2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
);
47 static void intel_update_watermarks(struct drm_device
*dev
);
48 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
49 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t
;
75 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
77 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
78 int, int, intel_clock_t
*);
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
85 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
86 int target
, int refclk
, intel_clock_t
*best_clock
);
88 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
89 int target
, int refclk
, intel_clock_t
*best_clock
);
92 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
93 int target
, int refclk
, intel_clock_t
*best_clock
);
95 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
96 int target
, int refclk
, intel_clock_t
*best_clock
);
98 static inline u32
/* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device
*dev
)
102 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
103 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
108 static const intel_limit_t intel_limits_i8xx_dvo
= {
109 .dot
= { .min
= 25000, .max
= 350000 },
110 .vco
= { .min
= 930000, .max
= 1400000 },
111 .n
= { .min
= 3, .max
= 16 },
112 .m
= { .min
= 96, .max
= 140 },
113 .m1
= { .min
= 18, .max
= 26 },
114 .m2
= { .min
= 6, .max
= 16 },
115 .p
= { .min
= 4, .max
= 128 },
116 .p1
= { .min
= 2, .max
= 33 },
117 .p2
= { .dot_limit
= 165000,
118 .p2_slow
= 4, .p2_fast
= 2 },
119 .find_pll
= intel_find_best_PLL
,
122 static const intel_limit_t intel_limits_i8xx_lvds
= {
123 .dot
= { .min
= 25000, .max
= 350000 },
124 .vco
= { .min
= 930000, .max
= 1400000 },
125 .n
= { .min
= 3, .max
= 16 },
126 .m
= { .min
= 96, .max
= 140 },
127 .m1
= { .min
= 18, .max
= 26 },
128 .m2
= { .min
= 6, .max
= 16 },
129 .p
= { .min
= 4, .max
= 128 },
130 .p1
= { .min
= 1, .max
= 6 },
131 .p2
= { .dot_limit
= 165000,
132 .p2_slow
= 14, .p2_fast
= 7 },
133 .find_pll
= intel_find_best_PLL
,
136 static const intel_limit_t intel_limits_i9xx_sdvo
= {
137 .dot
= { .min
= 20000, .max
= 400000 },
138 .vco
= { .min
= 1400000, .max
= 2800000 },
139 .n
= { .min
= 1, .max
= 6 },
140 .m
= { .min
= 70, .max
= 120 },
141 .m1
= { .min
= 10, .max
= 22 },
142 .m2
= { .min
= 5, .max
= 9 },
143 .p
= { .min
= 5, .max
= 80 },
144 .p1
= { .min
= 1, .max
= 8 },
145 .p2
= { .dot_limit
= 200000,
146 .p2_slow
= 10, .p2_fast
= 5 },
147 .find_pll
= intel_find_best_PLL
,
150 static const intel_limit_t intel_limits_i9xx_lvds
= {
151 .dot
= { .min
= 20000, .max
= 400000 },
152 .vco
= { .min
= 1400000, .max
= 2800000 },
153 .n
= { .min
= 1, .max
= 6 },
154 .m
= { .min
= 70, .max
= 120 },
155 .m1
= { .min
= 10, .max
= 22 },
156 .m2
= { .min
= 5, .max
= 9 },
157 .p
= { .min
= 7, .max
= 98 },
158 .p1
= { .min
= 1, .max
= 8 },
159 .p2
= { .dot_limit
= 112000,
160 .p2_slow
= 14, .p2_fast
= 7 },
161 .find_pll
= intel_find_best_PLL
,
165 static const intel_limit_t intel_limits_g4x_sdvo
= {
166 .dot
= { .min
= 25000, .max
= 270000 },
167 .vco
= { .min
= 1750000, .max
= 3500000},
168 .n
= { .min
= 1, .max
= 4 },
169 .m
= { .min
= 104, .max
= 138 },
170 .m1
= { .min
= 17, .max
= 23 },
171 .m2
= { .min
= 5, .max
= 11 },
172 .p
= { .min
= 10, .max
= 30 },
173 .p1
= { .min
= 1, .max
= 3},
174 .p2
= { .dot_limit
= 270000,
178 .find_pll
= intel_g4x_find_best_PLL
,
181 static const intel_limit_t intel_limits_g4x_hdmi
= {
182 .dot
= { .min
= 22000, .max
= 400000 },
183 .vco
= { .min
= 1750000, .max
= 3500000},
184 .n
= { .min
= 1, .max
= 4 },
185 .m
= { .min
= 104, .max
= 138 },
186 .m1
= { .min
= 16, .max
= 23 },
187 .m2
= { .min
= 5, .max
= 11 },
188 .p
= { .min
= 5, .max
= 80 },
189 .p1
= { .min
= 1, .max
= 8},
190 .p2
= { .dot_limit
= 165000,
191 .p2_slow
= 10, .p2_fast
= 5 },
192 .find_pll
= intel_g4x_find_best_PLL
,
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
196 .dot
= { .min
= 20000, .max
= 115000 },
197 .vco
= { .min
= 1750000, .max
= 3500000 },
198 .n
= { .min
= 1, .max
= 3 },
199 .m
= { .min
= 104, .max
= 138 },
200 .m1
= { .min
= 17, .max
= 23 },
201 .m2
= { .min
= 5, .max
= 11 },
202 .p
= { .min
= 28, .max
= 112 },
203 .p1
= { .min
= 2, .max
= 8 },
204 .p2
= { .dot_limit
= 0,
205 .p2_slow
= 14, .p2_fast
= 14
207 .find_pll
= intel_g4x_find_best_PLL
,
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
211 .dot
= { .min
= 80000, .max
= 224000 },
212 .vco
= { .min
= 1750000, .max
= 3500000 },
213 .n
= { .min
= 1, .max
= 3 },
214 .m
= { .min
= 104, .max
= 138 },
215 .m1
= { .min
= 17, .max
= 23 },
216 .m2
= { .min
= 5, .max
= 11 },
217 .p
= { .min
= 14, .max
= 42 },
218 .p1
= { .min
= 2, .max
= 6 },
219 .p2
= { .dot_limit
= 0,
220 .p2_slow
= 7, .p2_fast
= 7
222 .find_pll
= intel_g4x_find_best_PLL
,
225 static const intel_limit_t intel_limits_g4x_display_port
= {
226 .dot
= { .min
= 161670, .max
= 227000 },
227 .vco
= { .min
= 1750000, .max
= 3500000},
228 .n
= { .min
= 1, .max
= 2 },
229 .m
= { .min
= 97, .max
= 108 },
230 .m1
= { .min
= 0x10, .max
= 0x12 },
231 .m2
= { .min
= 0x05, .max
= 0x06 },
232 .p
= { .min
= 10, .max
= 20 },
233 .p1
= { .min
= 1, .max
= 2},
234 .p2
= { .dot_limit
= 0,
235 .p2_slow
= 10, .p2_fast
= 10 },
236 .find_pll
= intel_find_pll_g4x_dp
,
239 static const intel_limit_t intel_limits_pineview_sdvo
= {
240 .dot
= { .min
= 20000, .max
= 400000},
241 .vco
= { .min
= 1700000, .max
= 3500000 },
242 /* Pineview's Ncounter is a ring counter */
243 .n
= { .min
= 3, .max
= 6 },
244 .m
= { .min
= 2, .max
= 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1
= { .min
= 0, .max
= 0 },
247 .m2
= { .min
= 0, .max
= 254 },
248 .p
= { .min
= 5, .max
= 80 },
249 .p1
= { .min
= 1, .max
= 8 },
250 .p2
= { .dot_limit
= 200000,
251 .p2_slow
= 10, .p2_fast
= 5 },
252 .find_pll
= intel_find_best_PLL
,
255 static const intel_limit_t intel_limits_pineview_lvds
= {
256 .dot
= { .min
= 20000, .max
= 400000 },
257 .vco
= { .min
= 1700000, .max
= 3500000 },
258 .n
= { .min
= 3, .max
= 6 },
259 .m
= { .min
= 2, .max
= 256 },
260 .m1
= { .min
= 0, .max
= 0 },
261 .m2
= { .min
= 0, .max
= 254 },
262 .p
= { .min
= 7, .max
= 112 },
263 .p1
= { .min
= 1, .max
= 8 },
264 .p2
= { .dot_limit
= 112000,
265 .p2_slow
= 14, .p2_fast
= 14 },
266 .find_pll
= intel_find_best_PLL
,
269 /* Ironlake / Sandybridge
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
274 static const intel_limit_t intel_limits_ironlake_dac
= {
275 .dot
= { .min
= 25000, .max
= 350000 },
276 .vco
= { .min
= 1760000, .max
= 3510000 },
277 .n
= { .min
= 1, .max
= 5 },
278 .m
= { .min
= 79, .max
= 127 },
279 .m1
= { .min
= 12, .max
= 22 },
280 .m2
= { .min
= 5, .max
= 9 },
281 .p
= { .min
= 5, .max
= 80 },
282 .p1
= { .min
= 1, .max
= 8 },
283 .p2
= { .dot_limit
= 225000,
284 .p2_slow
= 10, .p2_fast
= 5 },
285 .find_pll
= intel_g4x_find_best_PLL
,
288 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
289 .dot
= { .min
= 25000, .max
= 350000 },
290 .vco
= { .min
= 1760000, .max
= 3510000 },
291 .n
= { .min
= 1, .max
= 3 },
292 .m
= { .min
= 79, .max
= 118 },
293 .m1
= { .min
= 12, .max
= 22 },
294 .m2
= { .min
= 5, .max
= 9 },
295 .p
= { .min
= 28, .max
= 112 },
296 .p1
= { .min
= 2, .max
= 8 },
297 .p2
= { .dot_limit
= 225000,
298 .p2_slow
= 14, .p2_fast
= 14 },
299 .find_pll
= intel_g4x_find_best_PLL
,
302 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
303 .dot
= { .min
= 25000, .max
= 350000 },
304 .vco
= { .min
= 1760000, .max
= 3510000 },
305 .n
= { .min
= 1, .max
= 3 },
306 .m
= { .min
= 79, .max
= 127 },
307 .m1
= { .min
= 12, .max
= 22 },
308 .m2
= { .min
= 5, .max
= 9 },
309 .p
= { .min
= 14, .max
= 56 },
310 .p1
= { .min
= 2, .max
= 8 },
311 .p2
= { .dot_limit
= 225000,
312 .p2_slow
= 7, .p2_fast
= 7 },
313 .find_pll
= intel_g4x_find_best_PLL
,
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
318 .dot
= { .min
= 25000, .max
= 350000 },
319 .vco
= { .min
= 1760000, .max
= 3510000 },
320 .n
= { .min
= 1, .max
= 2 },
321 .m
= { .min
= 79, .max
= 126 },
322 .m1
= { .min
= 12, .max
= 22 },
323 .m2
= { .min
= 5, .max
= 9 },
324 .p
= { .min
= 28, .max
= 112 },
325 .p1
= { .min
= 2, .max
= 8 },
326 .p2
= { .dot_limit
= 225000,
327 .p2_slow
= 14, .p2_fast
= 14 },
328 .find_pll
= intel_g4x_find_best_PLL
,
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
332 .dot
= { .min
= 25000, .max
= 350000 },
333 .vco
= { .min
= 1760000, .max
= 3510000 },
334 .n
= { .min
= 1, .max
= 3 },
335 .m
= { .min
= 79, .max
= 126 },
336 .m1
= { .min
= 12, .max
= 22 },
337 .m2
= { .min
= 5, .max
= 9 },
338 .p
= { .min
= 14, .max
= 42 },
339 .p1
= { .min
= 2, .max
= 6 },
340 .p2
= { .dot_limit
= 225000,
341 .p2_slow
= 7, .p2_fast
= 7 },
342 .find_pll
= intel_g4x_find_best_PLL
,
345 static const intel_limit_t intel_limits_ironlake_display_port
= {
346 .dot
= { .min
= 25000, .max
= 350000 },
347 .vco
= { .min
= 1760000, .max
= 3510000},
348 .n
= { .min
= 1, .max
= 2 },
349 .m
= { .min
= 81, .max
= 90 },
350 .m1
= { .min
= 12, .max
= 22 },
351 .m2
= { .min
= 5, .max
= 9 },
352 .p
= { .min
= 10, .max
= 20 },
353 .p1
= { .min
= 1, .max
= 2},
354 .p2
= { .dot_limit
= 0,
355 .p2_slow
= 10, .p2_fast
= 10 },
356 .find_pll
= intel_find_pll_ironlake_dp
,
359 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
,
362 struct drm_device
*dev
= crtc
->dev
;
363 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
364 const intel_limit_t
*limit
;
366 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
367 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
368 LVDS_CLKB_POWER_UP
) {
369 /* LVDS dual channel */
370 if (refclk
== 100000)
371 limit
= &intel_limits_ironlake_dual_lvds_100m
;
373 limit
= &intel_limits_ironlake_dual_lvds
;
375 if (refclk
== 100000)
376 limit
= &intel_limits_ironlake_single_lvds_100m
;
378 limit
= &intel_limits_ironlake_single_lvds
;
380 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
382 limit
= &intel_limits_ironlake_display_port
;
384 limit
= &intel_limits_ironlake_dac
;
389 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
391 struct drm_device
*dev
= crtc
->dev
;
392 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
393 const intel_limit_t
*limit
;
395 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
396 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
398 /* LVDS with dual channel */
399 limit
= &intel_limits_g4x_dual_channel_lvds
;
401 /* LVDS with dual channel */
402 limit
= &intel_limits_g4x_single_channel_lvds
;
403 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
404 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
405 limit
= &intel_limits_g4x_hdmi
;
406 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
407 limit
= &intel_limits_g4x_sdvo
;
408 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
409 limit
= &intel_limits_g4x_display_port
;
410 } else /* The option is for other outputs */
411 limit
= &intel_limits_i9xx_sdvo
;
416 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
, int refclk
)
418 struct drm_device
*dev
= crtc
->dev
;
419 const intel_limit_t
*limit
;
421 if (HAS_PCH_SPLIT(dev
))
422 limit
= intel_ironlake_limit(crtc
, refclk
);
423 else if (IS_G4X(dev
)) {
424 limit
= intel_g4x_limit(crtc
);
425 } else if (IS_PINEVIEW(dev
)) {
426 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
427 limit
= &intel_limits_pineview_lvds
;
429 limit
= &intel_limits_pineview_sdvo
;
430 } else if (!IS_GEN2(dev
)) {
431 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
432 limit
= &intel_limits_i9xx_lvds
;
434 limit
= &intel_limits_i9xx_sdvo
;
436 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
437 limit
= &intel_limits_i8xx_lvds
;
439 limit
= &intel_limits_i8xx_dvo
;
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
447 clock
->m
= clock
->m2
+ 2;
448 clock
->p
= clock
->p1
* clock
->p2
;
449 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
450 clock
->dot
= clock
->vco
/ clock
->p
;
453 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
455 if (IS_PINEVIEW(dev
)) {
456 pineview_clock(refclk
, clock
);
459 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
460 clock
->p
= clock
->p1
* clock
->p2
;
461 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
462 clock
->dot
= clock
->vco
/ clock
->p
;
466 * Returns whether any output on the specified pipe is of the specified type
468 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
470 struct drm_device
*dev
= crtc
->dev
;
471 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
472 struct intel_encoder
*encoder
;
474 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
475 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
487 static bool intel_PLL_is_valid(struct drm_device
*dev
,
488 const intel_limit_t
*limit
,
489 const intel_clock_t
*clock
)
491 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
492 INTELPllInvalid("p1 out of range\n");
493 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
494 INTELPllInvalid("p out of range\n");
495 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
496 INTELPllInvalid("m2 out of range\n");
497 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
498 INTELPllInvalid("m1 out of range\n");
499 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
500 INTELPllInvalid("m1 <= m2\n");
501 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
502 INTELPllInvalid("m out of range\n");
503 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
504 INTELPllInvalid("n out of range\n");
505 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
510 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
511 INTELPllInvalid("dot out of range\n");
517 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
518 int target
, int refclk
, intel_clock_t
*best_clock
)
521 struct drm_device
*dev
= crtc
->dev
;
522 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
526 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
527 (I915_READ(LVDS
)) != 0) {
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
534 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
536 clock
.p2
= limit
->p2
.p2_fast
;
538 clock
.p2
= limit
->p2
.p2_slow
;
540 if (target
< limit
->p2
.dot_limit
)
541 clock
.p2
= limit
->p2
.p2_slow
;
543 clock
.p2
= limit
->p2
.p2_fast
;
546 memset(best_clock
, 0, sizeof(*best_clock
));
548 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
550 for (clock
.m2
= limit
->m2
.min
;
551 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
552 /* m1 is always 0 in Pineview */
553 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
555 for (clock
.n
= limit
->n
.min
;
556 clock
.n
<= limit
->n
.max
; clock
.n
++) {
557 for (clock
.p1
= limit
->p1
.min
;
558 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
561 intel_clock(dev
, refclk
, &clock
);
562 if (!intel_PLL_is_valid(dev
, limit
,
566 this_err
= abs(clock
.dot
- target
);
567 if (this_err
< err
) {
576 return (err
!= target
);
580 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
581 int target
, int refclk
, intel_clock_t
*best_clock
)
583 struct drm_device
*dev
= crtc
->dev
;
584 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
588 /* approximately equals target * 0.00585 */
589 int err_most
= (target
>> 8) + (target
>> 9);
592 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
595 if (HAS_PCH_SPLIT(dev
))
599 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
601 clock
.p2
= limit
->p2
.p2_fast
;
603 clock
.p2
= limit
->p2
.p2_slow
;
605 if (target
< limit
->p2
.dot_limit
)
606 clock
.p2
= limit
->p2
.p2_slow
;
608 clock
.p2
= limit
->p2
.p2_fast
;
611 memset(best_clock
, 0, sizeof(*best_clock
));
612 max_n
= limit
->n
.max
;
613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock
.m1
= limit
->m1
.max
;
617 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
618 for (clock
.m2
= limit
->m2
.max
;
619 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
620 for (clock
.p1
= limit
->p1
.max
;
621 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
624 intel_clock(dev
, refclk
, &clock
);
625 if (!intel_PLL_is_valid(dev
, limit
,
629 this_err
= abs(clock
.dot
- target
);
630 if (this_err
< err_most
) {
644 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
645 int target
, int refclk
, intel_clock_t
*best_clock
)
647 struct drm_device
*dev
= crtc
->dev
;
650 if (target
< 200000) {
663 intel_clock(dev
, refclk
, &clock
);
664 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
670 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
671 int target
, int refclk
, intel_clock_t
*best_clock
)
674 if (target
< 200000) {
687 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
688 clock
.p
= (clock
.p1
* clock
.p2
);
689 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
691 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
696 * intel_wait_for_vblank - wait for vblank on a given pipe
698 * @pipe: pipe to wait for
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
703 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
705 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
706 int pipestat_reg
= PIPESTAT(pipe
);
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
721 I915_WRITE(pipestat_reg
,
722 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg
) &
726 PIPE_VBLANK_INTERRUPT_STATUS
,
728 DRM_DEBUG_KMS("vblank wait timed out\n");
732 * intel_wait_for_pipe_off - wait for pipe to turn off
734 * @pipe: pipe to wait for
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
741 * wait for the pipe register state bit to turn off
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
748 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
750 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
752 if (INTEL_INFO(dev
)->gen
>= 4) {
753 int reg
= PIPECONF(pipe
);
755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
761 int reg
= PIPEDSL(pipe
);
762 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
764 /* Wait for the display line to settle */
766 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
768 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
769 time_after(timeout
, jiffies
));
770 if (time_after(jiffies
, timeout
))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
775 static const char *state_string(bool enabled
)
777 return enabled
? "on" : "off";
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private
*dev_priv
,
782 enum pipe pipe
, bool state
)
789 val
= I915_READ(reg
);
790 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
791 WARN(cur_state
!= state
,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state
), state_string(cur_state
));
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
799 static void assert_pch_pll(struct drm_i915_private
*dev_priv
,
800 enum pipe pipe
, bool state
)
806 if (HAS_PCH_CPT(dev_priv
->dev
)) {
809 pch_dpll
= I915_READ(PCH_DPLL_SEL
);
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll
>> (4 * pipe
)) & 8),
813 "transcoder %d PLL not enabled\n", pipe
);
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe
= (pch_dpll
>> (4 * pipe
)) & 1;
819 reg
= PCH_DPLL(pipe
);
820 val
= I915_READ(reg
);
821 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
822 WARN(cur_state
!= state
,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state
), state_string(cur_state
));
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
829 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
830 enum pipe pipe
, bool state
)
836 reg
= FDI_TX_CTL(pipe
);
837 val
= I915_READ(reg
);
838 cur_state
= !!(val
& FDI_TX_ENABLE
);
839 WARN(cur_state
!= state
,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state
), state_string(cur_state
));
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
846 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
847 enum pipe pipe
, bool state
)
853 reg
= FDI_RX_CTL(pipe
);
854 val
= I915_READ(reg
);
855 cur_state
= !!(val
& FDI_RX_ENABLE
);
856 WARN(cur_state
!= state
,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state
), state_string(cur_state
));
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv
->info
->gen
== 5)
873 reg
= FDI_TX_CTL(pipe
);
874 val
= I915_READ(reg
);
875 WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private
*dev_priv
,
884 reg
= FDI_RX_CTL(pipe
);
885 val
= I915_READ(reg
);
886 WARN(!(val
& FDI_RX_PLL_ENABLE
), "FDI RX PLL assertion failure, should be active but is disabled\n");
889 static void assert_panel_unlocked(struct drm_i915_private
*dev_priv
,
892 int pp_reg
, lvds_reg
;
894 enum pipe panel_pipe
= PIPE_A
;
897 if (HAS_PCH_SPLIT(dev_priv
->dev
)) {
898 pp_reg
= PCH_PP_CONTROL
;
905 val
= I915_READ(pp_reg
);
906 if (!(val
& PANEL_POWER_ON
) ||
907 ((val
& PANEL_UNLOCK_REGS
) == PANEL_UNLOCK_REGS
))
910 if (I915_READ(lvds_reg
) & LVDS_PIPEB_SELECT
)
913 WARN(panel_pipe
== pipe
&& locked
,
914 "panel assertion failure, pipe %c regs locked\n",
918 void assert_pipe(struct drm_i915_private
*dev_priv
,
919 enum pipe pipe
, bool state
)
925 reg
= PIPECONF(pipe
);
926 val
= I915_READ(reg
);
927 cur_state
= !!(val
& PIPECONF_ENABLE
);
928 WARN(cur_state
!= state
,
929 "pipe %c assertion failure (expected %s, current %s)\n",
930 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
933 static void assert_plane_enabled(struct drm_i915_private
*dev_priv
,
939 reg
= DSPCNTR(plane
);
940 val
= I915_READ(reg
);
941 WARN(!(val
& DISPLAY_PLANE_ENABLE
),
942 "plane %c assertion failure, should be active but is disabled\n",
946 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
953 /* Planes are fixed to pipes on ILK+ */
954 if (HAS_PCH_SPLIT(dev_priv
->dev
))
957 /* Need to check both planes against the pipe */
958 for (i
= 0; i
< 2; i
++) {
960 val
= I915_READ(reg
);
961 cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
962 DISPPLANE_SEL_PIPE_SHIFT
;
963 WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
964 "plane %c assertion failure, should be off on pipe %c but is still active\n",
965 plane_name(i
), pipe_name(pipe
));
969 static void assert_pch_refclk_enabled(struct drm_i915_private
*dev_priv
)
974 val
= I915_READ(PCH_DREF_CONTROL
);
975 enabled
= !!(val
& (DREF_SSC_SOURCE_MASK
| DREF_NONSPREAD_SOURCE_MASK
|
976 DREF_SUPERSPREAD_SOURCE_MASK
));
977 WARN(!enabled
, "PCH refclk assertion failure, should be active but is disabled\n");
980 static void assert_transcoder_disabled(struct drm_i915_private
*dev_priv
,
987 reg
= TRANSCONF(pipe
);
988 val
= I915_READ(reg
);
989 enabled
= !!(val
& TRANS_ENABLE
);
991 "transcoder assertion failed, should be off on pipe %c but is still active\n",
995 static bool dp_pipe_enabled(struct drm_i915_private
*dev_priv
,
996 enum pipe pipe
, u32 port_sel
, u32 val
)
998 if ((val
& DP_PORT_EN
) == 0)
1001 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1002 u32 trans_dp_ctl_reg
= TRANS_DP_CTL(pipe
);
1003 u32 trans_dp_ctl
= I915_READ(trans_dp_ctl_reg
);
1004 if ((trans_dp_ctl
& TRANS_DP_PORT_SEL_MASK
) != port_sel
)
1007 if ((val
& DP_PIPE_MASK
) != (pipe
<< 30))
1013 static bool hdmi_pipe_enabled(struct drm_i915_private
*dev_priv
,
1014 enum pipe pipe
, u32 val
)
1016 if ((val
& PORT_ENABLE
) == 0)
1019 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1020 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1023 if ((val
& TRANSCODER_MASK
) != TRANSCODER(pipe
))
1029 static bool lvds_pipe_enabled(struct drm_i915_private
*dev_priv
,
1030 enum pipe pipe
, u32 val
)
1032 if ((val
& LVDS_PORT_EN
) == 0)
1035 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1036 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1039 if ((val
& LVDS_PIPE_MASK
) != LVDS_PIPE(pipe
))
1045 static bool adpa_pipe_enabled(struct drm_i915_private
*dev_priv
,
1046 enum pipe pipe
, u32 val
)
1048 if ((val
& ADPA_DAC_ENABLE
) == 0)
1050 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1051 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1054 if ((val
& ADPA_PIPE_SELECT_MASK
) != ADPA_PIPE_SELECT(pipe
))
1060 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
1061 enum pipe pipe
, int reg
, u32 port_sel
)
1063 u32 val
= I915_READ(reg
);
1064 WARN(dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
),
1065 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1066 reg
, pipe_name(pipe
));
1069 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
1070 enum pipe pipe
, int reg
)
1072 u32 val
= I915_READ(reg
);
1073 WARN(hdmi_pipe_enabled(dev_priv
, val
, pipe
),
1074 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1075 reg
, pipe_name(pipe
));
1078 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1084 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1085 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1086 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1089 val
= I915_READ(reg
);
1090 WARN(adpa_pipe_enabled(dev_priv
, val
, pipe
),
1091 "PCH VGA enabled on transcoder %c, should be disabled\n",
1095 val
= I915_READ(reg
);
1096 WARN(lvds_pipe_enabled(dev_priv
, val
, pipe
),
1097 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1100 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIB
);
1101 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIC
);
1102 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMID
);
1106 * intel_enable_pll - enable a PLL
1107 * @dev_priv: i915 private structure
1108 * @pipe: pipe PLL to enable
1110 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1111 * make sure the PLL reg is writable first though, since the panel write
1112 * protect mechanism may be enabled.
1114 * Note! This is for pre-ILK only.
1116 static void intel_enable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1121 /* No really, not for ILK+ */
1122 BUG_ON(dev_priv
->info
->gen
>= 5);
1124 /* PLL is protected by panel, make sure we can write it */
1125 if (IS_MOBILE(dev_priv
->dev
) && !IS_I830(dev_priv
->dev
))
1126 assert_panel_unlocked(dev_priv
, pipe
);
1129 val
= I915_READ(reg
);
1130 val
|= DPLL_VCO_ENABLE
;
1132 /* We do this three times for luck */
1133 I915_WRITE(reg
, val
);
1135 udelay(150); /* wait for warmup */
1136 I915_WRITE(reg
, val
);
1138 udelay(150); /* wait for warmup */
1139 I915_WRITE(reg
, val
);
1141 udelay(150); /* wait for warmup */
1145 * intel_disable_pll - disable a PLL
1146 * @dev_priv: i915 private structure
1147 * @pipe: pipe PLL to disable
1149 * Disable the PLL for @pipe, making sure the pipe is off first.
1151 * Note! This is for pre-ILK only.
1153 static void intel_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1158 /* Don't disable pipe A or pipe A PLLs if needed */
1159 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1162 /* Make sure the pipe isn't still relying on us */
1163 assert_pipe_disabled(dev_priv
, pipe
);
1166 val
= I915_READ(reg
);
1167 val
&= ~DPLL_VCO_ENABLE
;
1168 I915_WRITE(reg
, val
);
1173 * intel_enable_pch_pll - enable PCH PLL
1174 * @dev_priv: i915 private structure
1175 * @pipe: pipe PLL to enable
1177 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1178 * drives the transcoder clock.
