Linux 3.3.7
[zen-stable.git] / net / socket.c
blob0de41311956744733b5f38e7b86793b1c6cce145
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use);
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
215 int err;
216 int len;
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
235 return __put_user(klen, ulen);
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 static struct inode *sock_alloc_inode(struct super_block *sb)
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static int init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
324 static struct vfsmount *sock_mnt __read_mostly;
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
365 path.mnt = mntget(sock_mnt);
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
385 *f = file;
386 return fd;
389 int sock_map_fd(struct socket *sock, int flags)
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
397 return fd;
399 EXPORT_SYMBOL(sock_map_fd);
401 static struct socket *sock_from_file(struct file *file, int *err)
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
406 *err = -ENOTSOCK;
407 return NULL;
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
420 * On a success the socket object pointer is returned.
423 struct socket *sockfd_lookup(int fd, int *err)
425 struct file *file;
426 struct socket *sock;
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
439 EXPORT_SYMBOL(sockfd_lookup);
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
443 struct file *file;
444 struct socket *sock;
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
454 return NULL;
458 * sock_alloc - allocate a socket
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
465 static struct socket *sock_alloc(void)
467 struct inode *inode;
468 struct socket *sock;
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
474 sock = SOCKET_I(inode);
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
482 percpu_add(sockets_in_use, 1);
483 return sock;
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
494 return -ENXIO;
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
504 * sock_release - close a socket
505 * @sock: socket to close
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
512 void sock_release(struct socket *sock)
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
525 percpu_sub(sockets_in_use, 1);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
530 sock->file = NULL;
532 EXPORT_SYMBOL(sock_release);
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
536 *tx_flags = 0;
537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 *tx_flags |= SKBTX_HW_TSTAMP;
539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 *tx_flags |= SKBTX_SW_TSTAMP;
541 if (sock_flag(sk, SOCK_WIFI_STATUS))
542 *tx_flags |= SKBTX_WIFI_STATUS;
543 return 0;
545 EXPORT_SYMBOL(sock_tx_timestamp);
547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
552 sock_update_classid(sock->sk);
554 sock_update_netprioidx(sock->sk);
556 si->sock = sock;
557 si->scm = NULL;
558 si->msg = msg;
559 si->size = size;
561 return sock->ops->sendmsg(iocb, sock, msg, size);
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
567 int err = security_socket_sendmsg(sock, msg, size);
569 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
572 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
574 struct kiocb iocb;
575 struct sock_iocb siocb;
576 int ret;
578 init_sync_kiocb(&iocb, NULL);
579 iocb.private = &siocb;
580 ret = __sock_sendmsg(&iocb, sock, msg, size);
581 if (-EIOCBQUEUED == ret)
582 ret = wait_on_sync_kiocb(&iocb);
583 return ret;
585 EXPORT_SYMBOL(sock_sendmsg);
587 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
589 struct kiocb iocb;
590 struct sock_iocb siocb;
591 int ret;
593 init_sync_kiocb(&iocb, NULL);
594 iocb.private = &siocb;
595 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
596 if (-EIOCBQUEUED == ret)
597 ret = wait_on_sync_kiocb(&iocb);
598 return ret;
601 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
602 struct kvec *vec, size_t num, size_t size)
604 mm_segment_t oldfs = get_fs();
605 int result;
607 set_fs(KERNEL_DS);
609 * the following is safe, since for compiler definitions of kvec and
610 * iovec are identical, yielding the same in-core layout and alignment
612 msg->msg_iov = (struct iovec *)vec;
613 msg->msg_iovlen = num;
614 result = sock_sendmsg(sock, msg, size);
615 set_fs(oldfs);
616 return result;
618 EXPORT_SYMBOL(kernel_sendmsg);
620 static int ktime2ts(ktime_t kt, struct timespec *ts)
622 if (kt.tv64) {
623 *ts = ktime_to_timespec(kt);
624 return 1;
625 } else {
626 return 0;
631 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
633 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
634 struct sk_buff *skb)
636 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
637 struct timespec ts[3];
638 int empty = 1;
639 struct skb_shared_hwtstamps *shhwtstamps =
640 skb_hwtstamps(skb);
642 /* Race occurred between timestamp enabling and packet
643 receiving. Fill in the current time for now. */
644 if (need_software_tstamp && skb->tstamp.tv64 == 0)
645 __net_timestamp(skb);
647 if (need_software_tstamp) {
648 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
649 struct timeval tv;
650 skb_get_timestamp(skb, &tv);
651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
652 sizeof(tv), &tv);
653 } else {
654 skb_get_timestampns(skb, &ts[0]);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
656 sizeof(ts[0]), &ts[0]);
661 memset(ts, 0, sizeof(ts));
662 if (skb->tstamp.tv64 &&
663 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
664 skb_get_timestampns(skb, ts + 0);
665 empty = 0;
667 if (shhwtstamps) {
668 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
669 ktime2ts(shhwtstamps->syststamp, ts + 1))
670 empty = 0;
671 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
672 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
673 empty = 0;
675 if (!empty)
676 put_cmsg(msg, SOL_SOCKET,
677 SCM_TIMESTAMPING, sizeof(ts), &ts);
679 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
681 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
682 struct sk_buff *skb)
684 int ack;
686 if (!sock_flag(sk, SOCK_WIFI_STATUS))
687 return;
688 if (!skb->wifi_acked_valid)
689 return;
691 ack = skb->wifi_acked;
693 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
695 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
697 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
698 struct sk_buff *skb)
700 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
701 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
702 sizeof(__u32), &skb->dropcount);
705 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
708 sock_recv_timestamp(msg, sk, skb);
709 sock_recv_drops(msg, sk, skb);
711 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
713 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
714 struct msghdr *msg, size_t size, int flags)
716 struct sock_iocb *si = kiocb_to_siocb(iocb);
718 sock_update_classid(sock->sk);
720 si->sock = sock;
721 si->scm = NULL;
722 si->msg = msg;
723 si->size = size;
724 si->flags = flags;
726 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
729 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
730 struct msghdr *msg, size_t size, int flags)
732 int err = security_socket_recvmsg(sock, msg, size, flags);
734 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
737 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
738 size_t size, int flags)
740 struct kiocb iocb;
741 struct sock_iocb siocb;
742 int ret;
744 init_sync_kiocb(&iocb, NULL);
745 iocb.private = &siocb;
746 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
747 if (-EIOCBQUEUED == ret)
748 ret = wait_on_sync_kiocb(&iocb);
749 return ret;
751 EXPORT_SYMBOL(sock_recvmsg);
753 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
754 size_t size, int flags)
756 struct kiocb iocb;
757 struct sock_iocb siocb;
758 int ret;
760 init_sync_kiocb(&iocb, NULL);
761 iocb.private = &siocb;
762 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
763 if (-EIOCBQUEUED == ret)
764 ret = wait_on_sync_kiocb(&iocb);
765 return ret;
769 * kernel_recvmsg - Receive a message from a socket (kernel space)
770 * @sock: The socket to receive the message from
771 * @msg: Received message
772 * @vec: Input s/g array for message data
773 * @num: Size of input s/g array
774 * @size: Number of bytes to read
775 * @flags: Message flags (MSG_DONTWAIT, etc...)
777 * On return the msg structure contains the scatter/gather array passed in the
778 * vec argument. The array is modified so that it consists of the unfilled
779 * portion of the original array.
781 * The returned value is the total number of bytes received, or an error.
