MMCIMASK1
);
195 static void mmci_stop_data(struct mmci_host
*host
)
197 writel(0, host
->base
+ MMCIDATACTRL
);
198 mmci_set_mask1(host
, 0);
202 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
204 unsigned int flags
= SG_MITER_ATOMIC
;
206 if (data
->flags
& MMC_DATA_READ
)
207 flags
|= SG_MITER_TO_SG
;
209 flags
|= SG_MITER_FROM_SG
;
211 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
215 * All the DMA operation mode stuff goes inside this ifdef.
216 * This assumes that you have a generic DMA device interface,
217 * no custom DMA interfaces are supported.
219 #ifdef CONFIG_DMA_ENGINE
220 static void __devinit
mmci_dma_setup(struct mmci_host
*host
)
222 struct mmci_platform_data
*plat
= host
->plat
;
223 const char *rxname
, *txname
;
226 if (!plat
|| !plat
->dma_filter
) {
227 dev_info(mmc_dev(host
->mmc
), "no DMA platform data\n");
231 /* initialize pre request cookie */
232 host
->next_data
.cookie
= 1;
234 /* Try to acquire a generic DMA engine slave channel */
236 dma_cap_set(DMA_SLAVE
, mask
);
239 * If only an RX channel is specified, the driver will
240 * attempt to use it bidirectionally, however if it is
241 * is specified but cannot be located, DMA will be disabled.
243 if (plat
->dma_rx_param
) {
244 host
->dma_rx_channel
= dma_request_channel(mask
,
247 /* E.g if no DMA hardware is present */
248 if (!host
->dma_rx_channel
)
249 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
252 if (plat
->dma_tx_param
) {
253 host
->dma_tx_channel
= dma_request_channel(mask
,
256 if (!host
->dma_tx_channel
)
257 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
259 host
->dma_tx_channel
= host
->dma_rx_channel
;
262 if (host
->dma_rx_channel
)
263 rxname
= dma_chan_name(host
->dma_rx_channel
);
267 if (host
->dma_tx_channel
)
268 txname
= dma_chan_name(host
->dma_tx_channel
);
272 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
276 * Limit the maximum segment size in any SG entry according to
277 * the parameters of the DMA engine device.
279 if (host
->dma_tx_channel
) {
280 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
281 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
283 if (max_seg_size
< host
->mmc
->max_seg_size
)
284 host
->mmc
->max_seg_size
= max_seg_size
;
286 if (host
->dma_rx_channel
) {
287 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
288 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
290 if (max_seg_size
< host
->mmc
->max_seg_size
)
291 host
->mmc
->max_seg_size
= max_seg_size
;
296 * This is used in __devinit or __devexit so inline it
297 * so it can be discarded.
299 static inline void mmci_dma_release(struct mmci_host
*host
)
301 struct mmci_platform_data
*plat
= host
->plat
;
303 if (host
->dma_rx_channel
)
304 dma_release_channel(host
->dma_rx_channel
);
305 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
306 dma_release_channel(host
->dma_tx_channel
);
307 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
310 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
312 struct dma_chan
*chan
= host
->dma_current
;
313 enum dma_data_direction dir
;
317 /* Wait up to 1ms for the DMA to complete */
319 status
= readl(host
->base
+ MMCISTATUS
);
320 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
326 * Check to see whether we still have some data left in the FIFO -
327 * this catches DMA controllers which are unable to monitor the
328 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329 * contiguous buffers. On TX, we'll get a FIFO underrun error.
331 if (status
& MCI_RXDATAAVLBLMASK
) {
332 dmaengine_terminate_all(chan
);
337 if (data
->flags
& MMC_DATA_WRITE
) {
340 dir
= DMA_FROM_DEVICE
;
343 if (!data
->host_cookie
)
344 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
347 * Use of DMA with scatter-gather is impossible.
348 * Give up with DMA and switch back to PIO mode.