1180 static void intel_enable_pch_pll(struct drm_i915_private
*dev_priv
,
1189 /* PCH only available on ILK+ */
1190 BUG_ON(dev_priv
->info
->gen
< 5);
1192 /* PCH refclock must be enabled first */
1193 assert_pch_refclk_enabled(dev_priv
);
1195 reg
= PCH_DPLL(pipe
);
1196 val
= I915_READ(reg
);
1197 val
|= DPLL_VCO_ENABLE
;
1198 I915_WRITE(reg
, val
);
1203 static void intel_disable_pch_pll(struct drm_i915_private
*dev_priv
,
1207 u32 val
, pll_mask
= TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
,
1208 pll_sel
= TRANSC_DPLL_ENABLE
;
1213 /* PCH only available on ILK+ */
1214 BUG_ON(dev_priv
->info
->gen
< 5);
1216 /* Make sure transcoder isn't still depending on us */
1217 assert_transcoder_disabled(dev_priv
, pipe
);
1220 pll_sel
|= TRANSC_DPLLA_SEL
;
1222 pll_sel
|= TRANSC_DPLLB_SEL
;
1225 if ((I915_READ(PCH_DPLL_SEL
) & pll_mask
) == pll_sel
)
1228 reg
= PCH_DPLL(pipe
);
1229 val
= I915_READ(reg
);
1230 val
&= ~DPLL_VCO_ENABLE
;
1231 I915_WRITE(reg
, val
);
1236 static void intel_enable_transcoder(struct drm_i915_private
*dev_priv
,
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv
->info
->gen
< 5);
1245 /* Make sure PCH DPLL is enabled */
1246 assert_pch_pll_enabled(dev_priv
, pipe
);
1248 /* FDI must be feeding us bits for PCH ports */
1249 assert_fdi_tx_enabled(dev_priv
, pipe
);
1250 assert_fdi_rx_enabled(dev_priv
, pipe
);
1252 reg
= TRANSCONF(pipe
);
1253 val
= I915_READ(reg
);
1255 if (HAS_PCH_IBX(dev_priv
->dev
)) {
1257 * make the BPC in transcoder be consistent with
1258 * that in pipeconf reg.
1260 val
&= ~PIPE_BPC_MASK
;
1261 val
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
1263 I915_WRITE(reg
, val
| TRANS_ENABLE
);
1264 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
1265 DRM_ERROR("failed to enable transcoder %d\n", pipe
);
1268 static void intel_disable_transcoder(struct drm_i915_private
*dev_priv
,
1274 /* FDI relies on the transcoder */
1275 assert_fdi_tx_disabled(dev_priv
, pipe
);
1276 assert_fdi_rx_disabled(dev_priv
, pipe
);
1278 /* Ports must be off as well */
1279 assert_pch_ports_disabled(dev_priv
, pipe
);
1281 reg
= TRANSCONF(pipe
);
1282 val
= I915_READ(reg
);
1283 val
&= ~TRANS_ENABLE
;
1284 I915_WRITE(reg
, val
);
1285 /* wait for PCH transcoder off, transcoder state */
1286 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
1287 DRM_ERROR("failed to disable transcoder %d\n", pipe
);
1291 * intel_enable_pipe - enable a pipe, asserting requirements
1292 * @dev_priv: i915 private structure
1293 * @pipe: pipe to enable
1294 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1296 * Enable @pipe, making sure that various hardware specific requirements
1297 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1299 * @pipe should be %PIPE_A or %PIPE_B.
1301 * Will wait until the pipe is actually running (i.e. first vblank) before
1304 static void intel_enable_pipe(struct drm_i915_private
*dev_priv
, enum pipe pipe
,
1311 * A pipe without a PLL won't actually be able to drive bits from
1312 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1315 if (!HAS_PCH_SPLIT(dev_priv
->dev
))
1316 assert_pll_enabled(dev_priv
, pipe
);
1319 /* if driving the PCH, we need FDI enabled */
1320 assert_fdi_rx_pll_enabled(dev_priv
, pipe
);
1321 assert_fdi_tx_pll_enabled(dev_priv
, pipe
);
1323 /* FIXME: assert CPU port conditions for SNB+ */
1326 reg
= PIPECONF(pipe
);
1327 val
= I915_READ(reg
);
1328 if (val
& PIPECONF_ENABLE
)
1331 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
1332 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1336 * intel_disable_pipe - disable a pipe, asserting requirements
1337 * @dev_priv: i915 private structure
1338 * @pipe: pipe to disable
1340 * Disable @pipe, making sure that various hardware specific requirements
1341 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1343 * @pipe should be %PIPE_A or %PIPE_B.
1345 * Will wait until the pipe has shut down before returning.
1347 static void intel_disable_pipe(struct drm_i915_private
*dev_priv
,
1354 * Make sure planes won't keep trying to pump pixels to us,
1355 * or we might hang the display.
1357 assert_planes_disabled(dev_priv
, pipe
);
1359 /* Don't disable pipe A or pipe A PLLs if needed */
1360 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1363 reg
= PIPECONF(pipe
);
1364 val
= I915_READ(reg
);
1365 if ((val
& PIPECONF_ENABLE
) == 0)
1368 I915_WRITE(reg
, val
& ~PIPECONF_ENABLE
);
1369 intel_wait_for_pipe_off(dev_priv
->dev
, pipe
);
1373 * Plane regs are double buffered, going from enabled->disabled needs a
1374 * trigger in order to latch. The display address reg provides this.
1376 static void intel_flush_display_plane(struct drm_i915_private
*dev_priv
,
1379 I915_WRITE(DSPADDR(plane
), I915_READ(DSPADDR(plane
)));
1380 I915_WRITE(DSPSURF(plane
), I915_READ(DSPSURF(plane
)));
1384 * intel_enable_plane - enable a display plane on a given pipe
1385 * @dev_priv: i915 private structure
1386 * @plane: plane to enable
1387 * @pipe: pipe being fed
1389 * Enable @plane on @pipe, making sure that @pipe is running first.
1391 static void intel_enable_plane(struct drm_i915_private
*dev_priv
,
1392 enum plane plane
, enum pipe pipe
)
1397 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1398 assert_pipe_enabled(dev_priv
, pipe
);
1400 reg
= DSPCNTR(plane
);
1401 val
= I915_READ(reg
);
1402 if (val
& DISPLAY_PLANE_ENABLE
)
1405 I915_WRITE(reg
, val
| DISPLAY_PLANE_ENABLE
);
1406 intel_flush_display_plane(dev_priv
, plane
);
1407 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1411 * intel_disable_plane - disable a display plane
1412 * @dev_priv: i915 private structure
1413 * @plane: plane to disable
1414 * @pipe: pipe consuming the data
1416 * Disable @plane; should be an independent operation.
1418 static void intel_disable_plane(struct drm_i915_private
*dev_priv
,
1419 enum plane plane
, enum pipe pipe
)
1424 reg
= DSPCNTR(plane
);
1425 val
= I915_READ(reg
);
1426 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
1429 I915_WRITE(reg
, val
& ~DISPLAY_PLANE_ENABLE
);
1430 intel_flush_display_plane(dev_priv
, plane
);
1431 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1434 static void disable_pch_dp(struct drm_i915_private
*dev_priv
,
1435 enum pipe pipe
, int reg
, u32 port_sel
)
1437 u32 val
= I915_READ(reg
);
1438 if (dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
)) {
1439 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg
, pipe
);
1440 I915_WRITE(reg
, val
& ~DP_PORT_EN
);
1444 static void disable_pch_hdmi(struct drm_i915_private
*dev_priv
,
1445 enum pipe pipe
, int reg
)
1447 u32 val
= I915_READ(reg
);
1448 if (hdmi_pipe_enabled(dev_priv
, val
, pipe
)) {
1449 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1451 I915_WRITE(reg
, val
& ~PORT_ENABLE
);
1455 /* Disable any ports connected to this transcoder */
1456 static void intel_disable_pch_ports(struct drm_i915_private
*dev_priv
,
1461 val
= I915_READ(PCH_PP_CONTROL
);
1462 I915_WRITE(PCH_PP_CONTROL
, val
| PANEL_UNLOCK_REGS
);
1464 disable_pch_dp(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1465 disable_pch_dp(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1466 disable_pch_dp(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1469 val
= I915_READ(reg
);
1470 if (adpa_pipe_enabled(dev_priv
, val
, pipe
))
1471 I915_WRITE(reg
, val
& ~ADPA_DAC_ENABLE
);
1474 val
= I915_READ(reg
);
1475 if (lvds_pipe_enabled(dev_priv
, val
, pipe
)) {
1476 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe
, val
);
1477 I915_WRITE(reg
, val
& ~LVDS_PORT_EN
);
1482 disable_pch_hdmi(dev_priv
, pipe
, HDMIB
);
1483 disable_pch_hdmi(dev_priv
, pipe
, HDMIC
);
1484 disable_pch_hdmi(dev_priv
, pipe
, HDMID
);
1487 static void i8xx_disable_fbc(struct drm_device
*dev
)
1489 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1492 /* Disable compression */
1493 fbc_ctl
= I915_READ(FBC_CONTROL
);
1494 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1497 fbc_ctl
&= ~FBC_CTL_EN
;
1498 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1500 /* Wait for compressing bit to clear */
1501 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1502 DRM_DEBUG_KMS("FBC idle timed out\n");
1506 DRM_DEBUG_KMS("disabled FBC\n");
1509 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1511 struct drm_device
*dev
= crtc
->dev
;
1512 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1513 struct drm_framebuffer
*fb
= crtc
->fb
;
1514 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1515 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1516 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1519 u32 fbc_ctl
, fbc_ctl2
;
1521 cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1522 if (fb
->pitches
[0] < cfb_pitch
)
1523 cfb_pitch
= fb
->pitches
[0];
1525 /* FBC_CTL wants 64B units */
1526 cfb_pitch
= (cfb_pitch
/ 64) - 1;
1527 plane
= intel_crtc
->plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1529 /* Clear old tags */
1530 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1531 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1534 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| FBC_CTL_CPU_FENCE
;
1536 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1537 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1540 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1542 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1543 fbc_ctl
|= (cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1544 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1545 fbc_ctl
|= obj
->fence_reg
;
1546 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1548 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1549 cfb_pitch
, crtc
->y
, intel_crtc
->plane
);
1552 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1554 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1556 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1559 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1561 struct drm_device
*dev
= crtc
->dev
;
1562 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1563 struct drm_framebuffer
*fb
= crtc
->fb
;
1564 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1565 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1566 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1567 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1568 unsigned long stall_watermark
= 200;
1571 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1572 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| obj
->fence_reg
;
1573 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1575 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1576 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1577 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1578 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1581 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1583 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1586 static void g4x_disable_fbc(struct drm_device
*dev
)
1588 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1591 /* Disable compression */
1592 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1593 if (dpfc_ctl
& DPFC_CTL_EN
) {
1594 dpfc_ctl
&= ~DPFC_CTL_EN
;
1595 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1597 DRM_DEBUG_KMS("disabled FBC\n");
1601 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1603 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1605 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1608 static void sandybridge_blit_fbc_update(struct drm_device
*dev
)
1610 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1613 /* Make sure blitter notifies FBC of writes */
1614 gen6_gt_force_wake_get(dev_priv
);
1615 blt_ecoskpd
= I915_READ(GEN6_BLITTER_ECOSKPD
);
1616 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
<<
1617 GEN6_BLITTER_LOCK_SHIFT
;
1618 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1619 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
;
1620 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1621 blt_ecoskpd
&= ~(GEN6_BLITTER_FBC_NOTIFY
<<
1622 GEN6_BLITTER_LOCK_SHIFT
);
1623 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1624 POSTING_READ(GEN6_BLITTER_ECOSKPD
);
1625 gen6_gt_force_wake_put(dev_priv
);
1628 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1630 struct drm_device
*dev
= crtc
->dev
;
1631 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1632 struct drm_framebuffer
*fb
= crtc
->fb
;
1633 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1634 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1635 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1636 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1637 unsigned long stall_watermark
= 200;
1640 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1641 dpfc_ctl
&= DPFC_RESERVED
;
1642 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1643 /* Set persistent mode for front-buffer rendering, ala X. */
1644 dpfc_ctl
|= DPFC_CTL_PERSISTENT_MODE
;
1645 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| obj
->fence_reg
);
1646 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1648 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1649 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1650 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1651 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1652 I915_WRITE(ILK_FBC_RT_BASE
, obj
->gtt_offset
| ILK_FBC_RT_VALID
);
1654 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1657 I915_WRITE(SNB_DPFC_CTL_SA
,
1658 SNB_CPU_FENCE_ENABLE
| obj
->fence_reg
);
1659 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
1660 sandybridge_blit_fbc_update(dev
);
1663 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1666 static void ironlake_disable_fbc(struct drm_device
*dev
)
1668 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1671 /* Disable compression */
1672 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1673 if (dpfc_ctl
& DPFC_CTL_EN
) {
1674 dpfc_ctl
&= ~DPFC_CTL_EN
;
1675 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1677 DRM_DEBUG_KMS("disabled FBC\n");
1681 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1683 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1685 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1688 bool intel_fbc_enabled(struct drm_device
*dev
)
1690 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1692 if (!dev_priv
->display
.fbc_enabled
)
1695 return dev_priv
->display
.fbc_enabled(dev
);
1698 static void intel_fbc_work_fn(struct work_struct
*__work
)
1700 struct intel_fbc_work
*work
=
1701 container_of(to_delayed_work(__work
),
1702 struct intel_fbc_work
, work
);
1703 struct drm_device
*dev
= work
->crtc
->dev
;
1704 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1706 mutex_lock(&dev
->struct_mutex
);
1707 if (work
== dev_priv
->fbc_work
) {
1708 /* Double check that we haven't switched fb without cancelling
1711 if (work
->crtc
->fb
== work
->fb
) {
1712 dev_priv
->display
.enable_fbc(work
->crtc
,
1715 dev_priv
->cfb_plane
= to_intel_crtc(work
->crtc
)->plane
;
1716 dev_priv
->cfb_fb
= work
->crtc
->fb
->base
.id
;
1717 dev_priv
->cfb_y
= work
->crtc
->y
;
1720 dev_priv
->fbc_work
= NULL
;
1722 mutex_unlock(&dev
->struct_mutex
);
1727 static void intel_cancel_fbc_work(struct drm_i915_private
*dev_priv
)
1729 if (dev_priv
->fbc_work
== NULL
)
1732 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1734 /* Synchronisation is provided by struct_mutex and checking of
1735 * dev_priv->fbc_work, so we can perform the cancellation
1736 * entirely asynchronously.
1738 if (cancel_delayed_work(&dev_priv
->fbc_work
->work
))
1739 /* tasklet was killed before being run, clean up */
1740 kfree(dev_priv
->fbc_work
);
1742 /* Mark the work as no longer wanted so that if it does
1743 * wake-up (because the work was already running and waiting
1744 * for our mutex), it will discover that is no longer
1747 dev_priv
->fbc_work
= NULL
;
1750 static void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1752 struct intel_fbc_work
*work
;
1753 struct drm_device
*dev
= crtc
->dev
;
1754 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1756 if (!dev_priv
->display
.enable_fbc
)
1759 intel_cancel_fbc_work(dev_priv
);
1761 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
1763 dev_priv
->display
.enable_fbc(crtc
, interval
);
1768 work
->fb
= crtc
->fb
;
1769 work
->interval
= interval
;
1770 INIT_DELAYED_WORK(&work
->work
, intel_fbc_work_fn
);
1772 dev_priv
->fbc_work
= work
;
1774 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1776 /* Delay the actual enabling to let pageflipping cease and the
1777 * display to settle before starting the compression. Note that
1778 * this delay also serves a second purpose: it allows for a
1779 * vblank to pass after disabling the FBC before we attempt
1780 * to modify the control registers.
1782 * A more complicated solution would involve tracking vblanks
1783 * following the termination of the page-flipping sequence
1784 * and indeed performing the enable as a co-routine and not
1785 * waiting synchronously upon the vblank.
1787 schedule_delayed_work(&work
->work
, msecs_to_jiffies(50));
1790 void intel_disable_fbc(struct drm_device
*dev
)
1792 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1794 intel_cancel_fbc_work(dev_priv
);
1796 if (!dev_priv
->display
.disable_fbc
)
1799 dev_priv
->display
.disable_fbc(dev
);
1800 dev_priv
->cfb_plane
= -1;
1804 * intel_update_fbc - enable/disable FBC as needed
1805 * @dev: the drm_device
1807 * Set up the framebuffer compression hardware at mode set time. We
1808 * enable it if possible:
1809 * - plane A only (on pre-965)
1810 * - no pixel mulitply/line duplication
1811 * - no alpha buffer discard
1813 * - framebuffer <= 2048 in width, 1536 in height
1815 * We can't assume that any compression will take place (worst case),
1816 * so the compressed buffer has to be the same size as the uncompressed
1817 * one. It also must reside (along with the line length buffer) in
1820 * We need to enable/disable FBC on a global basis.
1822 static void intel_update_fbc(struct drm_device
*dev
)
1824 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1825 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1826 struct intel_crtc
*intel_crtc
;
1827 struct drm_framebuffer
*fb
;
1828 struct intel_framebuffer
*intel_fb
;
1829 struct drm_i915_gem_object
*obj
;
1832 DRM_DEBUG_KMS("\n");
1834 if (!i915_powersave
)
1837 if (!I915_HAS_FBC(dev
))
1841 * If FBC is already on, we just have to verify that we can
1842 * keep it that way...
1843 * Need to disable if:
1844 * - more than one pipe is active
1845 * - changing FBC params (stride, fence, mode)
1846 * - new fb is too large to fit in compressed buffer
1847 * - going to an unsupported config (interlace, pixel multiply, etc.)
1849 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1850 if (tmp_crtc
->enabled
&& tmp_crtc
->fb
) {
1852 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1853 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1860 if (!crtc
|| crtc
->fb
== NULL
) {
1861 DRM_DEBUG_KMS("no output, disabling\n");
1862 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1866 intel_crtc
= to_intel_crtc(crtc
);
1868 intel_fb
= to_intel_framebuffer(fb
);
1869 obj
= intel_fb
->obj
;
1871 enable_fbc
= i915_enable_fbc
;
1872 if (enable_fbc
< 0) {
1873 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1875 if (INTEL_INFO(dev
)->gen
<= 6)
1879 DRM_DEBUG_KMS("fbc disabled per module param\n");
1880 dev_priv
->no_fbc_reason
= FBC_MODULE_PARAM
;
1883 if (intel_fb
->obj
->base
.size
> dev_priv
->cfb_size
) {
1884 DRM_DEBUG_KMS("framebuffer too large, disabling "
1886 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1889 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1890 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1891 DRM_DEBUG_KMS("mode incompatible with compression, "
1893 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1896 if ((crtc
->mode
.hdisplay
> 2048) ||
1897 (crtc
->mode
.vdisplay
> 1536)) {
1898 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1899 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1902 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1903 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1904 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1908 /* The use of a CPU fence is mandatory in order to detect writes
1909 * by the CPU to the scanout and trigger updates to the FBC.
1911 if (obj
->tiling_mode
!= I915_TILING_X
||
1912 obj
->fence_reg
== I915_FENCE_REG_NONE
) {
1913 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1914 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1918 /* If the kernel debugger is active, always disable compression */
1919 if (in_dbg_master())
1922 /* If the scanout has not changed, don't modify the FBC settings.
1923 * Note that we make the fundamental assumption that the fb->obj
1924 * cannot be unpinned (and have its GTT offset and fence revoked)
1925 * without first being decoupled from the scanout and FBC disabled.
1927 if (dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1928 dev_priv
->cfb_fb
== fb
->base
.id
&&
1929 dev_priv
->cfb_y
== crtc
->y
)
1932 if (intel_fbc_enabled(dev
)) {
1933 /* We update FBC along two paths, after changing fb/crtc
1934 * configuration (modeswitching) and after page-flipping
1935 * finishes. For the latter, we know that not only did
1936 * we disable the FBC at the start of the page-flip
1937 * sequence, but also more than one vblank has passed.
1939 * For the former case of modeswitching, it is possible
1940 * to switch between two FBC valid configurations
1941 * instantaneously so we do need to disable the FBC
1942 * before we can modify its control registers. We also
1943 * have to wait for the next vblank for that to take
1944 * effect. However, since we delay enabling FBC we can
1945 * assume that a vblank has passed since disabling and
1946 * that we can safely alter the registers in the deferred
1949 * In the scenario that we go from a valid to invalid
1950 * and then back to valid FBC configuration we have
1951 * no strict enforcement that a vblank occurred since
1952 * disabling the FBC. However, along all current pipe
1953 * disabling paths we do need to wait for a vblank at
1954 * some point. And we wait before enabling FBC anyway.
1956 DRM_DEBUG_KMS("disabling active FBC for update\n");
1957 intel_disable_fbc(dev
);
1960 intel_enable_fbc(crtc
, 500);
1964 /* Multiple disables should be harmless */
1965 if (intel_fbc_enabled(dev
)) {
1966 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1967 intel_disable_fbc(dev
);
1972 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1973 struct drm_i915_gem_object
*obj
,
1974 struct intel_ring_buffer
*pipelined
)
1976 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1980 switch (obj
->tiling_mode
) {
1981 case I915_TILING_NONE
:
1982 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1983 alignment
= 128 * 1024;
1984 else if (INTEL_INFO(dev
)->gen
>= 4)
1985 alignment
= 4 * 1024;
1987 alignment
= 64 * 1024;
1990 /* pin() will align the object as required by fence */
1994 /* FIXME: Is this true? */
1995 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2001 dev_priv
->mm
.interruptible
= false;
2002 ret
= i915_gem_object_pin_to_display_plane(obj
, alignment
, pipelined
);
2004 goto err_interruptible
;
2006 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2007 * fence, whereas 965+ only requires a fence if using
2008 * framebuffer compression. For simplicity, we always install
2009 * a fence as the cost is not that onerous.
2011 if (obj
->tiling_mode
!= I915_TILING_NONE
) {
2012 ret
= i915_gem_object_get_fence(obj
, pipelined
);
2017 dev_priv
->mm
.interruptible
= true;
2021 i915_gem_object_unpin(obj
);
2023 dev_priv
->mm
.interruptible
= true;
2027 static int i9xx_update_plane(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2030 struct drm_device
*dev
= crtc
->dev
;
2031 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2032 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2033 struct intel_framebuffer
*intel_fb
;
2034 struct drm_i915_gem_object
*obj
;
2035 int plane
= intel_crtc
->plane
;
2036 unsigned long Start
, Offset
;
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2049 intel_fb
= to_intel_framebuffer(fb
);
2050 obj
= intel_fb
->obj
;
2052 reg
= DSPCNTR(plane
);
2053 dspcntr
= I915_READ(reg
);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2056 switch (fb
->bits_per_pixel
) {
2058 dspcntr
|= DISPPLANE_8BPP
;
2061 if (fb
->depth
== 15)
2062 dspcntr
|= DISPPLANE_15_16BPP
;
2064 dspcntr
|= DISPPLANE_16BPP
;
2068 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2071 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2074 if (INTEL_INFO(dev
)->gen
>= 4) {
2075 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2076 dspcntr
|= DISPPLANE_TILED
;
2078 dspcntr
&= ~DISPPLANE_TILED
;
2081 I915_WRITE(reg
, dspcntr
);
2083 Start
= obj
->gtt_offset
;
2084 Offset
= y
* fb
->pitches
[0] + x
* (fb
->bits_per_pixel
/ 8);
2086 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2087 Start
, Offset
, x
, y
, fb
->pitches
[0]);
2088 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
2089 if (INTEL_INFO(dev
)->gen
>= 4) {
2090 I915_WRITE(DSPSURF(plane
), Start
);
2091 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2092 I915_WRITE(DSPADDR(plane
), Offset
);
2094 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
2100 static int ironlake_update_plane(struct drm_crtc
*crtc
,
2101 struct drm_framebuffer
*fb
, int x
, int y
)
2103 struct drm_device
*dev
= crtc
->dev
;
2104 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2105 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2106 struct intel_framebuffer
*intel_fb
;
2107 struct drm_i915_gem_object
*obj
;
2108 int plane
= intel_crtc
->plane
;
2109 unsigned long Start
, Offset
;
2119 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2123 intel_fb
= to_intel_framebuffer(fb
);
2124 obj
= intel_fb
->obj
;
2126 reg
= DSPCNTR(plane
);
2127 dspcntr
= I915_READ(reg
);
2128 /* Mask out pixel format bits in case we change it */
2129 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2130 switch (fb
->bits_per_pixel
) {
2132 dspcntr
|= DISPPLANE_8BPP
;
2135 if (fb
->depth
!= 16)
2138 dspcntr
|= DISPPLANE_16BPP
;
2142 if (fb
->depth
== 24)
2143 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2144 else if (fb
->depth
== 30)
2145 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
2150 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2154 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2155 dspcntr
|= DISPPLANE_TILED
;
2157 dspcntr
&= ~DISPPLANE_TILED
;
2160 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
2162 I915_WRITE(reg
, dspcntr
);
2164 Start
= obj
->gtt_offset
;
2165 Offset
= y
* fb
->pitches
[0] + x
* (fb
->bits_per_pixel
/ 8);
2167 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2168 Start
, Offset
, x
, y
, fb
->pitches
[0]);
2169 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
2170 I915_WRITE(DSPSURF(plane
), Start
);
2171 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2172 I915_WRITE(DSPADDR(plane
), Offset
);
2178 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2180 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2181 int x
, int y
, enum mode_set_atomic state
)
2183 struct drm_device
*dev
= crtc
->dev
;
2184 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2187 ret
= dev_priv
->display
.update_plane(crtc
, fb
, x
, y
);
2191 intel_update_fbc(dev
);
2192 intel_increase_pllclock(crtc
);
2198 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
2199 struct drm_framebuffer
*old_fb
)
2201 struct drm_device
*dev
= crtc
->dev
;
2202 struct drm_i915_master_private
*master_priv
;
2203 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2208 DRM_ERROR("No FB bound\n");
2212 switch (intel_crtc
->plane
) {
2217 if (IS_IVYBRIDGE(dev
))
2219 /* fall through otherwise */
2221 DRM_ERROR("no plane for crtc\n");
2225 mutex_lock(&dev
->struct_mutex
);
2226 ret
= intel_pin_and_fence_fb_obj(dev
,
2227 to_intel_framebuffer(crtc
->fb
)->obj
,
2230 mutex_unlock(&dev
->struct_mutex
);
2231 DRM_ERROR("pin & fence failed\n");
2236 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2237 struct drm_i915_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
2239 wait_event(dev_priv
->pending_flip_queue
,
2240 atomic_read(&dev_priv
->mm
.wedged
) ||
2241 atomic_read(&obj
->pending_flip
) == 0);
2243 /* Big Hammer, we also need to ensure that any pending
2244 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2245 * current scanout is retired before unpinning the old
2248 * This should only fail upon a hung GPU, in which case we
2249 * can safely continue.
