Merge 3.2-rc3 into usb-linus
[zen-stable.git] / drivers / net / can / dev.c
blob25695bde0549138a572f2eeb414f686af869051f
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/netdevice.h>
24 #include <linux/if_arp.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/netlink.h>
28 #include <net/rtnetlink.h>
30 #define MOD_DESC "CAN device driver interface"
32 MODULE_DESCRIPTION(MOD_DESC);
33 MODULE_LICENSE("GPL v2");
34 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36 #ifdef CONFIG_CAN_CALC_BITTIMING
37 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
40 * Bit-timing calculation derived from:
42 * Code based on LinCAN sources and H8S2638 project
43 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
44 * Copyright 2005 Stanislav Marek
45 * email: pisa@cmp.felk.cvut.cz
47 * Calculates proper bit-timing parameters for a specified bit-rate
48 * and sample-point, which can then be used to set the bit-timing
49 * registers of the CAN controller. You can find more information
50 * in the header file linux/can/netlink.h.
52 static int can_update_spt(const struct can_bittiming_const *btc,
53 int sampl_pt, int tseg, int *tseg1, int *tseg2)
55 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
56 if (*tseg2 < btc->tseg2_min)
57 *tseg2 = btc->tseg2_min;
58 if (*tseg2 > btc->tseg2_max)
59 *tseg2 = btc->tseg2_max;
60 *tseg1 = tseg - *tseg2;
61 if (*tseg1 > btc->tseg1_max) {
62 *tseg1 = btc->tseg1_max;
63 *tseg2 = tseg - *tseg1;
65 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
68 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
70 struct can_priv *priv = netdev_priv(dev);
71 const struct can_bittiming_const *btc = priv->bittiming_const;
72 long rate, best_rate = 0;
73 long best_error = 1000000000, error = 0;
74 int best_tseg = 0, best_brp = 0, brp = 0;
75 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
76 int spt_error = 1000, spt = 0, sampl_pt;
77 u64 v64;
79 if (!priv->bittiming_const)
80 return -ENOTSUPP;
82 /* Use CIA recommended sample points */
83 if (bt->sample_point) {
84 sampl_pt = bt->sample_point;
85 } else {
86 if (bt->bitrate > 800000)
87 sampl_pt = 750;
88 else if (bt->bitrate > 500000)
89 sampl_pt = 800;
90 else
91 sampl_pt = 875;
94 /* tseg even = round down, odd = round up */
95 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
96 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
97 tsegall = 1 + tseg / 2;
98 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
99 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
100 /* chose brp step which is possible in system */
101 brp = (brp / btc->brp_inc) * btc->brp_inc;
102 if ((brp < btc->brp_min) || (brp > btc->brp_max))
103 continue;
104 rate = priv->clock.freq / (brp * tsegall);
105 error = bt->bitrate - rate;
106 /* tseg brp biterror */
107 if (error < 0)
108 error = -error;
109 if (error > best_error)
110 continue;
111 best_error = error;
112 if (error == 0) {
113 spt = can_update_spt(btc, sampl_pt, tseg / 2,
114 &tseg1, &tseg2);
115 error = sampl_pt - spt;
116 if (error < 0)
117 error = -error;
118 if (error > spt_error)
119 continue;
120 spt_error = error;
122 best_tseg = tseg / 2;
123 best_brp = brp;
124 best_rate = rate;
125 if (error == 0)
126 break;
129 if (best_error) {
130 /* Error in one-tenth of a percent */
131 error = (best_error * 1000) / bt->bitrate;
132 if (error > CAN_CALC_MAX_ERROR) {
133 dev_err(dev->dev.parent,
134 "bitrate error %ld.%ld%% too high\n",
135 error / 10, error % 10);
136 return -EDOM;
137 } else {
138 dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
139 error / 10, error % 10);
143 /* real sample point */
144 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
145 &tseg1, &tseg2);
147 v64 = (u64)best_brp * 1000000000UL;
148 do_div(v64, priv->clock.freq);
149 bt->tq = (u32)v64;
150 bt->prop_seg = tseg1 / 2;
151 bt->phase_seg1 = tseg1 - bt->prop_seg;
152 bt->phase_seg2 = tseg2;
154 /* check for sjw user settings */
155 if (!bt->sjw || !btc->sjw_max)
156 bt->sjw = 1;
157 else {
158 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
159 if (bt->sjw > btc->sjw_max)
160 bt->sjw = btc->sjw_max;
161 /* bt->sjw must not be higher than tseg2 */
162 if (tseg2 < bt->sjw)
163 bt->sjw = tseg2;
166 bt->brp = best_brp;
167 /* real bit-rate */
168 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
170 return 0;
172 #else /* !CONFIG_CAN_CALC_BITTIMING */
173 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
175 dev_err(dev->dev.parent, "bit-timing calculation not available\n");
176 return -EINVAL;
178 #endif /* CONFIG_CAN_CALC_BITTIMING */
181 * Checks the validity of the specified bit-timing parameters prop_seg,
182 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
183 * prescaler value brp. You can find more information in the header
184 * file linux/can/netlink.h.