783 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
784 struct kvec *vec, size_t num, size_t size, int flags)
786 mm_segment_t oldfs = get_fs();
787 int result;
789 set_fs(KERNEL_DS);
791 * the following is safe, since for compiler definitions of kvec and
792 * iovec are identical, yielding the same in-core layout and alignment
794 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
795 result = sock_recvmsg(sock, msg, size, flags);
796 set_fs(oldfs);
797 return result;
799 EXPORT_SYMBOL(kernel_recvmsg);
801 static void sock_aio_dtor(struct kiocb *iocb)
803 kfree(iocb->private);
806 static ssize_t sock_sendpage(struct file *file, struct page *page,
807 int offset, size_t size, loff_t *ppos, int more)
809 struct socket *sock;
810 int flags;
812 sock = file->private_data;
814 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
815 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
816 flags |= more;
818 return kernel_sendpage(sock, page, offset, size, flags);
821 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
822 struct pipe_inode_info *pipe, size_t len,
823 unsigned int flags)
825 struct socket *sock = file->private_data;
827 if (unlikely(!sock->ops->splice_read))
828 return -EINVAL;
830 sock_update_classid(sock->sk);
832 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
835 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
836 struct sock_iocb *siocb)
838 if (!is_sync_kiocb(iocb)) {
839 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
840 if (!siocb)
841 return NULL;
842 iocb->ki_dtor = sock_aio_dtor;
845 siocb->kiocb = iocb;
846 iocb->private = siocb;
847 return siocb;
850 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
851 struct file *file, const struct iovec *iov,
852 unsigned long nr_segs)
854 struct socket *sock = file->private_data;
855 size_t size = 0;
856 int i;
858 for (i = 0; i < nr_segs; i++)
859 size += iov[i].iov_len;
861 msg->msg_name = NULL;
862 msg->msg_namelen = 0;
863 msg->msg_control = NULL;
864 msg->msg_controllen = 0;
865 msg->msg_iov = (struct iovec *)iov;
866 msg->msg_iovlen = nr_segs;
867 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
872 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
875 struct sock_iocb siocb, *x;
877 if (pos != 0)
878 return -ESPIPE;
880 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
881 return 0;
884 x = alloc_sock_iocb(iocb, &siocb);
885 if (!x)
886 return -ENOMEM;
887 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
890 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
891 struct file *file, const struct iovec *iov,
892 unsigned long nr_segs)
894 struct socket *sock = file->private_data;
895 size_t size = 0;
896 int i;
898 for (i = 0; i < nr_segs; i++)
899 size += iov[i].iov_len;
901 msg->msg_name = NULL;
902 msg->msg_namelen = 0;
903 msg->msg_control = NULL;
904 msg->msg_controllen = 0;
905 msg->msg_iov = (struct iovec *)iov;
906 msg->msg_iovlen = nr_segs;
907 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
908 if (sock->type == SOCK_SEQPACKET)
909 msg->msg_flags |= MSG_EOR;
911 return __sock_sendmsg(iocb, sock, msg, size);
914 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
915 unsigned long nr_segs, loff_t pos)
917 struct sock_iocb siocb, *x;
919 if (pos != 0)
920 return -ESPIPE;
922 x = alloc_sock_iocb(iocb, &siocb);
923 if (!x)
924 return -ENOMEM;
926 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
930 * Atomic setting of ioctl hooks to avoid race
931 * with module unload.
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
939 mutex_lock(&br_ioctl_mutex);
940 br_ioctl_hook = hook;
941 mutex_unlock(&br_ioctl_mutex);
943 EXPORT_SYMBOL(brioctl_set);
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
950 mutex_lock(&vlan_ioctl_mutex);
951 vlan_ioctl_hook = hook;
952 mutex_unlock(&vlan_ioctl_mutex);
954 EXPORT_SYMBOL(vlan_ioctl_set);
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
961 mutex_lock(&dlci_ioctl_mutex);
962 dlci_ioctl_hook = hook;
963 mutex_unlock(&dlci_ioctl_mutex);
965 EXPORT_SYMBOL(dlci_ioctl_set);
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 unsigned int cmd, unsigned long arg)
970 int err;
971 void __user *argp = (void __user *)arg;
973 err = sock->ops->ioctl(sock, cmd, arg);
976 * If this ioctl is unknown try to hand it down
977 * to the NIC driver.
979 if (err == -ENOIOCTLCMD)
980 err = dev_ioctl(net, cmd, argp);
982 return err;
986 * With an ioctl, arg may well be a user mode pointer, but we don't know
987 * what to do with it - that's up to the protocol still.
990 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
992 struct socket *sock;
993 struct sock *sk;
994 void __user *argp = (void __user *)arg;
995 int pid, err;
996 struct net *net;
998 sock = file->private_data;
999 sk = sock->sk;
1000 net = sock_net(sk);
1001 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1002 err = dev_ioctl(net, cmd, argp);
1003 } else
1004 #ifdef CONFIG_WEXT_CORE
1005 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1006 err = dev_ioctl(net, cmd, argp);
1007 } else
1008 #endif
1009 switch (cmd) {
1010 case FIOSETOWN:
1011 case SIOCSPGRP:
1012 err = -EFAULT;
1013 if (get_user(pid, (int __user *)argp))
1014 break;
1015 err = f_setown(sock->file, pid, 1);
1016 break;
1017 case FIOGETOWN:
1018 case SIOCGPGRP:
1019 err = put_user(f_getown(sock->file),
1020 (int __user *)argp);
1021 break;
1022 case SIOCGIFBR:
1023 case SIOCSIFBR:
1024 case SIOCBRADDBR:
1025 case SIOCBRDELBR:
1026 err = -ENOPKG;
1027 if (!br_ioctl_hook)
1028 request_module("bridge");
1030 mutex_lock(&br_ioctl_mutex);
1031 if (br_ioctl_hook)
1032 err = br_ioctl_hook(net, cmd, argp);
1033 mutex_unlock(&br_ioctl_mutex);
1034 break;
1035 case SIOCGIFVLAN:
1036 case SIOCSIFVLAN:
1037 err = -ENOPKG;
1038 if (!vlan_ioctl_hook)
1039 request_module("8021q");
1041 mutex_lock(&vlan_ioctl_mutex);
1042 if (vlan_ioctl_hook)
1043 err = vlan_ioctl_hook(net, argp);
1044 mutex_unlock(&vlan_ioctl_mutex);
1045 break;
1046 case SIOCADDDLCI:
1047 case SIOCDELDLCI:
1048 err = -ENOPKG;
1049 if (!dlci_ioctl_hook)
1050 request_module("dlci");
1052 mutex_lock(&dlci_ioctl_mutex);
1053 if (dlci_ioctl_hook)
1054 err = dlci_ioctl_hook(cmd, argp);
1055 mutex_unlock(&dlci_ioctl_mutex);
1056 break;
1057 default:
1058 err = sock_do_ioctl(net, sock, cmd, arg);
1059 break;
1061 return err;
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1066 int err;
1067 struct socket *sock = NULL;
1069 err = security_socket_create(family, type, protocol, 1);
1070 if (err)
1071 goto out;
1073 sock = sock_alloc();
1074 if (!sock) {
1075 err = -ENOMEM;
1076 goto out;
1079 sock->type = type;
1080 err = security_socket_post_create(sock, family, type, protocol, 1);
1081 if (err)
1082 goto out_release;
1084 out:
1085 *res = sock;
1086 return err;
1087 out_release:
1088 sock_release(sock);
1089 sock = NULL;
1090 goto out;
1092 EXPORT_SYMBOL(sock_create_lite);
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1097 struct socket *sock;
1100 * We can't return errors to poll, so it's either yes or no.
1102 sock = file->private_data;
1103 return sock->ops->poll(file, sock, wait);
1106 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1108 struct socket *sock = file->private_data;
1110 return sock->ops->mmap(file, sock, vma);
1113 static int sock_close(struct inode *inode, struct file *filp)
1116 * It was possible the inode is NULL we were
1117 * closing an unfinished socket.
1120 if (!inode) {
1121 printk(KERN_DEBUG "sock_close: NULL inode\n");
1122 return 0;
1124 sock_release(SOCKET_I(inode));
1125 return 0;
1129 * Update the socket async list
1131 * Fasync_list locking strategy.
1133 * 1. fasync_list is modified only under process context socket lock
1134 * i.e. under semaphore.
1135 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1136 * or under socket lock
1139 static int sock_fasync(int fd, struct file *filp, int on)
1141 struct socket *sock = filp->private_data;
1142 struct sock *sk = sock->sk;
1143 struct socket_wq *wq;
1145 if (sk == NULL)
1146 return -EINVAL;
1148 lock_sock(sk);
1149 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1150 fasync_helper(fd, filp, on, &wq->fasync_list);
1152 if (!wq->fasync_list)
1153 sock_reset_flag(sk, SOCK_FASYNC);
1154 else
1155 sock_set_flag(sk, SOCK_FASYNC);
1157 release_sock(sk);
1158 return 0;
1161 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1163 int sock_wake_async(struct socket *sock, int how, int band)
1165 struct socket_wq *wq;
1167 if (!sock)
1168 return -1;
1169 rcu_read_lock();
1170 wq = rcu_dereference(sock->wq);
1171 if (!wq || !wq->fasync_list) {
1172 rcu_read_unlock();
1173 return -1;
1175 switch (how) {
1176 case SOCK_WAKE_WAITD:
1177 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1178 break;
1179 goto call_kill;
1180 case SOCK_WAKE_SPACE:
1181 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1182 break;
1183 /* fall through */
1184 case SOCK_WAKE_IO:
1185 call_kill:
1186 kill_fasync(&wq->fasync_list, SIGIO, band);
1187 break;
1188 case SOCK_WAKE_URG:
1189 kill_fasync(&wq->fasync_list, SIGURG, band);
1191 rcu_read_unlock();
1192 return 0;
1194 EXPORT_SYMBOL(sock_wake_async);
1196 int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1204 * Check protocol is in range
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1211 /* Compatibility.
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1223 family = PF_PACKET;
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1235 sock = sock_alloc();
1236 if (!sock) {
1237 if (net_ratelimit())
1238 printk(KERN_WARNING "socket: no more sockets\n");
1239 return -ENFILE; /* Not exactly a match, but its the
1240 closest posix thing */
1243 sock->type = type;
1245 #ifdef CONFIG_MODULES
1246 /* Attempt to load a protocol module if the find failed.
1248 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1249 * requested real, full-featured networking support upon configuration.
1250 * Otherwise module support will break!