2251 ret
= i915_gem_object_finish_gpu(obj
);
2255 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
,
2256 LEAVE_ATOMIC_MODE_SET
);
2258 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2259 mutex_unlock(&dev
->struct_mutex
);
2260 DRM_ERROR("failed to update base address\n");
2265 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
2266 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
2269 mutex_unlock(&dev
->struct_mutex
);
2271 if (!dev
->primary
->master
)
2274 master_priv
= dev
->primary
->master
->driver_priv
;
2275 if (!master_priv
->sarea_priv
)
2278 if (intel_crtc
->pipe
) {
2279 master_priv
->sarea_priv
->pipeB_x
= x
;
2280 master_priv
->sarea_priv
->pipeB_y
= y
;
2282 master_priv
->sarea_priv
->pipeA_x
= x
;
2283 master_priv
->sarea_priv
->pipeA_y
= y
;
2289 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
2291 struct drm_device
*dev
= crtc
->dev
;
2292 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2295 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
2296 dpa_ctl
= I915_READ(DP_A
);
2297 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
2299 if (clock
< 200000) {
2301 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
2302 /* workaround for 160Mhz:
2303 1) program 0x4600c bits 15:0 = 0x8124
2304 2) program 0x46010 bit 0 = 1
2305 3) program 0x46034 bit 24 = 1
2306 4) program 0x64000 bit 14 = 1
2308 temp
= I915_READ(0x4600c);
2310 I915_WRITE(0x4600c, temp
| 0x8124);
2312 temp
= I915_READ(0x46010);
2313 I915_WRITE(0x46010, temp
| 1);
2315 temp
= I915_READ(0x46034);
2316 I915_WRITE(0x46034, temp
| (1 << 24));
2318 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
2320 I915_WRITE(DP_A
, dpa_ctl
);
2326 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
2328 struct drm_device
*dev
= crtc
->dev
;
2329 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2330 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2331 int pipe
= intel_crtc
->pipe
;
2334 /* enable normal train */
2335 reg
= FDI_TX_CTL(pipe
);
2336 temp
= I915_READ(reg
);
2337 if (IS_IVYBRIDGE(dev
)) {
2338 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2339 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2341 temp
&= ~FDI_LINK_TRAIN_NONE
;
2342 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2344 I915_WRITE(reg
, temp
);
2346 reg
= FDI_RX_CTL(pipe
);
2347 temp
= I915_READ(reg
);
2348 if (HAS_PCH_CPT(dev
)) {
2349 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2350 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
2352 temp
&= ~FDI_LINK_TRAIN_NONE
;
2353 temp
|= FDI_LINK_TRAIN_NONE
;
2355 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
2357 /* wait one idle pattern time */
2361 /* IVB wants error correction enabled */
2362 if (IS_IVYBRIDGE(dev
))
2363 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
2364 FDI_FE_ERRC_ENABLE
);
2367 static void cpt_phase_pointer_enable(struct drm_device
*dev
, int pipe
)
2369 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2370 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2372 flags
|= FDI_PHASE_SYNC_OVR(pipe
);
2373 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to unlock... */
2374 flags
|= FDI_PHASE_SYNC_EN(pipe
);
2375 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to enable */
2376 POSTING_READ(SOUTH_CHICKEN1
);
2379 /* The FDI link training functions for ILK/Ibexpeak. */
2380 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
2382 struct drm_device
*dev
= crtc
->dev
;
2383 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2384 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2385 int pipe
= intel_crtc
->pipe
;
2386 int plane
= intel_crtc
->plane
;
2387 u32 reg
, temp
, tries
;
2389 /* FDI needs bits from pipe & plane first */
2390 assert_pipe_enabled(dev_priv
, pipe
);
2391 assert_plane_enabled(dev_priv
, plane
);
2393 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2395 reg
= FDI_RX_IMR(pipe
);
2396 temp
= I915_READ(reg
);
2397 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2398 temp
&= ~FDI_RX_BIT_LOCK
;
2399 I915_WRITE(reg
, temp
);
2403 /* enable CPU FDI TX and PCH FDI RX */
2404 reg
= FDI_TX_CTL(pipe
);
2405 temp
= I915_READ(reg
);
2407 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2408 temp
&= ~FDI_LINK_TRAIN_NONE
;
2409 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2410 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2412 reg
= FDI_RX_CTL(pipe
);
2413 temp
= I915_READ(reg
);
2414 temp
&= ~FDI_LINK_TRAIN_NONE
;
2415 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2416 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2421 /* Ironlake workaround, enable clock pointer after FDI enable*/
2422 if (HAS_PCH_IBX(dev
)) {
2423 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2424 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
2425 FDI_RX_PHASE_SYNC_POINTER_EN
);
2428 reg
= FDI_RX_IIR(pipe
);
2429 for (tries
= 0; tries
< 5; tries
++) {
2430 temp
= I915_READ(reg
);
2431 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2433 if ((temp
& FDI_RX_BIT_LOCK
)) {
2434 DRM_DEBUG_KMS("FDI train 1 done.\n");
2435 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2440 DRM_ERROR("FDI train 1 fail!\n");
2443 reg
= FDI_TX_CTL(pipe
);
2444 temp
= I915_READ(reg
);
2445 temp
&= ~FDI_LINK_TRAIN_NONE
;
2446 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2447 I915_WRITE(reg
, temp
);
2449 reg
= FDI_RX_CTL(pipe
);
2450 temp
= I915_READ(reg
);
2451 temp
&= ~FDI_LINK_TRAIN_NONE
;
2452 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2453 I915_WRITE(reg
, temp
);
2458 reg
= FDI_RX_IIR(pipe
);
2459 for (tries
= 0; tries
< 5; tries
++) {
2460 temp
= I915_READ(reg
);
2461 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2463 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2464 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2465 DRM_DEBUG_KMS("FDI train 2 done.\n");
2470 DRM_ERROR("FDI train 2 fail!\n");
2472 DRM_DEBUG_KMS("FDI train done\n");
2476 static const int snb_b_fdi_train_param
[] = {
2477 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
2478 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
2479 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
2480 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
2483 /* The FDI link training functions for SNB/Cougarpoint. */
2484 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
2486 struct drm_device
*dev
= crtc
->dev
;
2487 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2488 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2489 int pipe
= intel_crtc
->pipe
;
2492 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2494 reg
= FDI_RX_IMR(pipe
);
2495 temp
= I915_READ(reg
);
2496 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2497 temp
&= ~FDI_RX_BIT_LOCK
;
2498 I915_WRITE(reg
, temp
);
2503 /* enable CPU FDI TX and PCH FDI RX */
2504 reg
= FDI_TX_CTL(pipe
);
2505 temp
= I915_READ(reg
);
2507 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2508 temp
&= ~FDI_LINK_TRAIN_NONE
;
2509 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2510 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2512 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2513 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2515 reg
= FDI_RX_CTL(pipe
);
2516 temp
= I915_READ(reg
);
2517 if (HAS_PCH_CPT(dev
)) {
2518 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2519 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2521 temp
&= ~FDI_LINK_TRAIN_NONE
;
2522 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2524 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2529 if (HAS_PCH_CPT(dev
))
2530 cpt_phase_pointer_enable(dev
, pipe
);
2532 for (i
= 0; i
< 4; i
++) {
2533 reg
= FDI_TX_CTL(pipe
);
2534 temp
= I915_READ(reg
);
2535 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2536 temp
|= snb_b_fdi_train_param
[i
];
2537 I915_WRITE(reg
, temp
);
2542 reg
= FDI_RX_IIR(pipe
);
2543 temp
= I915_READ(reg
);
2544 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2546 if (temp
& FDI_RX_BIT_LOCK
) {
2547 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2548 DRM_DEBUG_KMS("FDI train 1 done.\n");
2553 DRM_ERROR("FDI train 1 fail!\n");
2556 reg
= FDI_TX_CTL(pipe
);
2557 temp
= I915_READ(reg
);
2558 temp
&= ~FDI_LINK_TRAIN_NONE
;
2559 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2561 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2563 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2565 I915_WRITE(reg
, temp
);
2567 reg
= FDI_RX_CTL(pipe
);
2568 temp
= I915_READ(reg
);
2569 if (HAS_PCH_CPT(dev
)) {
2570 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2571 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2573 temp
&= ~FDI_LINK_TRAIN_NONE
;
2574 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2576 I915_WRITE(reg
, temp
);
2581 for (i
= 0; i
< 4; i
++) {
2582 reg
= FDI_TX_CTL(pipe
);
2583 temp
= I915_READ(reg
);
2584 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2585 temp
|= snb_b_fdi_train_param
[i
];
2586 I915_WRITE(reg
, temp
);
2591 reg
= FDI_RX_IIR(pipe
);
2592 temp
= I915_READ(reg
);
2593 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2595 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2596 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2597 DRM_DEBUG_KMS("FDI train 2 done.\n");
2602 DRM_ERROR("FDI train 2 fail!\n");
2604 DRM_DEBUG_KMS("FDI train done.\n");
2607 /* Manual link training for Ivy Bridge A0 parts */
2608 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
2610 struct drm_device
*dev
= crtc
->dev
;
2611 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2612 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2613 int pipe
= intel_crtc
->pipe
;
2616 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2618 reg
= FDI_RX_IMR(pipe
);
2619 temp
= I915_READ(reg
);
2620 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2621 temp
&= ~FDI_RX_BIT_LOCK
;
2622 I915_WRITE(reg
, temp
);
2627 /* enable CPU FDI TX and PCH FDI RX */
2628 reg
= FDI_TX_CTL(pipe
);
2629 temp
= I915_READ(reg
);
2631 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2632 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
2633 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
2634 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2635 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2636 temp
|= FDI_COMPOSITE_SYNC
;
2637 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2639 reg
= FDI_RX_CTL(pipe
);
2640 temp
= I915_READ(reg
);
2641 temp
&= ~FDI_LINK_TRAIN_AUTO
;
2642 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2643 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2644 temp
|= FDI_COMPOSITE_SYNC
;
2645 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2650 if (HAS_PCH_CPT(dev
))
2651 cpt_phase_pointer_enable(dev
, pipe
);
2653 for (i
= 0; i
< 4; i
++) {
2654 reg
= FDI_TX_CTL(pipe
);
2655 temp
= I915_READ(reg
);
2656 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2657 temp
|= snb_b_fdi_train_param
[i
];
2658 I915_WRITE(reg
, temp
);
2663 reg
= FDI_RX_IIR(pipe
);
2664 temp
= I915_READ(reg
);
2665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2667 if (temp
& FDI_RX_BIT_LOCK
||
2668 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
2669 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2670 DRM_DEBUG_KMS("FDI train 1 done.\n");
2675 DRM_ERROR("FDI train 1 fail!\n");
2678 reg
= FDI_TX_CTL(pipe
);
2679 temp
= I915_READ(reg
);
2680 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2681 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
2682 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2683 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2684 I915_WRITE(reg
, temp
);
2686 reg
= FDI_RX_CTL(pipe
);
2687 temp
= I915_READ(reg
);
2688 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2689 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2690 I915_WRITE(reg
, temp
);
2695 for (i
= 0; i
< 4; i
++) {
2696 reg
= FDI_TX_CTL(pipe
);
2697 temp
= I915_READ(reg
);
2698 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2699 temp
|= snb_b_fdi_train_param
[i
];
2700 I915_WRITE(reg
, temp
);
2705 reg
= FDI_RX_IIR(pipe
);
2706 temp
= I915_READ(reg
);
2707 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2709 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2710 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2711 DRM_DEBUG_KMS("FDI train 2 done.\n");
2716 DRM_ERROR("FDI train 2 fail!\n");
2718 DRM_DEBUG_KMS("FDI train done.\n");
2721 static void ironlake_fdi_pll_enable(struct drm_crtc
*crtc
)
2723 struct drm_device
*dev
= crtc
->dev
;
2724 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2725 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2726 int pipe
= intel_crtc
->pipe
;
2729 /* Write the TU size bits so error detection works */
2730 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
2731 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
2733 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2734 reg
= FDI_RX_CTL(pipe
);
2735 temp
= I915_READ(reg
);
2736 temp
&= ~((0x7 << 19) | (0x7 << 16));
2737 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2738 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2739 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
2744 /* Switch from Rawclk to PCDclk */
2745 temp
= I915_READ(reg
);
2746 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
2751 /* Enable CPU FDI TX PLL, always on for Ironlake */
2752 reg
= FDI_TX_CTL(pipe
);
2753 temp
= I915_READ(reg
);
2754 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
2755 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
2762 static void cpt_phase_pointer_disable(struct drm_device
*dev
, int pipe
)
2764 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2765 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2767 flags
&= ~(FDI_PHASE_SYNC_EN(pipe
));
2768 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to disable... */
2769 flags
&= ~(FDI_PHASE_SYNC_OVR(pipe
));
2770 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to lock */
2771 POSTING_READ(SOUTH_CHICKEN1
);
2773 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
2775 struct drm_device
*dev
= crtc
->dev
;
2776 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2777 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2778 int pipe
= intel_crtc
->pipe
;
2781 /* disable CPU FDI tx and PCH FDI rx */
2782 reg
= FDI_TX_CTL(pipe
);
2783 temp
= I915_READ(reg
);
2784 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2787 reg
= FDI_RX_CTL(pipe
);
2788 temp
= I915_READ(reg
);
2789 temp
&= ~(0x7 << 16);
2790 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2791 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2796 /* Ironlake workaround, disable clock pointer after downing FDI */
2797 if (HAS_PCH_IBX(dev
)) {
2798 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2799 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2800 I915_READ(FDI_RX_CHICKEN(pipe
) &
2801 ~FDI_RX_PHASE_SYNC_POINTER_EN
));
2802 } else if (HAS_PCH_CPT(dev
)) {
2803 cpt_phase_pointer_disable(dev
, pipe
);
2806 /* still set train pattern 1 */
2807 reg
= FDI_TX_CTL(pipe
);
2808 temp
= I915_READ(reg
);
2809 temp
&= ~FDI_LINK_TRAIN_NONE
;
2810 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2811 I915_WRITE(reg
, temp
);
2813 reg
= FDI_RX_CTL(pipe
);
2814 temp
= I915_READ(reg
);
2815 if (HAS_PCH_CPT(dev
)) {
2816 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2817 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2819 temp
&= ~FDI_LINK_TRAIN_NONE
;
2820 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2822 /* BPC in FDI rx is consistent with that in PIPECONF */
2823 temp
&= ~(0x07 << 16);
2824 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2825 I915_WRITE(reg
, temp
);
2832 * When we disable a pipe, we need to clear any pending scanline wait events
2833 * to avoid hanging the ring, which we assume we are waiting on.
2835 static void intel_clear_scanline_wait(struct drm_device
*dev
)
2837 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2838 struct intel_ring_buffer
*ring
;
2842 /* Can't break the hang on i8xx */
2845 ring
= LP_RING(dev_priv
);
2846 tmp
= I915_READ_CTL(ring
);
2847 if (tmp
& RING_WAIT
)
2848 I915_WRITE_CTL(ring
, tmp
);
2851 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
2853 struct drm_i915_gem_object
*obj
;
2854 struct drm_i915_private
*dev_priv
;
2856 if (crtc
->fb
== NULL
)
2859 obj
= to_intel_framebuffer(crtc
->fb
)->obj
;
2860 dev_priv
= crtc
->dev
->dev_private
;
2861 wait_event(dev_priv
->pending_flip_queue
,
2862 atomic_read(&obj
->pending_flip
) == 0);
2865 static bool intel_crtc_driving_pch(struct drm_crtc
*crtc
)
2867 struct drm_device
*dev
= crtc
->dev
;
2868 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2869 struct intel_encoder
*encoder
;
2872 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873 * must be driven by its own crtc; no sharing is possible.
2875 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
2876 if (encoder
->base
.crtc
!= crtc
)
2879 switch (encoder
->type
) {
2880 case INTEL_OUTPUT_EDP
:
2881 if (!intel_encoder_is_pch_edp(&encoder
->base
))
2891 * Enable PCH resources required for PCH ports:
2893 * - FDI training & RX/TX
2894 * - update transcoder timings
2895 * - DP transcoding bits
2898 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
2900 struct drm_device
*dev
= crtc
->dev
;
2901 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2902 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2903 int pipe
= intel_crtc
->pipe
;
2904 u32 reg
, temp
, transc_sel
;
2906 /* For PCH output, training FDI link */
2907 dev_priv
->display
.fdi_link_train(crtc
);
2909 intel_enable_pch_pll(dev_priv
, pipe
);
2911 if (HAS_PCH_CPT(dev
)) {
2912 transc_sel
= intel_crtc
->use_pll_a
? TRANSC_DPLLA_SEL
:
2915 /* Be sure PCH DPLL SEL is set */
2916 temp
= I915_READ(PCH_DPLL_SEL
);
2918 temp
&= ~(TRANSA_DPLLB_SEL
);
2919 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2920 } else if (pipe
== 1) {
2921 temp
&= ~(TRANSB_DPLLB_SEL
);
2922 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2923 } else if (pipe
== 2) {
2924 temp
&= ~(TRANSC_DPLLB_SEL
);
2925 temp
|= (TRANSC_DPLL_ENABLE
| transc_sel
);
2927 I915_WRITE(PCH_DPLL_SEL
, temp
);
2930 /* set transcoder timing, panel must allow it */
2931 assert_panel_unlocked(dev_priv
, pipe
);
2932 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2933 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2934 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2936 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2937 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2938 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2940 intel_fdi_normal_train(crtc
);
2942 /* For PCH DP, enable TRANS_DP_CTL */
2943 if (HAS_PCH_CPT(dev
) &&
2944 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
2945 intel_pipe_has_type(crtc
, INTEL_OUTPUT_EDP
))) {
2946 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) >> 5;
2947 reg
= TRANS_DP_CTL(pipe
);
2948 temp
= I915_READ(reg
);
2949 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2950 TRANS_DP_SYNC_MASK
|
2952 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2953 TRANS_DP_ENH_FRAMING
);
2954 temp
|= bpc
<< 9; /* same format but at 11:9 */
2956 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2957 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2958 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2959 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2961 switch (intel_trans_dp_port_sel(crtc
)) {
2963 temp
|= TRANS_DP_PORT_SEL_B
;
2966 temp
|= TRANS_DP_PORT_SEL_C
;
2969 temp
|= TRANS_DP_PORT_SEL_D
;
2972 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2973 temp
|= TRANS_DP_PORT_SEL_B
;
2977 I915_WRITE(reg
, temp
);
2980 intel_enable_transcoder(dev_priv
, pipe
);
2983 void intel_cpt_verify_modeset(struct drm_device
*dev
, int pipe
)
2985 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2986 int dslreg
= PIPEDSL(pipe
), tc2reg
= TRANS_CHICKEN2(pipe
);
2989 temp
= I915_READ(dslreg
);
2991 if (wait_for(I915_READ(dslreg
) != temp
, 5)) {
2992 /* Without this, mode sets may fail silently on FDI */
2993 I915_WRITE(tc2reg
, TRANS_AUTOTRAIN_GEN_STALL_DIS
);
2995 I915_WRITE(tc2reg
, 0);
2996 if (wait_for(I915_READ(dslreg
) != temp
, 5))
2997 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe
);
3001 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
3003 struct drm_device
*dev
= crtc
->dev
;
3004 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3005 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3006 int pipe
= intel_crtc
->pipe
;
3007 int plane
= intel_crtc
->plane
;
3011 if (intel_crtc
->active
)
3014 intel_crtc
->active
= true;
3015 intel_update_watermarks(dev
);
3017 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
3018 temp
= I915_READ(PCH_LVDS
);
3019 if ((temp
& LVDS_PORT_EN
) == 0)
3020 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
3023 is_pch_port
= intel_crtc_driving_pch(crtc
);
3026 ironlake_fdi_pll_enable(crtc
);
3028 ironlake_fdi_disable(crtc
);
3030 /* Enable panel fitting for LVDS */
3031 if (dev_priv
->pch_pf_size
&&
3032 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
3033 /* Force use of hard-coded filter coefficients
3034 * as some pre-programmed values are broken,
3037 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
3038 I915_WRITE(PF_WIN_POS(pipe
), dev_priv
->pch_pf_pos
);
3039 I915_WRITE(PF_WIN_SZ(pipe
), dev_priv
->pch_pf_size
);
3043 * On ILK+ LUT must be loaded before the pipe is running but with
3046 intel_crtc_load_lut(crtc
);
3048 intel_enable_pipe(dev_priv
, pipe
, is_pch_port
);
3049 intel_enable_plane(dev_priv
, plane
, pipe
);
3052 ironlake_pch_enable(crtc
);
3054 mutex_lock(&dev
->struct_mutex
);
3055 intel_update_fbc(dev
);
3056 mutex_unlock(&dev
->struct_mutex
);
3058 intel_crtc_update_cursor(crtc
, true);
3061 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
3063 struct drm_device
*dev
= crtc
->dev
;
3064 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3065 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3066 int pipe
= intel_crtc
->pipe
;
3067 int plane
= intel_crtc
->plane
;
3070 if (!intel_crtc
->active
)
3073 intel_crtc_wait_for_pending_flips(crtc
);
3074 drm_vblank_off(dev
, pipe
);
3075 intel_crtc_update_cursor(crtc
, false);
3077 intel_disable_plane(dev_priv
, plane
, pipe
);
3079 if (dev_priv
->cfb_plane
== plane
)
3080 intel_disable_fbc(dev
);
3082 intel_disable_pipe(dev_priv
, pipe
);
3085 I915_WRITE(PF_CTL(pipe
), 0);
3086 I915_WRITE(PF_WIN_SZ(pipe
), 0);
3088 ironlake_fdi_disable(crtc
);
3090 /* This is a horrible layering violation; we should be doing this in
3091 * the connector/encoder ->prepare instead, but we don't always have
3092 * enough information there about the config to know whether it will
3093 * actually be necessary or just cause undesired flicker.
3095 intel_disable_pch_ports(dev_priv
, pipe
);
3097 intel_disable_transcoder(dev_priv
, pipe
);
3099 if (HAS_PCH_CPT(dev
)) {
3100 /* disable TRANS_DP_CTL */
3101 reg
= TRANS_DP_CTL(pipe
);
3102 temp
= I915_READ(reg
);
3103 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
3104 temp
|= TRANS_DP_PORT_SEL_NONE
;
3105 I915_WRITE(reg
, temp
);
3107 /* disable DPLL_SEL */
3108 temp
= I915_READ(PCH_DPLL_SEL
);
3111 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLB_SEL
);
3114 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
3117 /* C shares PLL A or B */
3118 temp
&= ~(TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
);
3123 I915_WRITE(PCH_DPLL_SEL
, temp
);
3126 /* disable PCH DPLL */
3127 if (!intel_crtc
->no_pll
)
3128 intel_disable_pch_pll(dev_priv
, pipe
);
3130 /* Switch from PCDclk to Rawclk */
3131 reg
= FDI_RX_CTL(pipe
);
3132 temp
= I915_READ(reg
);
3133 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
3135 /* Disable CPU FDI TX PLL */
3136 reg
= FDI_TX_CTL(pipe
);
3137 temp
= I915_READ(reg
);
3138 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
3143 reg
= FDI_RX_CTL(pipe
);
3144 temp
= I915_READ(reg
);
3145 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
3147 /* Wait for the clocks to turn off. */
3151 intel_crtc
->active
= false;
3152 intel_update_watermarks(dev
);
3154 mutex_lock(&dev
->struct_mutex
);
3155 intel_update_fbc(dev
);
3156 intel_clear_scanline_wait(dev
);
3157 mutex_unlock(&dev
->struct_mutex
);
3160 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3162 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3163 int pipe
= intel_crtc
->pipe
;
3164 int plane
= intel_crtc
->plane
;
3166 /* XXX: When our outputs are all unaware of DPMS modes other than off
3167 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3170 case DRM_MODE_DPMS_ON
:
3171 case DRM_MODE_DPMS_STANDBY
:
3172 case DRM_MODE_DPMS_SUSPEND
:
3173 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
3174 ironlake_crtc_enable(crtc
);
3177 case DRM_MODE_DPMS_OFF
:
3178 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
3179 ironlake_crtc_disable(crtc
);
3184 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
3186 if (!enable
&& intel_crtc
->overlay
) {
3187 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3188 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3190 mutex_lock(&dev
->struct_mutex
);
3191 dev_priv
->mm
.interruptible
= false;
3192 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
3193 dev_priv
->mm
.interruptible
= true;
3194 mutex_unlock(&dev
->struct_mutex
);
3197 /* Let userspace switch the overlay on again. In most cases userspace
3198 * has to recompute where to put it anyway.
3202 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
3204 struct drm_device
*dev
= crtc
->dev
;
3205 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3206 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3207 int pipe
= intel_crtc
->pipe
;
3208 int plane
= intel_crtc
->plane
;
3210 if (intel_crtc
->active
)
3213 intel_crtc
->active
= true;
3214 intel_update_watermarks(dev
);
3216 intel_enable_pll(dev_priv
, pipe
);
3217 intel_enable_pipe(dev_priv
, pipe
, false);
3218 intel_enable_plane(dev_priv
, plane
, pipe
);
3220 intel_crtc_load_lut(crtc
);
3221 intel_update_fbc(dev
);
3223 /* Give the overlay scaler a chance to enable if it's on this pipe */
3224 intel_crtc_dpms_overlay(intel_crtc
, true);
3225 intel_crtc_update_cursor(crtc
, true);
3228 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
3230 struct drm_device
*dev
= crtc
->dev
;
3231 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3232 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3233 int pipe
= intel_crtc
->pipe
;
3234 int plane
= intel_crtc
->plane
;
3236 if (!intel_crtc
->active
)
3239 /* Give the overlay scaler a chance to disable if it's on this pipe */
3240 intel_crtc_wait_for_pending_flips(crtc
);
3241 drm_vblank_off(dev
, pipe
);
3242 intel_crtc_dpms_overlay(intel_crtc
, false);
3243 intel_crtc_update_cursor(crtc
, false);
3245 if (dev_priv
->cfb_plane
== plane
)
3246 intel_disable_fbc(dev
);
3248 intel_disable_plane(dev_priv
, plane
, pipe
);
3249 intel_disable_pipe(dev_priv
, pipe
);
3250 intel_disable_pll(dev_priv
, pipe
);
3252 intel_crtc
->active
= false;
3253 intel_update_fbc(dev
);
3254 intel_update_watermarks(dev
);
3255 intel_clear_scanline_wait(dev
);
3258 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3260 /* XXX: When our outputs are all unaware of DPMS modes other than off
3261 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3264 case DRM_MODE_DPMS_ON
:
3265 case DRM_MODE_DPMS_STANDBY
:
3266 case DRM_MODE_DPMS_SUSPEND
:
3267 i9xx_crtc_enable(crtc
);
3269 case DRM_MODE_DPMS_OFF
:
3270 i9xx_crtc_disable(crtc
);
3276 * Sets the power management mode of the pipe and plane.
3278 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3280 struct drm_device
*dev
= crtc
->dev
;
3281 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3282 struct drm_i915_master_private
*master_priv
;
3283 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3284 int pipe
= intel_crtc
->pipe
;
3287 if (intel_crtc
->dpms_mode
== mode
)
3290 intel_crtc
->dpms_mode
= mode
;
3292 dev_priv
->display
.dpms(crtc
, mode
);
3294 if (!dev
->primary
->master
)
3297 master_priv
= dev
->primary
->master
->driver_priv
;
3298 if (!master_priv
->sarea_priv
)
3301 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
3305 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3306 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3309 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3310 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3313 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe
));
3318 static void intel_crtc_disable(struct drm_crtc
*crtc
)
3320 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3321 struct drm_device
*dev
= crtc
->dev
;
3323 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
3326 mutex_lock(&dev
->struct_mutex
);
3327 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
3328 mutex_unlock(&dev
->struct_mutex
);
3332 /* Prepare for a mode set.
3334 * Note we could be a lot smarter here. We need to figure out which outputs
3335 * will be enabled, which disabled (in short, how the config will changes)
3336 * and perform the minimum necessary steps to accomplish that, e.g. updating
3337 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338 * panel fitting is in the proper state, etc.
3340 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
3342 i9xx_crtc_disable(crtc
);
3345 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
3347 i9xx_crtc_enable(crtc
);
3350 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
3352 ironlake_crtc_disable(crtc
);
3355 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
3357 ironlake_crtc_enable(crtc
);
3360 void intel_encoder_prepare(struct drm_encoder
*encoder
)
3362 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3363 /* lvds has its own version of prepare see intel_lvds_prepare */
3364 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
3367 void intel_encoder_commit(struct drm_encoder
*encoder
)
3369 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3370 struct drm_device
*dev
= encoder
->dev
;
3371 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3372 struct intel_crtc
*intel_crtc
= to_intel_crtc(intel_encoder
->base
.crtc
);
3374 /* lvds has its own version of commit see intel_lvds_commit */
3375 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3377 if (HAS_PCH_CPT(dev
))
3378 intel_cpt_verify_modeset(dev
, intel_crtc
->pipe
);
3381 void intel_encoder_destroy(struct drm_encoder
*encoder
)
3383 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3385 drm_encoder_cleanup(encoder
);
3386 kfree(intel_encoder
);
3389 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
3390 struct drm_display_mode
*mode
,
3391 struct drm_display_mode
*adjusted_mode
)
3393 struct drm_device
*dev
= crtc
->dev
;
3395 if (HAS_PCH_SPLIT(dev
)) {
3396 /* FDI link clock is fixed at 2.7G */
3397 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
3401 /* XXX some encoders set the crtcinfo, others don't.
3402 * Obviously we need some form of conflict resolution here...
3404 if (adjusted_mode
->crtc_htotal
== 0)
3405 drm_mode_set_crtcinfo(adjusted_mode
, 0);
3410 static int i945_get_display_clock_speed(struct drm_device
*dev
)
3415 static int i915_get_display_clock_speed(struct drm_device
*dev
)
3420 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
3425 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
3429 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3431 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
3434 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
3435 case GC_DISPLAY_CLOCK_333_MHZ
:
3438 case GC_DISPLAY_CLOCK_190_200_MHZ
:
3444 static int i865_get_display_clock_speed(struct drm_device
*dev
)
3449 static int i855_get_display_clock_speed(struct drm_device
*dev
)
3452 /* Assume that the hardware is in the high speed state. This
3453 * should be the default.
3455 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
3456 case GC_CLOCK_133_200
:
3457 case GC_CLOCK_100_200
:
3459 case GC_CLOCK_166_250
:
3461 case GC_CLOCK_100_133
:
3465 /* Shouldn't happen */
3469 static int i830_get_display_clock_speed(struct drm_device
*dev
)
3483 fdi_reduce_ratio(u32
*num
, u32
*den
)
3485 while (*num
> 0xffffff || *den
> 0xffffff) {
3492 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
3493 int link_clock
, struct fdi_m_n
*m_n
)
3495 m_n
->tu
= 64; /* default size */
3497 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3498 m_n
->gmch_m
= bits_per_pixel
* pixel_clock
;
3499 m_n
->gmch_n
= link_clock
* nlanes
* 8;
3500 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
3502 m_n
->link_m
= pixel_clock
;
3503 m_n
->link_n
= link_clock
;
3504 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
3508 struct intel_watermark_params
{
3509 unsigned long fifo_size
;
3510 unsigned long max_wm
;
3511 unsigned long default_wm
;
3512 unsigned long guard_size
;
3513 unsigned long cacheline_size
;
3516 /* Pineview has different values for various configs */
3517 static const struct intel_watermark_params pineview_display_wm
= {
3518 PINEVIEW_DISPLAY_FIFO
,
3522 PINEVIEW_FIFO_LINE_SIZE
3524 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
3525 PINEVIEW_DISPLAY_FIFO
,
3527 PINEVIEW_DFT_HPLLOFF_WM
,
3529 PINEVIEW_FIFO_LINE_SIZE
3531 static const struct intel_watermark_params pineview_cursor_wm
= {
3532 PINEVIEW_CURSOR_FIFO
,
3533 PINEVIEW_CURSOR_MAX_WM
,
3534 PINEVIEW_CURSOR_DFT_WM
,
3535 PINEVIEW_CURSOR_GUARD_WM
,
3536 PINEVIEW_FIFO_LINE_SIZE
,
3538 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
3539 PINEVIEW_CURSOR_FIFO
,
3540 PINEVIEW_CURSOR_MAX_WM
,
3541 PINEVIEW_CURSOR_DFT_WM
,
3542 PINEVIEW_CURSOR_GUARD_WM
,
3543 PINEVIEW_FIFO_LINE_SIZE
3545 static const struct intel_watermark_params g4x_wm_info
= {
3552 static const struct intel_watermark_params g4x_cursor_wm_info
= {
3559 static const struct intel_watermark_params i965_cursor_wm_info
= {
3564 I915_FIFO_LINE_SIZE
,
3566 static const struct intel_watermark_params i945_wm_info
= {
3573 static const struct intel_watermark_params i915_wm_info
= {
3580 static const struct intel_watermark_params i855_wm_info
= {
3587 static const struct intel_watermark_params i830_wm_info
= {
3595 static const struct intel_watermark_params ironlake_display_wm_info
= {
3602 static const struct intel_watermark_params ironlake_cursor_wm_info
= {
3609 static const struct intel_watermark_params ironlake_display_srwm_info
= {
3610 ILK_DISPLAY_SR_FIFO
,
3611 ILK_DISPLAY_MAX_SRWM
,
3612 ILK_DISPLAY_DFT_SRWM
,
3616 static const struct intel_watermark_params ironlake_cursor_srwm_info
= {
3618 ILK_CURSOR_MAX_SRWM
,
3619 ILK_CURSOR_DFT_SRWM
,
3624 static const struct intel_watermark_params sandybridge_display_wm_info
= {
3631 static const struct intel_watermark_params sandybridge_cursor_wm_info
= {
3638 static const struct intel_watermark_params sandybridge_display_srwm_info
= {
3639 SNB_DISPLAY_SR_FIFO
,
3640 SNB_DISPLAY_MAX_SRWM
,
3641 SNB_DISPLAY_DFT_SRWM
,
3645 static const struct intel_watermark_params sandybridge_cursor_srwm_info
= {
3647 SNB_CURSOR_MAX_SRWM
,
3648 SNB_CURSOR_DFT_SRWM
,
3655 * intel_calculate_wm - calculate watermark level
3656 * @clock_in_khz: pixel clock
3657 * @wm: chip FIFO params
3658 * @pixel_size: display pixel size
3659 * @latency_ns: memory latency for the platform
3661 * Calculate the watermark level (the level at which the display plane will
3662 * start fetching from memory again). Each chip has a different display
3663 * FIFO size and allocation, so the caller needs to figure that out and pass
3664 * in the correct intel_watermark_params structure.