186 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
188 struct can_priv *priv = netdev_priv(dev);
189 const struct can_bittiming_const *btc = priv->bittiming_const;
190 int tseg1, alltseg;
191 u64 brp64;
193 if (!priv->bittiming_const)
194 return -ENOTSUPP;
196 tseg1 = bt->prop_seg + bt->phase_seg1;
197 if (!bt->sjw)
198 bt->sjw = 1;
199 if (bt->sjw > btc->sjw_max ||
200 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
201 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
202 return -ERANGE;
204 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
205 if (btc->brp_inc > 1)
206 do_div(brp64, btc->brp_inc);
207 brp64 += 500000000UL - 1;
208 do_div(brp64, 1000000000UL); /* the practicable BRP */
209 if (btc->brp_inc > 1)
210 brp64 *= btc->brp_inc;
211 bt->brp = (u32)brp64;
213 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
214 return -EINVAL;
216 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
217 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
218 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
220 return 0;
223 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
225 struct can_priv *priv = netdev_priv(dev);
226 int err;
228 /* Check if the CAN device has bit-timing parameters */
229 if (priv->bittiming_const) {
231 /* Non-expert mode? Check if the bitrate has been pre-defined */
232 if (!bt->tq)
233 /* Determine bit-timing parameters */
234 err = can_calc_bittiming(dev, bt);
235 else
236 /* Check bit-timing params and calculate proper brp */
237 err = can_fixup_bittiming(dev, bt);
238 if (err)
239 return err;
242 return 0;
246 * Local echo of CAN messages
248 * CAN network devices *should* support a local echo functionality
249 * (see Documentation/networking/can.txt). To test the handling of CAN
250 * interfaces that do not support the local echo both driver types are
251 * implemented. In the case that the driver does not support the echo
252 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
253 * to perform the echo as a fallback solution.
255 static void can_flush_echo_skb(struct net_device *dev)
257 struct can_priv *priv = netdev_priv(dev);
258 struct net_device_stats *stats = &dev->stats;
259 int i;
261 for (i = 0; i < priv->echo_skb_max; i++) {
262 if (priv->echo_skb[i]) {
263 kfree_skb(priv->echo_skb[i]);
264 priv->echo_skb[i] = NULL;
265 stats->tx_dropped++;
266 stats->tx_aborted_errors++;
272 * Put the skb on the stack to be looped backed locally lateron
274 * The function is typically called in the start_xmit function
275 * of the device driver. The driver must protect access to
276 * priv->echo_skb, if necessary.