1252 if (rcu_access_pointer(net_families[family]) == NULL)
1253 request_module("net-pf-%d", family);
1254 #endif
1256 rcu_read_lock();
1257 pf = rcu_dereference(net_families[family]);
1258 err = -EAFNOSUPPORT;
1259 if (!pf)
1260 goto out_release;
1263 * We will call the ->create function, that possibly is in a loadable
1264 * module, so we have to bump that loadable module refcnt first.
1266 if (!try_module_get(pf->owner))
1267 goto out_release;
1269 /* Now protected by module ref count */
1270 rcu_read_unlock();
1272 err = pf->create(net, sock, protocol, kern);
1273 if (err < 0)
1274 goto out_module_put;
1277 * Now to bump the refcnt of the [loadable] module that owns this
1278 * socket at sock_release time we decrement its refcnt.
1280 if (!try_module_get(sock->ops->owner))
1281 goto out_module_busy;
1284 * Now that we're done with the ->create function, the [loadable]
1285 * module can have its refcnt decremented
1287 module_put(pf->owner);
1288 err = security_socket_post_create(sock, family, type, protocol, kern);
1289 if (err)
1290 goto out_sock_release;
1291 *res = sock;
1293 return 0;
1295 out_module_busy:
1296 err = -EAFNOSUPPORT;
1297 out_module_put:
1298 sock->ops = NULL;
1299 module_put(pf->owner);
1300 out_sock_release:
1301 sock_release(sock);
1302 return err;
1304 out_release:
1305 rcu_read_unlock();
1306 goto out_sock_release;
1308 EXPORT_SYMBOL(__sock_create);
1310 int sock_create(int family, int type, int protocol, struct socket **res)
1312 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1314 EXPORT_SYMBOL(sock_create);
1316 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1318 return __sock_create(&init_net, family, type, protocol, res, 1);
1320 EXPORT_SYMBOL(sock_create_kern);
1322 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1324 int retval;
1325 struct socket *sock;
1326 int flags;
1328 /* Check the SOCK_* constants for consistency. */
1329 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1330 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1331 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1332 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1334 flags = type & ~SOCK_TYPE_MASK;
1335 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1336 return -EINVAL;
1337 type &= SOCK_TYPE_MASK;
1339 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1340 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1342 retval = sock_create(family, type, protocol, &sock);
1343 if (retval < 0)
1344 goto out;
1346 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1347 if (retval < 0)
1348 goto out_release;
1350 out:
1351 /* It may be already another descriptor 8) Not kernel problem. */
1352 return retval;
1354 out_release:
1355 sock_release(sock);
1356 return retval;
1360 * Create a pair of connected sockets.
1363 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1364 int __user *, usockvec)
1366 struct socket *sock1, *sock2;
1367 int fd1, fd2, err;
1368 struct file *newfile1, *newfile2;
1369 int flags;
1371 flags = type & ~SOCK_TYPE_MASK;
1372 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1373 return -EINVAL;
1374 type &= SOCK_TYPE_MASK;
1376 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1377 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1380 * Obtain the first socket and check if the underlying protocol
1381 * supports the socketpair call.
1384 err = sock_create(family, type, protocol, &sock1);
1385 if (err < 0)
1386 goto out;
1388 err = sock_create(family, type, protocol, &sock2);
1389 if (err < 0)
1390 goto out_release_1;
1392 err = sock1->ops->socketpair(sock1, sock2);
1393 if (err < 0)
1394 goto out_release_both;
1396 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1397 if (unlikely(fd1 < 0)) {
1398 err = fd1;
1399 goto out_release_both;
1402 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1403 if (unlikely(fd2 < 0)) {
1404 err = fd2;
1405 fput(newfile1);
1406 put_unused_fd(fd1);
1407 sock_release(sock2);
1408 goto out;
1411 audit_fd_pair(fd1, fd2);
1412 fd_install(fd1, newfile1);
1413 fd_install(fd2, newfile2);
1414 /* fd1 and fd2 may be already another descriptors.
1415 * Not kernel problem.
1418 err = put_user(fd1, &usockvec[0]);
1419 if (!err)
1420 err = put_user(fd2, &usockvec[1]);
1421 if (!err)
1422 return 0;
1424 sys_close(fd2);
1425 sys_close(fd1);
1426 return err;
1428 out_release_both:
1429 sock_release(sock2);
1430 out_release_1:
1431 sock_release(sock1);
1432 out:
1433 return err;
1437 * Bind a name to a socket. Nothing much to do here since it's
1438 * the protocol's responsibility to handle the local address.
1440 * We move the socket address to kernel space before we call
1441 * the protocol layer (having also checked the address is ok).
1444 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1446 struct socket *sock;
1447 struct sockaddr_storage address;
1448 int err, fput_needed;
1450 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 if (sock) {
1452 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1453 if (err >= 0) {
1454 err = security_socket_bind(sock,
1455 (struct sockaddr *)&address,
1456 addrlen);
1457 if (!err)
1458 err = sock->ops->bind(sock,
1459 (struct sockaddr *)
1460 &address, addrlen);
1462 fput_light(sock->file, fput_needed);
1464 return err;
1468 * Perform a listen. Basically, we allow the protocol to do anything
1469 * necessary for a listen, and if that works, we mark the socket as
1470 * ready for listening.
1473 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1475 struct socket *sock;
1476 int err, fput_needed;
1477 int somaxconn;
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (sock) {
1481 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1482 if ((unsigned)backlog > somaxconn)
1483 backlog = somaxconn;
1485 err = security_socket_listen(sock, backlog);
1486 if (!err)
1487 err = sock->ops->listen(sock, backlog);
1489 fput_light(sock->file, fput_needed);
1491 return err;
1495 * For accept, we attempt to create a new socket, set up the link
1496 * with the client, wake up the client, then return the new
1497 * connected fd. We collect the address of the connector in kernel
1498 * space and move it to user at the very end. This is unclean because
1499 * we open the socket then return an error.
1501 * 1003.1g adds the ability to recvmsg() to query connection pending
1502 * status to recvmsg. We need to add that support in a way thats
1503 * clean when we restucture accept also.
1506 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1507 int __user *, upeer_addrlen, int, flags)
1509 struct socket *sock, *newsock;
1510 struct file *newfile;
1511 int err, len, newfd, fput_needed;
1512 struct sockaddr_storage address;
1514 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1515 return -EINVAL;
1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1520 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1521 if (!sock)
1522 goto out;
1524 err = -ENFILE;
1525 newsock = sock_alloc();
1526 if (!newsock)
1527 goto out_put;
1529 newsock->type = sock->type;
1530 newsock->ops = sock->ops;
1533 * We don't need try_module_get here, as the listening socket (sock)
1534 * has the protocol module (sock->ops->owner) held.
1536 __module_get(newsock->ops->owner);
1538 newfd = sock_alloc_file(newsock, &newfile, flags);
1539 if (unlikely(newfd < 0)) {
1540 err = newfd;
1541 sock_release(newsock);
1542 goto out_put;
1545 err = security_socket_accept(sock, newsock);
1546 if (err)
1547 goto out_fd;
1549 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1550 if (err < 0)
1551 goto out_fd;
1553 if (upeer_sockaddr) {
1554 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1555 &len, 2) < 0) {
1556 err = -ECONNABORTED;
1557 goto out_fd;
1559 err = move_addr_to_user((struct sockaddr *)&address,
1560 len, upeer_sockaddr, upeer_addrlen);
1561 if (err < 0)
1562 goto out_fd;
1565 /* File flags are not inherited via accept() unlike another OSes. */
1567 fd_install(newfd, newfile);
1568 err = newfd;
1570 out_put:
1571 fput_light(sock->file, fput_needed);
1572 out:
1573 return err;
1574 out_fd:
1575 fput(newfile);
1576 put_unused_fd(newfd);
1577 goto out_put;
1580 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1581 int __user *, upeer_addrlen)
1583 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1587 * Attempt to connect to a socket with the server address. The address
1588 * is in user space so we verify it is OK and move it to kernel space.
1590 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1591 * break bindings
1593 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1594 * other SEQPACKET protocols that take time to connect() as it doesn't
1595 * include the -EINPROGRESS status for such sockets.
1598 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1599 int, addrlen)
1601 struct socket *sock;
1602 struct sockaddr_storage address;
1603 int err, fput_needed;
1605 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 if (!sock)
1607 goto out;
1608 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1609 if (err < 0)
1610 goto out_put;
1612 err =
1613 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1614 if (err)
1615 goto out_put;
1617 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1618 sock->file->f_flags);
1619 out_put:
1620 fput_light(sock->file, fput_needed);
1621 out:
1622 return err;
1626 * Get the local address ('name') of a socket object. Move the obtained
1627 * name to user space.
1630 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1631 int __user *, usockaddr_len)
1633 struct socket *sock;
1634 struct sockaddr_storage address;
1635 int len, err, fput_needed;
1637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1638 if (!sock)
1639 goto out;
1641 err = security_socket_getsockname(sock);
1642 if (err)
1643 goto out_put;
1645 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1646 if (err)
1647 goto out_put;
1648 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1650 out_put:
1651 fput_light(sock->file, fput_needed);
1652 out:
1653 return err;
1657 * Get the remote address ('name') of a socket object. Move the obtained
1658 * name to user space.