3666 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667 * on the pixel size. When it reaches the watermark level, it'll start
3668 * fetching FIFO line sized based chunks from memory until the FIFO fills
3669 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3670 * will occur, and a display engine hang could result.
3672 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
3673 const struct intel_watermark_params
*wm
,
3676 unsigned long latency_ns
)
3678 long entries_required
, wm_size
;
3681 * Note: we need to make sure we don't overflow for various clock &
3683 * clocks go from a few thousand to several hundred thousand.
3684 * latency is usually a few thousand
3686 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
3688 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
3690 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
3692 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
3694 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
3696 /* Don't promote wm_size to unsigned... */
3697 if (wm_size
> (long)wm
->max_wm
)
3698 wm_size
= wm
->max_wm
;
3700 wm_size
= wm
->default_wm
;
3704 struct cxsr_latency
{
3707 unsigned long fsb_freq
;
3708 unsigned long mem_freq
;
3709 unsigned long display_sr
;
3710 unsigned long display_hpll_disable
;
3711 unsigned long cursor_sr
;
3712 unsigned long cursor_hpll_disable
;
3715 static const struct cxsr_latency cxsr_latency_table
[] = {
3716 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3717 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3718 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3719 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3720 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3722 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3723 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3724 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3725 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3726 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3728 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3729 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3730 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3731 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3732 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3734 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3735 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3736 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3737 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3738 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3740 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3741 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3742 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3743 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3744 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3746 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3747 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3748 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3749 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3750 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3753 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
3758 const struct cxsr_latency
*latency
;
3761 if (fsb
== 0 || mem
== 0)
3764 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
3765 latency
= &cxsr_latency_table
[i
];
3766 if (is_desktop
== latency
->is_desktop
&&
3767 is_ddr3
== latency
->is_ddr3
&&
3768 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
3772 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3777 static void pineview_disable_cxsr(struct drm_device
*dev
)
3779 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3781 /* deactivate cxsr */
3782 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
3786 * Latency for FIFO fetches is dependent on several factors:
3787 * - memory configuration (speed, channels)
3789 * - current MCH state
3790 * It can be fairly high in some situations, so here we assume a fairly
3791 * pessimal value. It's a tradeoff between extra memory fetches (if we
3792 * set this value too high, the FIFO will fetch frequently to stay full)
3793 * and power consumption (set it too low to save power and we might see
3794 * FIFO underruns and display "flicker").
3796 * A value of 5us seems to be a good balance; safe for very low end
3797 * platforms but not overly aggressive on lower latency configs.
3799 static const int latency_ns
= 5000;
3801 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
3803 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3804 uint32_t dsparb
= I915_READ(DSPARB
);
3807 size
= dsparb
& 0x7f;
3809 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
3811 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3812 plane
? "B" : "A", size
);
3817 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
3819 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3820 uint32_t dsparb
= I915_READ(DSPARB
);
3823 size
= dsparb
& 0x1ff;
3825 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3826 size
>>= 1; /* Convert to cachelines */
3828 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3829 plane
? "B" : "A", size
);
3834 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3836 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3837 uint32_t dsparb
= I915_READ(DSPARB
);
3840 size
= dsparb
& 0x7f;
3841 size
>>= 2; /* Convert to cachelines */
3843 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3850 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3852 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3853 uint32_t dsparb
= I915_READ(DSPARB
);
3856 size
= dsparb
& 0x7f;
3857 size
>>= 1; /* Convert to cachelines */
3859 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3860 plane
? "B" : "A", size
);
3865 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
3867 struct drm_crtc
*crtc
, *enabled
= NULL
;
3869 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3870 if (crtc
->enabled
&& crtc
->fb
) {
3880 static void pineview_update_wm(struct drm_device
*dev
)
3882 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3883 struct drm_crtc
*crtc
;
3884 const struct cxsr_latency
*latency
;
3888 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3889 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3891 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892 pineview_disable_cxsr(dev
);
3896 crtc
= single_enabled_crtc(dev
);
3898 int clock
= crtc
->mode
.clock
;
3899 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3902 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
3903 pineview_display_wm
.fifo_size
,
3904 pixel_size
, latency
->display_sr
);
3905 reg
= I915_READ(DSPFW1
);
3906 reg
&= ~DSPFW_SR_MASK
;
3907 reg
|= wm
<< DSPFW_SR_SHIFT
;
3908 I915_WRITE(DSPFW1
, reg
);
3909 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3912 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
3913 pineview_display_wm
.fifo_size
,
3914 pixel_size
, latency
->cursor_sr
);
3915 reg
= I915_READ(DSPFW3
);
3916 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3917 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3918 I915_WRITE(DSPFW3
, reg
);
3920 /* Display HPLL off SR */
3921 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
3922 pineview_display_hplloff_wm
.fifo_size
,
3923 pixel_size
, latency
->display_hpll_disable
);
3924 reg
= I915_READ(DSPFW3
);
3925 reg
&= ~DSPFW_HPLL_SR_MASK
;
3926 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3927 I915_WRITE(DSPFW3
, reg
);
3929 /* cursor HPLL off SR */
3930 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
3931 pineview_display_hplloff_wm
.fifo_size
,
3932 pixel_size
, latency
->cursor_hpll_disable
);
3933 reg
= I915_READ(DSPFW3
);
3934 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3935 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3936 I915_WRITE(DSPFW3
, reg
);
3937 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3941 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3942 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3944 pineview_disable_cxsr(dev
);
3945 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3949 static bool g4x_compute_wm0(struct drm_device
*dev
,
3951 const struct intel_watermark_params
*display
,
3952 int display_latency_ns
,
3953 const struct intel_watermark_params
*cursor
,
3954 int cursor_latency_ns
,
3958 struct drm_crtc
*crtc
;
3959 int htotal
, hdisplay
, clock
, pixel_size
;
3960 int line_time_us
, line_count
;
3961 int entries
, tlb_miss
;
3963 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3964 if (crtc
->fb
== NULL
|| !crtc
->enabled
) {
3965 *cursor_wm
= cursor
->guard_size
;
3966 *plane_wm
= display
->guard_size
;
3970 htotal
= crtc
->mode
.htotal
;
3971 hdisplay
= crtc
->mode
.hdisplay
;
3972 clock
= crtc
->mode
.clock
;
3973 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3975 /* Use the small buffer method to calculate plane watermark */
3976 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
3977 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
3979 entries
+= tlb_miss
;
3980 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
3981 *plane_wm
= entries
+ display
->guard_size
;
3982 if (*plane_wm
> (int)display
->max_wm
)
3983 *plane_wm
= display
->max_wm
;
3985 /* Use the large buffer method to calculate cursor watermark */
3986 line_time_us
= ((htotal
* 1000) / clock
);
3987 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
3988 entries
= line_count
* 64 * pixel_size
;
3989 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
3991 entries
+= tlb_miss
;
3992 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
3993 *cursor_wm
= entries
+ cursor
->guard_size
;
3994 if (*cursor_wm
> (int)cursor
->max_wm
)
3995 *cursor_wm
= (int)cursor
->max_wm
;
4001 * Check the wm result.
4003 * If any calculated watermark values is larger than the maximum value that
4004 * can be programmed into the associated watermark register, that watermark
4007 static bool g4x_check_srwm(struct drm_device
*dev
,
4008 int display_wm
, int cursor_wm
,
4009 const struct intel_watermark_params
*display
,
4010 const struct intel_watermark_params
*cursor
)
4012 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013 display_wm
, cursor_wm
);
4015 if (display_wm
> display
->max_wm
) {
4016 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4017 display_wm
, display
->max_wm
);
4021 if (cursor_wm
> cursor
->max_wm
) {
4022 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4023 cursor_wm
, cursor
->max_wm
);
4027 if (!(display_wm
|| cursor_wm
)) {
4028 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4035 static bool g4x_compute_srwm(struct drm_device
*dev
,
4038 const struct intel_watermark_params
*display
,
4039 const struct intel_watermark_params
*cursor
,
4040 int *display_wm
, int *cursor_wm
)
4042 struct drm_crtc
*crtc
;
4043 int hdisplay
, htotal
, pixel_size
, clock
;
4044 unsigned long line_time_us
;
4045 int line_count
, line_size
;
4050 *display_wm
= *cursor_wm
= 0;
4054 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4055 hdisplay
= crtc
->mode
.hdisplay
;
4056 htotal
= crtc
->mode
.htotal
;
4057 clock
= crtc
->mode
.clock
;
4058 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4060 line_time_us
= (htotal
* 1000) / clock
;
4061 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4062 line_size
= hdisplay
* pixel_size
;
4064 /* Use the minimum of the small and large buffer method for primary */
4065 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4066 large
= line_count
* line_size
;
4068 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4069 *display_wm
= entries
+ display
->guard_size
;
4071 /* calculate the self-refresh watermark for display cursor */
4072 entries
= line_count
* pixel_size
* 64;
4073 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4074 *cursor_wm
= entries
+ cursor
->guard_size
;
4076 return g4x_check_srwm(dev
,
4077 *display_wm
, *cursor_wm
,
4081 #define single_plane_enabled(mask) is_power_of_2(mask)
4083 static void g4x_update_wm(struct drm_device
*dev
)
4085 static const int sr_latency_ns
= 12000;
4086 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4087 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
4088 int plane_sr
, cursor_sr
;
4089 unsigned int enabled
= 0;
4091 if (g4x_compute_wm0(dev
, 0,
4092 &g4x_wm_info
, latency_ns
,
4093 &g4x_cursor_wm_info
, latency_ns
,
4094 &planea_wm
, &cursora_wm
))
4097 if (g4x_compute_wm0(dev
, 1,
4098 &g4x_wm_info
, latency_ns
,
4099 &g4x_cursor_wm_info
, latency_ns
,
4100 &planeb_wm
, &cursorb_wm
))
4103 plane_sr
= cursor_sr
= 0;
4104 if (single_plane_enabled(enabled
) &&
4105 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
4108 &g4x_cursor_wm_info
,
4109 &plane_sr
, &cursor_sr
))
4110 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4112 I915_WRITE(FW_BLC_SELF
,
4113 I915_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
);
4115 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116 planea_wm
, cursora_wm
,
4117 planeb_wm
, cursorb_wm
,
4118 plane_sr
, cursor_sr
);
4121 (plane_sr
<< DSPFW_SR_SHIFT
) |
4122 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
4123 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
4126 (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
4127 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
4128 /* HPLL off in SR has some issues on G4x... disable it */
4130 (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
4131 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4134 static void i965_update_wm(struct drm_device
*dev
)
4136 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4137 struct drm_crtc
*crtc
;
4141 /* Calc sr entries for one plane configs */
4142 crtc
= single_enabled_crtc(dev
);
4144 /* self-refresh has much higher latency */
4145 static const int sr_latency_ns
= 12000;
4146 int clock
= crtc
->mode
.clock
;
4147 int htotal
= crtc
->mode
.htotal
;
4148 int hdisplay
= crtc
->mode
.hdisplay
;
4149 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4150 unsigned long line_time_us
;
4153 line_time_us
= ((htotal
* 1000) / clock
);
4155 /* Use ns/us then divide to preserve precision */
4156 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4157 pixel_size
* hdisplay
;
4158 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
4159 srwm
= I965_FIFO_SIZE
- entries
;
4163 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4166 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4168 entries
= DIV_ROUND_UP(entries
,
4169 i965_cursor_wm_info
.cacheline_size
);
4170 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
4171 (entries
+ i965_cursor_wm_info
.guard_size
);
4173 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
4174 cursor_sr
= i965_cursor_wm_info
.max_wm
;
4176 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177 "cursor %d\n", srwm
, cursor_sr
);
4179 if (IS_CRESTLINE(dev
))
4180 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4182 /* Turn off self refresh if both pipes are enabled */
4183 if (IS_CRESTLINE(dev
))
4184 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
4188 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4191 /* 965 has limitations... */
4192 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) |
4193 (8 << 16) | (8 << 8) | (8 << 0));
4194 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
4195 /* update cursor SR watermark */
4196 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4199 static void i9xx_update_wm(struct drm_device
*dev
)
4201 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4202 const struct intel_watermark_params
*wm_info
;
4207 int planea_wm
, planeb_wm
;
4208 struct drm_crtc
*crtc
, *enabled
= NULL
;
4211 wm_info
= &i945_wm_info
;
4212 else if (!IS_GEN2(dev
))
4213 wm_info
= &i915_wm_info
;
4215 wm_info
= &i855_wm_info
;
4217 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
4218 crtc
= intel_get_crtc_for_plane(dev
, 0);
4219 if (crtc
->enabled
&& crtc
->fb
) {
4220 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4222 crtc
->fb
->bits_per_pixel
/ 8,
4226 planea_wm
= fifo_size
- wm_info
->guard_size
;
4228 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
4229 crtc
= intel_get_crtc_for_plane(dev
, 1);
4230 if (crtc
->enabled
&& crtc
->fb
) {
4231 planeb_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4233 crtc
->fb
->bits_per_pixel
/ 8,
4235 if (enabled
== NULL
)
4240 planeb_wm
= fifo_size
- wm_info
->guard_size
;
4242 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
4245 * Overlay gets an aggressive default since video jitter is bad.
4249 /* Play safe and disable self-refresh before adjusting watermarks. */
4250 if (IS_I945G(dev
) || IS_I945GM(dev
))
4251 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| 0);
4252 else if (IS_I915GM(dev
))
4253 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
4255 /* Calc sr entries for one plane configs */
4256 if (HAS_FW_BLC(dev
) && enabled
) {
4257 /* self-refresh has much higher latency */
4258 static const int sr_latency_ns
= 6000;
4259 int clock
= enabled
->mode
.clock
;
4260 int htotal
= enabled
->mode
.htotal
;
4261 int hdisplay
= enabled
->mode
.hdisplay
;
4262 int pixel_size
= enabled
->fb
->bits_per_pixel
/ 8;
4263 unsigned long line_time_us
;
4266 line_time_us
= (htotal
* 1000) / clock
;
4268 /* Use ns/us then divide to preserve precision */
4269 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4270 pixel_size
* hdisplay
;
4271 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
4272 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
4273 srwm
= wm_info
->fifo_size
- entries
;
4277 if (IS_I945G(dev
) || IS_I945GM(dev
))
4278 I915_WRITE(FW_BLC_SELF
,
4279 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
4280 else if (IS_I915GM(dev
))
4281 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
4284 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4285 planea_wm
, planeb_wm
, cwm
, srwm
);
4287 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
4288 fwater_hi
= (cwm
& 0x1f);
4290 /* Set request length to 8 cachelines per fetch */
4291 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
4292 fwater_hi
= fwater_hi
| (1 << 8);
4294 I915_WRITE(FW_BLC
, fwater_lo
);
4295 I915_WRITE(FW_BLC2
, fwater_hi
);
4297 if (HAS_FW_BLC(dev
)) {
4299 if (IS_I945G(dev
) || IS_I945GM(dev
))
4300 I915_WRITE(FW_BLC_SELF
,
4301 FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4302 else if (IS_I915GM(dev
))
4303 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
4304 DRM_DEBUG_KMS("memory self refresh enabled\n");
4306 DRM_DEBUG_KMS("memory self refresh disabled\n");
4310 static void i830_update_wm(struct drm_device
*dev
)
4312 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4313 struct drm_crtc
*crtc
;
4317 crtc
= single_enabled_crtc(dev
);
4321 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
, &i830_wm_info
,
4322 dev_priv
->display
.get_fifo_size(dev
, 0),
4323 crtc
->fb
->bits_per_pixel
/ 8,
4325 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
4326 fwater_lo
|= (3<<8) | planea_wm
;
4328 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
4330 I915_WRITE(FW_BLC
, fwater_lo
);
4333 #define ILK_LP0_PLANE_LATENCY 700
4334 #define ILK_LP0_CURSOR_LATENCY 1300
4337 * Check the wm result.
4339 * If any calculated watermark values is larger than the maximum value that
4340 * can be programmed into the associated watermark register, that watermark
4343 static bool ironlake_check_srwm(struct drm_device
*dev
, int level
,
4344 int fbc_wm
, int display_wm
, int cursor_wm
,
4345 const struct intel_watermark_params
*display
,
4346 const struct intel_watermark_params
*cursor
)
4348 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4350 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351 " cursor %d\n", level
, display_wm
, fbc_wm
, cursor_wm
);
4353 if (fbc_wm
> SNB_FBC_MAX_SRWM
) {
4354 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4355 fbc_wm
, SNB_FBC_MAX_SRWM
, level
);
4357 /* fbc has it's own way to disable FBC WM */
4358 I915_WRITE(DISP_ARB_CTL
,
4359 I915_READ(DISP_ARB_CTL
) | DISP_FBC_WM_DIS
);
4363 if (display_wm
> display
->max_wm
) {
4364 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4365 display_wm
, SNB_DISPLAY_MAX_SRWM
, level
);
4369 if (cursor_wm
> cursor
->max_wm
) {
4370 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4371 cursor_wm
, SNB_CURSOR_MAX_SRWM
, level
);
4375 if (!(fbc_wm
|| display_wm
|| cursor_wm
)) {
4376 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level
, level
);
4384 * Compute watermark values of WM[1-3],
4386 static bool ironlake_compute_srwm(struct drm_device
*dev
, int level
, int plane
,
4388 const struct intel_watermark_params
*display
,
4389 const struct intel_watermark_params
*cursor
,
4390 int *fbc_wm
, int *display_wm
, int *cursor_wm
)
4392 struct drm_crtc
*crtc
;
4393 unsigned long line_time_us
;
4394 int hdisplay
, htotal
, pixel_size
, clock
;
4395 int line_count
, line_size
;
4400 *fbc_wm
= *display_wm
= *cursor_wm
= 0;
4404 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4405 hdisplay
= crtc
->mode
.hdisplay
;
4406 htotal
= crtc
->mode
.htotal
;
4407 clock
= crtc
->mode
.clock
;
4408 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4410 line_time_us
= (htotal
* 1000) / clock
;
4411 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4412 line_size
= hdisplay
* pixel_size
;
4414 /* Use the minimum of the small and large buffer method for primary */
4415 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4416 large
= line_count
* line_size
;
4418 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4419 *display_wm
= entries
+ display
->guard_size
;
4423 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4425 *fbc_wm
= DIV_ROUND_UP(*display_wm
* 64, line_size
) + 2;
4427 /* calculate the self-refresh watermark for display cursor */
4428 entries
= line_count
* pixel_size
* 64;
4429 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4430 *cursor_wm
= entries
+ cursor
->guard_size
;
4432 return ironlake_check_srwm(dev
, level
,
4433 *fbc_wm
, *display_wm
, *cursor_wm
,
4437 static void ironlake_update_wm(struct drm_device
*dev
)
4439 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4440 int fbc_wm
, plane_wm
, cursor_wm
;
4441 unsigned int enabled
;
4444 if (g4x_compute_wm0(dev
, 0,
4445 &ironlake_display_wm_info
,
4446 ILK_LP0_PLANE_LATENCY
,
4447 &ironlake_cursor_wm_info
,
4448 ILK_LP0_CURSOR_LATENCY
,
4449 &plane_wm
, &cursor_wm
)) {
4450 I915_WRITE(WM0_PIPEA_ILK
,
4451 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4452 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453 " plane %d, " "cursor: %d\n",
4454 plane_wm
, cursor_wm
);
4458 if (g4x_compute_wm0(dev
, 1,
4459 &ironlake_display_wm_info
,
4460 ILK_LP0_PLANE_LATENCY
,
4461 &ironlake_cursor_wm_info
,
4462 ILK_LP0_CURSOR_LATENCY
,
4463 &plane_wm
, &cursor_wm
)) {
4464 I915_WRITE(WM0_PIPEB_ILK
,
4465 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4466 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467 " plane %d, cursor: %d\n",
4468 plane_wm
, cursor_wm
);
4473 * Calculate and update the self-refresh watermark only when one
4474 * display plane is used.
4476 I915_WRITE(WM3_LP_ILK
, 0);
4477 I915_WRITE(WM2_LP_ILK
, 0);
4478 I915_WRITE(WM1_LP_ILK
, 0);
4480 if (!single_plane_enabled(enabled
))
4482 enabled
= ffs(enabled
) - 1;
4485 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4486 ILK_READ_WM1_LATENCY() * 500,
4487 &ironlake_display_srwm_info
,
4488 &ironlake_cursor_srwm_info
,
4489 &fbc_wm
, &plane_wm
, &cursor_wm
))
4492 I915_WRITE(WM1_LP_ILK
,
4494 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4495 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4496 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4500 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4501 ILK_READ_WM2_LATENCY() * 500,
4502 &ironlake_display_srwm_info
,
4503 &ironlake_cursor_srwm_info
,
4504 &fbc_wm
, &plane_wm
, &cursor_wm
))
4507 I915_WRITE(WM2_LP_ILK
,
4509 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4510 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4511 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4515 * WM3 is unsupported on ILK, probably because we don't have latency
4516 * data for that power state
4520 void sandybridge_update_wm(struct drm_device
*dev
)
4522 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4523 int latency
= SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4524 int fbc_wm
, plane_wm
, cursor_wm
;
4525 unsigned int enabled
;
4528 if (g4x_compute_wm0(dev
, 0,
4529 &sandybridge_display_wm_info
, latency
,
4530 &sandybridge_cursor_wm_info
, latency
,
4531 &plane_wm
, &cursor_wm
)) {
4532 I915_WRITE(WM0_PIPEA_ILK
,
4533 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4534 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535 " plane %d, " "cursor: %d\n",
4536 plane_wm
, cursor_wm
);
4540 if (g4x_compute_wm0(dev
, 1,
4541 &sandybridge_display_wm_info
, latency
,
4542 &sandybridge_cursor_wm_info
, latency
,
4543 &plane_wm
, &cursor_wm
)) {
4544 I915_WRITE(WM0_PIPEB_ILK
,
4545 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4546 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547 " plane %d, cursor: %d\n",
4548 plane_wm
, cursor_wm
);
4552 /* IVB has 3 pipes */
4553 if (IS_IVYBRIDGE(dev
) &&
4554 g4x_compute_wm0(dev
, 2,
4555 &sandybridge_display_wm_info
, latency
,
4556 &sandybridge_cursor_wm_info
, latency
,
4557 &plane_wm
, &cursor_wm
)) {
4558 I915_WRITE(WM0_PIPEC_IVB
,
4559 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4560 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561 " plane %d, cursor: %d\n",
4562 plane_wm
, cursor_wm
);
4567 * Calculate and update the self-refresh watermark only when one
4568 * display plane is used.
4570 * SNB support 3 levels of watermark.
4572 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573 * and disabled in the descending order
4576 I915_WRITE(WM3_LP_ILK
, 0);
4577 I915_WRITE(WM2_LP_ILK
, 0);
4578 I915_WRITE(WM1_LP_ILK
, 0);
4580 if (!single_plane_enabled(enabled
) ||
4581 dev_priv
->sprite_scaling_enabled
)
4583 enabled
= ffs(enabled
) - 1;
4586 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4587 SNB_READ_WM1_LATENCY() * 500,
4588 &sandybridge_display_srwm_info
,
4589 &sandybridge_cursor_srwm_info
,
4590 &fbc_wm
, &plane_wm
, &cursor_wm
))
4593 I915_WRITE(WM1_LP_ILK
,
4595 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4596 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4597 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4601 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4602 SNB_READ_WM2_LATENCY() * 500,
4603 &sandybridge_display_srwm_info
,
4604 &sandybridge_cursor_srwm_info
,
4605 &fbc_wm
, &plane_wm
, &cursor_wm
))
4608 I915_WRITE(WM2_LP_ILK
,
4610 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4611 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4612 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4616 if (!ironlake_compute_srwm(dev
, 3, enabled
,
4617 SNB_READ_WM3_LATENCY() * 500,
4618 &sandybridge_display_srwm_info
,
4619 &sandybridge_cursor_srwm_info
,
4620 &fbc_wm
, &plane_wm
, &cursor_wm
))
4623 I915_WRITE(WM3_LP_ILK
,
4625 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4626 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4627 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4632 sandybridge_compute_sprite_wm(struct drm_device
*dev
, int plane
,
4633 uint32_t sprite_width
, int pixel_size
,
4634 const struct intel_watermark_params
*display
,
4635 int display_latency_ns
, int *sprite_wm
)
4637 struct drm_crtc
*crtc
;
4639 int entries
, tlb_miss
;
4641 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4642 if (crtc
->fb
== NULL
|| !crtc
->enabled
) {
4643 *sprite_wm
= display
->guard_size
;
4647 clock
= crtc
->mode
.clock
;
4649 /* Use the small buffer method to calculate the sprite watermark */
4650 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
4651 tlb_miss
= display
->fifo_size
*display
->cacheline_size
-
4654 entries
+= tlb_miss
;
4655 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
4656 *sprite_wm
= entries
+ display
->guard_size
;
4657 if (*sprite_wm
> (int)display
->max_wm
)
4658 *sprite_wm
= display
->max_wm
;
4664 sandybridge_compute_sprite_srwm(struct drm_device
*dev
, int plane
,
4665 uint32_t sprite_width
, int pixel_size
,
4666 const struct intel_watermark_params
*display
,
4667 int latency_ns
, int *sprite_wm
)
4669 struct drm_crtc
*crtc
;
4670 unsigned long line_time_us
;
4672 int line_count
, line_size
;
4681 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4682 clock
= crtc
->mode
.clock
;
4688 line_time_us
= (sprite_width
* 1000) / clock
;
4689 if (!line_time_us
) {
4694 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4695 line_size
= sprite_width
* pixel_size
;
4697 /* Use the minimum of the small and large buffer method for primary */
4698 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4699 large
= line_count
* line_size
;
4701 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4702 *sprite_wm
= entries
+ display
->guard_size
;
4704 return *sprite_wm
> 0x3ff ? false : true;
4707 static void sandybridge_update_sprite_wm(struct drm_device
*dev
, int pipe
,
4708 uint32_t sprite_width
, int pixel_size
)
4710 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4711 int latency
= SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4717 reg
= WM0_PIPEA_ILK
;
4720 reg
= WM0_PIPEB_ILK
;
4723 reg
= WM0_PIPEC_IVB
;
4726 return; /* bad pipe */
4729 ret
= sandybridge_compute_sprite_wm(dev
, pipe
, sprite_width
, pixel_size
,
4730 &sandybridge_display_wm_info
,
4731 latency
, &sprite_wm
);
4733 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4738 I915_WRITE(reg
, I915_READ(reg
) | (sprite_wm
<< WM0_PIPE_SPRITE_SHIFT
));
4739 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe
, sprite_wm
);
4742 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
4744 &sandybridge_display_srwm_info
,
4745 SNB_READ_WM1_LATENCY() * 500,
4748 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4752 I915_WRITE(WM1S_LP_ILK
, sprite_wm
);
4754 /* Only IVB has two more LP watermarks for sprite */
4755 if (!IS_IVYBRIDGE(dev
))
4758 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
4760 &sandybridge_display_srwm_info
,
4761 SNB_READ_WM2_LATENCY() * 500,
4764 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4768 I915_WRITE(WM2S_LP_IVB
, sprite_wm
);
4770 ret
= sandybridge_compute_sprite_srwm(dev
, pipe
, sprite_width
,
4772 &sandybridge_display_srwm_info
,
4773 SNB_READ_WM3_LATENCY() * 500,
4776 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4780 I915_WRITE(WM3S_LP_IVB
, sprite_wm
);
4784 * intel_update_watermarks - update FIFO watermark values based on current modes
4786 * Calculate watermark values for the various WM regs based on current mode
4787 * and plane configuration.
