percpu, x86: don't use PMD_SIZE as embedded atom_size on 32bit
[zen-stable.git] / drivers / md / md.c
blob58027d8477c6072aa4b156d807fdb22c115c5bf5
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
140 static ctl_table raid_root_table[] = {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 struct mddev *mddev, **mddevp;
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
171 struct bio *b;
172 struct mddev **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
191 struct bio *b;
192 struct mddev **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
216 return b;
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
360 finish_wait(&mddev->sb_wait, &__wait);
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
366 * save the sectors now since our bio can
367 * go away inside make_request
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
387 void mddev_suspend(struct mddev *mddev)
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
395 EXPORT_SYMBOL_GPL(mddev_suspend);
397 void mddev_resume(struct mddev *mddev)
399 mddev->suspended = 0;
400 wake_up(&mddev->sb_wait);
401 mddev->pers->quiesce(mddev, 0);
403 md_wakeup_thread(mddev->thread);
404 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 EXPORT_SYMBOL_GPL(mddev_resume);
408 int mddev_congested(struct mddev *mddev, int bits)
410 return mddev->suspended;
412 EXPORT_SYMBOL(mddev_congested);
415 * Generic flush handling for md
418 static void md_end_flush(struct bio *bio, int err)
420 struct md_rdev *rdev = bio->bi_private;
421 struct mddev *mddev = rdev->mddev;
423 rdev_dec_pending(rdev, mddev);
425 if (atomic_dec_and_test(&mddev->flush_pending)) {
426 /* The pre-request flush has finished */
427 queue_work(md_wq, &mddev->flush_work);
429 bio_put(bio);
432 static void md_submit_flush_data(struct work_struct *ws);
434 static void submit_flushes(struct work_struct *ws)
436 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 struct md_rdev *rdev;
439 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 atomic_set(&mddev->flush_pending, 1);
441 rcu_read_lock();
442 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443 if (rdev->raid_disk >= 0 &&
444 !test_bit(Faulty, &rdev->flags)) {
445 /* Take two references, one is dropped
446 * when request finishes, one after
447 * we reclaim rcu_read_lock
449 struct bio *bi;
450 atomic_inc(&rdev->nr_pending);
451 atomic_inc(&rdev->nr_pending);
452 rcu_read_unlock();
453 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 bi->bi_end_io = md_end_flush;
455 bi->bi_private = rdev;
456 bi->bi_bdev = rdev->bdev;
457 atomic_inc(&mddev->flush_pending);
458 submit_bio(WRITE_FLUSH, bi);
459 rcu_read_lock();
460 rdev_dec_pending(rdev, mddev);
462 rcu_read_unlock();
463 if (atomic_dec_and_test(&mddev->flush_pending))
464 queue_work(md_wq, &mddev->flush_work);
467 static void md_submit_flush_data(struct work_struct *ws)
469 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 struct bio *bio = mddev->flush_bio;
472 if (bio->bi_size == 0)
473 /* an empty barrier - all done */
474 bio_endio(bio, 0);
475 else {
476 bio->bi_rw &= ~REQ_FLUSH;
477 mddev->pers->make_request(mddev, bio);
480 mddev->flush_bio = NULL;
481 wake_up(&mddev->sb_wait);
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 spin_lock_irq(&mddev->write_lock);
487 wait_event_lock_irq(mddev->sb_wait,
488 !mddev->flush_bio,
489 mddev->write_lock, /*nothing*/);
490 mddev->flush_bio = bio;
491 spin_unlock_irq(&mddev->write_lock);
493 INIT_WORK(&mddev->flush_work, submit_flushes);
494 queue_work(md_wq, &mddev->flush_work);
496 EXPORT_SYMBOL(md_flush_request);
498 /* Support for plugging.
499 * This mirrors the plugging support in request_queue, but does not
500 * require having a whole queue or request structures.
501 * We allocate an md_plug_cb for each md device and each thread it gets
502 * plugged on. This links tot the private plug_handle structure in the
503 * personality data where we keep a count of the number of outstanding
504 * plugs so other code can see if a plug is active.
506 struct md_plug_cb {
507 struct blk_plug_cb cb;
508 struct mddev *mddev;
511 static void plugger_unplug(struct blk_plug_cb *cb)
513 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 md_wakeup_thread(mdcb->mddev->thread);
516 kfree(mdcb);
519 /* Check that an unplug wakeup will come shortly.
520 * If not, wakeup the md thread immediately
522 int mddev_check_plugged(struct mddev *mddev)
524 struct blk_plug *plug = current->plug;
525 struct md_plug_cb *mdcb;
527 if (!plug)
528 return 0;
530 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 if (mdcb->cb.callback == plugger_unplug &&
532 mdcb->mddev == mddev) {
533 /* Already on the list, move to top */
534 if (mdcb != list_first_entry(&plug->cb_list,
535 struct md_plug_cb,
536 cb.list))
537 list_move(&mdcb->cb.list, &plug->cb_list);
538 return 1;
541 /* Not currently on the callback list */
542 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543 if (!mdcb)
544 return 0;
546 mdcb->mddev = mddev;
547 mdcb->cb.callback = plugger_unplug;
548 atomic_inc(&mddev->plug_cnt);
549 list_add(&mdcb->cb.list, &plug->cb_list);
550 return 1;
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554 static inline struct mddev *mddev_get(struct mddev *mddev)
556 atomic_inc(&mddev->active);
557 return mddev;
560 static void mddev_delayed_delete(struct work_struct *ws);
562 static void mddev_put(struct mddev *mddev)
564 struct bio_set *bs = NULL;
566 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567 return;
568 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 mddev->ctime == 0 && !mddev->hold_active) {
570 /* Array is not configured at all, and not held active,
571 * so destroy it */
572 list_del_init(&mddev->all_mddevs);
573 bs = mddev->bio_set;
574 mddev->bio_set = NULL;
575 if (mddev->gendisk) {
576 /* We did a probe so need to clean up. Call
577 * queue_work inside the spinlock so that
578 * flush_workqueue() after mddev_find will
579 * succeed in waiting for the work to be done.
581 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 queue_work(md_misc_wq, &mddev->del_work);
583 } else
584 kfree(mddev);
586 spin_unlock(&all_mddevs_lock);
587 if (bs)
588 bioset_free(bs);
591 void mddev_init(struct mddev *mddev)
593 mutex_init(&mddev->open_mutex);
594 mutex_init(&mddev->reconfig_mutex);
595 mutex_init(&mddev->bitmap_info.mutex);
596 INIT_LIST_HEAD(&mddev->disks);
597 INIT_LIST_HEAD(&mddev->all_mddevs);
598 init_timer(&mddev->safemode_timer);
599 atomic_set(&mddev->active, 1);
600 atomic_set(&mddev->openers, 0);
601 atomic_set(&mddev->active_io, 0);
602 atomic_set(&mddev->plug_cnt, 0);
603 spin_lock_init(&mddev->write_lock);
604 atomic_set(&mddev->flush_pending, 0);
605 init_waitqueue_head(&mddev->sb_wait);
606 init_waitqueue_head(&mddev->recovery_wait);
607 mddev->reshape_position = MaxSector;
608 mddev->resync_min = 0;
609 mddev->resync_max = MaxSector;
610 mddev->level = LEVEL_NONE;
612 EXPORT_SYMBOL_GPL(mddev_init);
614 static struct mddev * mddev_find(dev_t unit)
616 struct mddev *mddev, *new = NULL;
618 if (unit && MAJOR(unit) != MD_MAJOR)
619 unit &= ~((1<<MdpMinorShift)-1);
621 retry:
622 spin_lock(&all_mddevs_lock);
624 if (unit) {
625 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 if (mddev->unit == unit) {
627 mddev_get(mddev);
628 spin_unlock(&all_mddevs_lock);
629 kfree(new);
630 return mddev;
633 if (new) {
634 list_add(&new->all_mddevs, &all_mddevs);
635 spin_unlock(&all_mddevs_lock);
636 new->hold_active = UNTIL_IOCTL;
637 return new;
639 } else if (new) {
640 /* find an unused unit number */
641 static int next_minor = 512;
642 int start = next_minor;
643 int is_free = 0;
644 int dev = 0;
645 while (!is_free) {
646 dev = MKDEV(MD_MAJOR, next_minor);
647 next_minor++;
648 if (next_minor > MINORMASK)
649 next_minor = 0;
650 if (next_minor == start) {
651 /* Oh dear, all in use. */
652 spin_unlock(&all_mddevs_lock);
653 kfree(new);
654 return NULL;
657 is_free = 1;
658 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 if (mddev->unit == dev) {
660 is_free = 0;
661 break;
664 new->unit = dev;
665 new->md_minor = MINOR(dev);
666 new->hold_active = UNTIL_STOP;
667 list_add(&new->all_mddevs, &all_mddevs);
668 spin_unlock(&all_mddevs_lock);
669 return new;
671 spin_unlock(&all_mddevs_lock);
673 new = kzalloc(sizeof(*new), GFP_KERNEL);
674 if (!new)
675 return NULL;
677 new->unit = unit;
678 if (MAJOR(unit) == MD_MAJOR)
679 new->md_minor = MINOR(unit);
680 else
681 new->md_minor = MINOR(unit) >> MdpMinorShift;
683 mddev_init(new);
685 goto retry;
688 static inline int mddev_lock(struct mddev * mddev)
690 return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 static inline int mddev_is_locked(struct mddev *mddev)
695 return mutex_is_locked(&mddev->reconfig_mutex);
698 static inline int mddev_trylock(struct mddev * mddev)
700 return mutex_trylock(&mddev->reconfig_mutex);
703 static struct attribute_group md_redundancy_group;
705 static void mddev_unlock(struct mddev * mddev)
707 if (mddev->to_remove) {
708 /* These cannot be removed under reconfig_mutex as
709 * an access to the files will try to take reconfig_mutex
710 * while holding the file unremovable, which leads to
711 * a deadlock.
712 * So hold set sysfs_active while the remove in happeing,
713 * and anything else which might set ->to_remove or my
714 * otherwise change the sysfs namespace will fail with
715 * -EBUSY if sysfs_active is still set.
716 * We set sysfs_active under reconfig_mutex and elsewhere
717 * test it under the same mutex to ensure its correct value
718 * is seen.
720 struct attribute_group *to_remove = mddev->to_remove;
721 mddev->to_remove = NULL;
722 mddev->sysfs_active = 1;
723 mutex_unlock(&mddev->reconfig_mutex);
725 if (mddev->kobj.sd) {
726 if (to_remove != &md_redundancy_group)
727 sysfs_remove_group(&mddev->kobj, to_remove);
728 if (mddev->pers == NULL ||
729 mddev->pers->sync_request == NULL) {
730 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 if (mddev->sysfs_action)
732 sysfs_put(mddev->sysfs_action);
733 mddev->sysfs_action = NULL;
736 mddev->sysfs_active = 0;
737 } else
738 mutex_unlock(&mddev->reconfig_mutex);
740 /* As we've dropped the mutex we need a spinlock to
741 * make sure the thread doesn't disappear
743 spin_lock(&pers_lock);
744 md_wakeup_thread(mddev->thread);
745 spin_unlock(&pers_lock);
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 struct md_rdev *rdev;
752 list_for_each_entry(rdev, &mddev->disks, same_set)
753 if (rdev->desc_nr == nr)
754 return rdev;
756 return NULL;
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 struct md_rdev *rdev;
763 list_for_each_entry(rdev, &mddev->disks, same_set)
764 if (rdev->bdev->bd_dev == dev)
765 return rdev;
767 return NULL;
770 static struct md_personality *find_pers(int level, char *clevel)
772 struct md_personality *pers;
773 list_for_each_entry(pers, &pers_list, list) {
774 if (level != LEVEL_NONE && pers->level == level)
775 return pers;
776 if (strcmp(pers->name, clevel)==0)
777 return pers;
779 return NULL;
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 return MD_NEW_SIZE_SECTORS(num_sectors);
789 static int alloc_disk_sb(struct md_rdev * rdev)
791 if (rdev->sb_page)
792 MD_BUG();
794 rdev->sb_page = alloc_page(GFP_KERNEL);
795 if (!rdev->sb_page) {
796 printk(KERN_ALERT "md: out of memory.\n");
797 return -ENOMEM;
800 return 0;
803 static void free_disk_sb(struct md_rdev * rdev)
805 if (rdev->sb_page) {
806 put_page(rdev->sb_page);
807 rdev->sb_loaded = 0;
808 rdev->sb_page = NULL;
809 rdev->sb_start = 0;
810 rdev->sectors = 0;
812 if (rdev->bb_page) {
813 put_page(rdev->bb_page);
814 rdev->bb_page = NULL;
819 static void super_written(struct bio *bio, int error)
821 struct md_rdev *rdev = bio->bi_private;
822 struct mddev *mddev = rdev->mddev;
824 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 printk("md: super_written gets error=%d, uptodate=%d\n",
826 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 md_error(mddev, rdev);
831 if (atomic_dec_and_test(&mddev->pending_writes))
832 wake_up(&mddev->sb_wait);
833 bio_put(bio);
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 sector_t sector, int size, struct page *page)
839 /* write first size bytes of page to sector of rdev
840 * Increment mddev->pending_writes before returning
841 * and decrement it on completion, waking up sb_wait
842 * if zero is reached.
843 * If an error occurred, call md_error
845 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 bio->bi_sector = sector;
849 bio_add_page(bio, page, size, 0);
850 bio->bi_private = rdev;
851 bio->bi_end_io = super_written;
853 atomic_inc(&mddev->pending_writes);
854 submit_bio(WRITE_FLUSH_FUA, bio);
857 void md_super_wait(struct mddev *mddev)
859 /* wait for all superblock writes that were scheduled to complete */
860 DEFINE_WAIT(wq);
861 for(;;) {
862 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 if (atomic_read(&mddev->pending_writes)==0)
864 break;
865 schedule();
867 finish_wait(&mddev->sb_wait, &wq);
870 static void bi_complete(struct bio *bio, int error)
872 complete((struct completion*)bio->bi_private);
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 struct page *page, int rw, bool metadata_op)
878 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 struct completion event;
880 int ret;
882 rw |= REQ_SYNC;
884 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 rdev->meta_bdev : rdev->bdev;
886 if (metadata_op)
887 bio->bi_sector = sector + rdev->sb_start;
888 else
889 bio->bi_sector = sector + rdev->data_offset;
890 bio_add_page(bio, page, size, 0);
891 init_completion(&event);
892 bio->bi_private = &event;
893 bio->bi_end_io = bi_complete;
894 submit_bio(rw, bio);
895 wait_for_completion(&event);
897 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898 bio_put(bio);
899 return ret;
901 EXPORT_SYMBOL_GPL(sync_page_io);
903 static int read_disk_sb(struct md_rdev * rdev, int size)
905 char b[BDEVNAME_SIZE];
906 if (!rdev->sb_page) {
907 MD_BUG();
908 return -EINVAL;
910 if (rdev->sb_loaded)
911 return 0;
914 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915 goto fail;
916 rdev->sb_loaded = 1;
917 return 0;
919 fail:
920 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 bdevname(rdev->bdev,b));
922 return -EINVAL;
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 return sb1->set_uuid0 == sb2->set_uuid0 &&
928 sb1->set_uuid1 == sb2->set_uuid1 &&
929 sb1->set_uuid2 == sb2->set_uuid2 &&
930 sb1->set_uuid3 == sb2->set_uuid3;
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 int ret;
936 mdp_super_t *tmp1, *tmp2;
938 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941 if (!tmp1 || !tmp2) {
942 ret = 0;
943 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944 goto abort;
947 *tmp1 = *sb1;
948 *tmp2 = *sb2;
951 * nr_disks is not constant
953 tmp1->nr_disks = 0;
954 tmp2->nr_disks = 0;
956 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958 kfree(tmp1);
959 kfree(tmp2);
960 return ret;
964 static u32 md_csum_fold(u32 csum)
966 csum = (csum & 0xffff) + (csum >> 16);
967 return (csum & 0xffff) + (csum >> 16);
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 u64 newcsum = 0;
973 u32 *sb32 = (u32*)sb;
974 int i;
975 unsigned int disk_csum, csum;
977 disk_csum = sb->sb_csum;
978 sb->sb_csum = 0;
980 for (i = 0; i < MD_SB_BYTES/4 ; i++)
981 newcsum += sb32[i];
982 csum = (newcsum & 0xffffffff) + (newcsum>>32);
985 #ifdef CONFIG_ALPHA
986 /* This used to use csum_partial, which was wrong for several
987 * reasons including that different results are returned on
988 * different architectures. It isn't critical that we get exactly
989 * the same return value as before (we always csum_fold before
990 * testing, and that removes any differences). However as we
991 * know that csum_partial always returned a 16bit value on
992 * alphas, do a fold to maximise conformity to previous behaviour.