1661 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1662 int __user *, usockaddr_len)
1664 struct socket *sock;
1665 struct sockaddr_storage address;
1666 int len, err, fput_needed;
1668 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1669 if (sock != NULL) {
1670 err = security_socket_getpeername(sock);
1671 if (err) {
1672 fput_light(sock->file, fput_needed);
1673 return err;
1676 err =
1677 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1679 if (!err)
1680 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1681 usockaddr_len);
1682 fput_light(sock->file, fput_needed);
1684 return err;
1688 * Send a datagram to a given address. We move the address into kernel
1689 * space and check the user space data area is readable before invoking
1690 * the protocol.
1693 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1694 unsigned, flags, struct sockaddr __user *, addr,
1695 int, addr_len)
1697 struct socket *sock;
1698 struct sockaddr_storage address;
1699 int err;
1700 struct msghdr msg;
1701 struct iovec iov;
1702 int fput_needed;
1704 if (len > INT_MAX)
1705 len = INT_MAX;
1706 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707 if (!sock)
1708 goto out;
1710 iov.iov_base = buff;
1711 iov.iov_len = len;
1712 msg.msg_name = NULL;
1713 msg.msg_iov = &iov;
1714 msg.msg_iovlen = 1;
1715 msg.msg_control = NULL;
1716 msg.msg_controllen = 0;
1717 msg.msg_namelen = 0;
1718 if (addr) {
1719 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1720 if (err < 0)
1721 goto out_put;
1722 msg.msg_name = (struct sockaddr *)&address;
1723 msg.msg_namelen = addr_len;
1725 if (sock->file->f_flags & O_NONBLOCK)
1726 flags |= MSG_DONTWAIT;
1727 msg.msg_flags = flags;
1728 err = sock_sendmsg(sock, &msg, len);
1730 out_put:
1731 fput_light(sock->file, fput_needed);
1732 out:
1733 return err;
1737 * Send a datagram down a socket.
1740 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1741 unsigned, flags)
1743 return sys_sendto(fd, buff, len, flags, NULL, 0);
1747 * Receive a frame from the socket and optionally record the address of the
1748 * sender. We verify the buffers are writable and if needed move the
1749 * sender address from kernel to user space.
1752 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1753 unsigned, flags, struct sockaddr __user *, addr,
1754 int __user *, addr_len)
1756 struct socket *sock;
1757 struct iovec iov;
1758 struct msghdr msg;
1759 struct sockaddr_storage address;
1760 int err, err2;
1761 int fput_needed;
1763 if (size > INT_MAX)
1764 size = INT_MAX;
1765 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1766 if (!sock)
1767 goto out;
1769 msg.msg_control = NULL;
1770 msg.msg_controllen = 0;
1771 msg.msg_iovlen = 1;
1772 msg.msg_iov = &iov;
1773 iov.iov_len = size;
1774 iov.iov_base = ubuf;
1775 msg.msg_name = (struct sockaddr *)&address;
1776 msg.msg_namelen = sizeof(address);
1777 if (sock->file->f_flags & O_NONBLOCK)
1778 flags |= MSG_DONTWAIT;
1779 err = sock_recvmsg(sock, &msg, size, flags);
1781 if (err >= 0 && addr != NULL) {
1782 err2 = move_addr_to_user((struct sockaddr *)&address,
1783 msg.msg_namelen, addr, addr_len);
1784 if (err2 < 0)
1785 err = err2;
1788 fput_light(sock->file, fput_needed);
1789 out:
1790 return err;
1794 * Receive a datagram from a socket.
1797 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1798 unsigned flags)
1800 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1804 * Set a socket option. Because we don't know the option lengths we have
1805 * to pass the user mode parameter for the protocols to sort out.
1808 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1809 char __user *, optval, int, optlen)
1811 int err, fput_needed;
1812 struct socket *sock;
1814 if (optlen < 0)
1815 return -EINVAL;
1817 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 if (sock != NULL) {
1819 err = security_socket_setsockopt(sock, level, optname);
1820 if (err)
1821 goto out_put;
1823 if (level == SOL_SOCKET)
1824 err =
1825 sock_setsockopt(sock, level, optname, optval,
1826 optlen);
1827 else
1828 err =
1829 sock->ops->setsockopt(sock, level, optname, optval,
1830 optlen);
1831 out_put:
1832 fput_light(sock->file, fput_needed);
1834 return err;
1838 * Get a socket option. Because we don't know the option lengths we have
1839 * to pass a user mode parameter for the protocols to sort out.
1842 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1843 char __user *, optval, int __user *, optlen)
1845 int err, fput_needed;
1846 struct socket *sock;
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (sock != NULL) {
1850 err = security_socket_getsockopt(sock, level, optname);
1851 if (err)
1852 goto out_put;
1854 if (level == SOL_SOCKET)
1855 err =
1856 sock_getsockopt(sock, level, optname, optval,
1857 optlen);
1858 else
1859 err =
1860 sock->ops->getsockopt(sock, level, optname, optval,
1861 optlen);
1862 out_put:
1863 fput_light(sock->file, fput_needed);
1865 return err;
1869 * Shutdown a socket.
1872 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1874 int err, fput_needed;
1875 struct socket *sock;
1877 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1878 if (sock != NULL) {
1879 err = security_socket_shutdown(sock, how);
1880 if (!err)
1881 err = sock->ops->shutdown(sock, how);
1882 fput_light(sock->file, fput_needed);
1884 return err;
1887 /* A couple of helpful macros for getting the address of the 32/64 bit
1888 * fields which are the same type (int / unsigned) on our platforms.
1890 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1891 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1892 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1894 struct used_address {
1895 struct sockaddr_storage name;
1896 unsigned int name_len;
1899 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1900 struct msghdr *msg_sys, unsigned flags,
1901 struct used_address *used_address)
1903 struct compat_msghdr __user *msg_compat =
1904 (struct compat_msghdr __user *)msg;
1905 struct sockaddr_storage address;
1906 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1907 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1908 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1909 /* 20 is size of ipv6_pktinfo */
1910 unsigned char *ctl_buf = ctl;
1911 int err, ctl_len, iov_size, total_len;
1913 err = -EFAULT;
1914 if (MSG_CMSG_COMPAT & flags) {
1915 if (get_compat_msghdr(msg_sys, msg_compat))
1916 return -EFAULT;
1917 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1918 return -EFAULT;
1920 /* do not move before msg_sys is valid */
1921 err = -EMSGSIZE;
1922 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1923 goto out;
1925 /* Check whether to allocate the iovec area */
1926 err = -ENOMEM;
1927 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1928 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1929 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 if (!iov)
1931 goto out;
1934 /* This will also move the address data into kernel space */
1935 if (MSG_CMSG_COMPAT & flags) {
1936 err = verify_compat_iovec(msg_sys, iov,
1937 (struct sockaddr *)&address,
1938 VERIFY_READ);
1939 } else
1940 err = verify_iovec(msg_sys, iov,
1941 (struct sockaddr *)&address,
1942 VERIFY_READ);
1943 if (err < 0)
1944 goto out_freeiov;
1945 total_len = err;
1947 err = -ENOBUFS;
1949 if (msg_sys->msg_controllen > INT_MAX)
1950 goto out_freeiov;
1951 ctl_len = msg_sys->msg_controllen;
1952 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1953 err =
1954 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1955 sizeof(ctl));
1956 if (err)
1957 goto out_freeiov;
1958 ctl_buf = msg_sys->msg_control;
1959 ctl_len = msg_sys->msg_controllen;
1960 } else if (ctl_len) {
1961 if (ctl_len > sizeof(ctl)) {
1962 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1963 if (ctl_buf == NULL)
1964 goto out_freeiov;
1966 err = -EFAULT;
1968 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1969 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1970 * checking falls down on this.
1972 if (copy_from_user(ctl_buf,
1973 (void __user __force *)msg_sys->msg_control,
1974 ctl_len))
1975 goto out_freectl;
1976 msg_sys->msg_control = ctl_buf;
1978 msg_sys->msg_flags = flags;
1980 if (sock->file->f_flags & O_NONBLOCK)
1981 msg_sys->msg_flags |= MSG_DONTWAIT;
1983 * If this is sendmmsg() and current destination address is same as
1984 * previously succeeded address, omit asking LSM's decision.
1985 * used_address->name_len is initialized to UINT_MAX so that the first
1986 * destination address never matches.
1988 if (used_address && msg_sys->msg_name &&
1989 used_address->name_len == msg_sys->msg_namelen &&
1990 !memcmp(&used_address->name, msg_sys->msg_name,
1991 used_address->name_len)) {
1992 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1993 goto out_freectl;
1995 err = sock_sendmsg(sock, msg_sys, total_len);
1997 * If this is sendmmsg() and sending to current destination address was
1998 * successful, remember it.