4789 * There are several cases to deal with here:
4790 * - normal (i.e. non-self-refresh)
4791 * - self-refresh (SR) mode
4792 * - lines are large relative to FIFO size (buffer can hold up to 2)
4793 * - lines are small relative to FIFO size (buffer can hold more than 2
4794 * lines), so need to account for TLB latency
4796 * The normal calculation is:
4797 * watermark = dotclock * bytes per pixel * latency
4798 * where latency is platform & configuration dependent (we assume pessimal
4801 * The SR calculation is:
4802 * watermark = (trunc(latency/line time)+1) * surface width *
4805 * line time = htotal / dotclock
4806 * surface width = hdisplay for normal plane and 64 for cursor
4807 * and latency is assumed to be high, as above.
4809 * The final value programmed to the register should always be rounded up,
4810 * and include an extra 2 entries to account for clock crossings.
4812 * We don't use the sprite, so we can ignore that. And on Crestline we have
4813 * to set the non-SR watermarks to 8.
4815 static void intel_update_watermarks(struct drm_device
*dev
)
4817 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4819 if (dev_priv
->display
.update_wm
)
4820 dev_priv
->display
.update_wm(dev
);
4823 void intel_update_sprite_watermarks(struct drm_device
*dev
, int pipe
,
4824 uint32_t sprite_width
, int pixel_size
)
4826 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4828 if (dev_priv
->display
.update_sprite_wm
)
4829 dev_priv
->display
.update_sprite_wm(dev
, pipe
, sprite_width
,
4833 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
4835 if (i915_panel_use_ssc
>= 0)
4836 return i915_panel_use_ssc
!= 0;
4837 return dev_priv
->lvds_use_ssc
4838 && !(dev_priv
->quirks
& QUIRK_LVDS_SSC_DISABLE
);
4842 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4843 * @crtc: CRTC structure
4844 * @mode: requested mode
4846 * A pipe may be connected to one or more outputs. Based on the depth of the
4847 * attached framebuffer, choose a good color depth to use on the pipe.
4849 * If possible, match the pipe depth to the fb depth. In some cases, this
4850 * isn't ideal, because the connected output supports a lesser or restricted
4851 * set of depths. Resolve that here:
4852 * LVDS typically supports only 6bpc, so clamp down in that case
4853 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4854 * Displays may support a restricted set as well, check EDID and clamp as
4856 * DP may want to dither down to 6bpc to fit larger modes
4859 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4860 * true if they don't match).
4862 static bool intel_choose_pipe_bpp_dither(struct drm_crtc
*crtc
,
4863 unsigned int *pipe_bpp
,
4864 struct drm_display_mode
*mode
)
4866 struct drm_device
*dev
= crtc
->dev
;
4867 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4868 struct drm_encoder
*encoder
;
4869 struct drm_connector
*connector
;
4870 unsigned int display_bpc
= UINT_MAX
, bpc
;
4872 /* Walk the encoders & connectors on this crtc, get min bpc */
4873 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
4874 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
4876 if (encoder
->crtc
!= crtc
)
4879 if (intel_encoder
->type
== INTEL_OUTPUT_LVDS
) {
4880 unsigned int lvds_bpc
;
4882 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) ==
4888 if (lvds_bpc
< display_bpc
) {
4889 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc
, lvds_bpc
);
4890 display_bpc
= lvds_bpc
;
4895 if (intel_encoder
->type
== INTEL_OUTPUT_EDP
) {
4896 /* Use VBT settings if we have an eDP panel */
4897 unsigned int edp_bpc
= dev_priv
->edp
.bpp
/ 3;
4899 if (edp_bpc
< display_bpc
) {
4900 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc
, edp_bpc
);
4901 display_bpc
= edp_bpc
;
4906 /* Not one of the known troublemakers, check the EDID */
4907 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
4909 if (connector
->encoder
!= encoder
)
4912 /* Don't use an invalid EDID bpc value */
4913 if (connector
->display_info
.bpc
&&
4914 connector
->display_info
.bpc
< display_bpc
) {
4915 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc
, connector
->display_info
.bpc
);
4916 display_bpc
= connector
->display_info
.bpc
;
4921 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4922 * through, clamp it down. (Note: >12bpc will be caught below.)
4924 if (intel_encoder
->type
== INTEL_OUTPUT_HDMI
) {
4925 if (display_bpc
> 8 && display_bpc
< 12) {
4926 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4929 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4935 if (mode
->private_flags
& INTEL_MODE_DP_FORCE_6BPC
) {
4936 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4941 * We could just drive the pipe at the highest bpc all the time and
4942 * enable dithering as needed, but that costs bandwidth. So choose
4943 * the minimum value that expresses the full color range of the fb but
4944 * also stays within the max display bpc discovered above.
4947 switch (crtc
->fb
->depth
) {
4949 bpc
= 8; /* since we go through a colormap */
4953 bpc
= 6; /* min is 18bpp */
4965 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4966 bpc
= min((unsigned int)8, display_bpc
);
4970 display_bpc
= min(display_bpc
, bpc
);
4972 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4975 *pipe_bpp
= display_bpc
* 3;
4977 return display_bpc
!= bpc
;
4980 static int i9xx_crtc_mode_set(struct drm_crtc
*crtc
,
4981 struct drm_display_mode
*mode
,
4982 struct drm_display_mode
*adjusted_mode
,
4984 struct drm_framebuffer
*old_fb
)
4986 struct drm_device
*dev
= crtc
->dev
;
4987 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4988 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4989 int pipe
= intel_crtc
->pipe
;
4990 int plane
= intel_crtc
->plane
;
4991 int refclk
, num_connectors
= 0;
4992 intel_clock_t clock
, reduced_clock
;
4993 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
4994 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
4995 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
4996 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
4997 struct intel_encoder
*encoder
;
4998 const intel_limit_t
*limit
;
5003 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5004 if (encoder
->base
.crtc
!= crtc
)
5007 switch (encoder
->type
) {
5008 case INTEL_OUTPUT_LVDS
:
5011 case INTEL_OUTPUT_SDVO
:
5012 case INTEL_OUTPUT_HDMI
:
5014 if (encoder
->needs_tv_clock
)
5017 case INTEL_OUTPUT_DVO
:
5020 case INTEL_OUTPUT_TVOUT
:
5023 case INTEL_OUTPUT_ANALOG
:
5026 case INTEL_OUTPUT_DISPLAYPORT
:
5034 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
5035 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
5036 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5038 } else if (!IS_GEN2(dev
)) {
5045 * Returns a set of divisors for the desired target clock with the given
5046 * refclk, or FALSE. The returned values represent the clock equation:
5047 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5049 limit
= intel_limit(crtc
, refclk
);
5050 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
5052 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5056 /* Ensure that the cursor is valid for the new mode before changing... */
5057 intel_crtc_update_cursor(crtc
, true);
5059 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
5060 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
5061 dev_priv
->lvds_downclock
,
5064 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
5066 * If the different P is found, it means that we can't
5067 * switch the display clock by using the FP0/FP1.
5068 * In such case we will disable the LVDS downclock
5071 DRM_DEBUG_KMS("Different P is found for "
5072 "LVDS clock/downclock\n");
5073 has_reduced_clock
= 0;
5076 /* SDVO TV has fixed PLL values depend on its clock range,
5077 this mirrors vbios setting. */
5078 if (is_sdvo
&& is_tv
) {
5079 if (adjusted_mode
->clock
>= 100000
5080 && adjusted_mode
->clock
< 140500) {
5086 } else if (adjusted_mode
->clock
>= 140500
5087 && adjusted_mode
->clock
<= 200000) {
5096 if (IS_PINEVIEW(dev
)) {
5097 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
5098 if (has_reduced_clock
)
5099 fp2
= (1 << reduced_clock
.n
) << 16 |
5100 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
5102 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
5103 if (has_reduced_clock
)
5104 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
5108 dpll
= DPLL_VGA_MODE_DIS
;
5110 if (!IS_GEN2(dev
)) {
5112 dpll
|= DPLLB_MODE_LVDS
;
5114 dpll
|= DPLLB_MODE_DAC_SERIAL
;
5116 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5117 if (pixel_multiplier
> 1) {
5118 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
5119 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
5121 dpll
|= DPLL_DVO_HIGH_SPEED
;
5124 dpll
|= DPLL_DVO_HIGH_SPEED
;
5126 /* compute bitmask from p1 value */
5127 if (IS_PINEVIEW(dev
))
5128 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
5130 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5131 if (IS_G4X(dev
) && has_reduced_clock
)
5132 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
5136 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
5139 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
5142 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
5145 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
5148 if (INTEL_INFO(dev
)->gen
>= 4)
5149 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
5152 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5155 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
5157 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5159 dpll
|= PLL_P2_DIVIDE_BY_4
;
5163 if (is_sdvo
&& is_tv
)
5164 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
5166 /* XXX: just matching BIOS for now */
5167 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5169 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
5170 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
5172 dpll
|= PLL_REF_INPUT_DREFCLK
;
5174 /* setup pipeconf */
5175 pipeconf
= I915_READ(PIPECONF(pipe
));
5177 /* Set up the display plane register */
5178 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5180 /* Ironlake's plane is forced to pipe, bit 24 is to
5181 enable color space conversion */
5183 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
5185 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
5187 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
5188 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5191 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5195 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
5196 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
5198 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
5201 /* default to 8bpc */
5202 pipeconf
&= ~(PIPECONF_BPP_MASK
| PIPECONF_DITHER_EN
);
5204 if (mode
->private_flags
& INTEL_MODE_DP_FORCE_6BPC
) {
5205 pipeconf
|= PIPECONF_BPP_6
|
5206 PIPECONF_DITHER_EN
|
5207 PIPECONF_DITHER_TYPE_SP
;
5211 dpll
|= DPLL_VCO_ENABLE
;
5213 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
5214 drm_mode_debug_printmodeline(mode
);
5216 I915_WRITE(FP0(pipe
), fp
);
5217 I915_WRITE(DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5219 POSTING_READ(DPLL(pipe
));
5222 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5223 * This is an exception to the general rule that mode_set doesn't turn
5227 temp
= I915_READ(LVDS
);
5228 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5230 temp
|= LVDS_PIPEB_SELECT
;
5232 temp
&= ~LVDS_PIPEB_SELECT
;
5234 /* set the corresponsding LVDS_BORDER bit */
5235 temp
|= dev_priv
->lvds_border_bits
;
5236 /* Set the B0-B3 data pairs corresponding to whether we're going to
5237 * set the DPLLs for dual-channel mode or not.
5240 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5242 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5244 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5245 * appropriately here, but we need to look more thoroughly into how
5246 * panels behave in the two modes.
5248 /* set the dithering flag on LVDS as needed */
5249 if (INTEL_INFO(dev
)->gen
>= 4) {
5250 if (dev_priv
->lvds_dither
)
5251 temp
|= LVDS_ENABLE_DITHER
;
5253 temp
&= ~LVDS_ENABLE_DITHER
;
5255 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5256 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5257 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5258 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5259 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5261 char flags
[2] = "-+";
5262 DRM_INFO("Changing LVDS panel from "
5263 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5264 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5265 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5266 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5267 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5268 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5271 I915_WRITE(LVDS
, temp
);
5275 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5278 I915_WRITE(DPLL(pipe
), dpll
);
5280 /* Wait for the clocks to stabilize. */
5281 POSTING_READ(DPLL(pipe
));
5284 if (INTEL_INFO(dev
)->gen
>= 4) {
5287 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5289 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
5293 I915_WRITE(DPLL_MD(pipe
), temp
);
5295 /* The pixel multiplier can only be updated once the
5296 * DPLL is enabled and the clocks are stable.
5298 * So write it again.
5300 I915_WRITE(DPLL(pipe
), dpll
);
5303 intel_crtc
->lowfreq_avail
= false;
5304 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5305 I915_WRITE(FP1(pipe
), fp2
);
5306 intel_crtc
->lowfreq_avail
= true;
5307 if (HAS_PIPE_CXSR(dev
)) {
5308 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5309 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5312 I915_WRITE(FP1(pipe
), fp
);
5313 if (HAS_PIPE_CXSR(dev
)) {
5314 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5315 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5319 pipeconf
&= ~PIPECONF_INTERLACE_MASK
;
5320 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5321 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5322 /* the chip adds 2 halflines automatically */
5323 adjusted_mode
->crtc_vdisplay
-= 1;
5324 adjusted_mode
->crtc_vtotal
-= 1;
5325 adjusted_mode
->crtc_vblank_start
-= 1;
5326 adjusted_mode
->crtc_vblank_end
-= 1;
5327 adjusted_mode
->crtc_vsync_end
-= 1;
5328 adjusted_mode
->crtc_vsync_start
-= 1;
5330 pipeconf
|= PIPECONF_PROGRESSIVE
;
5332 I915_WRITE(HTOTAL(pipe
),
5333 (adjusted_mode
->crtc_hdisplay
- 1) |
5334 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5335 I915_WRITE(HBLANK(pipe
),
5336 (adjusted_mode
->crtc_hblank_start
- 1) |
5337 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5338 I915_WRITE(HSYNC(pipe
),
5339 (adjusted_mode
->crtc_hsync_start
- 1) |
5340 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5342 I915_WRITE(VTOTAL(pipe
),
5343 (adjusted_mode
->crtc_vdisplay
- 1) |
5344 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5345 I915_WRITE(VBLANK(pipe
),
5346 (adjusted_mode
->crtc_vblank_start
- 1) |
5347 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5348 I915_WRITE(VSYNC(pipe
),
5349 (adjusted_mode
->crtc_vsync_start
- 1) |
5350 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5352 /* pipesrc and dspsize control the size that is scaled from,
5353 * which should always be the user's requested size.
5355 I915_WRITE(DSPSIZE(plane
),
5356 ((mode
->vdisplay
- 1) << 16) |
5357 (mode
->hdisplay
- 1));
5358 I915_WRITE(DSPPOS(plane
), 0);
5359 I915_WRITE(PIPESRC(pipe
),
5360 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5362 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5363 POSTING_READ(PIPECONF(pipe
));
5364 intel_enable_pipe(dev_priv
, pipe
, false);
5366 intel_wait_for_vblank(dev
, pipe
);
5368 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5369 POSTING_READ(DSPCNTR(plane
));
5370 intel_enable_plane(dev_priv
, plane
, pipe
);
5372 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5374 intel_update_watermarks(dev
);
5380 * Initialize reference clocks when the driver loads
5382 void ironlake_init_pch_refclk(struct drm_device
*dev
)
5384 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5385 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5386 struct intel_encoder
*encoder
;
5388 bool has_lvds
= false;
5389 bool has_cpu_edp
= false;
5390 bool has_pch_edp
= false;
5391 bool has_panel
= false;
5392 bool has_ck505
= false;
5393 bool can_ssc
= false;
5395 /* We need to take the global config into account */
5396 list_for_each_entry(encoder
, &mode_config
->encoder_list
,
5398 switch (encoder
->type
) {
5399 case INTEL_OUTPUT_LVDS
:
5403 case INTEL_OUTPUT_EDP
:
5405 if (intel_encoder_is_pch_edp(&encoder
->base
))
5413 if (HAS_PCH_IBX(dev
)) {
5414 has_ck505
= dev_priv
->display_clock_mode
;
5415 can_ssc
= has_ck505
;
5421 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5422 has_panel
, has_lvds
, has_pch_edp
, has_cpu_edp
,
5425 /* Ironlake: try to setup display ref clock before DPLL
5426 * enabling. This is only under driver's control after
5427 * PCH B stepping, previous chipset stepping should be
5428 * ignoring this setting.
5430 temp
= I915_READ(PCH_DREF_CONTROL
);
5431 /* Always enable nonspread source */
5432 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
5435 temp
|= DREF_NONSPREAD_CK505_ENABLE
;
5437 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
5440 temp
&= ~DREF_SSC_SOURCE_MASK
;
5441 temp
|= DREF_SSC_SOURCE_ENABLE
;
5443 /* SSC must be turned on before enabling the CPU output */
5444 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
5445 DRM_DEBUG_KMS("Using SSC on panel\n");
5446 temp
|= DREF_SSC1_ENABLE
;
5449 /* Get SSC going before enabling the outputs */
5450 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5451 POSTING_READ(PCH_DREF_CONTROL
);
5454 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5456 /* Enable CPU source on CPU attached eDP */
5458 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
5459 DRM_DEBUG_KMS("Using SSC on eDP\n");
5460 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
5463 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
5465 temp
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
5467 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5468 POSTING_READ(PCH_DREF_CONTROL
);
5471 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5473 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5475 /* Turn off CPU output */
5476 temp
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
5478 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5479 POSTING_READ(PCH_DREF_CONTROL
);
5482 /* Turn off the SSC source */
5483 temp
&= ~DREF_SSC_SOURCE_MASK
;
5484 temp
|= DREF_SSC_SOURCE_DISABLE
;
5487 temp
&= ~ DREF_SSC1_ENABLE
;
5489 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5490 POSTING_READ(PCH_DREF_CONTROL
);
5495 static int ironlake_get_refclk(struct drm_crtc
*crtc
)
5497 struct drm_device
*dev
= crtc
->dev
;
5498 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5499 struct intel_encoder
*encoder
;
5500 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5501 struct intel_encoder
*edp_encoder
= NULL
;
5502 int num_connectors
= 0;
5503 bool is_lvds
= false;
5505 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5506 if (encoder
->base
.crtc
!= crtc
)
5509 switch (encoder
->type
) {
5510 case INTEL_OUTPUT_LVDS
:
5513 case INTEL_OUTPUT_EDP
:
5514 edp_encoder
= encoder
;
5520 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
5521 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5522 dev_priv
->lvds_ssc_freq
);
5523 return dev_priv
->lvds_ssc_freq
* 1000;
5529 static int ironlake_crtc_mode_set(struct drm_crtc
*crtc
,
5530 struct drm_display_mode
*mode
,
5531 struct drm_display_mode
*adjusted_mode
,
5533 struct drm_framebuffer
*old_fb
)
5535 struct drm_device
*dev
= crtc
->dev
;
5536 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5537 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5538 int pipe
= intel_crtc
->pipe
;
5539 int plane
= intel_crtc
->plane
;
5540 int refclk
, num_connectors
= 0;
5541 intel_clock_t clock
, reduced_clock
;
5542 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
5543 bool ok
, has_reduced_clock
= false, is_sdvo
= false;
5544 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
5545 struct intel_encoder
*has_edp_encoder
= NULL
;
5546 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5547 struct intel_encoder
*encoder
;
5548 const intel_limit_t
*limit
;
5550 struct fdi_m_n m_n
= {0};
5553 int target_clock
, pixel_multiplier
, lane
, link_bw
, factor
;
5554 unsigned int pipe_bpp
;
5557 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5558 if (encoder
->base
.crtc
!= crtc
)
5561 switch (encoder
->type
) {
5562 case INTEL_OUTPUT_LVDS
:
5565 case INTEL_OUTPUT_SDVO
:
5566 case INTEL_OUTPUT_HDMI
:
5568 if (encoder
->needs_tv_clock
)
5571 case INTEL_OUTPUT_TVOUT
:
5574 case INTEL_OUTPUT_ANALOG
:
5577 case INTEL_OUTPUT_DISPLAYPORT
:
5580 case INTEL_OUTPUT_EDP
:
5581 has_edp_encoder
= encoder
;
5588 refclk
= ironlake_get_refclk(crtc
);
5591 * Returns a set of divisors for the desired target clock with the given
5592 * refclk, or FALSE. The returned values represent the clock equation:
5593 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5595 limit
= intel_limit(crtc
, refclk
);
5596 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
5598 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5602 /* Ensure that the cursor is valid for the new mode before changing... */
5603 intel_crtc_update_cursor(crtc
, true);
5605 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
5606 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
5607 dev_priv
->lvds_downclock
,
5610 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
5612 * If the different P is found, it means that we can't
5613 * switch the display clock by using the FP0/FP1.
5614 * In such case we will disable the LVDS downclock
5617 DRM_DEBUG_KMS("Different P is found for "
5618 "LVDS clock/downclock\n");
5619 has_reduced_clock
= 0;
5622 /* SDVO TV has fixed PLL values depend on its clock range,
5623 this mirrors vbios setting. */
5624 if (is_sdvo
&& is_tv
) {
5625 if (adjusted_mode
->clock
>= 100000
5626 && adjusted_mode
->clock
< 140500) {
5632 } else if (adjusted_mode
->clock
>= 140500
5633 && adjusted_mode
->clock
<= 200000) {
5643 pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5645 /* CPU eDP doesn't require FDI link, so just set DP M/N
5646 according to current link config */
5647 if (has_edp_encoder
&&
5648 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5649 target_clock
= mode
->clock
;
5650 intel_edp_link_config(has_edp_encoder
,
5653 /* [e]DP over FDI requires target mode clock
5654 instead of link clock */
5655 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5656 target_clock
= mode
->clock
;
5658 target_clock
= adjusted_mode
->clock
;
5660 /* FDI is a binary signal running at ~2.7GHz, encoding
5661 * each output octet as 10 bits. The actual frequency
5662 * is stored as a divider into a 100MHz clock, and the
5663 * mode pixel clock is stored in units of 1KHz.
5664 * Hence the bw of each lane in terms of the mode signal
5667 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
5670 /* determine panel color depth */
5671 temp
= I915_READ(PIPECONF(pipe
));
5672 temp
&= ~PIPE_BPC_MASK
;
5673 dither
= intel_choose_pipe_bpp_dither(crtc
, &pipe_bpp
, mode
);
5688 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5695 intel_crtc
->bpp
= pipe_bpp
;
5696 I915_WRITE(PIPECONF(pipe
), temp
);
5700 * Account for spread spectrum to avoid
5701 * oversubscribing the link. Max center spread
5702 * is 2.5%; use 5% for safety's sake.
5704 u32 bps
= target_clock
* intel_crtc
->bpp
* 21 / 20;
5705 lane
= bps
/ (link_bw
* 8) + 1;
5708 intel_crtc
->fdi_lanes
= lane
;
5710 if (pixel_multiplier
> 1)
5711 link_bw
*= pixel_multiplier
;
5712 ironlake_compute_m_n(intel_crtc
->bpp
, lane
, target_clock
, link_bw
,
5715 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
5716 if (has_reduced_clock
)
5717 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
5720 /* Enable autotuning of the PLL clock (if permissible) */
5723 if ((intel_panel_use_ssc(dev_priv
) &&
5724 dev_priv
->lvds_ssc_freq
== 100) ||
5725 (I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) == LVDS_CLKB_POWER_UP
)
5727 } else if (is_sdvo
&& is_tv
)
5730 if (clock
.m
< factor
* clock
.n
)
5736 dpll
|= DPLLB_MODE_LVDS
;
5738 dpll
|= DPLLB_MODE_DAC_SERIAL
;
5740 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5741 if (pixel_multiplier
> 1) {
5742 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
5744 dpll
|= DPLL_DVO_HIGH_SPEED
;
5746 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5747 dpll
|= DPLL_DVO_HIGH_SPEED
;
5749 /* compute bitmask from p1 value */
5750 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5752 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
5756 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
5759 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
5762 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
5765 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
5769 if (is_sdvo
&& is_tv
)
5770 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
5772 /* XXX: just matching BIOS for now */
5773 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5775 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
5776 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
5778 dpll
|= PLL_REF_INPUT_DREFCLK
;
5780 /* setup pipeconf */
5781 pipeconf
= I915_READ(PIPECONF(pipe
));
5783 /* Set up the display plane register */
5784 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5786 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe
);
5787 drm_mode_debug_printmodeline(mode
);
5789 /* PCH eDP needs FDI, but CPU eDP does not */
5790 if (!intel_crtc
->no_pll
) {
5791 if (!has_edp_encoder
||
5792 intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5793 I915_WRITE(PCH_FP0(pipe
), fp
);
5794 I915_WRITE(PCH_DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5796 POSTING_READ(PCH_DPLL(pipe
));
5800 if (dpll
== (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5801 fp
== I915_READ(PCH_FP0(0))) {
5802 intel_crtc
->use_pll_a
= true;
5803 DRM_DEBUG_KMS("using pipe a dpll\n");
5804 } else if (dpll
== (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5805 fp
== I915_READ(PCH_FP0(1))) {
5806 intel_crtc
->use_pll_a
= false;
5807 DRM_DEBUG_KMS("using pipe b dpll\n");
5809 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5814 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5815 * This is an exception to the general rule that mode_set doesn't turn
5819 temp
= I915_READ(PCH_LVDS
);
5820 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5821 if (HAS_PCH_CPT(dev
)) {
5822 temp
&= ~PORT_TRANS_SEL_MASK
;
5823 temp
|= PORT_TRANS_SEL_CPT(pipe
);
5826 temp
|= LVDS_PIPEB_SELECT
;
5828 temp
&= ~LVDS_PIPEB_SELECT
;
5831 /* set the corresponsding LVDS_BORDER bit */
5832 temp
|= dev_priv
->lvds_border_bits
;
5833 /* Set the B0-B3 data pairs corresponding to whether we're going to
5834 * set the DPLLs for dual-channel mode or not.
5837 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5839 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5841 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5842 * appropriately here, but we need to look more thoroughly into how
5843 * panels behave in the two modes.
5845 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5846 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5847 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5848 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5849 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5851 char flags
[2] = "-+";
5852 DRM_INFO("Changing LVDS panel from "
5853 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5854 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5855 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5856 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5857 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5858 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5861 I915_WRITE(PCH_LVDS
, temp
);
5864 pipeconf
&= ~PIPECONF_DITHER_EN
;
5865 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
5866 if ((is_lvds
&& dev_priv
->lvds_dither
) || dither
) {
5867 pipeconf
|= PIPECONF_DITHER_EN
;
5868 pipeconf
|= PIPECONF_DITHER_TYPE_SP
;
5870 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5871 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5873 /* For non-DP output, clear any trans DP clock recovery setting.*/
5874 I915_WRITE(TRANSDATA_M1(pipe
), 0);
5875 I915_WRITE(TRANSDATA_N1(pipe
), 0);
5876 I915_WRITE(TRANSDPLINK_M1(pipe
), 0);
5877 I915_WRITE(TRANSDPLINK_N1(pipe
), 0);
5880 if (!intel_crtc
->no_pll
&&
5881 (!has_edp_encoder
||
5882 intel_encoder_is_pch_edp(&has_edp_encoder
->base
))) {
5883 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5885 /* Wait for the clocks to stabilize. */
5886 POSTING_READ(PCH_DPLL(pipe
));
5889 /* The pixel multiplier can only be updated once the
5890 * DPLL is enabled and the clocks are stable.
5892 * So write it again.
5894 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5897 intel_crtc
->lowfreq_avail
= false;
5898 if (!intel_crtc
->no_pll
) {
5899 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5900 I915_WRITE(PCH_FP1(pipe
), fp2
);
5901 intel_crtc
->lowfreq_avail
= true;
5902 if (HAS_PIPE_CXSR(dev
)) {
5903 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5904 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5907 I915_WRITE(PCH_FP1(pipe
), fp
);
5908 if (HAS_PIPE_CXSR(dev
)) {
5909 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5910 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5915 pipeconf
&= ~PIPECONF_INTERLACE_MASK
;
5916 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5917 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5918 /* the chip adds 2 halflines automatically */
5919 adjusted_mode
->crtc_vdisplay
-= 1;
5920 adjusted_mode
->crtc_vtotal
-= 1;
5921 adjusted_mode
->crtc_vblank_start
-= 1;
5922 adjusted_mode
->crtc_vblank_end
-= 1;
5923 adjusted_mode
->crtc_vsync_end
-= 1;
5924 adjusted_mode
->crtc_vsync_start
-= 1;
5926 pipeconf
|= PIPECONF_PROGRESSIVE
;
5928 I915_WRITE(HTOTAL(pipe
),
5929 (adjusted_mode
->crtc_hdisplay
- 1) |
5930 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5931 I915_WRITE(HBLANK(pipe
),
5932 (adjusted_mode
->crtc_hblank_start
- 1) |
5933 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5934 I915_WRITE(HSYNC(pipe
),
5935 (adjusted_mode
->crtc_hsync_start
- 1) |
5936 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5938 I915_WRITE(VTOTAL(pipe
),
5939 (adjusted_mode
->crtc_vdisplay
- 1) |
5940 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5941 I915_WRITE(VBLANK(pipe
),
5942 (adjusted_mode
->crtc_vblank_start
- 1) |
5943 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5944 I915_WRITE(VSYNC(pipe
),
5945 (adjusted_mode
->crtc_vsync_start
- 1) |
5946 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5948 /* pipesrc controls the size that is scaled from, which should
5949 * always be the user's requested size.