994 sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996 sb->sb_csum = disk_csum;
997 #endif
998 return csum;
1003 * Handle superblock details.
1004 * We want to be able to handle multiple superblock formats
1005 * so we have a common interface to them all, and an array of
1006 * different handlers.
1007 * We rely on user-space to write the initial superblock, and support
1008 * reading and updating of superblocks.
1009 * Interface methods are:
1010 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011 * loads and validates a superblock on dev.
1012 * if refdev != NULL, compare superblocks on both devices
1013 * Return:
1014 * 0 - dev has a superblock that is compatible with refdev
1015 * 1 - dev has a superblock that is compatible and newer than refdev
1016 * so dev should be used as the refdev in future
1017 * -EINVAL superblock incompatible or invalid
1018 * -othererror e.g. -EIO
1020 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021 * Verify that dev is acceptable into mddev.
1022 * The first time, mddev->raid_disks will be 0, and data from
1023 * dev should be merged in. Subsequent calls check that dev
1024 * is new enough. Return 0 or -EINVAL
1026 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027 * Update the superblock for rdev with data in mddev
1028 * This does not write to disc.
1032 struct super_type {
1033 char *name;
1034 struct module *owner;
1035 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036 int minor_version);
1037 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1040 sector_t num_sectors);
1044 * Check that the given mddev has no bitmap.
1046 * This function is called from the run method of all personalities that do not
1047 * support bitmaps. It prints an error message and returns non-zero if mddev
1048 * has a bitmap. Otherwise, it returns 0.
1051 int md_check_no_bitmap(struct mddev *mddev)
1053 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054 return 0;
1055 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 mdname(mddev), mddev->pers->name);
1057 return 1;
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1062 * load_super for 0.90.0
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067 mdp_super_t *sb;
1068 int ret;
1071 * Calculate the position of the superblock (512byte sectors),
1072 * it's at the end of the disk.
1074 * It also happens to be a multiple of 4Kb.
1076 rdev->sb_start = calc_dev_sboffset(rdev);
1078 ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 if (ret) return ret;
1081 ret = -EINVAL;
1083 bdevname(rdev->bdev, b);
1084 sb = page_address(rdev->sb_page);
1086 if (sb->md_magic != MD_SB_MAGIC) {
1087 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089 goto abort;
1092 if (sb->major_version != 0 ||
1093 sb->minor_version < 90 ||
1094 sb->minor_version > 91) {
1095 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 sb->major_version, sb->minor_version,
1098 goto abort;
1101 if (sb->raid_disks <= 0)
1102 goto abort;
1104 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107 goto abort;
1110 rdev->preferred_minor = sb->md_minor;
1111 rdev->data_offset = 0;
1112 rdev->sb_size = MD_SB_BYTES;
1113 rdev->badblocks.shift = -1;
1115 if (sb->level == LEVEL_MULTIPATH)
1116 rdev->desc_nr = -1;
1117 else
1118 rdev->desc_nr = sb->this_disk.number;
1120 if (!refdev) {
1121 ret = 1;
1122 } else {
1123 __u64 ev1, ev2;
1124 mdp_super_t *refsb = page_address(refdev->sb_page);
1125 if (!uuid_equal(refsb, sb)) {
1126 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 b, bdevname(refdev->bdev,b2));
1128 goto abort;
1130 if (!sb_equal(refsb, sb)) {
1131 printk(KERN_WARNING "md: %s has same UUID"
1132 " but different superblock to %s\n",
1133 b, bdevname(refdev->bdev, b2));
1134 goto abort;
1136 ev1 = md_event(sb);
1137 ev2 = md_event(refsb);
1138 if (ev1 > ev2)
1139 ret = 1;
1140 else
1141 ret = 0;
1143 rdev->sectors = rdev->sb_start;
1144 /* Limit to 4TB as metadata cannot record more than that */
1145 if (rdev->sectors >= (2ULL << 32))
1146 rdev->sectors = (2ULL << 32) - 2;
1148 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 /* "this cannot possibly happen" ... */
1150 ret = -EINVAL;
1152 abort:
1153 return ret;
1157 * validate_super for 0.90.0
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 mdp_disk_t *desc;
1162 mdp_super_t *sb = page_address(rdev->sb_page);
1163 __u64 ev1 = md_event(sb);
1165 rdev->raid_disk = -1;
1166 clear_bit(Faulty, &rdev->flags);
1167 clear_bit(In_sync, &rdev->flags);
1168 clear_bit(WriteMostly, &rdev->flags);
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 0;
1172 mddev->minor_version = sb->minor_version;
1173 mddev->patch_version = sb->patch_version;
1174 mddev->external = 0;
1175 mddev->chunk_sectors = sb->chunk_size >> 9;
1176 mddev->ctime = sb->ctime;
1177 mddev->utime = sb->utime;
1178 mddev->level = sb->level;
1179 mddev->clevel[0] = 0;
1180 mddev->layout = sb->layout;
1181 mddev->raid_disks = sb->raid_disks;
1182 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 mddev->events = ev1;
1184 mddev->bitmap_info.offset = 0;
1185 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187 if (mddev->minor_version >= 91) {
1188 mddev->reshape_position = sb->reshape_position;
1189 mddev->delta_disks = sb->delta_disks;
1190 mddev->new_level = sb->new_level;
1191 mddev->new_layout = sb->new_layout;
1192 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193 } else {
1194 mddev->reshape_position = MaxSector;
1195 mddev->delta_disks = 0;
1196 mddev->new_level = mddev->level;
1197 mddev->new_layout = mddev->layout;
1198 mddev->new_chunk_sectors = mddev->chunk_sectors;
1201 if (sb->state & (1<<MD_SB_CLEAN))
1202 mddev->recovery_cp = MaxSector;
1203 else {
1204 if (sb->events_hi == sb->cp_events_hi &&
1205 sb->events_lo == sb->cp_events_lo) {
1206 mddev->recovery_cp = sb->recovery_cp;
1207 } else
1208 mddev->recovery_cp = 0;
1211 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216 mddev->max_disks = MD_SB_DISKS;
1218 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 mddev->bitmap_info.file == NULL)
1220 mddev->bitmap_info.offset =
1221 mddev->bitmap_info.default_offset;
1223 } else if (mddev->pers == NULL) {
1224 /* Insist on good event counter while assembling, except
1225 * for spares (which don't need an event count) */
1226 ++ev1;
1227 if (sb->disks[rdev->desc_nr].state & (
1228 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 if (ev1 < mddev->events)
1230 return -EINVAL;
1231 } else if (mddev->bitmap) {
1232 /* if adding to array with a bitmap, then we can accept an
1233 * older device ... but not too old.
1235 if (ev1 < mddev->bitmap->events_cleared)
1236 return 0;
1237 } else {
1238 if (ev1 < mddev->events)
1239 /* just a hot-add of a new device, leave raid_disk at -1 */
1240 return 0;
1243 if (mddev->level != LEVEL_MULTIPATH) {
1244 desc = sb->disks + rdev->desc_nr;
1246 if (desc->state & (1<<MD_DISK_FAULTY))
1247 set_bit(Faulty, &rdev->flags);
1248 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 desc->raid_disk < mddev->raid_disks */) {
1250 set_bit(In_sync, &rdev->flags);
1251 rdev->raid_disk = desc->raid_disk;
1252 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 /* active but not in sync implies recovery up to
1254 * reshape position. We don't know exactly where
1255 * that is, so set to zero for now */
1256 if (mddev->minor_version >= 91) {
1257 rdev->recovery_offset = 0;
1258 rdev->raid_disk = desc->raid_disk;
1261 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 set_bit(WriteMostly, &rdev->flags);
1263 } else /* MULTIPATH are always insync */
1264 set_bit(In_sync, &rdev->flags);
1265 return 0;
1269 * sync_super for 0.90.0
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 mdp_super_t *sb;
1274 struct md_rdev *rdev2;
1275 int next_spare = mddev->raid_disks;
1278 /* make rdev->sb match mddev data..
1280 * 1/ zero out disks
1281 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 * 3/ any empty disks < next_spare become removed
1284 * disks[0] gets initialised to REMOVED because
1285 * we cannot be sure from other fields if it has
1286 * been initialised or not.
1288 int i;
1289 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291 rdev->sb_size = MD_SB_BYTES;
1293 sb = page_address(rdev->sb_page);
1295 memset(sb, 0, sizeof(*sb));
1297 sb->md_magic = MD_SB_MAGIC;
1298 sb->major_version = mddev->major_version;
1299 sb->patch_version = mddev->patch_version;
1300 sb->gvalid_words = 0; /* ignored */
1301 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306 sb->ctime = mddev->ctime;
1307 sb->level = mddev->level;
1308 sb->size = mddev->dev_sectors / 2;
1309 sb->raid_disks = mddev->raid_disks;
1310 sb->md_minor = mddev->md_minor;
1311 sb->not_persistent = 0;
1312 sb->utime = mddev->utime;
1313 sb->state = 0;
1314 sb->events_hi = (mddev->events>>32);
1315 sb->events_lo = (u32)mddev->events;
1317 if (mddev->reshape_position == MaxSector)
1318 sb->minor_version = 90;
1319 else {
1320 sb->minor_version = 91;
1321 sb->reshape_position = mddev->reshape_position;
1322 sb->new_level = mddev->new_level;
1323 sb->delta_disks = mddev->delta_disks;
1324 sb->new_layout = mddev->new_layout;
1325 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327 mddev->minor_version = sb->minor_version;
1328 if (mddev->in_sync)
1330 sb->recovery_cp = mddev->recovery_cp;
1331 sb->cp_events_hi = (mddev->events>>32);
1332 sb->cp_events_lo = (u32)mddev->events;
1333 if (mddev->recovery_cp == MaxSector)
1334 sb->state = (1<< MD_SB_CLEAN);
1335 } else
1336 sb->recovery_cp = 0;
1338 sb->layout = mddev->layout;
1339 sb->chunk_size = mddev->chunk_sectors << 9;
1341 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346 mdp_disk_t *d;
1347 int desc_nr;
1348 int is_active = test_bit(In_sync, &rdev2->flags);
1350 if (rdev2->raid_disk >= 0 &&
1351 sb->minor_version >= 91)
1352 /* we have nowhere to store the recovery_offset,
1353 * but if it is not below the reshape_position,
1354 * we can piggy-back on that.
1356 is_active = 1;
1357 if (rdev2->raid_disk < 0 ||
1358 test_bit(Faulty, &rdev2->flags))
1359 is_active = 0;
1360 if (is_active)
1361 desc_nr = rdev2->raid_disk;
1362 else
1363 desc_nr = next_spare++;
1364 rdev2->desc_nr = desc_nr;
1365 d = &sb->disks[rdev2->desc_nr];
1366 nr_disks++;
1367 d->number = rdev2->desc_nr;
1368 d->major = MAJOR(rdev2->bdev->bd_dev);
1369 d->minor = MINOR(rdev2->bdev->bd_dev);
1370 if (is_active)
1371 d->raid_disk = rdev2->raid_disk;
1372 else
1373 d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 if (test_bit(Faulty, &rdev2->flags))
1375 d->state = (1<<MD_DISK_FAULTY);
1376 else if (is_active) {
1377 d->state = (1<<MD_DISK_ACTIVE);
1378 if (test_bit(In_sync, &rdev2->flags))
1379 d->state |= (1<<MD_DISK_SYNC);
1380 active++;
1381 working++;
1382 } else {
1383 d->state = 0;
1384 spare++;
1385 working++;
1387 if (test_bit(WriteMostly, &rdev2->flags))
1388 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390 /* now set the "removed" and "faulty" bits on any missing devices */
1391 for (i=0 ; i < mddev->raid_disks ; i++) {
1392 mdp_disk_t *d = &sb->disks[i];
1393 if (d->state == 0 && d->number == 0) {
1394 d->number = i;
1395 d->raid_disk = i;
1396 d->state = (1<<MD_DISK_REMOVED);
1397 d->state |= (1<<MD_DISK_FAULTY);
1398 failed++;
1401 sb->nr_disks = nr_disks;
1402 sb->active_disks = active;
1403 sb->working_disks = working;
1404 sb->failed_disks = failed;
1405 sb->spare_disks = spare;
1407 sb->this_disk = sb->disks[rdev->desc_nr];
1408 sb->sb_csum = calc_sb_csum(sb);
1412 * rdev_size_change for 0.90.0
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 return 0; /* component must fit device */
1419 if (rdev->mddev->bitmap_info.offset)
1420 return 0; /* can't move bitmap */
1421 rdev->sb_start = calc_dev_sboffset(rdev);
1422 if (!num_sectors || num_sectors > rdev->sb_start)
1423 num_sectors = rdev->sb_start;
1424 /* Limit to 4TB as metadata cannot record more than that.
1425 * 4TB == 2^32 KB, or 2*2^32 sectors.
1427 if (num_sectors >= (2ULL << 32))
1428 num_sectors = (2ULL << 32) - 2;
1429 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430 rdev->sb_page);
1431 md_super_wait(rdev->mddev);
1432 return num_sectors;
1437 * version 1 superblock
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 __le32 disk_csum;
1443 u32 csum;
1444 unsigned long long newcsum;
1445 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 __le32 *isuper = (__le32*)sb;
1447 int i;
1449 disk_csum = sb->sb_csum;
1450 sb->sb_csum = 0;
1451 newcsum = 0;
1452 for (i=0; size>=4; size -= 4 )
1453 newcsum += le32_to_cpu(*isuper++);
1455 if (size == 2)
1456 newcsum += le16_to_cpu(*(__le16*) isuper);
1458 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 sb->sb_csum = disk_csum;
1460 return cpu_to_le32(csum);
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464 int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 struct mdp_superblock_1 *sb;
1468 int ret;
1469 sector_t sb_start;
1470 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471 int bmask;
1474 * Calculate the position of the superblock in 512byte sectors.