350 if (status
& MCI_RXDATAAVLBLMASK
) {
351 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
352 mmci_dma_release(host
);
356 static void mmci_dma_data_error(struct mmci_host
*host
)
358 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
359 dmaengine_terminate_all(host
->dma_current
);
362 static int mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
363 struct mmci_host_next
*next
)
365 struct variant_data
*variant
= host
->variant
;
366 struct dma_slave_config conf
= {
367 .src_addr
= host
->phybase
+ MMCIFIFO
,
368 .dst_addr
= host
->phybase
+ MMCIFIFO
,
369 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
370 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
371 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
372 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
374 struct dma_chan
*chan
;
375 struct dma_device
*device
;
376 struct dma_async_tx_descriptor
*desc
;
379 /* Check if next job is already prepared */
380 if (data
->host_cookie
&& !next
&&
381 host
->dma_current
&& host
->dma_desc_current
)
385 host
->dma_current
= NULL
;
386 host
->dma_desc_current
= NULL
;
389 if (data
->flags
& MMC_DATA_READ
) {
390 conf
.direction
= DMA_FROM_DEVICE
;
391 chan
= host
->dma_rx_channel
;
393 conf
.direction
= DMA_TO_DEVICE
;
394 chan
= host
->dma_tx_channel
;
397 /* If there's no DMA channel, fall back to PIO */
401 /* If less than or equal to the fifo size, don't bother with DMA */
402 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
405 device
= chan
->device
;
406 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
410 dmaengine_slave_config(chan
, &conf
);
411 desc
= device
->device_prep_slave_sg(chan
, data
->sg
, nr_sg
,
412 conf
.direction
, DMA_CTRL_ACK
);
417 next
->dma_chan
= chan
;
418 next
->dma_desc
= desc
;
420 host
->dma_current
= chan
;
421 host
->dma_desc_current
= desc
;
428 dmaengine_terminate_all(chan
);
429 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
433 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
436 struct mmc_data
*data
= host
->data
;
438 ret
= mmci_dma_prep_data(host
, host
->data
, NULL
);
442 /* Okay, go for it. */
443 dev_vdbg(mmc_dev(host
->mmc
),
444 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
445 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
446 dmaengine_submit(host
->dma_desc_current
);
447 dma_async_issue_pending(host
->dma_current
);
449 datactrl
|= MCI_DPSM_DMAENABLE
;
451 /* Trigger the DMA transfer */
452 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
455 * Let the MMCI say when the data is ended and it's time
456 * to fire next DMA request. When that happens, MMCI will
457 * call mmci_data_end()
459 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
460 host
->base
+ MMCIMASK0
);
464 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
466 struct mmci_host_next
*next
= &host
->next_data
;
468 if (data
->host_cookie
&& data
->host_cookie
!= next
->cookie
) {
469 pr_warning("[%s] invalid cookie: data->host_cookie %d"
470 " host->next_data.cookie %d\n",
471 __func__
, data
->host_cookie
, host
->next_data
.cookie
);
472 data
->host_cookie
= 0;
475 if (!data
->host_cookie
)
478 host
->dma_desc_current
= next
->dma_desc
;
479 host
->dma_current
= next
->dma_chan
;
481 next
->dma_desc
= NULL
;
482 next
->dma_chan
= NULL
;
485 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
488 struct mmci_host
*host
= mmc_priv(mmc
);
489 struct mmc_data
*data
= mrq
->data
;
490 struct mmci_host_next
*nd
= &host
->next_data
;
495 if (data
->host_cookie
) {
496 data
->host_cookie
= 0;
500 /* if config for dma */
501 if (((data
->flags
& MMC_DATA_WRITE
) && host
->dma_tx_channel
) ||
502 ((data
->flags
& MMC_DATA_READ
) && host
->dma_rx_channel
)) {
503 if (mmci_dma_prep_data(host
, data
, nd
))
504 data
->host_cookie
= 0;
506 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
510 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
513 struct mmci_host
*host
= mmc_priv(mmc
);
514 struct mmc_data
*data