5951 I915_WRITE(PIPESRC(pipe
),
5952 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5954 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
5955 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
5956 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
5957 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
5959 if (has_edp_encoder
&&
5960 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5961 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
5964 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5965 POSTING_READ(PIPECONF(pipe
));
5967 intel_wait_for_vblank(dev
, pipe
);
5970 /* enable address swizzle for tiling buffer */
5971 temp
= I915_READ(DISP_ARB_CTL
);
5972 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
5975 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5976 POSTING_READ(DSPCNTR(plane
));
5978 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5980 intel_update_watermarks(dev
);
5985 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
5986 struct drm_display_mode
*mode
,
5987 struct drm_display_mode
*adjusted_mode
,
5989 struct drm_framebuffer
*old_fb
)
5991 struct drm_device
*dev
= crtc
->dev
;
5992 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5993 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5994 int pipe
= intel_crtc
->pipe
;
5997 drm_vblank_pre_modeset(dev
, pipe
);
5999 ret
= dev_priv
->display
.crtc_mode_set(crtc
, mode
, adjusted_mode
,
6001 drm_vblank_post_modeset(dev
, pipe
);
6004 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_OFF
;
6006 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_ON
;
6011 static bool intel_eld_uptodate(struct drm_connector
*connector
,
6012 int reg_eldv
, uint32_t bits_eldv
,
6013 int reg_elda
, uint32_t bits_elda
,
6016 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
6017 uint8_t *eld
= connector
->eld
;
6020 i
= I915_READ(reg_eldv
);
6029 i
= I915_READ(reg_elda
);
6031 I915_WRITE(reg_elda
, i
);
6033 for (i
= 0; i
< eld
[2]; i
++)
6034 if (I915_READ(reg_edid
) != *((uint32_t *)eld
+ i
))
6040 static void g4x_write_eld(struct drm_connector
*connector
,
6041 struct drm_crtc
*crtc
)
6043 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
6044 uint8_t *eld
= connector
->eld
;
6049 i
= I915_READ(G4X_AUD_VID_DID
);
6051 if (i
== INTEL_AUDIO_DEVBLC
|| i
== INTEL_AUDIO_DEVCL
)
6052 eldv
= G4X_ELDV_DEVCL_DEVBLC
;
6054 eldv
= G4X_ELDV_DEVCTG
;
6056 if (intel_eld_uptodate(connector
,
6057 G4X_AUD_CNTL_ST
, eldv
,
6058 G4X_AUD_CNTL_ST
, G4X_ELD_ADDR
,
6059 G4X_HDMIW_HDMIEDID
))
6062 i
= I915_READ(G4X_AUD_CNTL_ST
);
6063 i
&= ~(eldv
| G4X_ELD_ADDR
);
6064 len
= (i
>> 9) & 0x1f; /* ELD buffer size */
6065 I915_WRITE(G4X_AUD_CNTL_ST
, i
);
6070 len
= min_t(uint8_t, eld
[2], len
);
6071 DRM_DEBUG_DRIVER("ELD size %d\n", len
);
6072 for (i
= 0; i
< len
; i
++)
6073 I915_WRITE(G4X_HDMIW_HDMIEDID
, *((uint32_t *)eld
+ i
));
6075 i
= I915_READ(G4X_AUD_CNTL_ST
);
6077 I915_WRITE(G4X_AUD_CNTL_ST
, i
);
6080 static void ironlake_write_eld(struct drm_connector
*connector
,
6081 struct drm_crtc
*crtc
)
6083 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
6084 uint8_t *eld
= connector
->eld
;
6092 if (HAS_PCH_IBX(connector
->dev
)) {
6093 hdmiw_hdmiedid
= IBX_HDMIW_HDMIEDID_A
;
6094 aud_cntl_st
= IBX_AUD_CNTL_ST_A
;
6095 aud_cntrl_st2
= IBX_AUD_CNTL_ST2
;
6097 hdmiw_hdmiedid
= CPT_HDMIW_HDMIEDID_A
;
6098 aud_cntl_st
= CPT_AUD_CNTL_ST_A
;
6099 aud_cntrl_st2
= CPT_AUD_CNTRL_ST2
;
6102 i
= to_intel_crtc(crtc
)->pipe
;
6103 hdmiw_hdmiedid
+= i
* 0x100;
6104 aud_cntl_st
+= i
* 0x100;
6106 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i
));
6108 i
= I915_READ(aud_cntl_st
);
6109 i
= (i
>> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6111 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6112 /* operate blindly on all ports */
6113 eldv
= IBX_ELD_VALIDB
;
6114 eldv
|= IBX_ELD_VALIDB
<< 4;
6115 eldv
|= IBX_ELD_VALIDB
<< 8;
6117 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i
);
6118 eldv
= IBX_ELD_VALIDB
<< ((i
- 1) * 4);
6121 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
6122 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6123 eld
[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6126 if (intel_eld_uptodate(connector
,
6127 aud_cntrl_st2
, eldv
,
6128 aud_cntl_st
, IBX_ELD_ADDRESS
,
6132 i
= I915_READ(aud_cntrl_st2
);
6134 I915_WRITE(aud_cntrl_st2
, i
);
6139 i
= I915_READ(aud_cntl_st
);
6140 i
&= ~IBX_ELD_ADDRESS
;
6141 I915_WRITE(aud_cntl_st
, i
);
6143 len
= min_t(uint8_t, eld
[2], 21); /* 84 bytes of hw ELD buffer */
6144 DRM_DEBUG_DRIVER("ELD size %d\n", len
);
6145 for (i
= 0; i
< len
; i
++)
6146 I915_WRITE(hdmiw_hdmiedid
, *((uint32_t *)eld
+ i
));
6148 i
= I915_READ(aud_cntrl_st2
);
6150 I915_WRITE(aud_cntrl_st2
, i
);
6153 void intel_write_eld(struct drm_encoder
*encoder
,
6154 struct drm_display_mode
*mode
)
6156 struct drm_crtc
*crtc
= encoder
->crtc
;
6157 struct drm_connector
*connector
;
6158 struct drm_device
*dev
= encoder
->dev
;
6159 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6161 connector
= drm_select_eld(encoder
, mode
);
6165 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6167 drm_get_connector_name(connector
),
6168 connector
->encoder
->base
.id
,
6169 drm_get_encoder_name(connector
->encoder
));
6171 connector
->eld
[6] = drm_av_sync_delay(connector
, mode
) / 2;
6173 if (dev_priv
->display
.write_eld
)
6174 dev_priv
->display
.write_eld(connector
, crtc
);
6177 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6178 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
6180 struct drm_device
*dev
= crtc
->dev
;
6181 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6182 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6183 int palreg
= PALETTE(intel_crtc
->pipe
);
6186 /* The clocks have to be on to load the palette. */
6187 if (!crtc
->enabled
|| !intel_crtc
->active
)
6190 /* use legacy palette for Ironlake */
6191 if (HAS_PCH_SPLIT(dev
))
6192 palreg
= LGC_PALETTE(intel_crtc
->pipe
);
6194 for (i
= 0; i
< 256; i
++) {
6195 I915_WRITE(palreg
+ 4 * i
,
6196 (intel_crtc
->lut_r
[i
] << 16) |
6197 (intel_crtc
->lut_g
[i
] << 8) |
6198 intel_crtc
->lut_b
[i
]);
6202 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
6204 struct drm_device
*dev
= crtc
->dev
;
6205 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6206 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6207 bool visible
= base
!= 0;
6210 if (intel_crtc
->cursor_visible
== visible
)
6213 cntl
= I915_READ(_CURACNTR
);
6215 /* On these chipsets we can only modify the base whilst
6216 * the cursor is disabled.
6218 I915_WRITE(_CURABASE
, base
);
6220 cntl
&= ~(CURSOR_FORMAT_MASK
);
6221 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6222 cntl
|= CURSOR_ENABLE
|
6223 CURSOR_GAMMA_ENABLE
|
6226 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
6227 I915_WRITE(_CURACNTR
, cntl
);
6229 intel_crtc
->cursor_visible
= visible
;
6232 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
6234 struct drm_device
*dev
= crtc
->dev
;
6235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6236 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6237 int pipe
= intel_crtc
->pipe
;
6238 bool visible
= base
!= 0;
6240 if (intel_crtc
->cursor_visible
!= visible
) {
6241 uint32_t cntl
= I915_READ(CURCNTR(pipe
));
6243 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
6244 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
6245 cntl
|= pipe
<< 28; /* Connect to correct pipe */
6247 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
6248 cntl
|= CURSOR_MODE_DISABLE
;
6250 I915_WRITE(CURCNTR(pipe
), cntl
);
6252 intel_crtc
->cursor_visible
= visible
;
6254 /* and commit changes on next vblank */
6255 I915_WRITE(CURBASE(pipe
), base
);
6258 static void ivb_update_cursor(struct drm_crtc
*crtc
, u32 base
)
6260 struct drm_device
*dev
= crtc
->dev
;
6261 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6262 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6263 int pipe
= intel_crtc
->pipe
;
6264 bool visible
= base
!= 0;
6266 if (intel_crtc
->cursor_visible
!= visible
) {
6267 uint32_t cntl
= I915_READ(CURCNTR_IVB(pipe
));
6269 cntl
&= ~CURSOR_MODE
;
6270 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
6272 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
6273 cntl
|= CURSOR_MODE_DISABLE
;
6275 I915_WRITE(CURCNTR_IVB(pipe
), cntl
);
6277 intel_crtc
->cursor_visible
= visible
;
6279 /* and commit changes on next vblank */
6280 I915_WRITE(CURBASE_IVB(pipe
), base
);
6283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6284 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
6287 struct drm_device
*dev
= crtc
->dev
;
6288 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6289 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6290 int pipe
= intel_crtc
->pipe
;
6291 int x
= intel_crtc
->cursor_x
;
6292 int y
= intel_crtc
->cursor_y
;
6298 if (on
&& crtc
->enabled
&& crtc
->fb
) {
6299 base
= intel_crtc
->cursor_addr
;
6300 if (x
> (int) crtc
->fb
->width
)
6303 if (y
> (int) crtc
->fb
->height
)
6309 if (x
+ intel_crtc
->cursor_width
< 0)
6312 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
6315 pos
|= x
<< CURSOR_X_SHIFT
;
6318 if (y
+ intel_crtc
->cursor_height
< 0)
6321 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
6324 pos
|= y
<< CURSOR_Y_SHIFT
;
6326 visible
= base
!= 0;
6327 if (!visible
&& !intel_crtc
->cursor_visible
)
6330 if (IS_IVYBRIDGE(dev
)) {
6331 I915_WRITE(CURPOS_IVB(pipe
), pos
);
6332 ivb_update_cursor(crtc
, base
);
6334 I915_WRITE(CURPOS(pipe
), pos
);
6335 if (IS_845G(dev
) || IS_I865G(dev
))
6336 i845_update_cursor(crtc
, base
);
6338 i9xx_update_cursor(crtc
, base
);
6342 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
6345 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
6346 struct drm_file
*file
,
6348 uint32_t width
, uint32_t height
)
6350 struct drm_device
*dev
= crtc
->dev
;
6351 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6352 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6353 struct drm_i915_gem_object
*obj
;
6357 DRM_DEBUG_KMS("\n");
6359 /* if we want to turn off the cursor ignore width and height */
6361 DRM_DEBUG_KMS("cursor off\n");
6364 mutex_lock(&dev
->struct_mutex
);
6368 /* Currently we only support 64x64 cursors */
6369 if (width
!= 64 || height
!= 64) {
6370 DRM_ERROR("we currently only support 64x64 cursors\n");
6374 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
, handle
));
6375 if (&obj
->base
== NULL
)
6378 if (obj
->base
.size
< width
* height
* 4) {
6379 DRM_ERROR("buffer is to small\n");
6384 /* we only need to pin inside GTT if cursor is non-phy */
6385 mutex_lock(&dev
->struct_mutex
);
6386 if (!dev_priv
->info
->cursor_needs_physical
) {
6387 if (obj
->tiling_mode
) {
6388 DRM_ERROR("cursor cannot be tiled\n");
6393 ret
= i915_gem_object_pin_to_display_plane(obj
, 0, NULL
);
6395 DRM_ERROR("failed to move cursor bo into the GTT\n");
6399 ret
= i915_gem_object_put_fence(obj
);
6401 DRM_ERROR("failed to release fence for cursor");
6405 addr
= obj
->gtt_offset
;
6407 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
6408 ret
= i915_gem_attach_phys_object(dev
, obj
,
6409 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
6412 DRM_ERROR("failed to attach phys object\n");
6415 addr
= obj
->phys_obj
->handle
->busaddr
;
6419 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
6422 if (intel_crtc
->cursor_bo
) {
6423 if (dev_priv
->info
->cursor_needs_physical
) {
6424 if (intel_crtc
->cursor_bo
!= obj
)
6425 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
6427 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
6428 drm_gem_object_unreference(&intel_crtc
->cursor_bo
->base
);
6431 mutex_unlock(&dev
->struct_mutex
);
6433 intel_crtc
->cursor_addr
= addr
;
6434 intel_crtc
->cursor_bo
= obj
;
6435 intel_crtc
->cursor_width
= width
;
6436 intel_crtc
->cursor_height
= height
;
6438 intel_crtc_update_cursor(crtc
, true);
6442 i915_gem_object_unpin(obj
);
6444 mutex_unlock(&dev
->struct_mutex
);
6446 drm_gem_object_unreference_unlocked(&obj
->base
);
6450 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
6452 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6454 intel_crtc
->cursor_x
= x
;
6455 intel_crtc
->cursor_y
= y
;
6457 intel_crtc_update_cursor(crtc
, true);
6462 /** Sets the color ramps on behalf of RandR */
6463 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
6464 u16 blue
, int regno
)
6466 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6468 intel_crtc
->lut_r
[regno
] = red
>> 8;
6469 intel_crtc
->lut_g
[regno
] = green
>> 8;
6470 intel_crtc
->lut_b
[regno
] = blue
>> 8;
6473 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
6474 u16
*blue
, int regno
)
6476 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6478 *red
= intel_crtc
->lut_r
[regno
] << 8;
6479 *green
= intel_crtc
->lut_g
[regno
] << 8;
6480 *blue
= intel_crtc
->lut_b
[regno
] << 8;
6483 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
6484 u16
*blue
, uint32_t start
, uint32_t size
)
6486 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
6487 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6489 for (i
= start
; i
< end
; i
++) {
6490 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
6491 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
6492 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
6495 intel_crtc_load_lut(crtc
);
6499 * Get a pipe with a simple mode set on it for doing load-based monitor
6502 * It will be up to the load-detect code to adjust the pipe as appropriate for
6503 * its requirements. The pipe will be connected to no other encoders.
6505 * Currently this code will only succeed if there is a pipe with no encoders
6506 * configured for it. In the future, it could choose to temporarily disable
6507 * some outputs to free up a pipe for its use.
6509 * \return crtc, or NULL if no pipes are available.
6512 /* VESA 640x480x72Hz mode to set on the pipe */
6513 static struct drm_display_mode load_detect_mode
= {
6514 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
6515 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
6518 static struct drm_framebuffer
*
6519 intel_framebuffer_create(struct drm_device
*dev
,
6520 struct drm_mode_fb_cmd2
*mode_cmd
,
6521 struct drm_i915_gem_object
*obj
)
6523 struct intel_framebuffer
*intel_fb
;
6526 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
6528 drm_gem_object_unreference_unlocked(&obj
->base
);
6529 return ERR_PTR(-ENOMEM
);
6532 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
6534 drm_gem_object_unreference_unlocked(&obj
->base
);
6536 return ERR_PTR(ret
);
6539 return &intel_fb
->base
;
6543 intel_framebuffer_pitch_for_width(int width
, int bpp
)
6545 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
6546 return ALIGN(pitch
, 64);
6550 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
6552 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
6553 return ALIGN(pitch
* mode
->vdisplay
, PAGE_SIZE
);
6556 static struct drm_framebuffer
*
6557 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
6558 struct drm_display_mode
*mode
,
6561 struct drm_i915_gem_object
*obj
;
6562 struct drm_mode_fb_cmd2 mode_cmd
;
6564 obj
= i915_gem_alloc_object(dev
,
6565 intel_framebuffer_size_for_mode(mode
, bpp
));
6567 return ERR_PTR(-ENOMEM
);
6569 mode_cmd
.width
= mode
->hdisplay
;
6570 mode_cmd
.height
= mode
->vdisplay
;
6571 mode_cmd
.pitches
[0] = intel_framebuffer_pitch_for_width(mode_cmd
.width
,
6573 mode_cmd
.pixel_format
= drm_mode_legacy_fb_format(bpp
, depth
);
6575 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
6578 static struct drm_framebuffer
*
6579 mode_fits_in_fbdev(struct drm_device
*dev
,
6580 struct drm_display_mode
*mode
)
6582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6583 struct drm_i915_gem_object
*obj
;
6584 struct drm_framebuffer
*fb
;
6586 if (dev_priv
->fbdev
== NULL
)
6589 obj
= dev_priv
->fbdev
->ifb
.obj
;
6593 fb
= &dev_priv
->fbdev
->ifb
.base
;
6594 if (fb
->pitches
[0] < intel_framebuffer_pitch_for_width(mode
->hdisplay
,
6595 fb
->bits_per_pixel
))
6598 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitches
[0])
6604 bool intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6605 struct drm_connector
*connector
,
6606 struct drm_display_mode
*mode
,
6607 struct intel_load_detect_pipe
*old
)
6609 struct intel_crtc
*intel_crtc
;
6610 struct drm_crtc
*possible_crtc
;
6611 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6612 struct drm_crtc
*crtc
= NULL
;
6613 struct drm_device
*dev
= encoder
->dev
;
6614 struct drm_framebuffer
*old_fb
;
6617 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6618 connector
->base
.id
, drm_get_connector_name(connector
),
6619 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6622 * Algorithm gets a little messy:
6624 * - if the connector already has an assigned crtc, use it (but make
6625 * sure it's on first)
6627 * - try to find the first unused crtc that can drive this connector,
6628 * and use that if we find one
6631 /* See if we already have a CRTC for this connector */
6632 if (encoder
->crtc
) {
6633 crtc
= encoder
->crtc
;
6635 intel_crtc
= to_intel_crtc(crtc
);
6636 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6637 old
->load_detect_temp
= false;
6639 /* Make sure the crtc and connector are running */
6640 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6641 struct drm_encoder_helper_funcs
*encoder_funcs
;
6642 struct drm_crtc_helper_funcs
*crtc_funcs
;
6644 crtc_funcs
= crtc
->helper_private
;
6645 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
6647 encoder_funcs
= encoder
->helper_private
;
6648 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
6654 /* Find an unused one (if possible) */
6655 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
6657 if (!(encoder
->possible_crtcs
& (1 << i
)))
6659 if (!possible_crtc
->enabled
) {
6660 crtc
= possible_crtc
;
6666 * If we didn't find an unused CRTC, don't use any.
6669 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6673 encoder
->crtc
= crtc
;
6674 connector
->encoder
= encoder
;
6676 intel_crtc
= to_intel_crtc(crtc
);
6677 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6678 old
->load_detect_temp
= true;
6679 old
->release_fb
= NULL
;
6682 mode
= &load_detect_mode
;
6686 /* We need a framebuffer large enough to accommodate all accesses
6687 * that the plane may generate whilst we perform load detection.
6688 * We can not rely on the fbcon either being present (we get called
6689 * during its initialisation to detect all boot displays, or it may
6690 * not even exist) or that it is large enough to satisfy the
6693 crtc
->fb
= mode_fits_in_fbdev(dev
, mode
);
6694 if (crtc
->fb
== NULL
) {
6695 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6696 crtc
->fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
6697 old
->release_fb
= crtc
->fb
;
6699 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6700 if (IS_ERR(crtc
->fb
)) {
6701 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6706 if (!drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, old_fb
)) {
6707 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6708 if (old
->release_fb
)
6709 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6714 /* let the connector get through one full cycle before testing */
6715 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
6720 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6721 struct drm_connector
*connector
,
6722 struct intel_load_detect_pipe
*old
)
6724 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6725 struct drm_device
*dev
= encoder
->dev
;
6726 struct drm_crtc
*crtc
= encoder
->crtc
;
6727 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
6728 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
6730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6731 connector
->base
.id
, drm_get_connector_name(connector
),
6732 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6734 if (old
->load_detect_temp
) {
6735 connector
->encoder
= NULL
;
6736 drm_helper_disable_unused_functions(dev
);
6738 if (old
->release_fb
)
6739 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6744 /* Switch crtc and encoder back off if necessary */
6745 if (old
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6746 encoder_funcs
->dpms(encoder
, old
->dpms_mode
);
6747 crtc_funcs
->dpms(crtc
, old
->dpms_mode
);
6751 /* Returns the clock of the currently programmed mode of the given pipe. */
6752 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
6754 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6755 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6756 int pipe
= intel_crtc
->pipe
;
6757 u32 dpll
= I915_READ(DPLL(pipe
));
6759 intel_clock_t clock
;
6761 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
6762 fp
= I915_READ(FP0(pipe
));
6764 fp
= I915_READ(FP1(pipe
));
6766 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
6767 if (IS_PINEVIEW(dev
)) {
6768 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
6769 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6771 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
6772 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6775 if (!IS_GEN2(dev
)) {
6776 if (IS_PINEVIEW(dev
))
6777 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
6778 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
6780 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
6781 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6783 switch (dpll
& DPLL_MODE_MASK
) {
6784 case DPLLB_MODE_DAC_SERIAL
:
6785 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
6788 case DPLLB_MODE_LVDS
:
6789 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
6793 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6794 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
6798 /* XXX: Handle the 100Mhz refclk */
6799 intel_clock(dev
, 96000, &clock
);
6801 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
6804 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
6805 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6808 if ((dpll
& PLL_REF_INPUT_MASK
) ==
6809 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
6810 /* XXX: might not be 66MHz */
6811 intel_clock(dev
, 66000, &clock
);
6813 intel_clock(dev
, 48000, &clock
);
6815 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
6818 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
6819 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
6821 if (dpll
& PLL_P2_DIVIDE_BY_4
)
6826 intel_clock(dev
, 48000, &clock
);
6830 /* XXX: It would be nice to validate the clocks, but we can't reuse
6831 * i830PllIsValid() because it relies on the xf86_config connector
6832 * configuration being accurate, which it isn't necessarily.
6838 /** Returns the currently programmed mode of the given pipe. */
6839 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
6840 struct drm_crtc
*crtc
)
6842 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6843 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6844 int pipe
= intel_crtc
->pipe
;
6845 struct drm_display_mode
*mode
;
6846 int htot
= I915_READ(HTOTAL(pipe
));
6847 int hsync
= I915_READ(HSYNC(pipe
));
6848 int vtot
= I915_READ(VTOTAL(pipe
));
6849 int vsync
= I915_READ(VSYNC(pipe
));
6851 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
6855 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
6856 mode
->hdisplay
= (htot
& 0xffff) + 1;
6857 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
6858 mode
->hsync_start
= (hsync
& 0xffff) + 1;
6859 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
6860 mode
->vdisplay
= (vtot
& 0xffff) + 1;
6861 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
6862 mode
->vsync_start
= (vsync
& 0xffff) + 1;
6863 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
6865 drm_mode_set_name(mode
);
6866 drm_mode_set_crtcinfo(mode
, 0);
6871 #define GPU_IDLE_TIMEOUT 500 /* ms */
6873 /* When this timer fires, we've been idle for awhile */
6874 static void intel_gpu_idle_timer(unsigned long arg
)
6876 struct drm_device
*dev
= (struct drm_device
*)arg
;
6877 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6879 if (!list_empty(&dev_priv
->mm
.active_list
)) {
6880 /* Still processing requests, so just re-arm the timer. */
6881 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6882 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6886 dev_priv
->busy
= false;
6887 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6890 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6892 static void intel_crtc_idle_timer(unsigned long arg
)
6894 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
6895 struct drm_crtc
*crtc
= &intel_crtc
->base
;
6896 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
6897 struct intel_framebuffer
*intel_fb
;
6899 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6900 if (intel_fb
&& intel_fb
->obj
->active
) {
6901 /* The framebuffer is still being accessed by the GPU. */
6902 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6903 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6907 intel_crtc
->busy
= false;
6908 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6911 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
6913 struct drm_device
*dev
= crtc
->dev
;
6914 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6915 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6916 int pipe
= intel_crtc
->pipe
;
6917 int dpll_reg
= DPLL(pipe
);
6920 if (HAS_PCH_SPLIT(dev
))
6923 if (!dev_priv
->lvds_downclock_avail
)
6926 dpll
= I915_READ(dpll_reg
);
6927 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
6928 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6930 /* Unlock panel regs */
6931 I915_WRITE(PP_CONTROL
,
6932 I915_READ(PP_CONTROL
) | PANEL_UNLOCK_REGS
);
6934 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
6935 I915_WRITE(dpll_reg
, dpll
);
6936 intel_wait_for_vblank(dev
, pipe
);
6938 dpll
= I915_READ(dpll_reg
);
6939 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
6940 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6942 /* ...and lock them again */
6943 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6946 /* Schedule downclock */
6947 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6948 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6951 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
6953 struct drm_device
*dev
= crtc
->dev
;
6954 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6955 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6956 int pipe
= intel_crtc
->pipe
;
6957 int dpll_reg
= DPLL(pipe
);
6958 int dpll
= I915_READ(dpll_reg
);
6960 if (HAS_PCH_SPLIT(dev
))
6963 if (!dev_priv
->lvds_downclock_avail
)
6967 * Since this is called by a timer, we should never get here in
6970 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
6971 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6973 /* Unlock panel regs */
6974 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
6977 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
6978 I915_WRITE(dpll_reg
, dpll
);
6979 intel_wait_for_vblank(dev
, pipe
);
6980 dpll
= I915_READ(dpll_reg
);
6981 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
6982 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6984 /* ...and lock them again */
6985 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6991 * intel_idle_update - adjust clocks for idleness
6992 * @work: work struct
6994 * Either the GPU or display (or both) went idle. Check the busy status
6995 * here and adjust the CRTC and GPU clocks as necessary.
6997 static void intel_idle_update(struct work_struct
*work
)
6999 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
7001 struct drm_device
*dev
= dev_priv
->dev
;
7002 struct drm_crtc
*crtc
;
7003 struct intel_crtc
*intel_crtc
;
7005 if (!i915_powersave
)
7008 mutex_lock(&dev
->struct_mutex
);
7010 i915_update_gfx_val(dev_priv
);
7012 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
7013 /* Skip inactive CRTCs */
7017 intel_crtc
= to_intel_crtc(crtc
);
7018 if (!intel_crtc
->busy
)
7019 intel_decrease_pllclock(crtc
);
7023 mutex_unlock(&dev
->struct_mutex
);
7027 * intel_mark_busy - mark the GPU and possibly the display busy
7029 * @obj: object we're operating on
7031 * Callers can use this function to indicate that the GPU is busy processing
7032 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7033 * buffer), we'll also mark the display as busy, so we know to increase its
7036 void intel_mark_busy(struct drm_device
*dev
, struct drm_i915_gem_object
*obj
)
7038 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7039 struct drm_crtc
*crtc
= NULL
;
7040 struct intel_framebuffer
*intel_fb
;
7041 struct intel_crtc
*intel_crtc
;
7043 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
7046 if (!dev_priv
->busy
)
7047 dev_priv
->busy
= true;
7049 mod_timer(&dev_priv
->idle_timer
, jiffies
+
7050 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
7052 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
7056 intel_crtc
= to_intel_crtc(crtc
);
7057 intel_fb
= to_intel_framebuffer(crtc
->fb
);
7058 if (intel_fb
->obj
== obj
) {
7059 if (!intel_crtc
->busy
) {
7060 /* Non-busy -> busy, upclock */
7061 intel_increase_pllclock(crtc
);
7062 intel_crtc
->busy
= true;
7064 /* Busy -> busy, put off timer */
7065 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
7066 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
7072 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
7074 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7075 struct drm_device
*dev
= crtc
->dev
;
7076 struct intel_unpin_work
*work
;
7077 unsigned long flags
;
7079 spin_lock_irqsave(&dev
->event_lock
, flags
);
7080 work
= intel_crtc
->unpin_work
;
7081 intel_crtc
->unpin_work
= NULL
;
7082 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7085 cancel_work_sync(&work
->work
);
7089 drm_crtc_cleanup(crtc
);
7094 static void intel_unpin_work_fn(struct work_struct
*__work
)
7096 struct intel_unpin_work
*work
=
7097 container_of(__work
, struct intel_unpin_work
, work
);
7099 mutex_lock(&work
->dev
->struct_mutex
);
7100 i915_gem_object_unpin(work
->old_fb_obj
);
7101 drm_gem_object_unreference(&work
->pending_flip_obj
->base
);
7102 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
7104 intel_update_fbc(work
->dev
);
7105 mutex_unlock(&work
->dev
->struct_mutex
);
7109 static void do_intel_finish_page_flip(struct drm_device
*dev
,
7110 struct drm_crtc
*crtc
)
7112 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7113 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7114 struct intel_unpin_work
*work
;
7115 struct drm_i915_gem_object
*obj
;
7116 struct drm_pending_vblank_event
*e
;
7117 struct timeval tnow
, tvbl
;
7118 unsigned long flags
;
7120 /* Ignore early vblank irqs */
7121 if (intel_crtc
== NULL
)
7124 do_gettimeofday(&tnow
);
7126 spin_lock_irqsave(&dev
->event_lock
, flags
);
7127 work
= intel_crtc
->unpin_work
;
7128 if (work
== NULL
|| !work
->pending
) {
7129 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7133 intel_crtc
->unpin_work
= NULL
;
7137 e
->event
.sequence
= drm_vblank_count_and_time(dev
, intel_crtc
->pipe
, &tvbl
);
7139 /* Called before vblank count and timestamps have
7140 * been updated for the vblank interval of flip
7141 * completion? Need to increment vblank count and
7142 * add one videorefresh duration to returned timestamp
7143 * to account for this. We assume this happened if we
7144 * get called over 0.9 frame durations after the last
7145 * timestamped vblank.