1475 * It is always aligned to a 4K boundary and
1476 * depeding on minor_version, it can be:
1477 * 0: At least 8K, but less than 12K, from end of device
1478 * 1: At start of device
1479 * 2: 4K from start of device.
1481 switch(minor_version) {
1482 case 0:
1483 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484 sb_start -= 8*2;
1485 sb_start &= ~(sector_t)(4*2-1);
1486 break;
1487 case 1:
1488 sb_start = 0;
1489 break;
1490 case 2:
1491 sb_start = 8;
1492 break;
1493 default:
1494 return -EINVAL;
1496 rdev->sb_start = sb_start;
1498 /* superblock is rarely larger than 1K, but it can be larger,
1499 * and it is safe to read 4k, so we do that
1501 ret = read_disk_sb(rdev, 4096);
1502 if (ret) return ret;
1505 sb = page_address(rdev->sb_page);
1507 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 sb->major_version != cpu_to_le32(1) ||
1509 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512 return -EINVAL;
1514 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 printk("md: invalid superblock checksum on %s\n",
1516 bdevname(rdev->bdev,b));
1517 return -EINVAL;
1519 if (le64_to_cpu(sb->data_size) < 10) {
1520 printk("md: data_size too small on %s\n",
1521 bdevname(rdev->bdev,b));
1522 return -EINVAL;
1525 rdev->preferred_minor = 0xffff;
1526 rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 if (rdev->sb_size & bmask)
1532 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534 if (minor_version
1535 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536 return -EINVAL;
1538 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539 rdev->desc_nr = -1;
1540 else
1541 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543 if (!rdev->bb_page) {
1544 rdev->bb_page = alloc_page(GFP_KERNEL);
1545 if (!rdev->bb_page)
1546 return -ENOMEM;
1548 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 rdev->badblocks.count == 0) {
1550 /* need to load the bad block list.
1551 * Currently we limit it to one page.
1553 s32 offset;
1554 sector_t bb_sector;
1555 u64 *bbp;
1556 int i;
1557 int sectors = le16_to_cpu(sb->bblog_size);
1558 if (sectors > (PAGE_SIZE / 512))
1559 return -EINVAL;
1560 offset = le32_to_cpu(sb->bblog_offset);
1561 if (offset == 0)
1562 return -EINVAL;
1563 bb_sector = (long long)offset;
1564 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 rdev->bb_page, READ, true))
1566 return -EIO;
1567 bbp = (u64 *)page_address(rdev->bb_page);
1568 rdev->badblocks.shift = sb->bblog_shift;
1569 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 u64 bb = le64_to_cpu(*bbp);
1571 int count = bb & (0x3ff);
1572 u64 sector = bb >> 10;
1573 sector <<= sb->bblog_shift;
1574 count <<= sb->bblog_shift;
1575 if (bb + 1 == 0)
1576 break;
1577 if (md_set_badblocks(&rdev->badblocks,
1578 sector, count, 1) == 0)
1579 return -EINVAL;
1581 } else if (sb->bblog_offset == 0)
1582 rdev->badblocks.shift = -1;
1584 if (!refdev) {
1585 ret = 1;
1586 } else {
1587 __u64 ev1, ev2;
1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 sb->level != refsb->level ||
1592 sb->layout != refsb->layout ||
1593 sb->chunksize != refsb->chunksize) {
1594 printk(KERN_WARNING "md: %s has strangely different"
1595 " superblock to %s\n",
1596 bdevname(rdev->bdev,b),
1597 bdevname(refdev->bdev,b2));
1598 return -EINVAL;
1600 ev1 = le64_to_cpu(sb->events);
1601 ev2 = le64_to_cpu(refsb->events);
1603 if (ev1 > ev2)
1604 ret = 1;
1605 else
1606 ret = 0;
1608 if (minor_version)
1609 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 le64_to_cpu(sb->data_offset);
1611 else
1612 rdev->sectors = rdev->sb_start;
1613 if (rdev->sectors < le64_to_cpu(sb->data_size))
1614 return -EINVAL;
1615 rdev->sectors = le64_to_cpu(sb->data_size);
1616 if (le64_to_cpu(sb->size) > rdev->sectors)
1617 return -EINVAL;
1618 return ret;
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 __u64 ev1 = le64_to_cpu(sb->events);
1626 rdev->raid_disk = -1;
1627 clear_bit(Faulty, &rdev->flags);
1628 clear_bit(In_sync, &rdev->flags);
1629 clear_bit(WriteMostly, &rdev->flags);
1631 if (mddev->raid_disks == 0) {
1632 mddev->major_version = 1;
1633 mddev->patch_version = 0;
1634 mddev->external = 0;
1635 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 mddev->level = le32_to_cpu(sb->level);
1639 mddev->clevel[0] = 0;
1640 mddev->layout = le32_to_cpu(sb->layout);
1641 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 mddev->dev_sectors = le64_to_cpu(sb->size);
1643 mddev->events = ev1;
1644 mddev->bitmap_info.offset = 0;
1645 mddev->bitmap_info.default_offset = 1024 >> 9;
1647 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 memcpy(mddev->uuid, sb->set_uuid, 16);
1650 mddev->max_disks = (4096-256)/2;
1652 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 mddev->bitmap_info.file == NULL )
1654 mddev->bitmap_info.offset =
1655 (__s32)le32_to_cpu(sb->bitmap_offset);
1657 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 mddev->new_level = le32_to_cpu(sb->new_level);
1661 mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 } else {
1664 mddev->reshape_position = MaxSector;
1665 mddev->delta_disks = 0;
1666 mddev->new_level = mddev->level;
1667 mddev->new_layout = mddev->layout;
1668 mddev->new_chunk_sectors = mddev->chunk_sectors;
1671 } else if (mddev->pers == NULL) {
1672 /* Insist of good event counter while assembling, except for
1673 * spares (which don't need an event count) */
1674 ++ev1;
1675 if (rdev->desc_nr >= 0 &&
1676 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 if (ev1 < mddev->events)
1679 return -EINVAL;
1680 } else if (mddev->bitmap) {
1681 /* If adding to array with a bitmap, then we can accept an
1682 * older device, but not too old.
1684 if (ev1 < mddev->bitmap->events_cleared)
1685 return 0;
1686 } else {
1687 if (ev1 < mddev->events)
1688 /* just a hot-add of a new device, leave raid_disk at -1 */
1689 return 0;
1691 if (mddev->level != LEVEL_MULTIPATH) {
1692 int role;
1693 if (rdev->desc_nr < 0 ||
1694 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695 role = 0xffff;
1696 rdev->desc_nr = -1;
1697 } else
1698 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699 switch(role) {
1700 case 0xffff: /* spare */
1701 break;
1702 case 0xfffe: /* faulty */
1703 set_bit(Faulty, &rdev->flags);
1704 break;
1705 default:
1706 if ((le32_to_cpu(sb->feature_map) &
1707 MD_FEATURE_RECOVERY_OFFSET))
1708 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709 else
1710 set_bit(In_sync, &rdev->flags);
1711 rdev->raid_disk = role;
1712 break;
1714 if (sb->devflags & WriteMostly1)
1715 set_bit(WriteMostly, &rdev->flags);
1716 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 set_bit(Replacement, &rdev->flags);
1718 } else /* MULTIPATH are always insync */
1719 set_bit(In_sync, &rdev->flags);
1721 return 0;
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1726 struct mdp_superblock_1 *sb;
1727 struct md_rdev *rdev2;
1728 int max_dev, i;
1729 /* make rdev->sb match mddev and rdev data. */
1731 sb = page_address(rdev->sb_page);
1733 sb->feature_map = 0;
1734 sb->pad0 = 0;
1735 sb->recovery_offset = cpu_to_le64(0);
1736 memset(sb->pad1, 0, sizeof(sb->pad1));
1737 memset(sb->pad3, 0, sizeof(sb->pad3));
1739 sb->utime = cpu_to_le64((__u64)mddev->utime);
1740 sb->events = cpu_to_le64(mddev->events);
1741 if (mddev->in_sync)
1742 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743 else
1744 sb->resync_offset = cpu_to_le64(0);
1746 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749 sb->size = cpu_to_le64(mddev->dev_sectors);
1750 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751 sb->level = cpu_to_le32(mddev->level);
1752 sb->layout = cpu_to_le32(mddev->layout);
1754 if (test_bit(WriteMostly, &rdev->flags))
1755 sb->devflags |= WriteMostly1;
1756 else
1757 sb->devflags &= ~WriteMostly1;
1759 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764 if (rdev->raid_disk >= 0 &&
1765 !test_bit(In_sync, &rdev->flags)) {
1766 sb->feature_map |=
1767 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768 sb->recovery_offset =
1769 cpu_to_le64(rdev->recovery_offset);
1771 if (test_bit(Replacement, &rdev->flags))
1772 sb->feature_map |=
1773 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1775 if (mddev->reshape_position != MaxSector) {
1776 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 sb->new_level = cpu_to_le32(mddev->new_level);
1781 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784 if (rdev->badblocks.count == 0)
1785 /* Nothing to do for bad blocks*/ ;
1786 else if (sb->bblog_offset == 0)
1787 /* Cannot record bad blocks on this device */
1788 md_error(mddev, rdev);
1789 else {
1790 struct badblocks *bb = &rdev->badblocks;
1791 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792 u64 *p = bb->page;
1793 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794 if (bb->changed) {
1795 unsigned seq;
1797 retry:
1798 seq = read_seqbegin(&bb->lock);
1800 memset(bbp, 0xff, PAGE_SIZE);
1802 for (i = 0 ; i < bb->count ; i++) {
1803 u64 internal_bb = *p++;
1804 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 | BB_LEN(internal_bb));
1806 *bbp++ = cpu_to_le64(store_bb);
1808 bb->changed = 0;
1809 if (read_seqretry(&bb->lock, seq))
1810 goto retry;
1812 bb->sector = (rdev->sb_start +
1813 (int)le32_to_cpu(sb->bblog_offset));
1814 bb->size = le16_to_cpu(sb->bblog_size);
1818 max_dev = 0;
1819 list_for_each_entry(rdev2, &mddev->disks, same_set)
1820 if (rdev2->desc_nr+1 > max_dev)
1821 max_dev = rdev2->desc_nr+1;
1823 if (max_dev > le32_to_cpu(sb->max_dev)) {
1824 int bmask;
1825 sb->max_dev = cpu_to_le32(max_dev);
1826 rdev->sb_size = max_dev * 2 + 256;
1827 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 if (rdev->sb_size & bmask)
1829 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830 } else
1831 max_dev = le32_to_cpu(sb->max_dev);
1833 for (i=0; i<max_dev;i++)
1834 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837 i = rdev2->desc_nr;
1838 if (test_bit(Faulty, &rdev2->flags))
1839 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 else if (test_bit(In_sync, &rdev2->flags))
1841 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 else if (rdev2->raid_disk >= 0)
1843 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 else
1845 sb->dev_roles[i] = cpu_to_le16(0xffff);
1848 sb->sb_csum = calc_sb_1_csum(sb);
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1854 struct mdp_superblock_1 *sb;
1855 sector_t max_sectors;
1856 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 return 0; /* component must fit device */
1858 if (rdev->sb_start < rdev->data_offset) {
1859 /* minor versions 1 and 2; superblock before data */
1860 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 max_sectors -= rdev->data_offset;
1862 if (!num_sectors || num_sectors > max_sectors)
1863 num_sectors = max_sectors;
1864 } else if (rdev->mddev->bitmap_info.offset) {
1865 /* minor version 0 with bitmap we can't move */
1866 return 0;
1867 } else {
1868 /* minor version 0; superblock after data */
1869 sector_t sb_start;
1870 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 sb_start &= ~(sector_t)(4*2 - 1);
1872 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 if (!num_sectors || num_sectors > max_sectors)
1874 num_sectors = max_sectors;
1875 rdev->sb_start = sb_start;
1877 sb = page_address(rdev->sb_page);
1878 sb->data_size = cpu_to_le64(num_sectors);
1879 sb->super_offset = rdev->sb_start;
1880 sb->sb_csum = calc_sb_1_csum(sb);
1881 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 rdev->sb_page);
1883 md_super_wait(rdev->mddev);
1884 return num_sectors;
1887 static struct super_type super_types[] = {
1888 [0] = {
1889 .name = "0.90.0",
1890 .owner = THIS_MODULE,
1891 .load_super = super_90_load,
1892 .validate_super = super_90_validate,
1893 .sync_super = super_90_sync,
1894 .rdev_size_change = super_90_rdev_size_change,
1896 [1] = {
1897 .name = "md-1",
1898 .owner = THIS_MODULE,
1899 .load_super = super_1_load,
1900 .validate_super = super_1_validate,
1901 .sync_super = super_1_sync,
1902 .rdev_size_change = super_1_rdev_size_change,
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1908 if (mddev->sync_super) {
1909 mddev->sync_super(mddev, rdev);
1910 return;
1913 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1915 super_types[mddev->major_version].sync_super(mddev, rdev);
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1920 struct md_rdev *rdev, *rdev2;
1922 rcu_read_lock();
1923 rdev_for_each_rcu(rdev, mddev1)
1924 rdev_for_each_rcu(rdev2, mddev2)
1925 if (rdev->bdev->bd_contains ==
1926 rdev2->bdev->bd_contains) {
1927 rcu_read_unlock();
1928 return 1;
1930 rcu_read_unlock();
1931 return 0;
1934 static LIST_HEAD(pending_raid_disks);
1937 * Try to register data integrity profile for an mddev
1939 * This is called when an array is started and after a disk has been kicked
1940 * from the array. It only succeeds if all working and active component devices
1941 * are integrity capable with matching profiles.
1943 int md_integrity_register(struct mddev *mddev)
1945 struct md_rdev *rdev, *reference = NULL;
1947 if (list_empty(&mddev->disks))
1948 return 0; /* nothing to do */
1949 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 return 0; /* shouldn't register, or already is */
1951 list_for_each_entry(rdev, &mddev->disks, same_set) {
1952 /* skip spares and non-functional disks */
1953 if (test_bit(Faulty, &rdev->flags))
1954 continue;
1955 if (rdev->raid_disk < 0)
1956 continue;
1957 if (!reference) {
1958 /* Use the first rdev as the reference */
1959 reference = rdev;
1960 continue;
1962 /* does this rdev's profile match the reference profile? */
1963 if (blk_integrity_compare(reference->bdev->bd_disk,
1964 rdev->bdev->bd_disk) < 0)
1965 return -EINVAL;
1967 if (!reference || !bdev_get_integrity(reference->bdev))
1968 return 0;
1970 * All component devices are integrity capable and have matching
1971 * profiles, register the common profile for the md device.