= mrq
->data
;
515 struct dma_chan
*chan
;
516 enum dma_data_direction dir
;
521 if (data
->flags
& MMC_DATA_READ
) {
522 dir
= DMA_FROM_DEVICE
;
523 chan
= host
->dma_rx_channel
;
526 chan
= host
->dma_tx_channel
;
530 /* if config for dma */
533 dmaengine_terminate_all(chan
);
534 if (data
->host_cookie
)
535 dma_unmap_sg(mmc_dev(host
->mmc
), data
->sg
,
537 mrq
->data
->host_cookie
= 0;
542 /* Blank functions if the DMA engine is not available */
543 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
546 static inline void mmci_dma_setup(struct mmci_host
*host
)
550 static inline void mmci_dma_release(struct mmci_host
*host
)
554 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
558 static inline void mmci_dma_data_error(struct mmci_host
*host
)
562 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
567 #define mmci_pre_request NULL
568 #define mmci_post_request NULL
572 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
574 struct variant_data
*variant
= host
->variant
;
575 unsigned int datactrl
, timeout
, irqmask
;
576 unsigned long long clks
;
580 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
581 data
->blksz
, data
->blocks
, data
->flags
);
584 host
->size
= data
->blksz
* data
->blocks
;
585 data
->bytes_xfered
= 0;
587 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
588 do_div(clks
, 1000000000UL);
590 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
593 writel(timeout
, base
+ MMCIDATATIMER
);
594 writel(host
->size
, base
+ MMCIDATALENGTH
);
596 blksz_bits
= ffs(data
->blksz
) - 1;
597 BUG_ON(1 << blksz_bits
!= data
->blksz
);
599 if (variant
->blksz_datactrl16
)
600 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
602 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
604 if (data
->flags
& MMC_DATA_READ
)
605 datactrl
|= MCI_DPSM_DIRECTION
;
608 * Attempt to use DMA operation mode, if this
609 * should fail, fall back to PIO mode
611 if (!mmci_dma_start_data(host
, datactrl
))
614 /* IRQ mode, map the SG list for CPU reading/writing */
615 mmci_init_sg(host
, data
);
617 if (data
->flags
& MMC_DATA_READ
) {
618 irqmask
= MCI_RXFIFOHALFFULLMASK
;
621 * If we have less than the fifo 'half-full' threshold to
622 * transfer, trigger a PIO interrupt as soon as any data
625 if (host
->size
< variant
->fifohalfsize
)
626 irqmask
|= MCI_RXDATAAVLBLMASK
;
629 * We don't actually need to include "FIFO empty" here
630 * since its implicit in "FIFO half empty".
632 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
635 /* The ST Micro variants has a special bit to enable SDIO */
636 if (variant
->sdio
&& host
->mmc
->card
)
637 if (mmc_card_sdio(host
->mmc
->card
))
638 datactrl
|= MCI_ST_DPSM_SDIOEN
;
640 writel(datactrl
, base
+ MMCIDATACTRL
);
641 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
642 mmci_set_mask1(host
, irqmask
);
646 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
648 void __iomem
*base
= host
->base
;
650 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
651 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
653 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
654 writel(0, base
+ MMCICOMMAND
);
658 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
659 if (cmd
->flags
& MMC_RSP_PRESENT
) {
660 if (cmd
->flags
& MMC_RSP_136
)
661 c
|= MCI_CPSM_LONGRSP
;
662 c
|= MCI_CPSM_RESPONSE
;
665 c
|= MCI_CPSM_INTERRUPT
;
669 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
670 writel(c
, base
+ MMCICOMMAND
);
674 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
677 /* First check for errors */
678 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
681 /* Terminate the DMA transfer */
682 if (dma_inprogress(host
))
683 mmci_dma_data_error(host
);
686 * Calculate how far we are into the transfer. Note that
687 * the data counter gives the number of bytes transferred
688 * on the MMC bus, not on the host side. On reads, this
689 * can be as much as a FIFO-worth of data ahead. This
690 * matters for FIFO overruns only.