7147 * This calculation can not be used with vrefresh rates
7148 * below 5Hz (10Hz to be on the safe side) without
7149 * promoting to 64 integers.
7151 if (10 * (timeval_to_ns(&tnow
) - timeval_to_ns(&tvbl
)) >
7152 9 * crtc
->framedur_ns
) {
7153 e
->event
.sequence
++;
7154 tvbl
= ns_to_timeval(timeval_to_ns(&tvbl
) +
7158 e
->event
.tv_sec
= tvbl
.tv_sec
;
7159 e
->event
.tv_usec
= tvbl
.tv_usec
;
7161 list_add_tail(&e
->base
.link
,
7162 &e
->base
.file_priv
->event_list
);
7163 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
7166 drm_vblank_put(dev
, intel_crtc
->pipe
);
7168 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7170 obj
= work
->old_fb_obj
;
7172 atomic_clear_mask(1 << intel_crtc
->plane
,
7173 &obj
->pending_flip
.counter
);
7174 if (atomic_read(&obj
->pending_flip
) == 0)
7175 wake_up(&dev_priv
->pending_flip_queue
);
7177 schedule_work(&work
->work
);
7179 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
7182 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
7184 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7185 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
7187 do_intel_finish_page_flip(dev
, crtc
);
7190 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
7192 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7193 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
7195 do_intel_finish_page_flip(dev
, crtc
);
7198 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
7200 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7201 struct intel_crtc
*intel_crtc
=
7202 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
7203 unsigned long flags
;
7205 spin_lock_irqsave(&dev
->event_lock
, flags
);
7206 if (intel_crtc
->unpin_work
) {
7207 if ((++intel_crtc
->unpin_work
->pending
) > 1)
7208 DRM_ERROR("Prepared flip multiple times\n");
7210 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7212 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7215 static int intel_gen2_queue_flip(struct drm_device
*dev
,
7216 struct drm_crtc
*crtc
,
7217 struct drm_framebuffer
*fb
,
7218 struct drm_i915_gem_object
*obj
)
7220 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7221 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7222 unsigned long offset
;
7226 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7230 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7231 offset
= crtc
->y
* fb
->pitches
[0] + crtc
->x
* fb
->bits_per_pixel
/8;
7233 ret
= BEGIN_LP_RING(6);
7237 /* Can't queue multiple flips, so wait for the previous
7238 * one to finish before executing the next.
7240 if (intel_crtc
->plane
)
7241 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
7243 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
7244 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
7246 OUT_RING(MI_DISPLAY_FLIP
|
7247 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7248 OUT_RING(fb
->pitches
[0]);
7249 OUT_RING(obj
->gtt_offset
+ offset
);
7256 static int intel_gen3_queue_flip(struct drm_device
*dev
,
7257 struct drm_crtc
*crtc
,
7258 struct drm_framebuffer
*fb
,
7259 struct drm_i915_gem_object
*obj
)
7261 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7262 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7263 unsigned long offset
;
7267 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7271 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7272 offset
= crtc
->y
* fb
->pitches
[0] + crtc
->x
* fb
->bits_per_pixel
/8;
7274 ret
= BEGIN_LP_RING(6);
7278 if (intel_crtc
->plane
)
7279 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
7281 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
7282 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
7284 OUT_RING(MI_DISPLAY_FLIP_I915
|
7285 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7286 OUT_RING(fb
->pitches
[0]);
7287 OUT_RING(obj
->gtt_offset
+ offset
);
7295 static int intel_gen4_queue_flip(struct drm_device
*dev
,
7296 struct drm_crtc
*crtc
,
7297 struct drm_framebuffer
*fb
,
7298 struct drm_i915_gem_object
*obj
)
7300 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7301 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7302 uint32_t pf
, pipesrc
;
7305 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7309 ret
= BEGIN_LP_RING(4);
7313 /* i965+ uses the linear or tiled offsets from the
7314 * Display Registers (which do not change across a page-flip)
7315 * so we need only reprogram the base address.
7317 OUT_RING(MI_DISPLAY_FLIP
|
7318 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7319 OUT_RING(fb
->pitches
[0]);
7320 OUT_RING(obj
->gtt_offset
| obj
->tiling_mode
);
7322 /* XXX Enabling the panel-fitter across page-flip is so far
7323 * untested on non-native modes, so ignore it for now.
7324 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7327 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
7328 OUT_RING(pf
| pipesrc
);
7334 static int intel_gen6_queue_flip(struct drm_device
*dev
,
7335 struct drm_crtc
*crtc
,
7336 struct drm_framebuffer
*fb
,
7337 struct drm_i915_gem_object
*obj
)
7339 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7340 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7341 uint32_t pf
, pipesrc
;
7344 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
7348 ret
= BEGIN_LP_RING(4);
7352 OUT_RING(MI_DISPLAY_FLIP
|
7353 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
7354 OUT_RING(fb
->pitches
[0] | obj
->tiling_mode
);
7355 OUT_RING(obj
->gtt_offset
);
7357 pf
= I915_READ(PF_CTL(intel_crtc
->pipe
)) & PF_ENABLE
;
7358 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
7359 OUT_RING(pf
| pipesrc
);
7366 * On gen7 we currently use the blit ring because (in early silicon at least)
7367 * the render ring doesn't give us interrpts for page flip completion, which
7368 * means clients will hang after the first flip is queued. Fortunately the
7369 * blit ring generates interrupts properly, so use it instead.
7371 static int intel_gen7_queue_flip(struct drm_device
*dev
,
7372 struct drm_crtc
*crtc
,
7373 struct drm_framebuffer
*fb
,
7374 struct drm_i915_gem_object
*obj
)
7376 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7377 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7378 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[BCS
];
7381 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, ring
);
7385 ret
= intel_ring_begin(ring
, 4);
7389 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| (intel_crtc
->plane
<< 19));
7390 intel_ring_emit(ring
, (fb
->pitches
[0] | obj
->tiling_mode
));
7391 intel_ring_emit(ring
, (obj
->gtt_offset
));
7392 intel_ring_emit(ring
, (MI_NOOP
));
7393 intel_ring_advance(ring
);
7398 static int intel_default_queue_flip(struct drm_device
*dev
,
7399 struct drm_crtc
*crtc
,
7400 struct drm_framebuffer
*fb
,
7401 struct drm_i915_gem_object
*obj
)
7406 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
7407 struct drm_framebuffer
*fb
,
7408 struct drm_pending_vblank_event
*event
)
7410 struct drm_device
*dev
= crtc
->dev
;
7411 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7412 struct intel_framebuffer
*intel_fb
;
7413 struct drm_i915_gem_object
*obj
;
7414 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7415 struct intel_unpin_work
*work
;
7416 unsigned long flags
;
7419 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
7423 work
->event
= event
;
7424 work
->dev
= crtc
->dev
;
7425 intel_fb
= to_intel_framebuffer(crtc
->fb
);
7426 work
->old_fb_obj
= intel_fb
->obj
;
7427 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
7429 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
7433 /* We borrow the event spin lock for protecting unpin_work */
7434 spin_lock_irqsave(&dev
->event_lock
, flags
);
7435 if (intel_crtc
->unpin_work
) {
7436 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7438 drm_vblank_put(dev
, intel_crtc
->pipe
);
7440 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7443 intel_crtc
->unpin_work
= work
;
7444 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7446 intel_fb
= to_intel_framebuffer(fb
);
7447 obj
= intel_fb
->obj
;
7449 mutex_lock(&dev
->struct_mutex
);
7451 /* Reference the objects for the scheduled work. */
7452 drm_gem_object_reference(&work
->old_fb_obj
->base
);
7453 drm_gem_object_reference(&obj
->base
);
7457 work
->pending_flip_obj
= obj
;
7459 work
->enable_stall_check
= true;
7461 /* Block clients from rendering to the new back buffer until
7462 * the flip occurs and the object is no longer visible.
7464 atomic_add(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
7466 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
);
7468 goto cleanup_pending
;
7470 intel_disable_fbc(dev
);
7471 mutex_unlock(&dev
->struct_mutex
);
7473 trace_i915_flip_request(intel_crtc
->plane
, obj
);
7478 atomic_sub(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
7479 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
7480 drm_gem_object_unreference(&obj
->base
);
7481 mutex_unlock(&dev
->struct_mutex
);
7483 spin_lock_irqsave(&dev
->event_lock
, flags
);
7484 intel_crtc
->unpin_work
= NULL
;
7485 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
7487 drm_vblank_put(dev
, intel_crtc
->pipe
);
7494 static void intel_sanitize_modesetting(struct drm_device
*dev
,
7495 int pipe
, int plane
)
7497 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7500 /* Clear any frame start delays used for debugging left by the BIOS */
7501 for_each_pipe(pipe
) {
7502 reg
= PIPECONF(pipe
);
7503 I915_WRITE(reg
, I915_READ(reg
) & ~PIPECONF_FRAME_START_DELAY_MASK
);
7506 if (HAS_PCH_SPLIT(dev
))
7509 /* Who knows what state these registers were left in by the BIOS or
7512 * If we leave the registers in a conflicting state (e.g. with the
7513 * display plane reading from the other pipe than the one we intend
7514 * to use) then when we attempt to teardown the active mode, we will
7515 * not disable the pipes and planes in the correct order -- leaving
7516 * a plane reading from a disabled pipe and possibly leading to
7517 * undefined behaviour.
7520 reg
= DSPCNTR(plane
);
7521 val
= I915_READ(reg
);
7523 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
7525 if (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == pipe
)
7528 /* This display plane is active and attached to the other CPU pipe. */
7531 /* Disable the plane and wait for it to stop reading from the pipe. */
7532 intel_disable_plane(dev_priv
, plane
, pipe
);
7533 intel_disable_pipe(dev_priv
, pipe
);
7536 static void intel_crtc_reset(struct drm_crtc
*crtc
)
7538 struct drm_device
*dev
= crtc
->dev
;
7539 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7541 /* Reset flags back to the 'unknown' status so that they
7542 * will be correctly set on the initial modeset.
7544 intel_crtc
->dpms_mode
= -1;
7546 /* We need to fix up any BIOS configuration that conflicts with
7549 intel_sanitize_modesetting(dev
, intel_crtc
->pipe
, intel_crtc
->plane
);
7552 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
7553 .dpms
= intel_crtc_dpms
,
7554 .mode_fixup
= intel_crtc_mode_fixup
,
7555 .mode_set
= intel_crtc_mode_set
,
7556 .mode_set_base
= intel_pipe_set_base
,
7557 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
7558 .load_lut
= intel_crtc_load_lut
,
7559 .disable
= intel_crtc_disable
,
7562 static const struct drm_crtc_funcs intel_crtc_funcs
= {
7563 .reset
= intel_crtc_reset
,
7564 .cursor_set
= intel_crtc_cursor_set
,
7565 .cursor_move
= intel_crtc_cursor_move
,
7566 .gamma_set
= intel_crtc_gamma_set
,
7567 .set_config
= drm_crtc_helper_set_config
,
7568 .destroy
= intel_crtc_destroy
,
7569 .page_flip
= intel_crtc_page_flip
,
7572 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
7574 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7575 struct intel_crtc
*intel_crtc
;
7578 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
7579 if (intel_crtc
== NULL
)
7582 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
7584 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
7585 for (i
= 0; i
< 256; i
++) {
7586 intel_crtc
->lut_r
[i
] = i
;
7587 intel_crtc
->lut_g
[i
] = i
;
7588 intel_crtc
->lut_b
[i
] = i
;
7591 /* Swap pipes & planes for FBC on pre-965 */
7592 intel_crtc
->pipe
= pipe
;
7593 intel_crtc
->plane
= pipe
;
7594 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
7595 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7596 intel_crtc
->plane
= !pipe
;
7599 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
7600 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
7601 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
7602 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
7604 intel_crtc_reset(&intel_crtc
->base
);
7605 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
7606 intel_crtc
->bpp
= 24; /* default for pre-Ironlake */
7608 if (HAS_PCH_SPLIT(dev
)) {
7609 if (pipe
== 2 && IS_IVYBRIDGE(dev
))
7610 intel_crtc
->no_pll
= true;
7611 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
7612 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
7614 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
7615 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
7618 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
7620 intel_crtc
->busy
= false;
7622 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
7623 (unsigned long)intel_crtc
);
7626 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
7627 struct drm_file
*file
)
7629 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7630 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
7631 struct drm_mode_object
*drmmode_obj
;
7632 struct intel_crtc
*crtc
;
7635 DRM_ERROR("called with no initialization\n");
7639 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
7640 DRM_MODE_OBJECT_CRTC
);
7643 DRM_ERROR("no such CRTC id\n");
7647 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
7648 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
7653 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
7655 struct intel_encoder
*encoder
;
7659 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7660 if (type_mask
& encoder
->clone_mask
)
7661 index_mask
|= (1 << entry
);
7668 static bool has_edp_a(struct drm_device
*dev
)
7670 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7672 if (!IS_MOBILE(dev
))
7675 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
7679 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES
) & ILK_eDP_A_DISABLE
))
7685 static void intel_setup_outputs(struct drm_device
*dev
)
7687 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7688 struct intel_encoder
*encoder
;
7689 bool dpd_is_edp
= false;
7690 bool has_lvds
= false;
7692 if (IS_MOBILE(dev
) && !IS_I830(dev
))
7693 has_lvds
= intel_lvds_init(dev
);
7694 if (!has_lvds
&& !HAS_PCH_SPLIT(dev
)) {
7695 /* disable the panel fitter on everything but LVDS */
7696 I915_WRITE(PFIT_CONTROL
, 0);
7699 if (HAS_PCH_SPLIT(dev
)) {
7700 dpd_is_edp
= intel_dpd_is_edp(dev
);
7703 intel_dp_init(dev
, DP_A
);
7705 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7706 intel_dp_init(dev
, PCH_DP_D
);
7709 intel_crt_init(dev
);
7711 if (HAS_PCH_SPLIT(dev
)) {
7714 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
7715 /* PCH SDVOB multiplex with HDMIB */
7716 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
7718 intel_hdmi_init(dev
, HDMIB
);
7719 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
7720 intel_dp_init(dev
, PCH_DP_B
);
7723 if (I915_READ(HDMIC
) & PORT_DETECTED
)
7724 intel_hdmi_init(dev
, HDMIC
);
7726 if (I915_READ(HDMID
) & PORT_DETECTED
)
7727 intel_hdmi_init(dev
, HDMID
);
7729 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
7730 intel_dp_init(dev
, PCH_DP_C
);
7732 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7733 intel_dp_init(dev
, PCH_DP_D
);
7735 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
7738 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7739 DRM_DEBUG_KMS("probing SDVOB\n");
7740 found
= intel_sdvo_init(dev
, SDVOB
);
7741 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
7742 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7743 intel_hdmi_init(dev
, SDVOB
);
7746 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
7747 DRM_DEBUG_KMS("probing DP_B\n");
7748 intel_dp_init(dev
, DP_B
);
7752 /* Before G4X SDVOC doesn't have its own detect register */
7754 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7755 DRM_DEBUG_KMS("probing SDVOC\n");
7756 found
= intel_sdvo_init(dev
, SDVOC
);
7759 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
7761 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
7762 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7763 intel_hdmi_init(dev
, SDVOC
);
7765 if (SUPPORTS_INTEGRATED_DP(dev
)) {
7766 DRM_DEBUG_KMS("probing DP_C\n");
7767 intel_dp_init(dev
, DP_C
);
7771 if (SUPPORTS_INTEGRATED_DP(dev
) &&
7772 (I915_READ(DP_D
) & DP_DETECTED
)) {
7773 DRM_DEBUG_KMS("probing DP_D\n");
7774 intel_dp_init(dev
, DP_D
);
7776 } else if (IS_GEN2(dev
))
7777 intel_dvo_init(dev
);
7779 if (SUPPORTS_TV(dev
))
7782 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7783 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
7784 encoder
->base
.possible_clones
=
7785 intel_encoder_clones(dev
, encoder
->clone_mask
);
7788 /* disable all the possible outputs/crtcs before entering KMS mode */
7789 drm_helper_disable_unused_functions(dev
);
7791 if (HAS_PCH_SPLIT(dev
))
7792 ironlake_init_pch_refclk(dev
);
7795 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
7797 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7799 drm_framebuffer_cleanup(fb
);
7800 drm_gem_object_unreference_unlocked(&intel_fb
->obj
->base
);
7805 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
7806 struct drm_file
*file
,
7807 unsigned int *handle
)
7809 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7810 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
7812 return drm_gem_handle_create(file
, &obj
->base
, handle
);
7815 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
7816 .destroy
= intel_user_framebuffer_destroy
,
7817 .create_handle
= intel_user_framebuffer_create_handle
,
7820 int intel_framebuffer_init(struct drm_device
*dev
,
7821 struct intel_framebuffer
*intel_fb
,
7822 struct drm_mode_fb_cmd2
*mode_cmd
,
7823 struct drm_i915_gem_object
*obj
)
7827 if (obj
->tiling_mode
== I915_TILING_Y
)
7830 if (mode_cmd
->pitches
[0] & 63)
7833 switch (mode_cmd
->pixel_format
) {
7834 case DRM_FORMAT_RGB332
:
7835 case DRM_FORMAT_RGB565
:
7836 case DRM_FORMAT_XRGB8888
:
7837 case DRM_FORMAT_XBGR8888
:
7838 case DRM_FORMAT_ARGB8888
:
7839 case DRM_FORMAT_XRGB2101010
:
7840 case DRM_FORMAT_ARGB2101010
:
7841 /* RGB formats are common across chipsets */
7843 case DRM_FORMAT_YUYV
:
7844 case DRM_FORMAT_UYVY
:
7845 case DRM_FORMAT_YVYU
:
7846 case DRM_FORMAT_VYUY
:
7849 DRM_ERROR("unsupported pixel format\n");
7853 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
7855 DRM_ERROR("framebuffer init failed %d\n", ret
);
7859 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
7860 intel_fb
->obj
= obj
;
7864 static struct drm_framebuffer
*
7865 intel_user_framebuffer_create(struct drm_device
*dev
,
7866 struct drm_file
*filp
,
7867 struct drm_mode_fb_cmd2
*mode_cmd
)
7869 struct drm_i915_gem_object
*obj
;
7871 obj
= to_intel_bo(drm_gem_object_lookup(dev
, filp
,
7872 mode_cmd
->handles
[0]));
7873 if (&obj
->base
== NULL
)
7874 return ERR_PTR(-ENOENT
);
7876 return intel_framebuffer_create(dev
, mode_cmd
, obj
);
7879 static const struct drm_mode_config_funcs intel_mode_funcs
= {
7880 .fb_create
= intel_user_framebuffer_create
,
7881 .output_poll_changed
= intel_fb_output_poll_changed
,
7884 static struct drm_i915_gem_object
*
7885 intel_alloc_context_page(struct drm_device
*dev
)
7887 struct drm_i915_gem_object
*ctx
;
7890 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
7892 ctx
= i915_gem_alloc_object(dev
, 4096);
7894 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7898 ret
= i915_gem_object_pin(ctx
, 4096, true);
7900 DRM_ERROR("failed to pin power context: %d\n", ret
);
7904 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
7906 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
7913 i915_gem_object_unpin(ctx
);
7915 drm_gem_object_unreference(&ctx
->base
);
7916 mutex_unlock(&dev
->struct_mutex
);
7920 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
7922 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7925 rgvswctl
= I915_READ16(MEMSWCTL
);
7926 if (rgvswctl
& MEMCTL_CMD_STS
) {
7927 DRM_DEBUG("gpu busy, RCS change rejected\n");
7928 return false; /* still busy with another command */
7931 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
7932 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
7933 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7934 POSTING_READ16(MEMSWCTL
);
7936 rgvswctl
|= MEMCTL_CMD_STS
;
7937 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7942 void ironlake_enable_drps(struct drm_device
*dev
)
7944 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7945 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
7946 u8 fmax
, fmin
, fstart
, vstart
;
7948 /* Enable temp reporting */
7949 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
7950 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
7952 /* 100ms RC evaluation intervals */
7953 I915_WRITE(RCUPEI
, 100000);
7954 I915_WRITE(RCDNEI
, 100000);
7956 /* Set max/min thresholds to 90ms and 80ms respectively */
7957 I915_WRITE(RCBMAXAVG
, 90000);
7958 I915_WRITE(RCBMINAVG
, 80000);
7960 I915_WRITE(MEMIHYST
, 1);
7962 /* Set up min, max, and cur for interrupt handling */
7963 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
7964 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
7965 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
7966 MEMMODE_FSTART_SHIFT
;
7968 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
7971 dev_priv
->fmax
= fmax
; /* IPS callback will increase this */
7972 dev_priv
->fstart
= fstart
;
7974 dev_priv
->max_delay
= fstart
;
7975 dev_priv
->min_delay
= fmin
;
7976 dev_priv
->cur_delay
= fstart
;
7978 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7979 fmax
, fmin
, fstart
);
7981 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
7984 * Interrupts will be enabled in ironlake_irq_postinstall
7987 I915_WRITE(VIDSTART
, vstart
);
7988 POSTING_READ(VIDSTART
);
7990 rgvmodectl
|= MEMMODE_SWMODE_EN
;
7991 I915_WRITE(MEMMODECTL
, rgvmodectl
);
7993 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
7994 DRM_ERROR("stuck trying to change perf mode\n");
7997 ironlake_set_drps(dev
, fstart
);
7999 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
8001 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
8002 dev_priv
->last_count2
= I915_READ(0x112f4);
8003 getrawmonotonic(&dev_priv
->last_time2
);
8006 void ironlake_disable_drps(struct drm_device
*dev
)
8008 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8009 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
8011 /* Ack interrupts, disable EFC interrupt */
8012 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
8013 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
8014 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
8015 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
8016 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
8018 /* Go back to the starting frequency */
8019 ironlake_set_drps(dev
, dev_priv
->fstart
);
8021 rgvswctl
|= MEMCTL_CMD_STS
;
8022 I915_WRITE(MEMSWCTL
, rgvswctl
);
8027 void gen6_set_rps(struct drm_device
*dev
, u8 val
)
8029 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8032 swreq
= (val
& 0x3ff) << 25;
8033 I915_WRITE(GEN6_RPNSWREQ
, swreq
);
8036 void gen6_disable_rps(struct drm_device
*dev
)
8038 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8040 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
8041 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
8042 I915_WRITE(GEN6_PMIER
, 0);
8043 /* Complete PM interrupt masking here doesn't race with the rps work
8044 * item again unmasking PM interrupts because that is using a different
8045 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8046 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8048 spin_lock_irq(&dev_priv
->rps_lock
);
8049 dev_priv
->pm_iir
= 0;
8050 spin_unlock_irq(&dev_priv
->rps_lock
);
8052 I915_WRITE(GEN6_PMIIR
, I915_READ(GEN6_PMIIR
));
8055 static unsigned long intel_pxfreq(u32 vidfreq
)
8058 int div
= (vidfreq
& 0x3f0000) >> 16;
8059 int post
= (vidfreq
& 0x3000) >> 12;
8060 int pre
= (vidfreq
& 0x7);
8065 freq
= ((div
* 133333) / ((1<<post
) * pre
));
8070 void intel_init_emon(struct drm_device
*dev
)
8072 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8077 /* Disable to program */
8081 /* Program energy weights for various events */
8082 I915_WRITE(SDEW
, 0x15040d00);
8083 I915_WRITE(CSIEW0
, 0x007f0000);
8084 I915_WRITE(CSIEW1
, 0x1e220004);
8085 I915_WRITE(CSIEW2
, 0x04000004);
8087 for (i
= 0; i
< 5; i
++)
8088 I915_WRITE(PEW
+ (i
* 4), 0);
8089 for (i
= 0; i
< 3; i
++)
8090 I915_WRITE(DEW
+ (i
* 4), 0);
8092 /* Program P-state weights to account for frequency power adjustment */
8093 for (i
= 0; i
< 16; i
++) {
8094 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
8095 unsigned long freq
= intel_pxfreq(pxvidfreq
);
8096 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
8101 val
*= (freq
/ 1000);
8103 val
/= (127*127*900);
8105 DRM_ERROR("bad pxval: %ld\n", val
);
8108 /* Render standby states get 0 weight */
8112 for (i
= 0; i
< 4; i
++) {
8113 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
8114 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
8115 I915_WRITE(PXW
+ (i
* 4), val
);
8118 /* Adjust magic regs to magic values (more experimental results) */
8119 I915_WRITE(OGW0
, 0);
8120 I915_WRITE(OGW1
, 0);
8121 I915_WRITE(EG0
, 0x00007f00);
8122 I915_WRITE(EG1
, 0x0000000e);
8123 I915_WRITE(EG2
, 0x000e0000);
8124 I915_WRITE(EG3
, 0x68000300);
8125 I915_WRITE(EG4
, 0x42000000);
8126 I915_WRITE(EG5
, 0x00140031);
8130 for (i
= 0; i
< 8; i
++)
8131 I915_WRITE(PXWL
+ (i
* 4), 0);
8133 /* Enable PMON + select events */
8134 I915_WRITE(ECR
, 0x80000019);
8136 lcfuse
= I915_READ(LCFUSE02
);
8138 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
8141 static bool intel_enable_rc6(struct drm_device
*dev
)
8144 * Respect the kernel parameter if it is set
8146 if (i915_enable_rc6
>= 0)
8147 return i915_enable_rc6
;
8150 * Disable RC6 on Ironlake
8152 if (INTEL_INFO(dev
)->gen
== 5)
8156 * Disable rc6 on Sandybridge
8158 if (INTEL_INFO(dev
)->gen
== 6) {
8159 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8162 DRM_DEBUG_DRIVER("RC6 enabled\n");
8166 void gen6_enable_rps(struct drm_i915_private
*dev_priv
)
8168 u32 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
8169 u32 gt_perf_status
= I915_READ(GEN6_GT_PERF_STATUS
);
8170 u32 pcu_mbox
, rc6_mask
= 0;
8171 int cur_freq
, min_freq
, max_freq
;
8174 /* Here begins a magic sequence of register writes to enable
8175 * auto-downclocking.
8177 * Perhaps there might be some value in exposing these to
8180 I915_WRITE(GEN6_RC_STATE
, 0);
8181 mutex_lock(&dev_priv
->dev
->struct_mutex
);
8182 gen6_gt_force_wake_get(dev_priv
);
8184 /* disable the counters and set deterministic thresholds */
8185 I915_WRITE(GEN6_RC_CONTROL
, 0);
8187 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
8188 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
8189 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
8190 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
8191 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
8193 for (i
= 0; i
< I915_NUM_RINGS
; i
++)
8194 I915_WRITE(RING_MAX_IDLE(dev_priv
->ring
[i
].mmio_base
), 10);
8196 I915_WRITE(GEN6_RC_SLEEP
, 0);
8197 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
8198 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
8199 I915_WRITE(GEN6_RC6p_THRESHOLD
, 100000);
8200 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
8202 if (intel_enable_rc6(dev_priv
->dev
))
8203 rc6_mask
= GEN6_RC_CTL_RC6_ENABLE
|
8204 ((IS_GEN7(dev_priv
->dev
)) ? GEN6_RC_CTL_RC6p_ENABLE
: 0);
8206 I915_WRITE(GEN6_RC_CONTROL
,
8208 GEN6_RC_CTL_EI_MODE(1) |
8209 GEN6_RC_CTL_HW_ENABLE
);
8211 I915_WRITE(GEN6_RPNSWREQ
,
8212 GEN6_FREQUENCY(10) |
8214 GEN6_AGGRESSIVE_TURBO
);
8215 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
8216 GEN6_FREQUENCY(12));
8218 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
8219 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
8222 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 10000);
8223 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 1000000);
8224 I915_WRITE(GEN6_RP_UP_EI
, 100000);
8225 I915_WRITE(GEN6_RP_DOWN_EI
, 5000000);
8226 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
8227 I915_WRITE(GEN6_RP_CONTROL
,
8228 GEN6_RP_MEDIA_TURBO
|
8229 GEN6_RP_MEDIA_HW_MODE
|
8230 GEN6_RP_MEDIA_IS_GFX
|
8232 GEN6_RP_UP_BUSY_AVG
|
8233 GEN6_RP_DOWN_IDLE_CONT
);
8235 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
8237 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8239 I915_WRITE(GEN6_PCODE_DATA
, 0);
8240 I915_WRITE(GEN6_PCODE_MAILBOX
,
8242 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
8243 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
8245 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8247 min_freq
= (rp_state_cap
& 0xff0000) >> 16;
8248 max_freq
= rp_state_cap
& 0xff;
8249 cur_freq
= (gt_perf_status
& 0xff00) >> 8;
8251 /* Check for overclock support */
8252 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
8254 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8255 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_READ_OC_PARAMS
);
8256 pcu_mbox
= I915_READ(GEN6_PCODE_DATA
);
8257 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
8259 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8260 if (pcu_mbox
& (1<<31)) { /* OC supported */
8261 max_freq
= pcu_mbox
& 0xff;
8262 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox
* 50);
8265 /* In units of 100MHz */
8266 dev_priv
->max_delay
= max_freq
;
8267 dev_priv
->min_delay
= min_freq
;
8268 dev_priv
->cur_delay
= cur_freq
;
8270 /* requires MSI enabled */
8271 I915_WRITE(GEN6_PMIER
,
8272 GEN6_PM_MBOX_EVENT
|
8273 GEN6_PM_THERMAL_EVENT
|
8274 GEN6_PM_RP_DOWN_TIMEOUT
|
8275 GEN6_PM_RP_UP_THRESHOLD
|
8276 GEN6_PM_RP_DOWN_THRESHOLD
|
8277 GEN6_PM_RP_UP_EI_EXPIRED
|
8278 GEN6_PM_RP_DOWN_EI_EXPIRED
);
8279 spin_lock_irq(&dev_priv
->rps_lock
);
8280 WARN_ON(dev_priv
->pm_iir
!= 0);
8281 I915_WRITE(GEN6_PMIMR
, 0);
8282 spin_unlock_irq(&dev_priv
->rps_lock
);
8283 /* enable all PM interrupts */
8284 I915_WRITE(GEN6_PMINTRMSK
, 0);
8286 gen6_gt_force_wake_put(dev_priv
);
8287 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
8290 void gen6_update_ring_freq(struct drm_i915_private
*dev_priv
)
8293 int gpu_freq
, ia_freq
, max_ia_freq
;
8294 int scaling_factor
= 180;
8296 max_ia_freq
= cpufreq_quick_get_max(0);
8298 * Default to measured freq if none found, PCU will ensure we don't go
8302 max_ia_freq
= tsc_khz
;
8304 /* Convert from kHz to MHz */
8305 max_ia_freq
/= 1000;
8307 mutex_lock(&dev_priv
->dev
->struct_mutex
);
8310 * For each potential GPU frequency, load a ring frequency we'd like
8311 * to use for memory access. We do this by specifying the IA frequency
8312 * the PCU should use as a reference to determine the ring frequency.