2000 if (used_address && err >= 0) {
2001 used_address->name_len = msg_sys->msg_namelen;
2002 if (msg_sys->msg_name)
2003 memcpy(&used_address->name, msg_sys->msg_name,
2004 used_address->name_len);
2007 out_freectl:
2008 if (ctl_buf != ctl)
2009 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2010 out_freeiov:
2011 if (iov != iovstack)
2012 sock_kfree_s(sock->sk, iov, iov_size);
2013 out:
2014 return err;
2018 * BSD sendmsg interface
2021 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2023 int fput_needed, err;
2024 struct msghdr msg_sys;
2025 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2027 if (!sock)
2028 goto out;
2030 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2032 fput_light(sock->file, fput_needed);
2033 out:
2034 return err;
2038 * Linux sendmmsg interface
2041 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2042 unsigned int flags)
2044 int fput_needed, err, datagrams;
2045 struct socket *sock;
2046 struct mmsghdr __user *entry;
2047 struct compat_mmsghdr __user *compat_entry;
2048 struct msghdr msg_sys;
2049 struct used_address used_address;
2051 if (vlen > UIO_MAXIOV)
2052 vlen = UIO_MAXIOV;
2054 datagrams = 0;
2056 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 if (!sock)
2058 return err;
2060 used_address.name_len = UINT_MAX;
2061 entry = mmsg;
2062 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2063 err = 0;
2065 while (datagrams < vlen) {
2066 if (MSG_CMSG_COMPAT & flags) {
2067 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2068 &msg_sys, flags, &used_address);
2069 if (err < 0)
2070 break;
2071 err = __put_user(err, &compat_entry->msg_len);
2072 ++compat_entry;
2073 } else {
2074 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2075 &msg_sys, flags, &used_address);
2076 if (err < 0)
2077 break;
2078 err = put_user(err, &entry->msg_len);
2079 ++entry;
2082 if (err)
2083 break;
2084 ++datagrams;
2087 fput_light(sock->file, fput_needed);
2089 /* We only return an error if no datagrams were able to be sent */
2090 if (datagrams != 0)
2091 return datagrams;
2093 return err;
2096 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2097 unsigned int, vlen, unsigned int, flags)
2099 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2102 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2103 struct msghdr *msg_sys, unsigned flags, int nosec)
2105 struct compat_msghdr __user *msg_compat =
2106 (struct compat_msghdr __user *)msg;
2107 struct iovec iovstack[UIO_FASTIOV];
2108 struct iovec *iov = iovstack;
2109 unsigned long cmsg_ptr;
2110 int err, iov_size, total_len, len;
2112 /* kernel mode address */
2113 struct sockaddr_storage addr;
2115 /* user mode address pointers */
2116 struct sockaddr __user *uaddr;
2117 int __user *uaddr_len;
2119 if (MSG_CMSG_COMPAT & flags) {
2120 if (get_compat_msghdr(msg_sys, msg_compat))
2121 return -EFAULT;
2122 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2123 return -EFAULT;
2125 err = -EMSGSIZE;
2126 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2127 goto out;
2129 /* Check whether to allocate the iovec area */
2130 err = -ENOMEM;
2131 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2132 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2133 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2134 if (!iov)
2135 goto out;
2139 * Save the user-mode address (verify_iovec will change the
2140 * kernel msghdr to use the kernel address space)
2143 uaddr = (__force void __user *)msg_sys->msg_name;
2144 uaddr_len = COMPAT_NAMELEN(msg);
2145 if (MSG_CMSG_COMPAT & flags) {
2146 err = verify_compat_iovec(msg_sys, iov,
2147 (struct sockaddr *)&addr,
2148 VERIFY_WRITE);
2149 } else
2150 err = verify_iovec(msg_sys, iov,
2151 (struct sockaddr *)&addr,
2152 VERIFY_WRITE);
2153 if (err < 0)
2154 goto out_freeiov;
2155 total_len = err;
2157 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2158 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2160 if (sock->file->f_flags & O_NONBLOCK)
2161 flags |= MSG_DONTWAIT;
2162 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2163 total_len, flags);
2164 if (err < 0)
2165 goto out_freeiov;
2166 len = err;
2168 if (uaddr != NULL) {
2169 err = move_addr_to_user((struct sockaddr *)&addr,
2170 msg_sys->msg_namelen, uaddr,
2171 uaddr_len);
2172 if (err < 0)
2173 goto out_freeiov;
2175 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2176 COMPAT_FLAGS(msg));
2177 if (err)
2178 goto out_freeiov;
2179 if (MSG_CMSG_COMPAT & flags)
2180 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2181 &msg_compat->msg_controllen);
2182 else
2183 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2184 &msg->msg_controllen);
2185 if (err)
2186 goto out_freeiov;
2187 err = len;
2189 out_freeiov:
2190 if (iov != iovstack)
2191 sock_kfree_s(sock->sk, iov, iov_size);
2192 out:
2193 return err;
2197 * BSD recvmsg interface
2200 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2201 unsigned int, flags)
2203 int fput_needed, err;
2204 struct msghdr msg_sys;
2205 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2207 if (!sock)
2208 goto out;
2210 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2212 fput_light(sock->file, fput_needed);
2213 out:
2214 return err;
2218 * Linux recvmmsg interface
2221 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2222 unsigned int flags, struct timespec *timeout)
2224 int fput_needed, err, datagrams;
2225 struct socket *sock;
2226 struct mmsghdr __user *entry;
2227 struct compat_mmsghdr __user *compat_entry;
2228 struct msghdr msg_sys;
2229 struct timespec end_time;
2231 if (timeout &&
2232 poll_select_set_timeout(&end_time, timeout->tv_sec,
2233 timeout->tv_nsec))
2234 return -EINVAL;
2236 datagrams = 0;
2238 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 if (!sock)
2240 return err;
2242 err = sock_error(sock->sk);
2243 if (err)
2244 goto out_put;
2246 entry = mmsg;
2247 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2249 while (datagrams < vlen) {
2251 * No need to ask LSM for more than the first datagram.
2253 if (MSG_CMSG_COMPAT & flags) {
2254 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2255 &msg_sys, flags & ~MSG_WAITFORONE,
2256 datagrams);
2257 if (err < 0)
2258 break;
2259 err = __put_user(err, &compat_entry->msg_len);
2260 ++compat_entry;
2261 } else {
2262 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2263 &msg_sys, flags & ~MSG_WAITFORONE,
2264 datagrams);
2265 if (err < 0)
2266 break;
2267 err = put_user(err, &entry->msg_len);
2268 ++entry;
2271 if (err)
2272 break;
2273 ++datagrams;
2275 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2276 if (flags & MSG_WAITFORONE)
2277 flags |= MSG_DONTWAIT;
2279 if (timeout) {
2280 ktime_get_ts(timeout);
2281 *timeout = timespec_sub(end_time, *timeout);
2282 if (timeout->tv_sec < 0) {
2283 timeout->tv_sec = timeout->tv_nsec = 0;
2284 break;
2287 /* Timeout, return less than vlen datagrams */
2288 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2289 break;
2292 /* Out of band data, return right away */
2293 if (msg_sys.msg_flags & MSG_OOB)
2294 break;
2297 out_put:
2298 fput_light(sock->file, fput_needed);
2300 if (err == 0)
2301 return datagrams;
2303 if (datagrams != 0) {
2305 * We may return less entries than requested (vlen) if the
2306 * sock is non block and there aren't enough datagrams...
2308 if (err != -EAGAIN) {
2310 * ... or if recvmsg returns an error after we
2311 * received some datagrams, where we record the
2312 * error to return on the next call or if the
2313 * app asks about it using getsockopt(SO_ERROR).
2315 sock->sk->sk_err = -err;
2318 return datagrams;
2321 return err;
2324 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2325 unsigned int, vlen, unsigned int, flags,
2326 struct timespec __user *, timeout)
2328 int datagrams;
2329 struct timespec timeout_sys;
2331 if (!timeout)
2332 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2334 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2335 return -EFAULT;
2337 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2339 if (datagrams > 0 &&
2340 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2341 datagrams = -EFAULT;
2343 return datagrams;
2346 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2347 /* Argument list sizes for sys_socketcall */
2348 #define AL(x) ((x) * sizeof(unsigned long))
2349 static const unsigned char nargs[21] = {
2350 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2351 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2352 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2353 AL(4), AL(5), AL(4)
2356 #undef AL
2359 * System call vectors.
2361 * Argument checking cleaned up. Saved 20% in size.
2362 * This function doesn't need to set the kernel lock because
2363 * it is set by the callees.