692 remain
= readl(host
->base
+ MMCIDATACNT
);
693 success
= data
->blksz
* data
->blocks
- remain
;
695 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
697 if (status
& MCI_DATACRCFAIL
) {
698 /* Last block was not successful */
700 data
->error
= -EILSEQ
;
701 } else if (status
& MCI_DATATIMEOUT
) {
702 data
->error
= -ETIMEDOUT
;
703 } else if (status
& MCI_STARTBITERR
) {
704 data
->error
= -ECOMM
;
705 } else if (status
& MCI_TXUNDERRUN
) {
707 } else if (status
& MCI_RXOVERRUN
) {
708 if (success
> host
->variant
->fifosize
)
709 success
-= host
->variant
->fifosize
;
714 data
->bytes_xfered
= round_down(success
, data
->blksz
);
717 if (status
& MCI_DATABLOCKEND
)
718 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
720 if (status
& MCI_DATAEND
|| data
->error
) {
721 if (dma_inprogress(host
))
722 mmci_dma_unmap(host
, data
);
723 mmci_stop_data(host
);
726 /* The error clause is handled above, success! */
727 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
730 mmci_request_end(host
, data
->mrq
);
732 mmci_start_command(host
, data
->stop
, 0);
738 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
741 void __iomem
*base
= host
->base
;
745 if (status
& MCI_CMDTIMEOUT
) {
746 cmd
->error
= -ETIMEDOUT
;
747 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
748 cmd
->error
= -EILSEQ
;
750 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
751 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
752 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
753 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
756 if (!cmd
->data
|| cmd
->error
) {
758 mmci_stop_data(host
);
759 mmci_request_end(host
, cmd
->mrq
);
760 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
761 mmci_start_data(host
, cmd
->data
);
765 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
767 void __iomem
*base
= host
->base
;
770 int host_remain
= host
->size
;
773 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
781 readsl(base
+ MMCIFIFO
, ptr
, count
>> 2);
785 host_remain
-= count
;
790 status
= readl(base
+ MMCISTATUS
);
791 } while (status
& MCI_RXDATAAVLBL
);
796 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
798 struct variant_data
*variant
= host
->variant
;
799 void __iomem
*base
= host
->base
;
803 unsigned int count
, maxcnt
;
805 maxcnt
= status
& MCI_TXFIFOEMPTY
?
806 variant
->fifosize
: variant
->fifohalfsize
;
807 count
= min(remain
, maxcnt
);
810 * The ST Micro variant for SDIO transfer sizes
811 * less then 8 bytes should have clock H/W flow
815 mmc_card_sdio(host
->mmc
->card
)) {
817 writel(readl(host
->base
+ MMCICLOCK
) &
818 ~variant
->clkreg_enable
,
819 host
->base
+ MMCICLOCK
);
821 writel(readl(host
->base
+ MMCICLOCK
) |
822 variant
->clkreg_enable
,
823 host
->base
+ MMCICLOCK
);
827 * SDIO especially may want to send something that is
828 * not divisible by 4 (as opposed to card sectors
829 * etc), and the FIFO only accept full 32-bit writes.
830 * So compensate by adding +3 on the count, a single
831 * byte become a 32bit write, 7 bytes will be two
834 writesl(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
842 status
= readl(base
+ MMCISTATUS
);
843 } while (status
& MCI_TXFIFOHALFEMPTY
);
849 * PIO data transfer IRQ handler.
851 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
853 struct mmci_host
*host
= dev_id
;
854 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
855 struct variant_data
*variant
= host
->variant
;
856 void __iomem
*base
= host
->base
;
860 status
= readl(base
+ MMCISTATUS
);
862 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
864 local_irq_save(flags
);
867 unsigned int remain
, len
;
871 * For write, we only need to test the half-empty flag
872 * here - if the FIFO is completely empty, then by
873 * definition it is more than half empty.
875 * For read, check for data available.
877 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
880 if (!sg_miter_next(sg_miter
))
883 buffer
= sg_miter
->addr
;
884 remain
= sg_miter
->length
;
887 if (status
& MCI_RXACTIVE
)
888 len
= mmci_pio_read(host
, buffer
, remain
);
889 if (status
& MCI_TXACTIVE
)
890 len
= mmci_pio_write(host
, buffer
, remain
, status
);
892 sg_miter
->consumed
= len
;
900 status
= readl(base
+ MMCISTATUS
);
903 sg_miter_stop(sg_miter
);
905 local_irq_restore(flags
);
908 * If we have less than the fifo 'half-full' threshold to transfer,
909 * trigger a PIO interrupt as soon as any data is available.
911 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
912 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
915 * If we run out of data, disable the data IRQs; this
916 * prevents a race where the FIFO becomes empty before
917 * the chip itself has disabled the data path, and
918 * stops us racing with our data end IRQ.
920 if (host
->size
== 0) {
921 mmci_set_mask1(host
, 0);
922 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
929 * Handle completion of command and data transfers.