278 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
279 unsigned int idx)
281 struct can_priv *priv = netdev_priv(dev);
283 BUG_ON(idx >= priv->echo_skb_max);
285 /* check flag whether this packet has to be looped back */
286 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
287 kfree_skb(skb);
288 return;
291 if (!priv->echo_skb[idx]) {
292 struct sock *srcsk = skb->sk;
294 if (atomic_read(&skb->users) != 1) {
295 struct sk_buff *old_skb = skb;
297 skb = skb_clone(old_skb, GFP_ATOMIC);
298 kfree_skb(old_skb);
299 if (!skb)
300 return;
301 } else
302 skb_orphan(skb);
304 skb->sk = srcsk;
306 /* make settings for echo to reduce code in irq context */
307 skb->protocol = htons(ETH_P_CAN);
308 skb->pkt_type = PACKET_BROADCAST;
309 skb->ip_summed = CHECKSUM_UNNECESSARY;
310 skb->dev = dev;
312 /* save this skb for tx interrupt echo handling */
313 priv->echo_skb[idx] = skb;
314 } else {
315 /* locking problem with netif_stop_queue() ?? */
316 dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
317 __func__);
318 kfree_skb(skb);
321 EXPORT_SYMBOL_GPL(can_put_echo_skb);
324 * Get the skb from the stack and loop it back locally
326 * The function is typically called when the TX done interrupt
327 * is handled in the device driver. The driver must protect
328 * access to priv->echo_skb, if necessary.
330 void can_get_echo_skb(struct net_device *dev, unsigned int idx)
332 struct can_priv *priv = netdev_priv(dev);
334 BUG_ON(idx >= priv->echo_skb_max);
336 if (priv->echo_skb[idx]) {
337 netif_rx(priv->echo_skb[idx]);
338 priv->echo_skb[idx] = NULL;
341 EXPORT_SYMBOL_GPL(can_get_echo_skb);
344 * Remove the skb from the stack and free it.
346 * The function is typically called when TX failed.
348 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
350 struct can_priv *priv = netdev_priv(dev);
352 BUG_ON(idx >= priv->echo_skb_max);
354 if (priv->echo_skb[idx]) {
355 kfree_skb(priv->echo_skb[idx]);
356 priv->echo_skb[idx] = NULL;
359 EXPORT_SYMBOL_GPL(can_free_echo_skb);
362 * CAN device restart for bus-off recovery
364 void can_restart(unsigned long data)
366 struct net_device *dev = (struct net_device *)data;
367 struct can_priv *priv = netdev_priv(dev);
368 struct net_device_stats *stats = &dev->stats;
369 struct sk_buff *skb;
370 struct can_frame *cf;
371 int err;
373 BUG_ON(netif_carrier_ok(dev));
376 * No synchronization needed because the device is bus-off and
377 * no messages can come in or go out.
379 can_flush_echo_skb(dev);
381 /* send restart message upstream */
382 skb = alloc_can_err_skb(dev, &cf);
383 if (skb == NULL) {
384 err = -ENOMEM;
385 goto restart;
387 cf->can_id |= CAN_ERR_RESTARTED;
389 netif_rx(skb);
391 stats->rx_packets++;
392 stats->rx_bytes += cf->can_dlc;
394 restart:
395 dev_dbg(dev->dev.parent, "restarted\n");
396 priv->can_stats.restarts++;
398 /* Now restart the device */
399 err = priv->do_set_mode(dev, CAN_MODE_START);
401 netif_carrier_on(dev);
402 if (err)
403 dev_err(dev->dev.parent, "Error %d during restart", err);
406 int can_restart_now(struct net_device *dev)
408 struct can_priv *priv = netdev_priv(dev);
411 * A manual restart is only permitted if automatic restart is
412 * disabled and the device is in the bus-off state
414 if (priv->restart_ms)
415 return -EINVAL;
416 if (priv->state != CAN_STATE_BUS_OFF)
417 return -EBUSY;
419 /* Runs as soon as possible in the timer context */
420 mod_timer(&priv->restart_timer, jiffies);
422 return 0;
426 * CAN bus-off
428 * This functions should be called when the device goes bus-off to
429 * tell the netif layer that no more packets can be sent or received.
430 * If enabled, a timer is started to trigger bus-off recovery.