1973 if (blk_integrity_register(mddev->gendisk,
1974 bdev_get_integrity(reference->bdev)) != 0) {
1975 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976 mdname(mddev));
1977 return -EINVAL;
1979 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982 mdname(mddev));
1983 return -EINVAL;
1985 return 0;
1987 EXPORT_SYMBOL(md_integrity_register);
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1992 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1995 if (!bi_mddev) /* nothing to do */
1996 return;
1997 if (rdev->raid_disk < 0) /* skip spares */
1998 return;
1999 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 rdev->bdev->bd_disk) >= 0)
2001 return;
2002 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 blk_integrity_unregister(mddev->gendisk);
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2009 char b[BDEVNAME_SIZE];
2010 struct kobject *ko;
2011 char *s;
2012 int err;
2014 if (rdev->mddev) {
2015 MD_BUG();
2016 return -EINVAL;
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 return -EEXIST;
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2026 if (mddev->pers) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2031 if (mddev->level > 0)
2032 return -ENOSPC;
2033 } else
2034 mddev->dev_sectors = rdev->sectors;
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2041 if (rdev->desc_nr < 0) {
2042 int choice = 0;
2043 if (mddev->pers) choice = mddev->raid_disks;
2044 while (find_rdev_nr(mddev, choice))
2045 choice++;
2046 rdev->desc_nr = choice;
2047 } else {
2048 if (find_rdev_nr(mddev, rdev->desc_nr))
2049 return -EBUSY;
2051 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 mdname(mddev), mddev->max_disks);
2054 return -EBUSY;
2056 bdevname(rdev->bdev,b);
2057 while ( (s=strchr(b, '/')) != NULL)
2058 *s = '!';
2060 rdev->mddev = mddev;
2061 printk(KERN_INFO "md: bind<%s>\n", b);
2063 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064 goto fail;
2066 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 /* failure here is OK */;
2069 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2071 list_add_rcu(&rdev->same_set, &mddev->disks);
2072 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2074 /* May as well allow recovery to be retried once */
2075 mddev->recovery_disabled++;
2077 return 0;
2079 fail:
2080 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081 b, mdname(mddev));
2082 return err;
2085 static void md_delayed_delete(struct work_struct *ws)
2087 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 kobject_del(&rdev->kobj);
2089 kobject_put(&rdev->kobj);
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2094 char b[BDEVNAME_SIZE];
2095 if (!rdev->mddev) {
2096 MD_BUG();
2097 return;
2099 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 list_del_rcu(&rdev->same_set);
2101 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102 rdev->mddev = NULL;
2103 sysfs_remove_link(&rdev->kobj, "block");
2104 sysfs_put(rdev->sysfs_state);
2105 rdev->sysfs_state = NULL;
2106 kfree(rdev->badblocks.page);
2107 rdev->badblocks.count = 0;
2108 rdev->badblocks.page = NULL;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2113 synchronize_rcu();
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2126 int err = 0;
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 if (IS_ERR(bdev)) {
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2137 rdev->bdev = bdev;
2138 return err;
2141 static void unlock_rdev(struct md_rdev *rdev)
2143 struct block_device *bdev = rdev->bdev;
2144 rdev->bdev = NULL;
2145 if (!bdev)
2146 MD_BUG();
2147 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 void md_autodetect_dev(dev_t dev);
2152 static void export_rdev(struct md_rdev * rdev)
2154 char b[BDEVNAME_SIZE];
2155 printk(KERN_INFO "md: export_rdev(%s)\n",
2156 bdevname(rdev->bdev,b));
2157 if (rdev->mddev)
2158 MD_BUG();
2159 free_disk_sb(rdev);
2160 #ifndef MODULE
2161 if (test_bit(AutoDetected, &rdev->flags))
2162 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164 unlock_rdev(rdev);
2165 kobject_put(&rdev->kobj);
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2170 unbind_rdev_from_array(rdev);
2171 export_rdev(rdev);
2174 static void export_array(struct mddev *mddev)
2176 struct md_rdev *rdev, *tmp;
2178 rdev_for_each(rdev, tmp, mddev) {
2179 if (!rdev->mddev) {
2180 MD_BUG();
2181 continue;
2183 kick_rdev_from_array(rdev);
2185 if (!list_empty(&mddev->disks))
2186 MD_BUG();
2187 mddev->raid_disks = 0;
2188 mddev->major_version = 0;
2191 static void print_desc(mdp_disk_t *desc)
2193 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 desc->major,desc->minor,desc->raid_disk,desc->state);
2197 static void print_sb_90(mdp_super_t *sb)
2199 int i;
2201 printk(KERN_INFO
2202 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 sb->major_version, sb->minor_version, sb->patch_version,
2204 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205 sb->ctime);
2206 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 sb->md_minor, sb->layout, sb->chunk_size);
2209 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2210 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 sb->failed_disks, sb->spare_disks,
2213 sb->sb_csum, (unsigned long)sb->events_lo);
2215 printk(KERN_INFO);
2216 for (i = 0; i < MD_SB_DISKS; i++) {
2217 mdp_disk_t *desc;
2219 desc = sb->disks + i;
2220 if (desc->number || desc->major || desc->minor ||
2221 desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 printk(" D %2d: ", i);
2223 print_desc(desc);
2226 printk(KERN_INFO "md: THIS: ");
2227 print_desc(&sb->this_disk);
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2232 __u8 *uuid;
2234 uuid = sb->set_uuid;
2235 printk(KERN_INFO
2236 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 "md: Name: \"%s\" CT:%llu\n",
2238 le32_to_cpu(sb->major_version),
2239 le32_to_cpu(sb->feature_map),
2240 uuid,
2241 sb->set_name,
2242 (unsigned long long)le64_to_cpu(sb->ctime)
2243 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2245 uuid = sb->device_uuid;
2246 printk(KERN_INFO
2247 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248 " RO:%llu\n"
2249 "md: Dev:%08x UUID: %pU\n"
2250 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 "md: (MaxDev:%u) \n",
2252 le32_to_cpu(sb->level),
2253 (unsigned long long)le64_to_cpu(sb->size),
2254 le32_to_cpu(sb->raid_disks),
2255 le32_to_cpu(sb->layout),
2256 le32_to_cpu(sb->chunksize),
2257 (unsigned long long)le64_to_cpu(sb->data_offset),
2258 (unsigned long long)le64_to_cpu(sb->data_size),
2259 (unsigned long long)le64_to_cpu(sb->super_offset),
2260 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 le32_to_cpu(sb->dev_number),
2262 uuid,
2263 sb->devflags,
2264 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 (unsigned long long)le64_to_cpu(sb->events),
2266 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267 le32_to_cpu(sb->sb_csum),
2268 le32_to_cpu(sb->max_dev)
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2274 char b[BDEVNAME_SIZE];
2275 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278 rdev->desc_nr);
2279 if (rdev->sb_loaded) {
2280 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 switch (major_version) {
2282 case 0:
2283 print_sb_90(page_address(rdev->sb_page));
2284 break;
2285 case 1:
2286 print_sb_1(page_address(rdev->sb_page));
2287 break;
2289 } else
2290 printk(KERN_INFO "md: no rdev superblock!\n");
2293 static void md_print_devices(void)
2295 struct list_head *tmp;
2296 struct md_rdev *rdev;
2297 struct mddev *mddev;
2298 char b[BDEVNAME_SIZE];
2300 printk("\n");
2301 printk("md: **********************************\n");
2302 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2303 printk("md: **********************************\n");
2304 for_each_mddev(mddev, tmp) {
2306 if (mddev->bitmap)
2307 bitmap_print_sb(mddev->bitmap);
2308 else
2309 printk("%s: ", mdname(mddev));
2310 list_for_each_entry(rdev, &mddev->disks, same_set)
2311 printk("<%s>", bdevname(rdev->bdev,b));
2312 printk("\n");
2314 list_for_each_entry(rdev, &mddev->disks, same_set)
2315 print_rdev(rdev, mddev->major_version);
2317 printk("md: **********************************\n");
2318 printk("\n");
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2324 /* Update each superblock (in-memory image), but
2325 * if we are allowed to, skip spares which already
2326 * have the right event counter, or have one earlier
2327 * (which would mean they aren't being marked as dirty
2328 * with the rest of the array)
2330 struct md_rdev *rdev;
2331 list_for_each_entry(rdev, &mddev->disks, same_set) {
2332 if (rdev->sb_events == mddev->events ||
2333 (nospares &&
2334 rdev->raid_disk < 0 &&
2335 rdev->sb_events+1 == mddev->events)) {
2336 /* Don't update this superblock */
2337 rdev->sb_loaded = 2;
2338 } else {
2339 sync_super(mddev, rdev);
2340 rdev->sb_loaded = 1;
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2347 struct md_rdev *rdev;
2348 int sync_req;
2349 int nospares = 0;
2350 int any_badblocks_changed = 0;
2352 repeat:
2353 /* First make sure individual recovery_offsets are correct */
2354 list_for_each_entry(rdev, &mddev->disks, same_set) {
2355 if (rdev->raid_disk >= 0 &&
2356 mddev->delta_disks >= 0 &&
2357 !test_bit(In_sync, &rdev->flags) &&
2358 mddev->curr_resync_completed > rdev->recovery_offset)
2359 rdev->recovery_offset = mddev->curr_resync_completed;
2362 if (!mddev->persistent) {
2363 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 if (!mddev->external) {
2366 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 list_for_each_entry(rdev, &mddev->disks, same_set) {
2368 if (rdev->badblocks.changed) {
2369 rdev->badblocks.changed = 0;
2370 md_ack_all_badblocks(&rdev->badblocks);
2371 md_error(mddev, rdev);
2373 clear_bit(Blocked, &rdev->flags);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2378 wake_up(&mddev->sb_wait);
2379 return;
2382 spin_lock_irq(&mddev->write_lock);
2384 mddev->utime = get_seconds();
2386 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2387 force_change = 1;
2388 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389 /* just a clean<-> dirty transition, possibly leave spares alone,
2390 * though if events isn't the right even/odd, we will have to do
2391 * spares after all
2393 nospares = 1;
2394 if (force_change)
2395 nospares = 0;
2396 if (mddev->degraded)
2397 /* If the array is degraded, then skipping spares is both
2398 * dangerous and fairly pointless.
2399 * Dangerous because a device that was removed from the array
2400 * might have a event_count that still looks up-to-date,
2401 * so it can be re-added without a resync.
2402 * Pointless because if there are any spares to skip,
2403 * then a recovery will happen and soon that array won't
2404 * be degraded any more and the spare can go back to sleep then.
2406 nospares = 0;
2408 sync_req = mddev->in_sync;
2410 /* If this is just a dirty<->clean transition, and the array is clean
2411 * and 'events' is odd, we can roll back to the previous clean state */
2412 if (nospares
2413 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414 && mddev->can_decrease_events
2415 && mddev->events != 1) {
2416 mddev->events--;
2417 mddev->can_decrease_events = 0;
2418 } else {
2419 /* otherwise we have to go forward and ... */
2420 mddev->events ++;
2421 mddev->can_decrease_events = nospares;
2424 if (!mddev->events) {
2426 * oops, this 64-bit counter should never wrap.
2427 * Either we are in around ~1 trillion A.C., assuming
2428 * 1 reboot per second, or we have a bug:
2430 MD_BUG();
2431 mddev->events --;
2434 list_for_each_entry(rdev, &mddev->disks, same_set) {
2435 if (rdev->badblocks.changed)
2436 any_badblocks_changed++;
2437 if (test_bit(Faulty, &rdev->flags))
2438 set_bit(FaultRecorded, &rdev->flags);
2441 sync_sbs(mddev, nospares);
2442 spin_unlock_irq(&mddev->write_lock);
2444 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445 mdname(mddev), mddev->in_sync);
2447 bitmap_update_sb(mddev->bitmap);
2448 list_for_each_entry(rdev, &mddev->disks, same_set) {
2449 char b[BDEVNAME_SIZE];
2451 if (rdev->sb_loaded != 1)
2452 continue; /* no noise on spare devices */
2454 if (!test_bit(Faulty, &rdev->flags) &&
2455 rdev->saved_raid_disk == -1) {
2456 md_super_write(mddev,rdev,
2457 rdev->sb_start, rdev->sb_size,
2458 rdev->sb_page);
2459 pr_debug("md: (write) %s's sb offset: %llu\n",
2460 bdevname(rdev->bdev, b),
2461 (unsigned long long)rdev->sb_start);
2462 rdev->sb_events = mddev->events;
2463 if (rdev->badblocks.size) {
2464 md_super_write(mddev, rdev,
2465 rdev->badblocks.sector,
2466 rdev->badblocks.size << 9,
2467 rdev->bb_page);
2468 rdev->badblocks.size = 0;
2471 } else if (test_bit(Faulty, &rdev->flags))
2472 pr_debug("md: %s (skipping faulty)\n",
2473 bdevname(rdev->bdev, b));
2474 else
2475 pr_debug("(skipping incremental s/r ");
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2479 break;
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2489 goto repeat;
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2511 static int cmd_match(const char *cmd, const char *str)
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2517 while (*cmd && *str && *cmd == *str) {
2518 cmd++;
2519 str++;
2521 if (*cmd == '\n')
2522 cmd++;
2523 if (*str || *cmd)
2524 return 0;
2525 return 1;
2528 struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(struct md_rdev *, char *);
2531 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2534 static ssize_t
2535 state_show(struct md_rdev *rdev, char *page)
2537 char *sep = "";
2538 size_t len = 0;
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2543 sep = ",";
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2547 sep = ",";
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2551 sep = ",";
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 (rdev->badblocks.unacked_exist
2555 && !test_bit(Faulty, &rdev->flags))) {
2556 len += sprintf(page+len, "%sblocked", sep);
2557 sep = ",";
2559 if (!test_bit(Faulty, &rdev->flags) &&
2560 !test_bit(In_sync, &rdev->flags)) {
2561 len += sprintf(page+len, "%sspare", sep);
2562 sep = ",";
2564 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565 len += sprintf(page+len, "%swrite_error", sep);
2566 sep = ",";
2568 if (test_bit(WantReplacement, &rdev->flags)) {
2569 len += sprintf(page+len, "%swant_replacement", sep);
2570 sep = ",";
2572 if (test_bit(Replacement, &rdev->flags)) {
2573 len += sprintf(page+len, "%sreplacement", sep);
2574 sep = ",";
2577 return len+sprintf(page+len, "\n");
2580 static ssize_t
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2583 /* can write
2584 * faulty - simulates an error
2585 * remove - disconnects the device
2586 * writemostly - sets write_mostly
2587 * -writemostly - clears write_mostly
2588 * blocked - sets the Blocked flags
2589 * -blocked - clears the Blocked and possibly simulates an error
2590 * insync - sets Insync providing device isn't active
2591 * write_error - sets WriteErrorSeen
2592 * -write_error - clears WriteErrorSeen
2594 int err = -EINVAL;
2595 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 md_error(rdev->mddev, rdev);
2597 if (test_bit(Faulty, &rdev->flags))
2598 err = 0;
2599 else
2600 err = -EBUSY;
2601 } else if (cmd_match(buf, "remove")) {
2602 if (rdev->raid_disk >= 0)
2603 err = -EBUSY;
2604 else {
2605 struct mddev *mddev = rdev->mddev;
2606 kick_rdev_from_array(rdev);
2607 if (mddev->pers)
2608 md_update_sb(mddev, 1);
2609 md_new_event(mddev);
2610 err = 0;
2612 } else if (cmd_match(buf, "writemostly")) {
2613 set_bit(WriteMostly, &rdev->flags);
2614 err = 0;
2615 } else if (cmd_match(buf, "-writemostly")) {
2616 clear_bit(WriteMostly, &rdev->flags);
2617 err = 0;
2618 } else if (cmd_match(buf, "blocked")) {
2619 set_bit(Blocked, &rdev->flags);
2620 err = 0;
2621 } else if (cmd_match(buf, "-blocked")) {
2622 if (!test_bit(Faulty, &rdev->flags) &&
2623 rdev->badblocks.unacked_exist) {
2624 /* metadata handler doesn't understand badblocks,
2625 * so we need to fail the device
2627 md_error(rdev->mddev, rdev);
2629 clear_bit(Blocked, &rdev->flags);
2630 clear_bit(BlockedBadBlocks, &rdev->flags);
2631 wake_up(&rdev->blocked_wait);
2632 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 md_wakeup_thread(rdev->mddev->thread);
2635 err = 0;
2636 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 set_bit(In_sync, &rdev->flags);
2638 err = 0;
2639 } else if (cmd_match(buf, "write_error")) {
2640 set_bit(WriteErrorSeen, &rdev->flags);
2641 err = 0;
2642 } else if (cmd_match(buf, "-write_error")) {
2643 clear_bit(WriteErrorSeen, &rdev->flags);
2644 err = 0;
2645 } else if (cmd_match(buf, "want_replacement")) {
2646 /* Any non-spare device that is not a replacement can
2647 * become want_replacement at any time, but we then need to
2648 * check if recovery is needed.