931 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
933 struct mmci_host
*host
= dev_id
;
937 spin_lock(&host
->lock
);
940 struct mmc_command
*cmd
;
941 struct mmc_data
*data
;
943 status
= readl(host
->base
+ MMCISTATUS
);
945 if (host
->singleirq
) {
946 if (status
& readl(host
->base
+ MMCIMASK1
))
947 mmci_pio_irq(irq
, dev_id
);
949 status
&= ~MCI_IRQ1MASK
;
952 status
&= readl(host
->base
+ MMCIMASK0
);
953 writel(status
, host
->base
+ MMCICLEAR
);
955 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
958 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_TXUNDERRUN
|
959 MCI_RXOVERRUN
|MCI_DATAEND
|MCI_DATABLOCKEND
) && data
)
960 mmci_data_irq(host
, data
, status
);
963 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
964 mmci_cmd_irq(host
, cmd
, status
);
969 spin_unlock(&host
->lock
);
971 return IRQ_RETVAL(ret
);
974 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
976 struct mmci_host
*host
= mmc_priv(mmc
);
979 WARN_ON(host
->mrq
!= NULL
);
981 if (mrq
->data
&& !is_power_of_2(mrq
->data
->blksz
)) {
982 dev_err(mmc_dev(mmc
), "unsupported block size (%d bytes)\n",
984 mrq
->cmd
->error
= -EINVAL
;
985 mmc_request_done(mmc
, mrq
);
989 pm_runtime_get_sync(mmc_dev(mmc
));
991 spin_lock_irqsave(&host
->lock
, flags
);
996 mmci_get_next_data(host
, mrq
->data
);
998 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
999 mmci_start_data(host
, mrq
->data
);
1001 mmci_start_command(host
, mrq
->cmd
, 0);
1003 spin_unlock_irqrestore(&host
->lock
, flags
);
1006 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1008 struct mmci_host
*host
= mmc_priv(mmc
);
1010 unsigned long flags
;
1013 switch (ios
->power_mode
) {
1016 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1020 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, ios
->vdd
);
1022 dev_err(mmc_dev(mmc
), "unable to set OCR\n");
1024 * The .set_ios() function in the mmc_host_ops
1025 * struct return void, and failing to set the
1026 * power should be rare so we print an error
1032 if (host
->plat
->vdd_handler
)
1033 pwr
|= host
->plat
->vdd_handler(mmc_dev(mmc
), ios
->vdd
,
1035 /* The ST version does not have this, fall through to POWER_ON */
1036 if (host
->hw_designer
!= AMBA_VENDOR_ST
) {
1045 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1046 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1050 * The ST Micro variant use the ROD bit for something
1051 * else and only has OD (Open Drain).
1057 spin_lock_irqsave(&host
->lock
, flags
);
1059 mmci_set_clkreg(host
, ios
->clock
);
1061 if (host
->pwr
!= pwr
) {
1063 writel(pwr
, host
->base
+ MMCIPOWER
);
1066 spin_unlock_irqrestore(&host
->lock
, flags
);
1069 static int mmci_get_ro(struct mmc_host
*mmc
)
1071 struct mmci_host
*host
= mmc_priv(mmc
);
1073 if (host
->gpio_wp
== -ENOSYS
)
1076 return gpio_get_value_cansleep(host
->gpio_wp
);
1079 static int mmci_get_cd(struct mmc_host
*mmc
)
1081 struct mmci_host
*host
= mmc_priv(mmc
);
1082 struct mmci_platform_data
*plat
= host
->plat
;
1083 unsigned int status
;
1085 if (host
->gpio_cd
== -ENOSYS
) {
1087 return 1; /* Assume always present */
1089 status
= plat
->status(mmc_dev(host
->mmc
));
1091 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
1095 * Use positive logic throughout - status is zero for no card,
1096 * non-zero for card inserted.