8314 for (gpu_freq
= dev_priv
->max_delay
; gpu_freq
>= dev_priv
->min_delay
;
8316 int diff
= dev_priv
->max_delay
- gpu_freq
;
8319 * For GPU frequencies less than 750MHz, just use the lowest
8322 if (gpu_freq
< min_freq
)
8325 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
8326 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
8328 I915_WRITE(GEN6_PCODE_DATA
,
8329 (ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
) |
8331 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
|
8332 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
8333 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) &
8334 GEN6_PCODE_READY
) == 0, 10)) {
8335 DRM_ERROR("pcode write of freq table timed out\n");
8340 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
8343 static void ironlake_init_clock_gating(struct drm_device
*dev
)
8345 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8346 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8348 /* Required for FBC */
8349 dspclk_gate
|= DPFCUNIT_CLOCK_GATE_DISABLE
|
8350 DPFCRUNIT_CLOCK_GATE_DISABLE
|
8351 DPFDUNIT_CLOCK_GATE_DISABLE
;
8352 /* Required for CxSR */
8353 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
8355 I915_WRITE(PCH_3DCGDIS0
,
8356 MARIUNIT_CLOCK_GATE_DISABLE
|
8357 SVSMUNIT_CLOCK_GATE_DISABLE
);
8358 I915_WRITE(PCH_3DCGDIS1
,
8359 VFMUNIT_CLOCK_GATE_DISABLE
);
8361 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8364 * According to the spec the following bits should be set in
8365 * order to enable memory self-refresh
8366 * The bit 22/21 of 0x42004
8367 * The bit 5 of 0x42020
8368 * The bit 15 of 0x45000
8370 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8371 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
8372 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
8373 I915_WRITE(ILK_DSPCLK_GATE
,
8374 (I915_READ(ILK_DSPCLK_GATE
) |
8375 ILK_DPARB_CLK_GATE
));
8376 I915_WRITE(DISP_ARB_CTL
,
8377 (I915_READ(DISP_ARB_CTL
) |
8379 I915_WRITE(WM3_LP_ILK
, 0);
8380 I915_WRITE(WM2_LP_ILK
, 0);
8381 I915_WRITE(WM1_LP_ILK
, 0);
8384 * Based on the document from hardware guys the following bits
8385 * should be set unconditionally in order to enable FBC.
8386 * The bit 22 of 0x42000
8387 * The bit 22 of 0x42004
8388 * The bit 7,8,9 of 0x42020.
8390 if (IS_IRONLAKE_M(dev
)) {
8391 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
8392 I915_READ(ILK_DISPLAY_CHICKEN1
) |
8394 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8395 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8397 I915_WRITE(ILK_DSPCLK_GATE
,
8398 I915_READ(ILK_DSPCLK_GATE
) |
8404 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8405 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8406 ILK_ELPIN_409_SELECT
);
8407 I915_WRITE(_3D_CHICKEN2
,
8408 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
8409 _3D_CHICKEN2_WM_READ_PIPELINED
);
8412 static void gen6_init_clock_gating(struct drm_device
*dev
)
8414 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8416 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8418 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8420 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8421 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8422 ILK_ELPIN_409_SELECT
);
8424 I915_WRITE(WM3_LP_ILK
, 0);
8425 I915_WRITE(WM2_LP_ILK
, 0);
8426 I915_WRITE(WM1_LP_ILK
, 0);
8428 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8429 * gating disable must be set. Failure to set it results in
8430 * flickering pixels due to Z write ordering failures after
8431 * some amount of runtime in the Mesa "fire" demo, and Unigine
8432 * Sanctuary and Tropics, and apparently anything else with
8433 * alpha test or pixel discard.
8435 * According to the spec, bit 11 (RCCUNIT) must also be set,
8436 * but we didn't debug actual testcases to find it out.
8438 I915_WRITE(GEN6_UCGCTL2
,
8439 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
8440 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
8443 * According to the spec the following bits should be
8444 * set in order to enable memory self-refresh and fbc:
8445 * The bit21 and bit22 of 0x42000
8446 * The bit21 and bit22 of 0x42004
8447 * The bit5 and bit7 of 0x42020
8448 * The bit14 of 0x70180
8449 * The bit14 of 0x71180
8451 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
8452 I915_READ(ILK_DISPLAY_CHICKEN1
) |
8453 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
8454 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
8455 I915_READ(ILK_DISPLAY_CHICKEN2
) |
8456 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
8457 I915_WRITE(ILK_DSPCLK_GATE
,
8458 I915_READ(ILK_DSPCLK_GATE
) |
8459 ILK_DPARB_CLK_GATE
|
8462 for_each_pipe(pipe
) {
8463 I915_WRITE(DSPCNTR(pipe
),
8464 I915_READ(DSPCNTR(pipe
)) |
8465 DISPPLANE_TRICKLE_FEED_DISABLE
);
8466 intel_flush_display_plane(dev_priv
, pipe
);
8470 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
8472 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8474 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
8476 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
8478 I915_WRITE(WM3_LP_ILK
, 0);
8479 I915_WRITE(WM2_LP_ILK
, 0);
8480 I915_WRITE(WM1_LP_ILK
, 0);
8482 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8483 * This implements the WaDisableRCZUnitClockGating workaround.
8485 I915_WRITE(GEN6_UCGCTL2
, GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
8487 I915_WRITE(ILK_DSPCLK_GATE
, IVB_VRHUNIT_CLK_GATE
);
8489 I915_WRITE(IVB_CHICKEN3
,
8490 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
8491 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
8493 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8494 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
8495 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
8497 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8498 I915_WRITE(GEN7_L3CNTLREG1
,
8499 GEN7_WA_FOR_GEN7_L3_CONTROL
);
8500 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
,
8501 GEN7_WA_L3_CHICKEN_MODE
);
8503 /* This is required by WaCatErrorRejectionIssue */
8504 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
8505 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
8506 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
8508 for_each_pipe(pipe
) {
8509 I915_WRITE(DSPCNTR(pipe
),
8510 I915_READ(DSPCNTR(pipe
)) |
8511 DISPPLANE_TRICKLE_FEED_DISABLE
);
8512 intel_flush_display_plane(dev_priv
, pipe
);
8516 static void g4x_init_clock_gating(struct drm_device
*dev
)
8518 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8519 uint32_t dspclk_gate
;
8521 I915_WRITE(RENCLK_GATE_D1
, 0);
8522 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
8523 GS_UNIT_CLOCK_GATE_DISABLE
|
8524 CL_UNIT_CLOCK_GATE_DISABLE
);
8525 I915_WRITE(RAMCLK_GATE_D
, 0);
8526 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
8527 OVRUNIT_CLOCK_GATE_DISABLE
|
8528 OVCUNIT_CLOCK_GATE_DISABLE
;
8530 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
8531 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
8534 static void crestline_init_clock_gating(struct drm_device
*dev
)
8536 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8538 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
8539 I915_WRITE(RENCLK_GATE_D2
, 0);
8540 I915_WRITE(DSPCLK_GATE_D
, 0);
8541 I915_WRITE(RAMCLK_GATE_D
, 0);
8542 I915_WRITE16(DEUC
, 0);
8545 static void broadwater_init_clock_gating(struct drm_device
*dev
)
8547 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8549 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
8550 I965_RCC_CLOCK_GATE_DISABLE
|
8551 I965_RCPB_CLOCK_GATE_DISABLE
|
8552 I965_ISC_CLOCK_GATE_DISABLE
|
8553 I965_FBC_CLOCK_GATE_DISABLE
);
8554 I915_WRITE(RENCLK_GATE_D2
, 0);
8557 static void gen3_init_clock_gating(struct drm_device
*dev
)
8559 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8560 u32 dstate
= I915_READ(D_STATE
);
8562 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
8563 DSTATE_DOT_CLOCK_GATING
;
8564 I915_WRITE(D_STATE
, dstate
);
8567 static void i85x_init_clock_gating(struct drm_device
*dev
)
8569 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8571 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
8574 static void i830_init_clock_gating(struct drm_device
*dev
)
8576 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8578 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
8581 static void ibx_init_clock_gating(struct drm_device
*dev
)
8583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8586 * On Ibex Peak and Cougar Point, we need to disable clock
8587 * gating for the panel power sequencer or it will fail to
8588 * start up when no ports are active.
8590 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
8593 static void cpt_init_clock_gating(struct drm_device
*dev
)
8595 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8599 * On Ibex Peak and Cougar Point, we need to disable clock
8600 * gating for the panel power sequencer or it will fail to
8601 * start up when no ports are active.
8603 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
8604 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
8605 DPLS_EDP_PPS_FIX_DIS
);
8606 /* Without this, mode sets may fail silently on FDI */
8608 I915_WRITE(TRANS_CHICKEN2(pipe
), TRANS_AUTOTRAIN_GEN_STALL_DIS
);
8611 static void ironlake_teardown_rc6(struct drm_device
*dev
)
8613 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8615 if (dev_priv
->renderctx
) {
8616 i915_gem_object_unpin(dev_priv
->renderctx
);
8617 drm_gem_object_unreference(&dev_priv
->renderctx
->base
);
8618 dev_priv
->renderctx
= NULL
;
8621 if (dev_priv
->pwrctx
) {
8622 i915_gem_object_unpin(dev_priv
->pwrctx
);
8623 drm_gem_object_unreference(&dev_priv
->pwrctx
->base
);
8624 dev_priv
->pwrctx
= NULL
;
8628 static void ironlake_disable_rc6(struct drm_device
*dev
)
8630 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8632 if (I915_READ(PWRCTXA
)) {
8633 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8634 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) | RCX_SW_EXIT
);
8635 wait_for(((I915_READ(RSTDBYCTL
) & RSX_STATUS_MASK
) == RSX_STATUS_ON
),
8638 I915_WRITE(PWRCTXA
, 0);
8639 POSTING_READ(PWRCTXA
);
8641 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8642 POSTING_READ(RSTDBYCTL
);
8645 ironlake_teardown_rc6(dev
);
8648 static int ironlake_setup_rc6(struct drm_device
*dev
)
8650 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8652 if (dev_priv
->renderctx
== NULL
)
8653 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
8654 if (!dev_priv
->renderctx
)
8657 if (dev_priv
->pwrctx
== NULL
)
8658 dev_priv
->pwrctx
= intel_alloc_context_page(dev
);
8659 if (!dev_priv
->pwrctx
) {
8660 ironlake_teardown_rc6(dev
);
8667 void ironlake_enable_rc6(struct drm_device
*dev
)
8669 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8672 /* rc6 disabled by default due to repeated reports of hanging during
8675 if (!intel_enable_rc6(dev
))
8678 mutex_lock(&dev
->struct_mutex
);
8679 ret
= ironlake_setup_rc6(dev
);
8681 mutex_unlock(&dev
->struct_mutex
);
8686 * GPU can automatically power down the render unit if given a page
8689 ret
= BEGIN_LP_RING(6);
8691 ironlake_teardown_rc6(dev
);
8692 mutex_unlock(&dev
->struct_mutex
);
8696 OUT_RING(MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
);
8697 OUT_RING(MI_SET_CONTEXT
);
8698 OUT_RING(dev_priv
->renderctx
->gtt_offset
|
8700 MI_SAVE_EXT_STATE_EN
|
8701 MI_RESTORE_EXT_STATE_EN
|
8702 MI_RESTORE_INHIBIT
);
8703 OUT_RING(MI_SUSPEND_FLUSH
);
8709 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8710 * does an implicit flush, combined with MI_FLUSH above, it should be
8711 * safe to assume that renderctx is valid
8713 ret
= intel_wait_ring_idle(LP_RING(dev_priv
));
8715 DRM_ERROR("failed to enable ironlake power power savings\n");
8716 ironlake_teardown_rc6(dev
);
8717 mutex_unlock(&dev
->struct_mutex
);
8721 I915_WRITE(PWRCTXA
, dev_priv
->pwrctx
->gtt_offset
| PWRCTX_EN
);
8722 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8723 mutex_unlock(&dev
->struct_mutex
);
8726 void intel_init_clock_gating(struct drm_device
*dev
)
8728 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8730 dev_priv
->display
.init_clock_gating(dev
);
8732 if (dev_priv
->display
.init_pch_clock_gating
)
8733 dev_priv
->display
.init_pch_clock_gating(dev
);
8736 /* Set up chip specific display functions */
8737 static void intel_init_display(struct drm_device
*dev
)
8739 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8741 /* We always want a DPMS function */
8742 if (HAS_PCH_SPLIT(dev
)) {
8743 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
8744 dev_priv
->display
.crtc_mode_set
= ironlake_crtc_mode_set
;
8745 dev_priv
->display
.update_plane
= ironlake_update_plane
;
8747 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
8748 dev_priv
->display
.crtc_mode_set
= i9xx_crtc_mode_set
;
8749 dev_priv
->display
.update_plane
= i9xx_update_plane
;
8752 if (I915_HAS_FBC(dev
)) {
8753 if (HAS_PCH_SPLIT(dev
)) {
8754 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
8755 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
8756 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
8757 } else if (IS_GM45(dev
)) {
8758 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
8759 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
8760 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
8761 } else if (IS_CRESTLINE(dev
)) {
8762 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
8763 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
8764 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
8766 /* 855GM needs testing */
8769 /* Returns the core display clock speed */
8770 if (IS_I945G(dev
) || (IS_G33(dev
) && !IS_PINEVIEW_M(dev
)))
8771 dev_priv
->display
.get_display_clock_speed
=
8772 i945_get_display_clock_speed
;
8773 else if (IS_I915G(dev
))
8774 dev_priv
->display
.get_display_clock_speed
=
8775 i915_get_display_clock_speed
;
8776 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
8777 dev_priv
->display
.get_display_clock_speed
=
8778 i9xx_misc_get_display_clock_speed
;
8779 else if (IS_I915GM(dev
))
8780 dev_priv
->display
.get_display_clock_speed
=
8781 i915gm_get_display_clock_speed
;
8782 else if (IS_I865G(dev
))
8783 dev_priv
->display
.get_display_clock_speed
=
8784 i865_get_display_clock_speed
;
8785 else if (IS_I85X(dev
))
8786 dev_priv
->display
.get_display_clock_speed
=
8787 i855_get_display_clock_speed
;
8789 dev_priv
->display
.get_display_clock_speed
=
8790 i830_get_display_clock_speed
;
8792 /* For FIFO watermark updates */
8793 if (HAS_PCH_SPLIT(dev
)) {
8794 dev_priv
->display
.force_wake_get
= __gen6_gt_force_wake_get
;
8795 dev_priv
->display
.force_wake_put
= __gen6_gt_force_wake_put
;
8797 /* IVB configs may use multi-threaded forcewake */
8798 if (IS_IVYBRIDGE(dev
)) {
8801 /* A small trick here - if the bios hasn't configured MT forcewake,
8802 * and if the device is in RC6, then force_wake_mt_get will not wake
8803 * the device and the ECOBUS read will return zero. Which will be
8804 * (correctly) interpreted by the test below as MT forcewake being
8807 mutex_lock(&dev
->struct_mutex
);
8808 __gen6_gt_force_wake_mt_get(dev_priv
);
8809 ecobus
= I915_READ_NOTRACE(ECOBUS
);
8810 __gen6_gt_force_wake_mt_put(dev_priv
);
8811 mutex_unlock(&dev
->struct_mutex
);
8813 if (ecobus
& FORCEWAKE_MT_ENABLE
) {
8814 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8815 dev_priv
->display
.force_wake_get
=
8816 __gen6_gt_force_wake_mt_get
;
8817 dev_priv
->display
.force_wake_put
=
8818 __gen6_gt_force_wake_mt_put
;
8822 if (HAS_PCH_IBX(dev
))
8823 dev_priv
->display
.init_pch_clock_gating
= ibx_init_clock_gating
;
8824 else if (HAS_PCH_CPT(dev
))
8825 dev_priv
->display
.init_pch_clock_gating
= cpt_init_clock_gating
;
8828 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
8829 dev_priv
->display
.update_wm
= ironlake_update_wm
;
8831 DRM_DEBUG_KMS("Failed to get proper latency. "
8833 dev_priv
->display
.update_wm
= NULL
;
8835 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
8836 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
8837 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8838 } else if (IS_GEN6(dev
)) {
8839 if (SNB_READ_WM0_LATENCY()) {
8840 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8841 dev_priv
->display
.update_sprite_wm
= sandybridge_update_sprite_wm
;
8843 DRM_DEBUG_KMS("Failed to read display plane latency. "
8845 dev_priv
->display
.update_wm
= NULL
;
8847 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
8848 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
8849 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8850 } else if (IS_IVYBRIDGE(dev
)) {
8851 /* FIXME: detect B0+ stepping and use auto training */
8852 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
8853 if (SNB_READ_WM0_LATENCY()) {
8854 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8855 dev_priv
->display
.update_sprite_wm
= sandybridge_update_sprite_wm
;
8857 DRM_DEBUG_KMS("Failed to read display plane latency. "
8859 dev_priv
->display
.update_wm
= NULL
;
8861 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
8862 dev_priv
->display
.write_eld
= ironlake_write_eld
;
8864 dev_priv
->display
.update_wm
= NULL
;
8865 } else if (IS_PINEVIEW(dev
)) {
8866 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
8869 dev_priv
->mem_freq
)) {
8870 DRM_INFO("failed to find known CxSR latency "
8871 "(found ddr%s fsb freq %d, mem freq %d), "
8873 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
8874 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
8875 /* Disable CxSR and never update its watermark again */
8876 pineview_disable_cxsr(dev
);
8877 dev_priv
->display
.update_wm
= NULL
;
8879 dev_priv
->display
.update_wm
= pineview_update_wm
;
8880 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8881 } else if (IS_G4X(dev
)) {
8882 dev_priv
->display
.write_eld
= g4x_write_eld
;
8883 dev_priv
->display
.update_wm
= g4x_update_wm
;
8884 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
8885 } else if (IS_GEN4(dev
)) {
8886 dev_priv
->display
.update_wm
= i965_update_wm
;
8887 if (IS_CRESTLINE(dev
))
8888 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
8889 else if (IS_BROADWATER(dev
))
8890 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
8891 } else if (IS_GEN3(dev
)) {
8892 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8893 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
8894 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8895 } else if (IS_I865G(dev
)) {
8896 dev_priv
->display
.update_wm
= i830_update_wm
;
8897 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8898 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8899 } else if (IS_I85X(dev
)) {
8900 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8901 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
8902 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8904 dev_priv
->display
.update_wm
= i830_update_wm
;
8905 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
8907 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
8909 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8912 /* Default just returns -ENODEV to indicate unsupported */
8913 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
8915 switch (INTEL_INFO(dev
)->gen
) {
8917 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
8921 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
8926 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
8930 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
8933 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
8939 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8940 * resume, or other times. This quirk makes sure that's the case for
8943 static void quirk_pipea_force(struct drm_device
*dev
)
8945 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8947 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
8948 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8952 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8954 static void quirk_ssc_force_disable(struct drm_device
*dev
)
8956 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8957 dev_priv
->quirks
|= QUIRK_LVDS_SSC_DISABLE
;
8960 struct intel_quirk
{
8962 int subsystem_vendor
;
8963 int subsystem_device
;
8964 void (*hook
)(struct drm_device
*dev
);
8967 struct intel_quirk intel_quirks
[] = {
8968 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8969 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
8970 /* HP Mini needs pipe A force quirk (LP: #322104) */
8971 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force
},
8973 /* Thinkpad R31 needs pipe A force quirk */
8974 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
8975 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8976 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
8978 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8979 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
8980 /* ThinkPad X40 needs pipe A force quirk */
8982 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8983 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
8985 /* 855 & before need to leave pipe A & dpll A up */
8986 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8987 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8989 /* Lenovo U160 cannot use SSC on LVDS */
8990 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable
},
8992 /* Sony Vaio Y cannot use SSC on LVDS */
8993 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable
},
8996 static void intel_init_quirks(struct drm_device
*dev
)
8998 struct pci_dev
*d
= dev
->pdev
;
9001 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
9002 struct intel_quirk
*q
= &intel_quirks
[i
];
9004 if (d
->device
== q
->device
&&
9005 (d
->subsystem_vendor
== q
->subsystem_vendor
||
9006 q
->subsystem_vendor
== PCI_ANY_ID
) &&
9007 (d
->subsystem_device
== q
->subsystem_device
||
9008 q
->subsystem_device
== PCI_ANY_ID
))
9013 /* Disable the VGA plane that we never use */
9014 static void i915_disable_vga(struct drm_device
*dev
)
9016 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9020 if (HAS_PCH_SPLIT(dev
))
9021 vga_reg
= CPU_VGACNTRL
;
9025 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
9026 outb(1, VGA_SR_INDEX
);
9027 sr1
= inb(VGA_SR_DATA
);
9028 outb(sr1
| 1<<5, VGA_SR_DATA
);
9029 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
9032 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
9033 POSTING_READ(vga_reg
);
9036 void intel_modeset_init(struct drm_device
*dev
)
9038 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9041 drm_mode_config_init(dev
);
9043 dev
->mode_config
.min_width
= 0;
9044 dev
->mode_config
.min_height
= 0;
9046 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
9048 intel_init_quirks(dev
);
9050 intel_init_display(dev
);
9053 dev
->mode_config
.max_width
= 2048;
9054 dev
->mode_config
.max_height
= 2048;
9055 } else if (IS_GEN3(dev
)) {
9056 dev
->mode_config
.max_width
= 4096;
9057 dev
->mode_config
.max_height
= 4096;
9059 dev
->mode_config
.max_width
= 8192;
9060 dev
->mode_config
.max_height
= 8192;
9062 dev
->mode_config
.fb_base
= dev
->agp
->base
;
9064 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9065 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
9067 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
9068 intel_crtc_init(dev
, i
);
9069 ret
= intel_plane_init(dev
, i
);
9071 DRM_DEBUG_KMS("plane %d init failed: %d\n", i
, ret
);
9074 /* Just disable it once at startup */
9075 i915_disable_vga(dev
);
9076 intel_setup_outputs(dev
);
9078 intel_init_clock_gating(dev
);
9080 if (IS_IRONLAKE_M(dev
)) {
9081 ironlake_enable_drps(dev
);
9082 intel_init_emon(dev
);
9085 if (IS_GEN6(dev
) || IS_GEN7(dev
)) {
9086 gen6_enable_rps(dev_priv
);
9087 gen6_update_ring_freq(dev_priv
);
9090 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
9091 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
9092 (unsigned long)dev
);
9095 void intel_modeset_gem_init(struct drm_device
*dev
)
9097 if (IS_IRONLAKE_M(dev
))
9098 ironlake_enable_rc6(dev
);
9100 intel_setup_overlay(dev
);
9103 void intel_modeset_cleanup(struct drm_device
*dev
)
9105 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9106 struct drm_crtc
*crtc
;
9107 struct intel_crtc
*intel_crtc
;
9109 drm_kms_helper_poll_fini(dev
);
9110 mutex_lock(&dev
->struct_mutex
);
9112 intel_unregister_dsm_handler();
9115 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
9116 /* Skip inactive CRTCs */
9120 intel_crtc
= to_intel_crtc(crtc
);
9121 intel_increase_pllclock(crtc
);
9124 intel_disable_fbc(dev
);
9126 if (IS_IRONLAKE_M(dev
))
9127 ironlake_disable_drps(dev
);
9128 if (IS_GEN6(dev
) || IS_GEN7(dev
))
9129 gen6_disable_rps(dev
);
9131 if (IS_IRONLAKE_M(dev
))
9132 ironlake_disable_rc6(dev
);
9134 mutex_unlock(&dev
->struct_mutex
);
9136 /* Disable the irq before mode object teardown, for the irq might
9137 * enqueue unpin/hotplug work. */
9138 drm_irq_uninstall(dev
);
9139 cancel_work_sync(&dev_priv
->hotplug_work
);
9140 cancel_work_sync(&dev_priv
->rps_work
);
9142 /* flush any delayed tasks or pending work */
9143 flush_scheduled_work();
9145 /* Shut off idle work before the crtcs get freed. */
9146 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
9147 intel_crtc
= to_intel_crtc(crtc
);
9148 del_timer_sync(&intel_crtc
->idle_timer
);
9150 del_timer_sync(&dev_priv
->idle_timer
);
9151 cancel_work_sync(&dev_priv
->idle_work
);
9153 drm_mode_config_cleanup(dev
);
9157 * Return which encoder is currently attached for connector.
9159 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
9161 return &intel_attached_encoder(connector
)->base
;
9164 void intel_connector_attach_encoder(struct intel_connector
*connector
,
9165 struct intel_encoder
*encoder
)
9167 connector
->encoder
= encoder
;
9168 drm_mode_connector_attach_encoder(&connector
->base
,
9173 * set vga decode state - true == enable VGA decode
9175 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
9177 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9180 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
9182 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
9184 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
9185 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);
9189 #ifdef CONFIG_DEBUG_FS
9190 #include <linux/seq_file.h>
9192 struct intel_display_error_state
{
9193 struct intel_cursor_error_state
{
9200 struct intel_pipe_error_state
{
9212 struct intel_plane_error_state
{
9223 struct intel_display_error_state
*
9224 intel_display_capture_error_state(struct drm_device
*dev
)
9226 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
9227 struct intel_display_error_state
*error
;
9230 error
= kmalloc(sizeof(*error
), GFP_ATOMIC
);
9234 for (i
= 0; i
< 2; i
++) {
9235 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
9236 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
9237 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
9239 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
9240 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
9241 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
9242 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
9243 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
9244 if (INTEL_INFO(dev
)->gen
>= 4) {
9245 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
9246 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
9249 error
->pipe
[i
].conf
= I915_READ(PIPECONF(i
));
9250 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
9251 error
->pipe
[i
].htotal
= I915_READ(HTOTAL(i
));
9252 error
->pipe
[i
].hblank
= I915_READ(HBLANK(i
));
9253 error
->pipe
[i
].hsync
= I915_READ(HSYNC(i
));
9254 error
->pipe
[i
].vtotal
= I915_READ(VTOTAL(i
));
9255 error
->pipe
[i
].vblank
= I915_READ(VBLANK(i
));
9256 error
->pipe
[i
].vsync
= I915_READ(VSYNC(i
));
9263 intel_display_print_error_state(struct seq_file
*m
,
9264 struct drm_device
*dev
,
9265 struct intel_display_error_state
*error
)
9269 for (i
= 0; i
< 2; i
++) {
9270 seq_printf(m
, "Pipe [%d]:\n", i
);
9271 seq_printf(m
, " CONF: %08x\n", error
->pipe
[i
].conf
);
9272 seq_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
9273 seq_printf(m
, " HTOTAL: %08x\n", error
->pipe
[i
].htotal
);
9274 seq_printf(m
, " HBLANK: %08x\n", error
->pipe
[i
].hblank
);
9275 seq_printf(m
, " HSYNC: %08x\n", error
->pipe
[i
].hsync
);
9276 seq_printf(m
, " VTOTAL: %08x\n", error
->pipe
[i
].vtotal
);
9277 seq_printf(m
, " VBLANK: %08x\n", error
->pipe
[i
].vblank
);
9278 seq_printf(m
, " VSYNC: %08x\n", error
->pipe
[i
].vsync
);
9280 seq_printf(m
, "Plane [%d]:\n", i
);
9281 seq_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
9282 seq_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
9283 seq_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
9284 seq_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
9285 seq_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
9286 if (INTEL_INFO(dev
)->gen
>= 4) {
9287 seq_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
9288 seq_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
9291 seq_printf(m
, "Cursor [%d]:\n", i
);
9292 seq_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
9293 seq_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
9294 seq_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);