2650 if (rdev->raid_disk >= 0 &&
2651 !test_bit(Replacement, &rdev->flags))
2652 set_bit(WantReplacement, &rdev->flags);
2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 md_wakeup_thread(rdev->mddev->thread);
2655 err = 0;
2656 } else if (cmd_match(buf, "-want_replacement")) {
2657 /* Clearing 'want_replacement' is always allowed.
2658 * Once replacements starts it is too late though.
2660 err = 0;
2661 clear_bit(WantReplacement, &rdev->flags);
2662 } else if (cmd_match(buf, "replacement")) {
2663 /* Can only set a device as a replacement when array has not
2664 * yet been started. Once running, replacement is automatic
2665 * from spares, or by assigning 'slot'.
2667 if (rdev->mddev->pers)
2668 err = -EBUSY;
2669 else {
2670 set_bit(Replacement, &rdev->flags);
2671 err = 0;
2673 } else if (cmd_match(buf, "-replacement")) {
2674 /* Similarly, can only clear Replacement before start */
2675 if (rdev->mddev->pers)
2676 err = -EBUSY;
2677 else {
2678 clear_bit(Replacement, &rdev->flags);
2679 err = 0;
2682 if (!err)
2683 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684 return err ? err : len;
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2689 static ssize_t
2690 errors_show(struct md_rdev *rdev, char *page)
2692 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2695 static ssize_t
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2698 char *e;
2699 unsigned long n = simple_strtoul(buf, &e, 10);
2700 if (*buf && (*e == 0 || *e == '\n')) {
2701 atomic_set(&rdev->corrected_errors, n);
2702 return len;
2704 return -EINVAL;
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2709 static ssize_t
2710 slot_show(struct md_rdev *rdev, char *page)
2712 if (rdev->raid_disk < 0)
2713 return sprintf(page, "none\n");
2714 else
2715 return sprintf(page, "%d\n", rdev->raid_disk);
2718 static ssize_t
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2721 char *e;
2722 int err;
2723 int slot = simple_strtoul(buf, &e, 10);
2724 if (strncmp(buf, "none", 4)==0)
2725 slot = -1;
2726 else if (e==buf || (*e && *e!= '\n'))
2727 return -EINVAL;
2728 if (rdev->mddev->pers && slot == -1) {
2729 /* Setting 'slot' on an active array requires also
2730 * updating the 'rd%d' link, and communicating
2731 * with the personality with ->hot_*_disk.
2732 * For now we only support removing
2733 * failed/spare devices. This normally happens automatically,
2734 * but not when the metadata is externally managed.
2736 if (rdev->raid_disk == -1)
2737 return -EEXIST;
2738 /* personality does all needed checks */
2739 if (rdev->mddev->pers->hot_remove_disk == NULL)
2740 return -EINVAL;
2741 err = rdev->mddev->pers->
2742 hot_remove_disk(rdev->mddev, rdev);
2743 if (err)
2744 return err;
2745 sysfs_unlink_rdev(rdev->mddev, rdev);
2746 rdev->raid_disk = -1;
2747 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748 md_wakeup_thread(rdev->mddev->thread);
2749 } else if (rdev->mddev->pers) {
2750 /* Activating a spare .. or possibly reactivating
2751 * if we ever get bitmaps working here.
2754 if (rdev->raid_disk != -1)
2755 return -EBUSY;
2757 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2758 return -EBUSY;
2760 if (rdev->mddev->pers->hot_add_disk == NULL)
2761 return -EINVAL;
2763 if (slot >= rdev->mddev->raid_disks &&
2764 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2765 return -ENOSPC;
2767 rdev->raid_disk = slot;
2768 if (test_bit(In_sync, &rdev->flags))
2769 rdev->saved_raid_disk = slot;
2770 else
2771 rdev->saved_raid_disk = -1;
2772 clear_bit(In_sync, &rdev->flags);
2773 err = rdev->mddev->pers->
2774 hot_add_disk(rdev->mddev, rdev);
2775 if (err) {
2776 rdev->raid_disk = -1;
2777 return err;
2778 } else
2779 sysfs_notify_dirent_safe(rdev->sysfs_state);
2780 if (sysfs_link_rdev(rdev->mddev, rdev))
2781 /* failure here is OK */;
2782 /* don't wakeup anyone, leave that to userspace. */
2783 } else {
2784 if (slot >= rdev->mddev->raid_disks &&
2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786 return -ENOSPC;
2787 rdev->raid_disk = slot;
2788 /* assume it is working */
2789 clear_bit(Faulty, &rdev->flags);
2790 clear_bit(WriteMostly, &rdev->flags);
2791 set_bit(In_sync, &rdev->flags);
2792 sysfs_notify_dirent_safe(rdev->sysfs_state);
2794 return len;
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2801 static ssize_t
2802 offset_show(struct md_rdev *rdev, char *page)
2804 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2807 static ssize_t
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2810 char *e;
2811 unsigned long long offset = simple_strtoull(buf, &e, 10);
2812 if (e==buf || (*e && *e != '\n'))
2813 return -EINVAL;
2814 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2815 return -EBUSY;
2816 if (rdev->sectors && rdev->mddev->external)
2817 /* Must set offset before size, so overlap checks
2818 * can be sane */
2819 return -EBUSY;
2820 rdev->data_offset = offset;
2821 return len;
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2827 static ssize_t
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2830 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2835 /* check if two start/length pairs overlap */
2836 if (s1+l1 <= s2)
2837 return 0;
2838 if (s2+l2 <= s1)
2839 return 0;
2840 return 1;
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2845 unsigned long long blocks;
2846 sector_t new;
2848 if (strict_strtoull(buf, 10, &blocks) < 0)
2849 return -EINVAL;
2851 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852 return -EINVAL; /* sector conversion overflow */
2854 new = blocks * 2;
2855 if (new != blocks * 2)
2856 return -EINVAL; /* unsigned long long to sector_t overflow */
2858 *sectors = new;
2859 return 0;
2862 static ssize_t
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2865 struct mddev *my_mddev = rdev->mddev;
2866 sector_t oldsectors = rdev->sectors;
2867 sector_t sectors;
2869 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2870 return -EINVAL;
2871 if (my_mddev->pers && rdev->raid_disk >= 0) {
2872 if (my_mddev->persistent) {
2873 sectors = super_types[my_mddev->major_version].
2874 rdev_size_change(rdev, sectors);
2875 if (!sectors)
2876 return -EBUSY;
2877 } else if (!sectors)
2878 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2879 rdev->data_offset;
2881 if (sectors < my_mddev->dev_sectors)
2882 return -EINVAL; /* component must fit device */
2884 rdev->sectors = sectors;
2885 if (sectors > oldsectors && my_mddev->external) {
2886 /* need to check that all other rdevs with the same ->bdev
2887 * do not overlap. We need to unlock the mddev to avoid
2888 * a deadlock. We have already changed rdev->sectors, and if
2889 * we have to change it back, we will have the lock again.
2891 struct mddev *mddev;
2892 int overlap = 0;
2893 struct list_head *tmp;
2895 mddev_unlock(my_mddev);
2896 for_each_mddev(mddev, tmp) {
2897 struct md_rdev *rdev2;
2899 mddev_lock(mddev);
2900 list_for_each_entry(rdev2, &mddev->disks, same_set)
2901 if (rdev->bdev == rdev2->bdev &&
2902 rdev != rdev2 &&
2903 overlaps(rdev->data_offset, rdev->sectors,
2904 rdev2->data_offset,
2905 rdev2->sectors)) {
2906 overlap = 1;
2907 break;
2909 mddev_unlock(mddev);
2910 if (overlap) {
2911 mddev_put(mddev);
2912 break;
2915 mddev_lock(my_mddev);
2916 if (overlap) {
2917 /* Someone else could have slipped in a size
2918 * change here, but doing so is just silly.
2919 * We put oldsectors back because we *know* it is
2920 * safe, and trust userspace not to race with
2921 * itself
2923 rdev->sectors = oldsectors;
2924 return -EBUSY;
2927 return len;
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2936 unsigned long long recovery_start = rdev->recovery_offset;
2938 if (test_bit(In_sync, &rdev->flags) ||
2939 recovery_start == MaxSector)
2940 return sprintf(page, "none\n");
2942 return sprintf(page, "%llu\n", recovery_start);
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2947 unsigned long long recovery_start;
2949 if (cmd_match(buf, "none"))
2950 recovery_start = MaxSector;
2951 else if (strict_strtoull(buf, 10, &recovery_start))
2952 return -EINVAL;
2954 if (rdev->mddev->pers &&
2955 rdev->raid_disk >= 0)
2956 return -EBUSY;
2958 rdev->recovery_offset = recovery_start;
2959 if (recovery_start == MaxSector)
2960 set_bit(In_sync, &rdev->flags);
2961 else
2962 clear_bit(In_sync, &rdev->flags);
2963 return len;
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2970 static ssize_t
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2972 static ssize_t
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2977 return badblocks_show(&rdev->badblocks, page, 0);
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2981 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982 /* Maybe that ack was all we needed */
2983 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984 wake_up(&rdev->blocked_wait);
2985 return rv;
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2993 return badblocks_show(&rdev->badblocks, page, 1);
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2997 return badblocks_store(&rdev->badblocks, page, len, 1);
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3002 static struct attribute *rdev_default_attrs[] = {
3003 &rdev_state.attr,
3004 &rdev_errors.attr,
3005 &rdev_slot.attr,
3006 &rdev_offset.attr,
3007 &rdev_size.attr,
3008 &rdev_recovery_start.attr,
3009 &rdev_bad_blocks.attr,
3010 &rdev_unack_bad_blocks.attr,
3011 NULL,
3013 static ssize_t
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3016 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018 struct mddev *mddev = rdev->mddev;
3019 ssize_t rv;
3021 if (!entry->show)
3022 return -EIO;
3024 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3025 if (!rv) {
3026 if (rdev->mddev == NULL)
3027 rv = -EBUSY;
3028 else
3029 rv = entry->show(rdev, page);
3030 mddev_unlock(mddev);
3032 return rv;
3035 static ssize_t
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037 const char *page, size_t length)
3039 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3041 ssize_t rv;
3042 struct mddev *mddev = rdev->mddev;
3044 if (!entry->store)
3045 return -EIO;
3046 if (!capable(CAP_SYS_ADMIN))
3047 return -EACCES;
3048 rv = mddev ? mddev_lock(mddev): -EBUSY;
3049 if (!rv) {
3050 if (rdev->mddev == NULL)
3051 rv = -EBUSY;
3052 else
3053 rv = entry->store(rdev, page, length);
3054 mddev_unlock(mddev);
3056 return rv;
3059 static void rdev_free(struct kobject *ko)
3061 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3062 kfree(rdev);
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065 .show = rdev_attr_show,
3066 .store = rdev_attr_store,
3068 static struct kobj_type rdev_ktype = {
3069 .release = rdev_free,
3070 .sysfs_ops = &rdev_sysfs_ops,
3071 .default_attrs = rdev_default_attrs,
3074 int md_rdev_init(struct md_rdev *rdev)
3076 rdev->desc_nr = -1;
3077 rdev->saved_raid_disk = -1;
3078 rdev->raid_disk = -1;
3079 rdev->flags = 0;
3080 rdev->data_offset = 0;
3081 rdev->sb_events = 0;
3082 rdev->last_read_error.tv_sec = 0;
3083 rdev->last_read_error.tv_nsec = 0;
3084 rdev->sb_loaded = 0;
3085 rdev->bb_page = NULL;
3086 atomic_set(&rdev->nr_pending, 0);
3087 atomic_set(&rdev->read_errors, 0);
3088 atomic_set(&rdev->corrected_errors, 0);
3090 INIT_LIST_HEAD(&rdev->same_set);
3091 init_waitqueue_head(&rdev->blocked_wait);
3093 /* Add space to store bad block list.
3094 * This reserves the space even on arrays where it cannot
3095 * be used - I wonder if that matters
3097 rdev->badblocks.count = 0;
3098 rdev->badblocks.shift = 0;
3099 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100 seqlock_init(&rdev->badblocks.lock);
3101 if (rdev->badblocks.page == NULL)
3102 return -ENOMEM;
3104 return 0;
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3108 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3110 * mark the device faulty if:
3112 * - the device is nonexistent (zero size)
3113 * - the device has no valid superblock
3115 * a faulty rdev _never_ has rdev->sb set.
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3119 char b[BDEVNAME_SIZE];
3120 int err;
3121 struct md_rdev *rdev;
3122 sector_t size;
3124 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3125 if (!rdev) {
3126 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127 return ERR_PTR(-ENOMEM);
3130 err = md_rdev_init(rdev);
3131 if (err)
3132 goto abort_free;
3133 err = alloc_disk_sb(rdev);
3134 if (err)
3135 goto abort_free;
3137 err = lock_rdev(rdev, newdev, super_format == -2);
3138 if (err)
3139 goto abort_free;
3141 kobject_init(&rdev->kobj, &rdev_ktype);
3143 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3144 if (!size) {
3145 printk(KERN_WARNING
3146 "md: %s has zero or unknown size, marking faulty!\n",
3147 bdevname(rdev->bdev,b));
3148 err = -EINVAL;
3149 goto abort_free;
3152 if (super_format >= 0) {
3153 err = super_types[super_format].