432 void can_bus_off(struct net_device *dev)
434 struct can_priv *priv = netdev_priv(dev);
436 dev_dbg(dev->dev.parent, "bus-off\n");
438 netif_carrier_off(dev);
439 priv->can_stats.bus_off++;
441 if (priv->restart_ms)
442 mod_timer(&priv->restart_timer,
443 jiffies + (priv->restart_ms * HZ) / 1000);
445 EXPORT_SYMBOL_GPL(can_bus_off);
447 static void can_setup(struct net_device *dev)
449 dev->type = ARPHRD_CAN;
450 dev->mtu = sizeof(struct can_frame);
451 dev->hard_header_len = 0;
452 dev->addr_len = 0;
453 dev->tx_queue_len = 10;
455 /* New-style flags. */
456 dev->flags = IFF_NOARP;
457 dev->features = NETIF_F_NO_CSUM;
460 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
462 struct sk_buff *skb;
464 skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
465 if (unlikely(!skb))
466 return NULL;
468 skb->protocol = htons(ETH_P_CAN);
469 skb->pkt_type = PACKET_BROADCAST;
470 skb->ip_summed = CHECKSUM_UNNECESSARY;
471 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
472 memset(*cf, 0, sizeof(struct can_frame));
474 return skb;
476 EXPORT_SYMBOL_GPL(alloc_can_skb);
478 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
480 struct sk_buff *skb;
482 skb = alloc_can_skb(dev, cf);
483 if (unlikely(!skb))
484 return NULL;
486 (*cf)->can_id = CAN_ERR_FLAG;
487 (*cf)->can_dlc = CAN_ERR_DLC;
489 return skb;
491 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
494 * Allocate and setup space for the CAN network device
496 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
498 struct net_device *dev;
499 struct can_priv *priv;
500 int size;
502 if (echo_skb_max)
503 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
504 echo_skb_max * sizeof(struct sk_buff *);
505 else
506 size = sizeof_priv;
508 dev = alloc_netdev(size, "can%d", can_setup);
509 if (!dev)
510 return NULL;
512 priv = netdev_priv(dev);
514 if (echo_skb_max) {
515 priv->echo_skb_max = echo_skb_max;
516 priv->echo_skb = (void *)priv +
517 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
520 priv->state = CAN_STATE_STOPPED;
522 init_timer(&priv->restart_timer);
524 return dev;
526 EXPORT_SYMBOL_GPL(alloc_candev);
529 * Free space of the CAN network device
531 void free_candev(struct net_device *dev)
533 free_netdev(dev);
535 EXPORT_SYMBOL_GPL(free_candev);
538 * Common open function when the device gets opened.
540 * This function should be called in the open function of the device
541 * driver.
543 int open_candev(struct net_device *dev)
545 struct can_priv *priv = netdev_priv(dev);
547 if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
548 dev_err(dev->dev.parent, "bit-timing not yet defined\n");
549 return -EINVAL;
552 /* Switch carrier on if device was stopped while in bus-off state */
553 if (!netif_carrier_ok(dev))
554 netif_carrier_on(dev);
556 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
558 return 0;
560 EXPORT_SYMBOL_GPL(open_candev);
563 * Common close function for cleanup before the device gets closed.
565 * This function should be called in the close function of the device
566 * driver.
568 void close_candev(struct net_device *dev)
570 struct can_priv *priv = netdev_priv(dev);
572 if (del_timer_sync(&priv->restart_timer))
573 dev_put(dev);
574 can_flush_echo_skb(dev);
576 EXPORT_SYMBOL_GPL(close_candev);
579 * CAN netlink interface
581 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
582 [IFLA_CAN_STATE] = { .type = NLA_U32 },
583 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
584 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
585 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
586 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
587 [IFLA_CAN_BITTIMING_CONST]
588 = { .len = sizeof(struct can_bittiming_const) },
589 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
590 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
593 static int can_changelink(struct net_device *dev,
594 struct nlattr *tb[], struct nlattr *data[])
596 struct can_priv *priv = netdev_priv(dev);
597 int err;
599 /* We need synchronization with dev->stop() */
600 ASSERT_RTNL();
602 if (data[IFLA_CAN_CTRLMODE]) {
603 struct can_ctrlmode *cm;
605 /* Do not allow changing controller mode while running */
606 if (dev->flags & IFF_UP)
607 return -EBUSY;
608 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