2366 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2368 unsigned long a[6];
2369 unsigned long a0, a1;
2370 int err;
2371 unsigned int len;
2373 if (call < 1 || call > SYS_SENDMMSG)
2374 return -EINVAL;
2376 len = nargs[call];
2377 if (len > sizeof(a))
2378 return -EINVAL;
2380 /* copy_from_user should be SMP safe. */
2381 if (copy_from_user(a, args, len))
2382 return -EFAULT;
2384 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2386 a0 = a[0];
2387 a1 = a[1];
2389 switch (call) {
2390 case SYS_SOCKET:
2391 err = sys_socket(a0, a1, a[2]);
2392 break;
2393 case SYS_BIND:
2394 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2395 break;
2396 case SYS_CONNECT:
2397 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2398 break;
2399 case SYS_LISTEN:
2400 err = sys_listen(a0, a1);
2401 break;
2402 case SYS_ACCEPT:
2403 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2404 (int __user *)a[2], 0);
2405 break;
2406 case SYS_GETSOCKNAME:
2407 err =
2408 sys_getsockname(a0, (struct sockaddr __user *)a1,
2409 (int __user *)a[2]);
2410 break;
2411 case SYS_GETPEERNAME:
2412 err =
2413 sys_getpeername(a0, (struct sockaddr __user *)a1,
2414 (int __user *)a[2]);
2415 break;
2416 case SYS_SOCKETPAIR:
2417 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2418 break;
2419 case SYS_SEND:
2420 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2421 break;
2422 case SYS_SENDTO:
2423 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2424 (struct sockaddr __user *)a[4], a[5]);
2425 break;
2426 case SYS_RECV:
2427 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2428 break;
2429 case SYS_RECVFROM:
2430 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2431 (struct sockaddr __user *)a[4],
2432 (int __user *)a[5]);
2433 break;
2434 case SYS_SHUTDOWN:
2435 err = sys_shutdown(a0, a1);
2436 break;
2437 case SYS_SETSOCKOPT:
2438 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2439 break;
2440 case SYS_GETSOCKOPT:
2441 err =
2442 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2443 (int __user *)a[4]);
2444 break;
2445 case SYS_SENDMSG:
2446 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2447 break;
2448 case SYS_SENDMMSG:
2449 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2450 break;
2451 case SYS_RECVMSG:
2452 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2453 break;
2454 case SYS_RECVMMSG:
2455 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2456 (struct timespec __user *)a[4]);
2457 break;
2458 case SYS_ACCEPT4:
2459 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2460 (int __user *)a[2], a[3]);
2461 break;
2462 default:
2463 err = -EINVAL;
2464 break;
2466 return err;
2469 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2472 * sock_register - add a socket protocol handler
2473 * @ops: description of protocol
2475 * This function is called by a protocol handler that wants to
2476 * advertise its address family, and have it linked into the
2477 * socket interface. The value ops->family coresponds to the
2478 * socket system call protocol family.
2480 int sock_register(const struct net_proto_family *ops)
2482 int err;
2484 if (ops->family >= NPROTO) {
2485 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2486 NPROTO);
2487 return -ENOBUFS;
2490 spin_lock(&net_family_lock);
2491 if (rcu_dereference_protected(net_families[ops->family],
2492 lockdep_is_held(&net_family_lock)))
2493 err = -EEXIST;
2494 else {
2495 rcu_assign_pointer(net_families[ops->family], ops);
2496 err = 0;
2498 spin_unlock(&net_family_lock);
2500 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2501 return err;
2503 EXPORT_SYMBOL(sock_register);
2506 * sock_unregister - remove a protocol handler
2507 * @family: protocol family to remove
2509 * This function is called by a protocol handler that wants to
2510 * remove its address family, and have it unlinked from the
2511 * new socket creation.
2513 * If protocol handler is a module, then it can use module reference
2514 * counts to protect against new references. If protocol handler is not
2515 * a module then it needs to provide its own protection in
2516 * the ops->create routine.
2518 void sock_unregister(int family)
2520 BUG_ON(family < 0 || family >= NPROTO);
2522 spin_lock(&net_family_lock);
2523 RCU_INIT_POINTER(net_families[family], NULL);
2524 spin_unlock(&net_family_lock);
2526 synchronize_rcu();
2528 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2530 EXPORT_SYMBOL(sock_unregister);
2532 static int __init sock_init(void)
2534 int err;
2537 * Initialize sock SLAB cache.
2540 sk_init();
2543 * Initialize skbuff SLAB cache
2545 skb_init();
2548 * Initialize the protocols module.
2551 init_inodecache();
2553 err = register_filesystem(&sock_fs_type);
2554 if (err)
2555 goto out_fs;
2556 sock_mnt = kern_mount(&sock_fs_type);
2557 if (IS_ERR(sock_mnt)) {
2558 err = PTR_ERR(sock_mnt);
2559 goto out_mount;
2562 /* The real protocol initialization is performed in later initcalls.
2565 #ifdef CONFIG_NETFILTER
2566 netfilter_init();
2567 #endif
2569 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2570 skb_timestamping_init();
2571 #endif
2573 out:
2574 return err;
2576 out_mount:
2577 unregister_filesystem(&sock_fs_type);
2578 out_fs:
2579 goto out;
2582 core_initcall(sock_init); /* early initcall */
2584 #ifdef CONFIG_PROC_FS
2585 void socket_seq_show(struct seq_file *seq)
2587 int cpu;
2588 int counter = 0;
2590 for_each_possible_cpu(cpu)
2591 counter += per_cpu(sockets_in_use, cpu);
2593 /* It can be negative, by the way. 8) */
2594 if (counter < 0)
2595 counter = 0;
2597 seq_printf(seq, "sockets: used %d\n", counter);
2599 #endif /* CONFIG_PROC_FS */
2601 #ifdef CONFIG_COMPAT
2602 static int do_siocgstamp(struct net *net, struct socket *sock,
2603 unsigned int cmd, struct compat_timeval __user *up)
2605 mm_segment_t old_fs = get_fs();
2606 struct timeval ktv;
2607 int err;
2609 set_fs(KERNEL_DS);
2610 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2611 set_fs(old_fs);
2612 if (!err) {
2613 err = put_user(ktv.tv_sec, &up->tv_sec);
2614 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2616 return err;
2619 static int do_siocgstampns(struct net *net, struct socket *sock,
2620 unsigned int cmd, struct compat_timespec __user *up)
2622 mm_segment_t old_fs = get_fs();
2623 struct timespec kts;
2624 int err;
2626 set_fs(KERNEL_DS);
2627 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2628 set_fs(old_fs);
2629 if (!err) {
2630 err = put_user(kts.tv_sec, &up->tv_sec);
2631 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2633 return err;
2636 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2638 struct ifreq __user *uifr;
2639 int err;
2641 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2642 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2643 return -EFAULT;
2645 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2646 if (err)
2647 return err;
2649 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2650 return -EFAULT;
2652 return 0;
2655 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2657 struct compat_ifconf ifc32;
2658 struct ifconf ifc;
2659 struct ifconf __user *uifc;
2660 struct compat_ifreq __user *ifr32;
2661 struct ifreq __user *ifr;
2662 unsigned int i, j;
2663 int err;
2665 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2666 return -EFAULT;
2668 if (ifc32.ifcbuf == 0) {
2669 ifc32.ifc_len = 0;
2670 ifc.ifc_len = 0;
2671 ifc.ifc_req = NULL;
2672 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2673 } else {
2674 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2675 sizeof(struct ifreq);
2676 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2677 ifc.ifc_len = len;
2678 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2679 ifr32 = compat_ptr(ifc32.ifcbuf);
2680 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2681 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2682 return -EFAULT;
2683 ifr++;
2684 ifr32++;
2687 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2688 return -EFAULT;
2690 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2691 if (err)
2692 return err;
2694 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2695 return -EFAULT;
2697 ifr = ifc.ifc_req;
2698 ifr32 = compat_ptr(ifc32.ifcbuf);
2699 for (i = 0, j = 0;
2700 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2701 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2702 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2703 return -EFAULT;
2704 ifr32++;
2705 ifr++;
2708 if (ifc32.ifcbuf == 0) {
2709 /* Translate from 64-bit structure multiple to
2710 * a 32-bit one.
2712 i = ifc.ifc_len;
2713 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2714 ifc32.ifc_len = i;
2715 } else {
2716 ifc32.ifc_len = i;
2718 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2719 return -EFAULT;
2721 return 0;
2724 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2726 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2727 bool convert_in = false, convert_out = false;
2728 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2729 struct ethtool_rxnfc __user *rxnfc;
2730 struct ifreq __user *ifr;
2731 u32 rule_cnt = 0, actual_rule_cnt;
2732 u32 ethcmd;
2733 u32 data;
2734 int ret;
2736 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2737 return -EFAULT;
2739 compat_rxnfc = compat_ptr(data);
2741 if (get_user(ethcmd, &compat_rxnfc->cmd))
2742 return -EFAULT;
2744 /* Most ethtool structures are defined without padding.
2745 * Unfortunately struct ethtool_rxnfc is an exception.