3154 load_super(rdev, NULL, super_minor);
3155 if (err == -EINVAL) {
3156 printk(KERN_WARNING
3157 "md: %s does not have a valid v%d.%d "
3158 "superblock, not importing!\n",
3159 bdevname(rdev->bdev,b),
3160 super_format, super_minor);
3161 goto abort_free;
3163 if (err < 0) {
3164 printk(KERN_WARNING
3165 "md: could not read %s's sb, not importing!\n",
3166 bdevname(rdev->bdev,b));
3167 goto abort_free;
3170 if (super_format == -1)
3171 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172 rdev->badblocks.shift = -1;
3174 return rdev;
3176 abort_free:
3177 if (rdev->bdev)
3178 unlock_rdev(rdev);
3179 free_disk_sb(rdev);
3180 kfree(rdev->badblocks.page);
3181 kfree(rdev);
3182 return ERR_PTR(err);
3186 * Check a full RAID array for plausibility
3190 static void analyze_sbs(struct mddev * mddev)
3192 int i;
3193 struct md_rdev *rdev, *freshest, *tmp;
3194 char b[BDEVNAME_SIZE];
3196 freshest = NULL;
3197 rdev_for_each(rdev, tmp, mddev)
3198 switch (super_types[mddev->major_version].
3199 load_super(rdev, freshest, mddev->minor_version)) {
3200 case 1:
3201 freshest = rdev;
3202 break;
3203 case 0:
3204 break;
3205 default:
3206 printk( KERN_ERR \
3207 "md: fatal superblock inconsistency in %s"
3208 " -- removing from array\n",
3209 bdevname(rdev->bdev,b));
3210 kick_rdev_from_array(rdev);
3214 super_types[mddev->major_version].
3215 validate_super(mddev, freshest);
3217 i = 0;
3218 rdev_for_each(rdev, tmp, mddev) {
3219 if (mddev->max_disks &&
3220 (rdev->desc_nr >= mddev->max_disks ||
3221 i > mddev->max_disks)) {
3222 printk(KERN_WARNING
3223 "md: %s: %s: only %d devices permitted\n",
3224 mdname(mddev), bdevname(rdev->bdev, b),
3225 mddev->max_disks);
3226 kick_rdev_from_array(rdev);
3227 continue;
3229 if (rdev != freshest)
3230 if (super_types[mddev->major_version].
3231 validate_super(mddev, rdev)) {
3232 printk(KERN_WARNING "md: kicking non-fresh %s"
3233 " from array!\n",
3234 bdevname(rdev->bdev,b));
3235 kick_rdev_from_array(rdev);
3236 continue;
3238 if (mddev->level == LEVEL_MULTIPATH) {
3239 rdev->desc_nr = i++;
3240 rdev->raid_disk = rdev->desc_nr;
3241 set_bit(In_sync, &rdev->flags);
3242 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243 rdev->raid_disk = -1;
3244 clear_bit(In_sync, &rdev->flags);
3249 /* Read a fixed-point number.
3250 * Numbers in sysfs attributes should be in "standard" units where
3251 * possible, so time should be in seconds.
3252 * However we internally use a a much smaller unit such as
3253 * milliseconds or jiffies.
3254 * This function takes a decimal number with a possible fractional
3255 * component, and produces an integer which is the result of
3256 * multiplying that number by 10^'scale'.
3257 * all without any floating-point arithmetic.
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3261 unsigned long result = 0;
3262 long decimals = -1;
3263 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3264 if (*cp == '.')
3265 decimals = 0;
3266 else if (decimals < scale) {
3267 unsigned int value;
3268 value = *cp - '0';
3269 result = result * 10 + value;
3270 if (decimals >= 0)
3271 decimals++;
3273 cp++;
3275 if (*cp == '\n')
3276 cp++;
3277 if (*cp)
3278 return -EINVAL;
3279 if (decimals < 0)
3280 decimals = 0;
3281 while (decimals < scale) {
3282 result *= 10;
3283 decimals ++;
3285 *res = result;
3286 return 0;
3290 static void md_safemode_timeout(unsigned long data);
3292 static ssize_t
3293 safe_delay_show(struct mddev *mddev, char *page)
3295 int msec = (mddev->safemode_delay*1000)/HZ;
3296 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3298 static ssize_t
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3301 unsigned long msec;
3303 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3304 return -EINVAL;
3305 if (msec == 0)
3306 mddev->safemode_delay = 0;
3307 else {
3308 unsigned long old_delay = mddev->safemode_delay;
3309 mddev->safemode_delay = (msec*HZ)/1000;
3310 if (mddev->safemode_delay == 0)
3311 mddev->safemode_delay = 1;
3312 if (mddev->safemode_delay < old_delay)
3313 md_safemode_timeout((unsigned long)mddev);
3315 return len;
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3320 static ssize_t
3321 level_show(struct mddev *mddev, char *page)
3323 struct md_personality *p = mddev->pers;
3324 if (p)
3325 return sprintf(page, "%s\n", p->name);
3326 else if (mddev->clevel[0])
3327 return sprintf(page, "%s\n", mddev->clevel);
3328 else if (mddev->level != LEVEL_NONE)
3329 return sprintf(page, "%d\n", mddev->level);
3330 else
3331 return 0;
3334 static ssize_t
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3337 char clevel[16];
3338 ssize_t rv = len;
3339 struct md_personality *pers;
3340 long level;
3341 void *priv;
3342 struct md_rdev *rdev;
3344 if (mddev->pers == NULL) {
3345 if (len == 0)
3346 return 0;
3347 if (len >= sizeof(mddev->clevel))
3348 return -ENOSPC;
3349 strncpy(mddev->clevel, buf, len);
3350 if (mddev->clevel[len-1] == '\n')
3351 len--;
3352 mddev->clevel[len] = 0;
3353 mddev->level = LEVEL_NONE;
3354 return rv;
3357 /* request to change the personality. Need to ensure:
3358 * - array is not engaged in resync/recovery/reshape
3359 * - old personality can be suspended
3360 * - new personality will access other array.
3363 if (mddev->sync_thread ||
3364 mddev->reshape_position != MaxSector ||
3365 mddev->sysfs_active)
3366 return -EBUSY;
3368 if (!mddev->pers->quiesce) {
3369 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370 mdname(mddev), mddev->pers->name);
3371 return -EINVAL;
3374 /* Now find the new personality */
3375 if (len == 0 || len >= sizeof(clevel))
3376 return -EINVAL;
3377 strncpy(clevel, buf, len);
3378 if (clevel[len-1] == '\n')
3379 len--;
3380 clevel[len] = 0;
3381 if (strict_strtol(clevel, 10, &level))
3382 level = LEVEL_NONE;
3384 if (request_module("md-%s", clevel) != 0)
3385 request_module("md-level-%s", clevel);
3386 spin_lock(&pers_lock);
3387 pers = find_pers(level, clevel);
3388 if (!pers || !try_module_get(pers->owner)) {
3389 spin_unlock(&pers_lock);
3390 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3391 return -EINVAL;
3393 spin_unlock(&pers_lock);
3395 if (pers == mddev->pers) {
3396 /* Nothing to do! */
3397 module_put(pers->owner);
3398 return rv;
3400 if (!pers->takeover) {
3401 module_put(pers->owner);
3402 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403 mdname(mddev), clevel);
3404 return -EINVAL;
3407 list_for_each_entry(rdev, &mddev->disks, same_set)
3408 rdev->new_raid_disk = rdev->raid_disk;
3410 /* ->takeover must set new_* and/or delta_disks
3411 * if it succeeds, and may set them when it fails.
3413 priv = pers->takeover(mddev);
3414 if (IS_ERR(priv)) {
3415 mddev->new_level = mddev->level;
3416 mddev->new_layout = mddev->layout;
3417 mddev->new_chunk_sectors = mddev->chunk_sectors;
3418 mddev->raid_disks -= mddev->delta_disks;
3419 mddev->delta_disks = 0;
3420 module_put(pers->owner);
3421 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422 mdname(mddev), clevel);
3423 return PTR_ERR(priv);
3426 /* Looks like we have a winner */
3427 mddev_suspend(mddev);
3428 mddev->pers->stop(mddev);
3430 if (mddev->pers->sync_request == NULL &&
3431 pers->sync_request != NULL) {
3432 /* need to add the md_redundancy_group */
3433 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3434 printk(KERN_WARNING
3435 "md: cannot register extra attributes for %s\n",
3436 mdname(mddev));
3437 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3439 if (mddev->pers->sync_request != NULL &&
3440 pers->sync_request == NULL) {
3441 /* need to remove the md_redundancy_group */
3442 if (mddev->to_remove == NULL)
3443 mddev->to_remove = &md_redundancy_group;
3446 if (mddev->pers->sync_request == NULL &&
3447 mddev->external) {
3448 /* We are converting from a no-redundancy array
3449 * to a redundancy array and metadata is managed
3450 * externally so we need to be sure that writes
3451 * won't block due to a need to transition
3452 * clean->dirty
3453 * until external management is started.
3455 mddev->in_sync = 0;
3456 mddev->safemode_delay = 0;
3457 mddev->safemode = 0;
3460 list_for_each_entry(rdev, &mddev->disks, same_set) {
3461 if (rdev->raid_disk < 0)
3462 continue;
3463 if (rdev->new_raid_disk >= mddev->raid_disks)
3464 rdev->new_raid_disk = -1;
3465 if (rdev->new_raid_disk == rdev->raid_disk)
3466 continue;
3467 sysfs_unlink_rdev(mddev, rdev);
3469 list_for_each_entry(rdev, &mddev->disks, same_set) {
3470 if (rdev->raid_disk < 0)
3471 continue;
3472 if (rdev->new_raid_disk == rdev->raid_disk)
3473 continue;
3474 rdev->raid_disk = rdev->new_raid_disk;
3475 if (rdev->raid_disk < 0)
3476 clear_bit(In_sync, &rdev->flags);
3477 else {
3478 if (sysfs_link_rdev(mddev, rdev))
3479 printk(KERN_WARNING "md: cannot register rd%d"
3480 " for %s after level change\n",
3481 rdev->raid_disk, mdname(mddev));
3485 module_put(mddev->pers->owner);
3486 mddev->pers = pers;
3487 mddev->private = priv;
3488 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489 mddev->level = mddev->new_level;
3490 mddev->layout = mddev->new_layout;
3491 mddev->chunk_sectors = mddev->new_chunk_sectors;
3492 mddev->delta_disks = 0;
3493 mddev->degraded = 0;
3494 if (mddev->pers->sync_request == NULL) {
3495 /* this is now an array without redundancy, so
3496 * it must always be in_sync
3498 mddev->in_sync = 1;
3499 del_timer_sync(&mddev->safemode_timer);
3501 pers->run(mddev);
3502 mddev_resume(mddev);
3503 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 md_wakeup_thread(mddev->thread);
3506 sysfs_notify(&mddev->kobj, NULL, "level");
3507 md_new_event(mddev);
3508 return rv;
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3518 /* just a number, not meaningful for all levels */
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->layout != mddev->new_layout)
3521 return sprintf(page, "%d (%d)\n",
3522 mddev->new_layout, mddev->layout);
3523 return sprintf(page, "%d\n", mddev->layout);
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3529 char *e;
3530 unsigned long n = simple_strtoul(buf, &e, 10);
3532 if (!*buf || (*e && *e != '\n'))
3533 return -EINVAL;
3535 if (mddev->pers) {
3536 int err;
3537 if (mddev->pers->check_reshape == NULL)
3538 return -EBUSY;
3539 mddev->new_layout = n;
3540 err = mddev->pers->check_reshape(mddev);
3541 if (err) {
3542 mddev->new_layout = mddev->layout;
3543 return err;
3545 } else {
3546 mddev->new_layout = n;
3547 if (mddev->reshape_position == MaxSector)
3548 mddev->layout = n;
3550 return len;
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3556 static ssize_t
3557 raid_disks_show(struct mddev *mddev, char *page)
3559 if (mddev->raid_disks == 0)
3560 return 0;
3561 if (mddev->reshape_position != MaxSector &&
3562 mddev->delta_disks != 0)
3563 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564 mddev->raid_disks - mddev->delta_disks);
3565 return sprintf(page, "%d\n", mddev->raid_disks);
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3570 static ssize_t
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3573 char *e;
3574 int rv = 0;
3575 unsigned long n = simple_strtoul(buf, &e, 10);
3577 if (!*buf || (*e && *e != '\n'))
3578 return -EINVAL;
3580 if (mddev->pers)
3581 rv = update_raid_disks(mddev, n);
3582 else if (mddev->reshape_position != MaxSector) {
3583 int olddisks = mddev->raid_disks - mddev->delta_disks;
3584 mddev->delta_disks = n - olddisks;
3585 mddev->raid_disks = n;
3586 } else
3587 mddev->raid_disks = n;
3588 return rv ? rv : len;
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3593 static ssize_t
3594 chunk_size_show(struct mddev *mddev, char *page)
3596 if (mddev->reshape_position != MaxSector &&
3597 mddev->chunk_sectors != mddev->new_chunk_sectors)
3598 return sprintf(page, "%d (%d)\n",
3599 mddev->new_chunk_sectors << 9,
3600 mddev->chunk_sectors << 9);
3601 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3604 static ssize_t
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3607 char *e;
3608 unsigned long n = simple_strtoul(buf, &e, 10);
3610 if (!*buf || (*e && *e != '\n'))
3611 return -EINVAL;
3613 if (mddev->pers) {
3614 int err;
3615 if (mddev->pers->check_reshape == NULL)
3616 return -EBUSY;
3617 mddev->new_chunk_sectors = n >> 9;
3618 err = mddev->pers->check_reshape(mddev);
3619 if (err) {
3620 mddev->new_chunk_sectors = mddev->chunk_sectors;
3621 return err;
3623 } else {
3624 mddev->new_chunk_sectors = n >> 9;
3625 if (mddev->reshape_position == MaxSector)
3626 mddev->chunk_sectors = n >> 9;
3628 return len;
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3633 static ssize_t
3634 resync_start_show(struct mddev *mddev, char *page)
3636 if (mddev->recovery_cp == MaxSector)
3637 return sprintf(page, "none\n");
3638 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3641 static ssize_t
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3644 char *e;
3645 unsigned long long n = simple_strtoull(buf, &e, 10);
3647 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3648 return -EBUSY;
3649 if (cmd_match(buf, "none"))
3650 n = MaxSector;
3651 else if (!*buf || (*e && *e != '\n'))
3652 return -EINVAL;
3654 mddev->recovery_cp = n;
3655 return len;
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3661 * The array state can be:
3663 * clear
3664 * No devices, no size, no level
3665 * Equivalent to STOP_ARRAY ioctl
3666 * inactive
3667 * May have some settings, but array is not active
3668 * all IO results in error
3669 * When written, doesn't tear down array, but just stops it
3670 * suspended (not supported yet)
3671 * All IO requests will block. The array can be reconfigured.
3672 * Writing this, if accepted, will block until array is quiescent
3673 * readonly
3674 * no resync can happen. no superblocks get written.