609 if (cm->flags & ~priv->ctrlmode_supported)
610 return -EOPNOTSUPP;
611 priv->ctrlmode &= ~cm->mask;
612 priv->ctrlmode |= cm->flags;
615 if (data[IFLA_CAN_BITTIMING]) {
616 struct can_bittiming bt;
618 /* Do not allow changing bittiming while running */
619 if (dev->flags & IFF_UP)
620 return -EBUSY;
621 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
622 if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
623 return -EINVAL;
624 err = can_get_bittiming(dev, &bt);
625 if (err)
626 return err;
627 memcpy(&priv->bittiming, &bt, sizeof(bt));
629 if (priv->do_set_bittiming) {
630 /* Finally, set the bit-timing registers */
631 err = priv->do_set_bittiming(dev);
632 if (err)
633 return err;
637 if (data[IFLA_CAN_RESTART_MS]) {
638 /* Do not allow changing restart delay while running */
639 if (dev->flags & IFF_UP)
640 return -EBUSY;
641 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
644 if (data[IFLA_CAN_RESTART]) {
645 /* Do not allow a restart while not running */
646 if (!(dev->flags & IFF_UP))
647 return -EINVAL;
648 err = can_restart_now(dev);
649 if (err)
650 return err;
653 return 0;
656 static size_t can_get_size(const struct net_device *dev)
658 struct can_priv *priv = netdev_priv(dev);
659 size_t size;
661 size = nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
662 size += sizeof(struct can_ctrlmode); /* IFLA_CAN_CTRLMODE */
663 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
664 size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
665 size += sizeof(struct can_clock); /* IFLA_CAN_CLOCK */
666 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
667 size += sizeof(struct can_berr_counter);
668 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
669 size += sizeof(struct can_bittiming_const);
671 return size;
674 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
676 struct can_priv *priv = netdev_priv(dev);
677 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
678 struct can_berr_counter bec;
679 enum can_state state = priv->state;
681 if (priv->do_get_state)
682 priv->do_get_state(dev, &state);
683 NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
684 NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
685 NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
686 NLA_PUT(skb, IFLA_CAN_BITTIMING,
687 sizeof(priv->bittiming), &priv->bittiming);
688 NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
689 if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec))
690 NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec);
691 if (priv->bittiming_const)
692 NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
693 sizeof(*priv->bittiming_const), priv->bittiming_const);
695 return 0;
697 nla_put_failure:
698 return -EMSGSIZE;
701 static size_t can_get_xstats_size(const struct net_device *dev)
703 return sizeof(struct can_device_stats);
706 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
708 struct can_priv *priv = netdev_priv(dev);
710 NLA_PUT(skb, IFLA_INFO_XSTATS,
711 sizeof(priv->can_stats), &priv->can_stats);
713 return 0;
715 nla_put_failure:
716 return -EMSGSIZE;
719 static int can_newlink(struct net *src_net, struct net_device *dev,
720 struct nlattr *tb[], struct nlattr *data[])
722 return -EOPNOTSUPP;
725 static struct rtnl_link_ops can_link_ops __read_mostly = {
726 .kind = "can",
727 .maxtype = IFLA_CAN_MAX,
728 .policy = can_policy,
729 .setup = can_setup,
730 .newlink = can_newlink,
731 .changelink = can_changelink,
732 .get_size = can_get_size,
733 .fill_info = can_fill_info,
734 .get_xstats_size = can_get_xstats_size,
735 .fill_xstats = can_fill_xstats,
739 * Register the CAN network device
741 int register_candev(struct net_device *dev)
743 dev->rtnl_link_ops = &can_link_ops;
744 return register_netdev(dev);
746 EXPORT_SYMBOL_GPL(register_candev);
749 * Unregister the CAN network device
751 void unregister_candev(struct net_device *dev)
753 unregister_netdev(dev);
755 EXPORT_SYMBOL_GPL(unregister_candev);
757 static __init int can_dev_init(void)
759 int err;
761 err = rtnl_link_register(&can_link_ops);
762 if (!err)
763 printk(KERN_INFO MOD_DESC "\n");
765 return err;
767 module_init(can_dev_init);
769 static __exit void can_dev_exit(void)
771 rtnl_link_unregister(&can_link_ops);
773 module_exit(can_dev_exit);
775 MODULE_ALIAS_RTNL_LINK("can");