2747 switch (ethcmd) {
2748 default:
2749 break;
2750 case ETHTOOL_GRXCLSRLALL:
2751 /* Buffer size is variable */
2752 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2753 return -EFAULT;
2754 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2755 return -ENOMEM;
2756 buf_size += rule_cnt * sizeof(u32);
2757 /* fall through */
2758 case ETHTOOL_GRXRINGS:
2759 case ETHTOOL_GRXCLSRLCNT:
2760 case ETHTOOL_GRXCLSRULE:
2761 case ETHTOOL_SRXCLSRLINS:
2762 convert_out = true;
2763 /* fall through */
2764 case ETHTOOL_SRXCLSRLDEL:
2765 buf_size += sizeof(struct ethtool_rxnfc);
2766 convert_in = true;
2767 break;
2770 ifr = compat_alloc_user_space(buf_size);
2771 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2773 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2774 return -EFAULT;
2776 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2777 &ifr->ifr_ifru.ifru_data))
2778 return -EFAULT;
2780 if (convert_in) {
2781 /* We expect there to be holes between fs.m_ext and
2782 * fs.ring_cookie and at the end of fs, but nowhere else.
2784 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2785 sizeof(compat_rxnfc->fs.m_ext) !=
2786 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2787 sizeof(rxnfc->fs.m_ext));
2788 BUILD_BUG_ON(
2789 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2790 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2791 offsetof(struct ethtool_rxnfc, fs.location) -
2792 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2794 if (copy_in_user(rxnfc, compat_rxnfc,
2795 (void *)(&rxnfc->fs.m_ext + 1) -
2796 (void *)rxnfc) ||
2797 copy_in_user(&rxnfc->fs.ring_cookie,
2798 &compat_rxnfc->fs.ring_cookie,
2799 (void *)(&rxnfc->fs.location + 1) -
2800 (void *)&rxnfc->fs.ring_cookie) ||
2801 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2802 sizeof(rxnfc->rule_cnt)))
2803 return -EFAULT;
2806 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2807 if (ret)
2808 return ret;
2810 if (convert_out) {
2811 if (copy_in_user(compat_rxnfc, rxnfc,
2812 (const void *)(&rxnfc->fs.m_ext + 1) -
2813 (const void *)rxnfc) ||
2814 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2815 &rxnfc->fs.ring_cookie,
2816 (const void *)(&rxnfc->fs.location + 1) -
2817 (const void *)&rxnfc->fs.ring_cookie) ||
2818 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2819 sizeof(rxnfc->rule_cnt)))
2820 return -EFAULT;
2822 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2823 /* As an optimisation, we only copy the actual
2824 * number of rules that the underlying
2825 * function returned. Since Mallory might
2826 * change the rule count in user memory, we
2827 * check that it is less than the rule count
2828 * originally given (as the user buffer size),
2829 * which has been range-checked.
2831 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2832 return -EFAULT;
2833 if (actual_rule_cnt < rule_cnt)
2834 rule_cnt = actual_rule_cnt;
2835 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2836 &rxnfc->rule_locs[0],
2837 rule_cnt * sizeof(u32)))
2838 return -EFAULT;
2842 return 0;
2845 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2847 void __user *uptr;
2848 compat_uptr_t uptr32;
2849 struct ifreq __user *uifr;
2851 uifr = compat_alloc_user_space(sizeof(*uifr));
2852 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2853 return -EFAULT;
2855 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2856 return -EFAULT;
2858 uptr = compat_ptr(uptr32);
2860 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2861 return -EFAULT;
2863 return dev_ioctl(net, SIOCWANDEV, uifr);
2866 static int bond_ioctl(struct net *net, unsigned int cmd,
2867 struct compat_ifreq __user *ifr32)
2869 struct ifreq kifr;
2870 struct ifreq __user *uifr;
2871 mm_segment_t old_fs;
2872 int err;
2873 u32 data;
2874 void __user *datap;
2876 switch (cmd) {
2877 case SIOCBONDENSLAVE:
2878 case SIOCBONDRELEASE:
2879 case SIOCBONDSETHWADDR:
2880 case SIOCBONDCHANGEACTIVE:
2881 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2882 return -EFAULT;
2884 old_fs = get_fs();
2885 set_fs(KERNEL_DS);
2886 err = dev_ioctl(net, cmd,
2887 (struct ifreq __user __force *) &kifr);
2888 set_fs(old_fs);
2890 return err;
2891 case SIOCBONDSLAVEINFOQUERY:
2892 case SIOCBONDINFOQUERY:
2893 uifr = compat_alloc_user_space(sizeof(*uifr));
2894 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2895 return -EFAULT;
2897 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2898 return -EFAULT;
2900 datap = compat_ptr(data);
2901 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2902 return -EFAULT;
2904 return dev_ioctl(net, cmd, uifr);
2905 default:
2906 return -ENOIOCTLCMD;
2910 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2911 struct compat_ifreq __user *u_ifreq32)
2913 struct ifreq __user *u_ifreq64;
2914 char tmp_buf[IFNAMSIZ];
2915 void __user *data64;
2916 u32 data32;
2918 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2919 IFNAMSIZ))
2920 return -EFAULT;
2921 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2922 return -EFAULT;
2923 data64 = compat_ptr(data32);
2925 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2927 /* Don't check these user accesses, just let that get trapped
2928 * in the ioctl handler instead.
2930 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2931 IFNAMSIZ))
2932 return -EFAULT;
2933 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2934 return -EFAULT;
2936 return dev_ioctl(net, cmd, u_ifreq64);
2939 static int dev_ifsioc(struct net *net, struct socket *sock,
2940 unsigned int cmd, struct compat_ifreq __user *uifr32)
2942 struct ifreq __user *uifr;
2943 int err;
2945 uifr = compat_alloc_user_space(sizeof(*uifr));
2946 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2947 return -EFAULT;
2949 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2951 if (!err) {
2952 switch (cmd) {
2953 case SIOCGIFFLAGS:
2954 case SIOCGIFMETRIC:
2955 case SIOCGIFMTU:
2956 case SIOCGIFMEM:
2957 case SIOCGIFHWADDR:
2958 case SIOCGIFINDEX:
2959 case SIOCGIFADDR:
2960 case SIOCGIFBRDADDR:
2961 case SIOCGIFDSTADDR:
2962 case SIOCGIFNETMASK:
2963 case SIOCGIFPFLAGS:
2964 case SIOCGIFTXQLEN:
2965 case SIOCGMIIPHY:
2966 case SIOCGMIIREG:
2967 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2968 err = -EFAULT;
2969 break;
2972 return err;
2975 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2976 struct compat_ifreq __user *uifr32)
2978 struct ifreq ifr;
2979 struct compat_ifmap __user *uifmap32;
2980 mm_segment_t old_fs;
2981 int err;
2983 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2984 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2985 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2986 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2987 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2988 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2989 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2990 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2991 if (err)
2992 return -EFAULT;
2994 old_fs = get_fs();
2995 set_fs(KERNEL_DS);
2996 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2997 set_fs(old_fs);
2999 if (cmd == SIOCGIFMAP && !err) {
3000 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3001 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3002 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3003 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3004 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3005 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3006 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3007 if (err)
3008 err = -EFAULT;
3010 return err;
3013 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3015 void __user *uptr;
3016 compat_uptr_t uptr32;
3017 struct ifreq __user *uifr;
3019 uifr = compat_alloc_user_space(sizeof(*uifr));
3020 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3021 return -EFAULT;
3023 if (get_user(uptr32, &uifr32->ifr_data))
3024 return -EFAULT;
3026 uptr = compat_ptr(uptr32);
3028 if (put_user(uptr, &uifr->ifr_data))
3029 return -EFAULT;
3031 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3034 struct rtentry32 {
3035 u32 rt_pad1;
3036 struct sockaddr rt_dst; /* target address */
3037 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3038 struct sockaddr rt_genmask; /* target network mask (IP) */
3039 unsigned short rt_flags;
3040 short rt_pad2;
3041 u32 rt_pad3;
3042 unsigned char rt_tos;
3043 unsigned char rt_class;
3044 short rt_pad4;
3045 short rt_metric; /* +1 for binary compatibility! */
3046 /* char * */ u32 rt_dev; /* forcing the device at add */
3047 u32 rt_mtu; /* per route MTU/Window */
3048 u32 rt_window; /* Window clamping */