3675 * write requests fail
3676 * read-auto
3677 * like readonly, but behaves like 'clean' on a write request.
3679 * clean - no pending writes, but otherwise active.
3680 * When written to inactive array, starts without resync
3681 * If a write request arrives then
3682 * if metadata is known, mark 'dirty' and switch to 'active'.
3683 * if not known, block and switch to write-pending
3684 * If written to an active array that has pending writes, then fails.
3685 * active
3686 * fully active: IO and resync can be happening.
3687 * When written to inactive array, starts with resync
3689 * write-pending
3690 * clean, but writes are blocked waiting for 'active' to be written.
3692 * active-idle
3693 * like active, but no writes have been seen for a while (100msec).
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697 write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700 "write-pending", "active-idle", NULL };
3702 static int match_word(const char *word, char **list)
3704 int n;
3705 for (n=0; list[n]; n++)
3706 if (cmd_match(word, list[n]))
3707 break;
3708 return n;
3711 static ssize_t
3712 array_state_show(struct mddev *mddev, char *page)
3714 enum array_state st = inactive;
3716 if (mddev->pers)
3717 switch(mddev->ro) {
3718 case 1:
3719 st = readonly;
3720 break;
3721 case 2:
3722 st = read_auto;
3723 break;
3724 case 0:
3725 if (mddev->in_sync)
3726 st = clean;
3727 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3728 st = write_pending;
3729 else if (mddev->safemode)
3730 st = active_idle;
3731 else
3732 st = active;
3734 else {
3735 if (list_empty(&mddev->disks) &&
3736 mddev->raid_disks == 0 &&
3737 mddev->dev_sectors == 0)
3738 st = clear;
3739 else
3740 st = inactive;
3742 return sprintf(page, "%s\n", array_states[st]);
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3750 static ssize_t
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3753 int err = -EINVAL;
3754 enum array_state st = match_word(buf, array_states);
3755 switch(st) {
3756 case bad_word:
3757 break;
3758 case clear:
3759 /* stopping an active array */
3760 if (atomic_read(&mddev->openers) > 0)
3761 return -EBUSY;
3762 err = do_md_stop(mddev, 0, 0);
3763 break;
3764 case inactive:
3765 /* stopping an active array */
3766 if (mddev->pers) {
3767 if (atomic_read(&mddev->openers) > 0)
3768 return -EBUSY;
3769 err = do_md_stop(mddev, 2, 0);
3770 } else
3771 err = 0; /* already inactive */
3772 break;
3773 case suspended:
3774 break; /* not supported yet */
3775 case readonly:
3776 if (mddev->pers)
3777 err = md_set_readonly(mddev, 0);
3778 else {
3779 mddev->ro = 1;
3780 set_disk_ro(mddev->gendisk, 1);
3781 err = do_md_run(mddev);
3783 break;
3784 case read_auto:
3785 if (mddev->pers) {
3786 if (mddev->ro == 0)
3787 err = md_set_readonly(mddev, 0);
3788 else if (mddev->ro == 1)
3789 err = restart_array(mddev);
3790 if (err == 0) {
3791 mddev->ro = 2;
3792 set_disk_ro(mddev->gendisk, 0);
3794 } else {
3795 mddev->ro = 2;
3796 err = do_md_run(mddev);
3798 break;
3799 case clean:
3800 if (mddev->pers) {
3801 restart_array(mddev);
3802 spin_lock_irq(&mddev->write_lock);
3803 if (atomic_read(&mddev->writes_pending) == 0) {
3804 if (mddev->in_sync == 0) {
3805 mddev->in_sync = 1;
3806 if (mddev->safemode == 1)
3807 mddev->safemode = 0;
3808 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3810 err = 0;
3811 } else
3812 err = -EBUSY;
3813 spin_unlock_irq(&mddev->write_lock);
3814 } else
3815 err = -EINVAL;
3816 break;
3817 case active:
3818 if (mddev->pers) {
3819 restart_array(mddev);
3820 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 wake_up(&mddev->sb_wait);
3822 err = 0;
3823 } else {
3824 mddev->ro = 0;
3825 set_disk_ro(mddev->gendisk, 0);
3826 err = do_md_run(mddev);
3828 break;
3829 case write_pending:
3830 case active_idle:
3831 /* these cannot be set */
3832 break;
3834 if (err)
3835 return err;
3836 else {
3837 if (mddev->hold_active == UNTIL_IOCTL)
3838 mddev->hold_active = 0;
3839 sysfs_notify_dirent_safe(mddev->sysfs_state);
3840 return len;
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3846 static ssize_t
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848 return sprintf(page, "%d\n",
3849 atomic_read(&mddev->max_corr_read_errors));
3852 static ssize_t
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3855 char *e;
3856 unsigned long n = simple_strtoul(buf, &e, 10);
3858 if (*buf && (*e == 0 || *e == '\n')) {
3859 atomic_set(&mddev->max_corr_read_errors, n);
3860 return len;
3862 return -EINVAL;
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867 max_corrected_read_errors_store);
3869 static ssize_t
3870 null_show(struct mddev *mddev, char *page)
3872 return -EINVAL;
3875 static ssize_t
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3878 /* buf must be %d:%d\n? giving major and minor numbers */
3879 /* The new device is added to the array.
3880 * If the array has a persistent superblock, we read the
3881 * superblock to initialise info and check validity.
3882 * Otherwise, only checking done is that in bind_rdev_to_array,
3883 * which mainly checks size.
3885 char *e;
3886 int major = simple_strtoul(buf, &e, 10);
3887 int minor;
3888 dev_t dev;
3889 struct md_rdev *rdev;
3890 int err;
3892 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3893 return -EINVAL;
3894 minor = simple_strtoul(e+1, &e, 10);
3895 if (*e && *e != '\n')
3896 return -EINVAL;
3897 dev = MKDEV(major, minor);
3898 if (major != MAJOR(dev) ||
3899 minor != MINOR(dev))
3900 return -EOVERFLOW;
3903 if (mddev->persistent) {
3904 rdev = md_import_device(dev, mddev->major_version,
3905 mddev->minor_version);
3906 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907 struct md_rdev *rdev0
3908 = list_entry(mddev->disks.next,
3909 struct md_rdev, same_set);
3910 err = super_types[mddev->major_version]
3911 .load_super(rdev, rdev0, mddev->minor_version);
3912 if (err < 0)
3913 goto out;
3915 } else if (mddev->external)
3916 rdev = md_import_device(dev, -2, -1);
3917 else
3918 rdev = md_import_device(dev, -1, -1);
3920 if (IS_ERR(rdev))
3921 return PTR_ERR(rdev);
3922 err = bind_rdev_to_array(rdev, mddev);
3923 out:
3924 if (err)
3925 export_rdev(rdev);
3926 return err ? err : len;
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3932 static ssize_t
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3935 char *end;
3936 unsigned long chunk, end_chunk;
3938 if (!mddev->bitmap)
3939 goto out;
3940 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3941 while (*buf) {
3942 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943 if (buf == end) break;
3944 if (*end == '-') { /* range */
3945 buf = end + 1;
3946 end_chunk = simple_strtoul(buf, &end, 0);
3947 if (buf == end) break;
3949 if (*end && !isspace(*end)) break;
3950 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951 buf = skip_spaces(end);
3953 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3954 out:
3955 return len;
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3961 static ssize_t
3962 size_show(struct mddev *mddev, char *page)
3964 return sprintf(page, "%llu\n",
3965 (unsigned long long)mddev->dev_sectors / 2);
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3970 static ssize_t
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3973 /* If array is inactive, we can reduce the component size, but
3974 * not increase it (except from 0).
3975 * If array is active, we can try an on-line resize
3977 sector_t sectors;
3978 int err = strict_blocks_to_sectors(buf, &sectors);
3980 if (err < 0)
3981 return err;
3982 if (mddev->pers) {
3983 err = update_size(mddev, sectors);
3984 md_update_sb(mddev, 1);
3985 } else {
3986 if (mddev->dev_sectors == 0 ||
3987 mddev->dev_sectors > sectors)
3988 mddev->dev_sectors = sectors;
3989 else
3990 err = -ENOSPC;
3992 return err ? err : len;
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3999 /* Metdata version.
4000 * This is one of
4001 * 'none' for arrays with no metadata (good luck...)
4002 * 'external' for arrays with externally managed metadata,
4003 * or N.M for internally known formats
4005 static ssize_t
4006 metadata_show(struct mddev *mddev, char *page)
4008 if (mddev->persistent)
4009 return sprintf(page, "%d.%d\n",
4010 mddev->major_version, mddev->minor_version);
4011 else if (mddev->external)
4012 return sprintf(page, "external:%s\n", mddev->metadata_type);
4013 else
4014 return sprintf(page, "none\n");
4017 static ssize_t
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4020 int major, minor;
4021 char *e;
4022 /* Changing the details of 'external' metadata is
4023 * always permitted. Otherwise there must be
4024 * no devices attached to the array.
4026 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4028 else if (!list_empty(&mddev->disks))
4029 return -EBUSY;
4031 if (cmd_match(buf, "none")) {
4032 mddev->persistent = 0;
4033 mddev->external = 0;
4034 mddev->major_version = 0;
4035 mddev->minor_version = 90;
4036 return len;
4038 if (strncmp(buf, "external:", 9) == 0) {
4039 size_t namelen = len-9;
4040 if (namelen >= sizeof(mddev->metadata_type))
4041 namelen = sizeof(mddev->metadata_type)-1;
4042 strncpy(mddev->metadata_type, buf+9, namelen);
4043 mddev->metadata_type[namelen] = 0;
4044 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045 mddev->metadata_type[--namelen] = 0;
4046 mddev->persistent = 0;
4047 mddev->external = 1;
4048 mddev->major_version = 0;
4049 mddev->minor_version = 90;
4050 return len;
4052 major = simple_strtoul(buf, &e, 10);
4053 if (e==buf || *e != '.')
4054 return -EINVAL;
4055 buf = e+1;
4056 minor = simple_strtoul(buf, &e, 10);
4057 if (e==buf || (*e && *e != '\n') )
4058 return -EINVAL;
4059 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4060 return -ENOENT;
4061 mddev->major_version = major;
4062 mddev->minor_version = minor;
4063 mddev->persistent = 1;
4064 mddev->external = 0;
4065 return len;
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4071 static ssize_t
4072 action_show(struct mddev *mddev, char *page)
4074 char *type = "idle";
4075 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4076 type = "frozen";
4077 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4080 type = "reshape";
4081 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4083 type = "resync";
4084 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4085 type = "check";
4086 else
4087 type = "repair";
4088 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4089 type = "recover";
4091 return sprintf(page, "%s\n", type);
4094 static void reap_sync_thread(struct mddev *mddev);
4096 static ssize_t
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4099 if (!mddev->pers || !mddev->pers->sync_request)
4100 return -EINVAL;
4102 if (cmd_match(page, "frozen"))
4103 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4104 else
4105 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4107 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108 if (mddev->sync_thread) {
4109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110 reap_sync_thread(mddev);
4112 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4114 return -EBUSY;
4115 else if (cmd_match(page, "resync"))
4116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117 else if (cmd_match(page, "recover")) {
4118 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120 } else if (cmd_match(page, "reshape")) {
4121 int err;
4122 if (mddev->pers->start_reshape == NULL)
4123 return -EINVAL;
4124 err = mddev->pers->start_reshape(mddev);
4125 if (err)
4126 return err;
4127 sysfs_notify(&mddev->kobj, NULL, "degraded");
4128 } else {
4129 if (cmd_match(page, "check"))
4130 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131 else if (!cmd_match(page, "repair"))
4132 return -EINVAL;
4133 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137 md_wakeup_thread(mddev->thread);
4138 sysfs_notify_dirent_safe(mddev->sysfs_action);
4139 return len;
4142 static ssize_t
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4145 return sprintf(page, "%llu\n",
4146 (unsigned long long) mddev->resync_mismatches);
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4155 static ssize_t
4156 sync_min_show(struct mddev *mddev, char *page)
4158 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159 mddev->sync_speed_min ? "local": "system");
4162 static ssize_t
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4165 int min;
4166 char *e;
4167 if (strncmp(buf, "system", 6)==0) {
4168 mddev->sync_speed_min = 0;
4169 return len;
4171 min = simple_strtoul(buf, &e, 10);
4172 if (buf == e || (*e && *e != '\n') || min <= 0)
4173 return -EINVAL;
4174 mddev->sync_speed_min = min;
4175 return len;
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4181 static ssize_t
4182 sync_max_show(struct mddev *mddev, char *page)
4184 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185 mddev->sync_speed_max ? "local": "system");
4188 static ssize_t
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4191 int max;
4192 char *e;
4193 if (strncmp(buf, "system", 6)==0) {
4194 mddev->sync_speed_max = 0;
4195 return len;
4197 max = simple_strtoul(buf, &e, 10);
4198 if (buf == e || (*e && *e != '\n') || max <= 0)
4199 return -EINVAL;
4200 mddev->sync_speed_max = max;
4201 return len;
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4207 static ssize_t
4208 degraded_show(struct mddev *mddev, char *page)
4210 return sprintf(page, "%d\n", mddev->degraded);
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4214 static ssize_t
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4217 return sprintf(page, "%d\n", mddev->parallel_resync);
4220 static ssize_t
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4223 long n;
4225 if (strict_strtol(buf, 10, &n))
4226 return -EINVAL;
4228 if (n != 0 && n != 1)
4229 return -EINVAL;
4231 mddev->parallel_resync = n;
4233 if (mddev->sync_thread)
4234 wake_up(&resync_wait);
4236 return len;
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242 sync_force_parallel_show, sync_force_parallel_store);
4244 static ssize_t
4245 sync_speed_show(struct mddev *mddev, char *page)
4247 unsigned long resync, dt, db;
4248 if (mddev->curr_resync == 0)
4249 return sprintf(page, "none\n");
4250 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251 dt = (jiffies - mddev->resync_mark) / HZ;
4252 if (!dt) dt++;
4253 db = resync - mddev->resync_mark_cnt;
4254 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4259 static ssize_t
4260 sync_completed_show(struct mddev *mddev, char *page)
4262 unsigned long long max_sectors, resync;
4264 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265 return sprintf(page, "none\n");
4267 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268 max_sectors = mddev->resync_max_sectors;