1101 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
1103 struct mmci_host
*host
= dev_id
;
1105 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
1110 static const struct mmc_host_ops mmci_ops
= {
1111 .request
= mmci_request
,
1112 .pre_req
= mmci_pre_request
,
1113 .post_req
= mmci_post_request
,
1114 .set_ios
= mmci_set_ios
,
1115 .get_ro
= mmci_get_ro
,
1116 .get_cd
= mmci_get_cd
,
1119 static int __devinit
mmci_probe(struct amba_device
*dev
,
1120 const struct amba_id
*id
)
1122 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1123 struct variant_data
*variant
= id
->data
;
1124 struct mmci_host
*host
;
1125 struct mmc_host
*mmc
;
1128 /* must have platform data */
1134 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1138 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1144 host
= mmc_priv(mmc
);
1147 host
->gpio_wp
= -ENOSYS
;
1148 host
->gpio_cd
= -ENOSYS
;
1149 host
->gpio_cd_irq
= -1;
1151 host
->hw_designer
= amba_manf(dev
);
1152 host
->hw_revision
= amba_rev(dev
);
1153 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1154 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1156 host
->clk
= clk_get(&dev
->dev
, NULL
);
1157 if (IS_ERR(host
->clk
)) {
1158 ret
= PTR_ERR(host
->clk
);
1163 ret
= clk_prepare(host
->clk
);
1167 ret
= clk_enable(host
->clk
);
1172 host
->variant
= variant
;
1173 host
->mclk
= clk_get_rate(host
->clk
);
1175 * According to the spec, mclk is max 100 MHz,
1176 * so we try to adjust the clock down to this,
1179 if (host
->mclk
> 100000000) {
1180 ret
= clk_set_rate(host
->clk
, 100000000);
1183 host
->mclk
= clk_get_rate(host
->clk
);
1184 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1187 host
->phybase
= dev
->res
.start
;
1188 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1194 mmc
->ops
= &mmci_ops
;
1196 * The ARM and ST versions of the block have slightly different
1197 * clock divider equations which means that the minimum divider
1200 if (variant
->st_clkdiv
)
1201 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1203 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1205 * If the platform data supplies a maximum operating
1206 * frequency, this takes precedence. Else, we fall back
1207 * to using the module parameter, which has a (low)
1208 * default value in case it is not specified. Either
1209 * value must not exceed the clock rate into the block,
1213 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1215 mmc
->f_max
= min(host
->mclk
, fmax
);
1216 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1218 #ifdef CONFIG_REGULATOR
1219 /* If we're using the regulator framework, try to fetch a regulator */
1220 host
->vcc
= regulator_get(&dev
->dev
, "vmmc");
1221 if (IS_ERR(host
->vcc
))
1224 int mask
= mmc_regulator_get_ocrmask(host
->vcc
);
1227 dev_err(&dev
->dev
, "error getting OCR mask (%d)\n",
1230 host
->mmc
->ocr_avail
= (u32
) mask
;
1233 "Provided ocr_mask/setpower will not be used "
1234 "(using regulator instead)\n");
1238 /* Fall back to platform data if no regulator is found */
1239 if (host
->vcc
== NULL
)
1240 mmc
->ocr_avail
= plat
->ocr_mask
;
1241 mmc
->caps
= plat
->capabilities
;
1246 mmc
->max_segs
= NR_SG
;
1249 * Since only a certain number of bits are valid in the data length
1250 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1253 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1256 * Set the maximum segment size. Since we aren't doing DMA
1257 * (yet) we are only limited by the data length register.
1259 mmc
->max_seg_size
= mmc
->max_req_size
;
1262 * Block size can be up to 2048 bytes, but must be a power of two.
1264 mmc
->max_blk_size
= 2048;
1267 * No limit on the number of blocks transferred.
1269 mmc
->max_blk_count
= mmc
->max_req_size
;
1271 spin_lock_init(&host
->lock
);
1273 writel(0, host
->base
+ MMCIMASK0
);
1274 writel(0, host
->base
+ MMCIMASK1
);
1275 writel(0xfff, host
->base
+ MMCICLEAR
);
1277 if (gpio_is_valid(plat
->gpio_cd
)) {
1278 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1280 ret
= gpio_direction_input(plat
->gpio_cd
);
1282 host
->gpio_cd
= plat
->gpio_cd
;
1283 else if (ret
!= -ENOSYS
)
1287 * A gpio pin that will detect cards when inserted and removed
1288 * will most likely want to trigger on the edges if it is