3049 unsigned short rt_irtt; /* Initial RTT */
3052 struct in6_rtmsg32 {
3053 struct in6_addr rtmsg_dst;
3054 struct in6_addr rtmsg_src;
3055 struct in6_addr rtmsg_gateway;
3056 u32 rtmsg_type;
3057 u16 rtmsg_dst_len;
3058 u16 rtmsg_src_len;
3059 u32 rtmsg_metric;
3060 u32 rtmsg_info;
3061 u32 rtmsg_flags;
3062 s32 rtmsg_ifindex;
3065 static int routing_ioctl(struct net *net, struct socket *sock,
3066 unsigned int cmd, void __user *argp)
3068 int ret;
3069 void *r = NULL;
3070 struct in6_rtmsg r6;
3071 struct rtentry r4;
3072 char devname[16];
3073 u32 rtdev;
3074 mm_segment_t old_fs = get_fs();
3076 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3077 struct in6_rtmsg32 __user *ur6 = argp;
3078 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3079 3 * sizeof(struct in6_addr));
3080 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3081 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3082 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3083 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3084 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3085 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3086 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3088 r = (void *) &r6;
3089 } else { /* ipv4 */
3090 struct rtentry32 __user *ur4 = argp;
3091 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3092 3 * sizeof(struct sockaddr));
3093 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3094 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3095 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3096 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3097 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3098 ret |= __get_user(rtdev, &(ur4->rt_dev));
3099 if (rtdev) {
3100 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3101 r4.rt_dev = (char __user __force *)devname;
3102 devname[15] = 0;
3103 } else
3104 r4.rt_dev = NULL;
3106 r = (void *) &r4;
3109 if (ret) {
3110 ret = -EFAULT;
3111 goto out;
3114 set_fs(KERNEL_DS);
3115 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3116 set_fs(old_fs);
3118 out:
3119 return ret;
3122 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3123 * for some operations; this forces use of the newer bridge-utils that
3124 * use compatible ioctls
3126 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3128 compat_ulong_t tmp;
3130 if (get_user(tmp, argp))
3131 return -EFAULT;
3132 if (tmp == BRCTL_GET_VERSION)
3133 return BRCTL_VERSION + 1;
3134 return -EINVAL;
3137 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3138 unsigned int cmd, unsigned long arg)
3140 void __user *argp = compat_ptr(arg);
3141 struct sock *sk = sock->sk;
3142 struct net *net = sock_net(sk);
3144 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3145 return siocdevprivate_ioctl(net, cmd, argp);
3147 switch (cmd) {
3148 case SIOCSIFBR:
3149 case SIOCGIFBR:
3150 return old_bridge_ioctl(argp);
3151 case SIOCGIFNAME:
3152 return dev_ifname32(net, argp);
3153 case SIOCGIFCONF:
3154 return dev_ifconf(net, argp);
3155 case SIOCETHTOOL:
3156 return ethtool_ioctl(net, argp);
3157 case SIOCWANDEV:
3158 return compat_siocwandev(net, argp);
3159 case SIOCGIFMAP:
3160 case SIOCSIFMAP:
3161 return compat_sioc_ifmap(net, cmd, argp);
3162 case SIOCBONDENSLAVE:
3163 case SIOCBONDRELEASE:
3164 case SIOCBONDSETHWADDR:
3165 case SIOCBONDSLAVEINFOQUERY:
3166 case SIOCBONDINFOQUERY:
3167 case SIOCBONDCHANGEACTIVE:
3168 return bond_ioctl(net, cmd, argp);
3169 case SIOCADDRT:
3170 case SIOCDELRT:
3171 return routing_ioctl(net, sock, cmd, argp);
3172 case SIOCGSTAMP:
3173 return do_siocgstamp(net, sock, cmd, argp);
3174 case SIOCGSTAMPNS:
3175 return do_siocgstampns(net, sock, cmd, argp);
3176 case SIOCSHWTSTAMP:
3177 return compat_siocshwtstamp(net, argp);
3179 case FIOSETOWN:
3180 case SIOCSPGRP:
3181 case FIOGETOWN:
3182 case SIOCGPGRP:
3183 case SIOCBRADDBR:
3184 case SIOCBRDELBR:
3185 case SIOCGIFVLAN:
3186 case SIOCSIFVLAN:
3187 case SIOCADDDLCI:
3188 case SIOCDELDLCI:
3189 return sock_ioctl(file, cmd, arg);
3191 case SIOCGIFFLAGS:
3192 case SIOCSIFFLAGS:
3193 case SIOCGIFMETRIC:
3194 case SIOCSIFMETRIC:
3195 case SIOCGIFMTU:
3196 case SIOCSIFMTU:
3197 case SIOCGIFMEM:
3198 case SIOCSIFMEM:
3199 case SIOCGIFHWADDR:
3200 case SIOCSIFHWADDR:
3201 case SIOCADDMULTI:
3202 case SIOCDELMULTI:
3203 case SIOCGIFINDEX:
3204 case SIOCGIFADDR:
3205 case SIOCSIFADDR:
3206 case SIOCSIFHWBROADCAST:
3207 case SIOCDIFADDR:
3208 case SIOCGIFBRDADDR:
3209 case SIOCSIFBRDADDR:
3210 case SIOCGIFDSTADDR:
3211 case SIOCSIFDSTADDR:
3212 case SIOCGIFNETMASK:
3213 case SIOCSIFNETMASK:
3214 case SIOCSIFPFLAGS:
3215 case SIOCGIFPFLAGS:
3216 case SIOCGIFTXQLEN:
3217 case SIOCSIFTXQLEN:
3218 case SIOCBRADDIF:
3219 case SIOCBRDELIF:
3220 case SIOCSIFNAME:
3221 case SIOCGMIIPHY:
3222 case SIOCGMIIREG:
3223 case SIOCSMIIREG:
3224 return dev_ifsioc(net, sock, cmd, argp);
3226 case SIOCSARP:
3227 case SIOCGARP:
3228 case SIOCDARP:
3229 case SIOCATMARK:
3230 return sock_do_ioctl(net, sock, cmd, arg);
3233 return -ENOIOCTLCMD;
3236 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3237 unsigned long arg)
3239 struct socket *sock = file->private_data;
3240 int ret = -ENOIOCTLCMD;
3241 struct sock *sk;
3242 struct net *net;
3244 sk = sock->sk;
3245 net = sock_net(sk);
3247 if (sock->ops->compat_ioctl)
3248 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3250 if (ret == -ENOIOCTLCMD &&
3251 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3252 ret = compat_wext_handle_ioctl(net, cmd, arg);
3254 if (ret == -ENOIOCTLCMD)
3255 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3257 return ret;
3259 #endif
3261 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3263 return sock->ops->bind(sock, addr, addrlen);
3265 EXPORT_SYMBOL(kernel_bind);
3267 int kernel_listen(struct socket *sock, int backlog)
3269 return sock->ops->listen(sock, backlog);
3271 EXPORT_SYMBOL(kernel_listen);
3273 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3275 struct sock *sk = sock->sk;
3276 int err;
3278 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3279 newsock);
3280 if (err < 0)
3281 goto done;
3283 err = sock->ops->accept(sock, *newsock, flags);
3284 if (err < 0) {
3285 sock_release(*newsock);
3286 *newsock = NULL;
3287 goto done;
3290 (*newsock)->ops = sock->ops;
3291 __module_get((*newsock)->ops->owner);
3293 done:
3294 return err;
3296 EXPORT_SYMBOL(kernel_accept);
3298 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3299 int flags)
3301 return sock->ops->connect(sock, addr, addrlen, flags);
3303 EXPORT_SYMBOL(kernel_connect);
3305 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3306 int *addrlen)
3308 return sock->ops->getname(sock, addr, addrlen, 0);
3310 EXPORT_SYMBOL(kernel_getsockname);
3312 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3313 int *addrlen)
3315 return sock->ops->getname(sock, addr, addrlen, 1);
3317 EXPORT_SYMBOL(kernel_getpeername);
3319 int kernel_getsockopt(struct socket *sock, int level, int optname,
3320 char *optval, int *optlen)
3322 mm_segment_t oldfs = get_fs();
3323 char __user *uoptval;
3324 int __user *uoptlen;
3325 int err;
3327 uoptval = (char __user __force *) optval;
3328 uoptlen = (int __user __force *) optlen;
3330 set_fs(KERNEL_DS);
3331 if (level == SOL_SOCKET)
3332 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3333 else
3334 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3335 uoptlen);
3336 set_fs(oldfs);
3337 return err;
3339 EXPORT_SYMBOL(kernel_getsockopt);
3341 int kernel_setsockopt(struct socket *sock, int level, int optname,
3342 char *optval, unsigned int optlen)
3344 mm_segment_t oldfs = get_fs();
3345 char __user *uoptval;
3346 int err;
3348 uoptval = (char __user __force *) optval;
3350 set_fs(KERNEL_DS);
3351 if (level == SOL_SOCKET)
3352 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3353 else
3354 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3355 optlen);
3356 set_fs(oldfs);
3357 return err;
3359 EXPORT_SYMBOL(kernel_setsockopt);
3361 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3362 size_t size, int flags)
3364 sock_update_classid(sock->sk);
3366 if (sock->ops->sendpage)
3367 return sock->ops->sendpage(sock, page, offset, size, flags);
3369 return sock_no_sendpage(sock, page, offset, size, flags);
3371 EXPORT_SYMBOL(kernel_sendpage);
3373 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3375 mm_segment_t oldfs = get_fs();
3376 int err;
3378 set_fs(KERNEL_DS);
3379 err = sock->ops->ioctl(sock, cmd, arg);
3380 set_fs(oldfs);
3382 return err;
3384 EXPORT_SYMBOL(kernel_sock_ioctl);
3386 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3388 return sock->ops->shutdown(sock, how);
3390 EXPORT_SYMBOL(kernel_sock_shutdown);