1289 * 0 when ejected and 1 when inserted (or mutatis mutandis
1290 * for the inverted case) so we request triggers on both
1293 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1295 IRQF_TRIGGER_RISING
| IRQF_TRIGGER_FALLING
,
1296 DRIVER_NAME
" (cd)", host
);
1298 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1300 if (gpio_is_valid(plat
->gpio_wp
)) {
1301 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1303 ret
= gpio_direction_input(plat
->gpio_wp
);
1305 host
->gpio_wp
= plat
->gpio_wp
;
1306 else if (ret
!= -ENOSYS
)
1310 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1311 && host
->gpio_cd_irq
< 0)
1312 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1314 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1318 if (dev
->irq
[1] == NO_IRQ
)
1319 host
->singleirq
= true;
1321 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1322 DRIVER_NAME
" (pio)", host
);
1327 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1329 amba_set_drvdata(dev
, mmc
);
1331 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1332 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1333 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1334 dev
->irq
[0], dev
->irq
[1]);
1336 mmci_dma_setup(host
);
1338 pm_runtime_put(&dev
->dev
);
1345 free_irq(dev
->irq
[0], host
);
1347 if (host
->gpio_wp
!= -ENOSYS
)
1348 gpio_free(host
->gpio_wp
);
1350 if (host
->gpio_cd_irq
>= 0)
1351 free_irq(host
->gpio_cd_irq
, host
);
1352 if (host
->gpio_cd
!= -ENOSYS
)
1353 gpio_free(host
->gpio_cd
);
1355 iounmap(host
->base
);
1357 clk_disable(host
->clk
);
1359 clk_unprepare(host
->clk
);
1365 amba_release_regions(dev
);
1370 static int __devexit
mmci_remove(struct amba_device
*dev
)
1372 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1374 amba_set_drvdata(dev
, NULL
);
1377 struct mmci_host
*host
= mmc_priv(mmc
);
1380 * Undo pm_runtime_put() in probe. We use the _sync
1381 * version here so that we can access the primecell.
1383 pm_runtime_get_sync(&dev
->dev
);
1385 mmc_remove_host(mmc
);
1387 writel(0, host
->base
+ MMCIMASK0
);
1388 writel(0, host
->base
+ MMCIMASK1
);
1390 writel(0, host
->base
+ MMCICOMMAND
);
1391 writel(0, host
->base
+ MMCIDATACTRL
);
1393 mmci_dma_release(host
);
1394 free_irq(dev
->irq
[0], host
);
1395 if (!host
->singleirq
)
1396 free_irq(dev
->irq
[1], host
);
1398 if (host
->gpio_wp
!= -ENOSYS
)
1399 gpio_free(host
->gpio_wp
);
1400 if (host
->gpio_cd_irq
>= 0)
1401 free_irq(host
->gpio_cd_irq
, host
);
1402 if (host
->gpio_cd
!= -ENOSYS
)
1403 gpio_free(host
->gpio_cd
);
1405 iounmap(host
->base
);
1406 clk_disable(host
->clk
);
1407 clk_unprepare(host
->clk
);
1411 mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1412 regulator_put(host
->vcc
);
1416 amba_release_regions(dev
);
1423 static int mmci_suspend(struct amba_device
*dev
, pm_message_t state
)
1425 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1429 struct mmci_host
*host
= mmc_priv(mmc
);
1431 ret
= mmc_suspend_host(mmc
);
1433 writel(0, host
->base
+ MMCIMASK0
);
1439 static int mmci_resume(struct amba_device
*dev
)
1441 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1445 struct mmci_host
*host
= mmc_priv(mmc
);
1447 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1449 ret
= mmc_resume_host(mmc
);
1455 #define mmci_suspend NULL
1456 #define mmci_resume NULL
1459 static struct amba_id mmci_ids
[] = {
1463 .data
= &variant_arm
,
1468 .data
= &variant_arm_extended_fifo
,
1473 .data
= &variant_arm
,
1475 /* ST Micro variants */
1479 .data
= &variant_u300
,
1484 .data
= &variant_u300
,
1489 .data
= &variant_ux500
,
1494 .data
= &variant_ux500v2
,
1499 static struct amba_driver mmci_driver
= {
1501 .name
= DRIVER_NAME
,
1503 .probe
= mmci_probe
,
1504 .remove
= __devexit_p(mmci_remove
),
1505 .suspend
= mmci_suspend
,
1506 .resume
= mmci_resume
,
1507 .id_table
= mmci_ids
,
1510 static int __init
mmci_init(void)
1512 return amba_driver_register(&mmci_driver
);
1515 static void __exit
mmci_exit(void)
1517 amba_driver_unregister(&mmci_driver
);
1520 module_init(mmci_init
);
1521 module_exit(mmci_exit
);
1522 module_param(fmax
, uint
, 0444);
1524 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1525 MODULE_LICENSE("GPL");