4269 else
4270 max_sectors = mddev->dev_sectors;
4272 resync = mddev->curr_resync_completed;
4273 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4278 static ssize_t
4279 min_sync_show(struct mddev *mddev, char *page)
4281 return sprintf(page, "%llu\n",
4282 (unsigned long long)mddev->resync_min);
4284 static ssize_t
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4287 unsigned long long min;
4288 if (strict_strtoull(buf, 10, &min))
4289 return -EINVAL;
4290 if (min > mddev->resync_max)
4291 return -EINVAL;
4292 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293 return -EBUSY;
4295 /* Must be a multiple of chunk_size */
4296 if (mddev->chunk_sectors) {
4297 sector_t temp = min;
4298 if (sector_div(temp, mddev->chunk_sectors))
4299 return -EINVAL;
4301 mddev->resync_min = min;
4303 return len;
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4309 static ssize_t
4310 max_sync_show(struct mddev *mddev, char *page)
4312 if (mddev->resync_max == MaxSector)
4313 return sprintf(page, "max\n");
4314 else
4315 return sprintf(page, "%llu\n",
4316 (unsigned long long)mddev->resync_max);
4318 static ssize_t
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4321 if (strncmp(buf, "max", 3) == 0)
4322 mddev->resync_max = MaxSector;
4323 else {
4324 unsigned long long max;
4325 if (strict_strtoull(buf, 10, &max))
4326 return -EINVAL;
4327 if (max < mddev->resync_min)
4328 return -EINVAL;
4329 if (max < mddev->resync_max &&
4330 mddev->ro == 0 &&
4331 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4332 return -EBUSY;
4334 /* Must be a multiple of chunk_size */
4335 if (mddev->chunk_sectors) {
4336 sector_t temp = max;
4337 if (sector_div(temp, mddev->chunk_sectors))
4338 return -EINVAL;
4340 mddev->resync_max = max;
4342 wake_up(&mddev->recovery_wait);
4343 return len;
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4349 static ssize_t
4350 suspend_lo_show(struct mddev *mddev, char *page)
4352 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4355 static ssize_t
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4358 char *e;
4359 unsigned long long new = simple_strtoull(buf, &e, 10);
4360 unsigned long long old = mddev->suspend_lo;
4362 if (mddev->pers == NULL ||
4363 mddev->pers->quiesce == NULL)
4364 return -EINVAL;
4365 if (buf == e || (*e && *e != '\n'))
4366 return -EINVAL;
4368 mddev->suspend_lo = new;
4369 if (new >= old)
4370 /* Shrinking suspended region */
4371 mddev->pers->quiesce(mddev, 2);
4372 else {
4373 /* Expanding suspended region - need to wait */
4374 mddev->pers->quiesce(mddev, 1);
4375 mddev->pers->quiesce(mddev, 0);
4377 return len;
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4383 static ssize_t
4384 suspend_hi_show(struct mddev *mddev, char *page)
4386 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4389 static ssize_t
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4392 char *e;
4393 unsigned long long new = simple_strtoull(buf, &e, 10);
4394 unsigned long long old = mddev->suspend_hi;
4396 if (mddev->pers == NULL ||
4397 mddev->pers->quiesce == NULL)
4398 return -EINVAL;
4399 if (buf == e || (*e && *e != '\n'))
4400 return -EINVAL;
4402 mddev->suspend_hi = new;
4403 if (new <= old)
4404 /* Shrinking suspended region */
4405 mddev->pers->quiesce(mddev, 2);
4406 else {
4407 /* Expanding suspended region - need to wait */
4408 mddev->pers->quiesce(mddev, 1);
4409 mddev->pers->quiesce(mddev, 0);
4411 return len;
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4416 static ssize_t
4417 reshape_position_show(struct mddev *mddev, char *page)
4419 if (mddev->reshape_position != MaxSector)
4420 return sprintf(page, "%llu\n",
4421 (unsigned long long)mddev->reshape_position);
4422 strcpy(page, "none\n");
4423 return 5;
4426 static ssize_t
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4429 char *e;
4430 unsigned long long new = simple_strtoull(buf, &e, 10);
4431 if (mddev->pers)
4432 return -EBUSY;
4433 if (buf == e || (*e && *e != '\n'))
4434 return -EINVAL;
4435 mddev->reshape_position = new;
4436 mddev->delta_disks = 0;
4437 mddev->new_level = mddev->level;
4438 mddev->new_layout = mddev->layout;
4439 mddev->new_chunk_sectors = mddev->chunk_sectors;
4440 return len;
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445 reshape_position_store);
4447 static ssize_t
4448 array_size_show(struct mddev *mddev, char *page)
4450 if (mddev->external_size)
4451 return sprintf(page, "%llu\n",
4452 (unsigned long long)mddev->array_sectors/2);
4453 else
4454 return sprintf(page, "default\n");
4457 static ssize_t
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4460 sector_t sectors;
4462 if (strncmp(buf, "default", 7) == 0) {
4463 if (mddev->pers)
4464 sectors = mddev->pers->size(mddev, 0, 0);
4465 else
4466 sectors = mddev->array_sectors;
4468 mddev->external_size = 0;
4469 } else {
4470 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4471 return -EINVAL;
4472 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4473 return -E2BIG;
4475 mddev->external_size = 1;
4478 mddev->array_sectors = sectors;
4479 if (mddev->pers) {
4480 set_capacity(mddev->gendisk, mddev->array_sectors);
4481 revalidate_disk(mddev->gendisk);
4483 return len;
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4488 array_size_store);
4490 static struct attribute *md_default_attrs[] = {
4491 &md_level.attr,
4492 &md_layout.attr,
4493 &md_raid_disks.attr,
4494 &md_chunk_size.attr,
4495 &md_size.attr,
4496 &md_resync_start.attr,
4497 &md_metadata.attr,
4498 &md_new_device.attr,
4499 &md_safe_delay.attr,
4500 &md_array_state.attr,
4501 &md_reshape_position.attr,
4502 &md_array_size.attr,
4503 &max_corr_read_errors.attr,
4504 NULL,
4507 static struct attribute *md_redundancy_attrs[] = {
4508 &md_scan_mode.attr,
4509 &md_mismatches.attr,
4510 &md_sync_min.attr,
4511 &md_sync_max.attr,
4512 &md_sync_speed.attr,
4513 &md_sync_force_parallel.attr,
4514 &md_sync_completed.attr,
4515 &md_min_sync.attr,
4516 &md_max_sync.attr,
4517 &md_suspend_lo.attr,
4518 &md_suspend_hi.attr,
4519 &md_bitmap.attr,
4520 &md_degraded.attr,
4521 NULL,
4523 static struct attribute_group md_redundancy_group = {
4524 .name = NULL,
4525 .attrs = md_redundancy_attrs,
4529 static ssize_t
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4532 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4534 ssize_t rv;
4536 if (!entry->show)
4537 return -EIO;
4538 spin_lock(&all_mddevs_lock);
4539 if (list_empty(&mddev->all_mddevs)) {
4540 spin_unlock(&all_mddevs_lock);
4541 return -EBUSY;
4543 mddev_get(mddev);
4544 spin_unlock(&all_mddevs_lock);
4546 rv = mddev_lock(mddev);
4547 if (!rv) {
4548 rv = entry->show(mddev, page);
4549 mddev_unlock(mddev);
4551 mddev_put(mddev);
4552 return rv;
4555 static ssize_t
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557 const char *page, size_t length)
4559 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4561 ssize_t rv;
4563 if (!entry->store)
4564 return -EIO;
4565 if (!capable(CAP_SYS_ADMIN))
4566 return -EACCES;
4567 spin_lock(&all_mddevs_lock);
4568 if (list_empty(&mddev->all_mddevs)) {
4569 spin_unlock(&all_mddevs_lock);
4570 return -EBUSY;
4572 mddev_get(mddev);
4573 spin_unlock(&all_mddevs_lock);
4574 rv = mddev_lock(mddev);
4575 if (!rv) {
4576 rv = entry->store(mddev, page, length);
4577 mddev_unlock(mddev);
4579 mddev_put(mddev);
4580 return rv;
4583 static void md_free(struct kobject *ko)
4585 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4587 if (mddev->sysfs_state)
4588 sysfs_put(mddev->sysfs_state);
4590 if (mddev->gendisk) {
4591 del_gendisk(mddev->gendisk);
4592 put_disk(mddev->gendisk);
4594 if (mddev->queue)
4595 blk_cleanup_queue(mddev->queue);
4597 kfree(mddev);
4600 static const struct sysfs_ops md_sysfs_ops = {
4601 .show = md_attr_show,
4602 .store = md_attr_store,
4604 static struct kobj_type md_ktype = {
4605 .release = md_free,
4606 .sysfs_ops = &md_sysfs_ops,
4607 .default_attrs = md_default_attrs,
4610 int mdp_major = 0;
4612 static void mddev_delayed_delete(struct work_struct *ws)
4614 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4616 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617 kobject_del(&mddev->kobj);
4618 kobject_put(&mddev->kobj);
4621 static int md_alloc(dev_t dev, char *name)
4623 static DEFINE_MUTEX(disks_mutex);
4624 struct mddev *mddev = mddev_find(dev);
4625 struct gendisk *disk;
4626 int partitioned;
4627 int shift;
4628 int unit;
4629 int error;
4631 if (!mddev)
4632 return -ENODEV;
4634 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635 shift = partitioned ? MdpMinorShift : 0;
4636 unit = MINOR(mddev->unit) >> shift;
4638 /* wait for any previous instance of this device to be
4639 * completely removed (mddev_delayed_delete).
4641 flush_workqueue(md_misc_wq);
4643 mutex_lock(&disks_mutex);
4644 error = -EEXIST;
4645 if (mddev->gendisk)
4646 goto abort;
4648 if (name) {
4649 /* Need to ensure that 'name' is not a duplicate.
4651 struct mddev *mddev2;
4652 spin_lock(&all_mddevs_lock);
4654 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655 if (mddev2->gendisk &&
4656 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657 spin_unlock(&all_mddevs_lock);
4658 goto abort;
4660 spin_unlock(&all_mddevs_lock);
4663 error = -ENOMEM;
4664 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4665 if (!mddev->queue)
4666 goto abort;
4667 mddev->queue->queuedata = mddev;
4669 blk_queue_make_request(mddev->queue, md_make_request);
4670 blk_set_stacking_limits(&mddev->queue->limits);
4672 disk = alloc_disk(1 << shift);
4673 if (!disk) {
4674 blk_cleanup_queue(mddev->queue);
4675 mddev->queue = NULL;
4676 goto abort;
4678 disk->major = MAJOR(mddev->unit);
4679 disk->first_minor = unit << shift;
4680 if (name)
4681 strcpy(disk->disk_name, name);
4682 else if (partitioned)
4683 sprintf(disk->disk_name, "md_d%d", unit);
4684 else
4685 sprintf(disk->disk_name, "md%d", unit);
4686 disk->fops = &md_fops;
4687 disk->private_data = mddev;
4688 disk->queue = mddev->queue;
4689 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4690 /* Allow extended partitions. This makes the
4691 * 'mdp' device redundant, but we can't really
4692 * remove it now.
4694 disk->flags |= GENHD_FL_EXT_DEVT;
4695 mddev->gendisk = disk;
4696 /* As soon as we call add_disk(), another thread could get
4697 * through to md_open, so make sure it doesn't get too far
4699 mutex_lock(&mddev->open_mutex);
4700 add_disk(disk);
4702 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4703 &disk_to_dev(disk)->kobj, "%s", "md");
4704 if (error) {
4705 /* This isn't possible, but as kobject_init_and_add is marked
4706 * __must_check, we must do something with the result
4708 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4709 disk->disk_name);
4710 error = 0;
4712 if (mddev->kobj.sd &&
4713 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4714 printk(KERN_DEBUG "pointless warning\n");
4715 mutex_unlock(&mddev->open_mutex);
4716 abort:
4717 mutex_unlock(&disks_mutex);
4718 if (!error && mddev->kobj.sd) {
4719 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4720 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4722 mddev_put(mddev);
4723 return error;
4726 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4728 md_alloc(dev, NULL);
4729 return NULL;
4732 static int add_named_array(const char *val, struct kernel_param *kp)
4734 /* val must be "md_*" where * is not all digits.
4735 * We allocate an array with a large free minor number, and
4736 * set the name to val. val must not already be an active name.
4738 int len = strlen(val);
4739 char buf[DISK_NAME_LEN];
4741 while (len && val[len-1] == '\n')
4742 len--;
4743 if (len >= DISK_NAME_LEN)
4744 return -E2BIG;
4745 strlcpy(buf, val, len+1);
4746 if (strncmp(buf, "md_", 3) != 0)
4747 return -EINVAL;
4748 return md_alloc(0, buf);
4751 static void md_safemode_timeout(unsigned long data)
4753 struct mddev *mddev = (struct mddev *) data;
4755 if (!atomic_read(&mddev->writes_pending)) {
4756 mddev->safemode = 1;
4757 if (mddev->external)
4758 sysfs_notify_dirent_safe(mddev->sysfs_state);
4760 md_wakeup_thread(mddev->thread);
4763 static int start_dirty_degraded;
4765 int md_run(struct mddev *mddev)
4767 int err;
4768 struct md_rdev *rdev;
4769 struct md_personality *pers;
4771 if (list_empty(&mddev->disks))
4772 /* cannot run an array with no devices.. */
4773 return -EINVAL;
4775 if (mddev->pers)
4776 return -EBUSY;
4777 /* Cannot run until previous stop completes properly */
4778 if (mddev->sysfs_active)
4779 return -EBUSY;
4782 * Analyze all RAID superblock(s)
4784 if (!mddev->raid_disks) {
4785 if (!mddev->persistent)
4786 return -EINVAL;
4787 analyze_sbs(mddev);
4790 if (mddev->level != LEVEL_NONE)
4791 request_module("md-level-%d", mddev->level);
4792 else if (mddev->clevel[0])
4793 request_module("md-%s", mddev->clevel);
4796 * Drop all container device buffers, from now on
4797 * the only valid external interface is through the md
4798 * device.
4800 list_for_each_entry(rdev, &mddev->disks, same_set) {
4801 if (test_bit(Faulty, &rdev->flags))
4802 continue;
4803 sync_blockdev(rdev->bdev);
4804 invalidate_bdev(rdev->bdev);
4806 /* perform some consistency tests on the device.
4807 * We don't want the data to overlap the metadata,
4808 * Internal Bitmap issues have been handled elsewhere.
4810 if (rdev->meta_bdev) {
4811 /* Nothing to check */;
4812 } else if (rdev->data_offset < rdev->sb_start) {
4813 if (mddev->dev_sectors &&
4814 rdev->data_offset + mddev->dev_sectors
4815 > rdev->sb_start) {
4816 printk("md: %s: data overlaps metadata\n",
4817 mdname(mddev));
4818 return -EINVAL;
4820 } else {
4821 if (rdev->sb_start + rdev->sb_size/512
4822 > rdev->data_offset) {
4823 printk("md: %s: metadata overlaps data\n",
4824 mdname(mddev));
4825 return -EINVAL;
4828 sysfs_notify_dirent_safe(rdev->sysfs_state);
4831 if (mddev->bio_set == NULL)
4832 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4833 sizeof(struct mddev *));
4835 spin_lock(&pers_lock);
4836 pers = find_pers(mddev->level, mddev->clevel);
4837 if (!pers || !try_module_get(pers->owner)) {
4838 spin_unlock(&pers_lock);
4839 if (mddev->level != LEVEL_NONE)
4840 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4841 mddev->level);
4842 else
4843 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4844 mddev->clevel);
4845 return -EINVAL;
4847 mddev->pers = pers;
4848 spin_unlock(&pers_lock);
4849 if (mddev->level != pers->level) {
4850 mddev->level = pers->level;
4851 mddev->new_level = pers->level;
4853 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4855 if (mddev->reshape_position != MaxSector &&
4856 pers->start_reshape == NULL) {
4857 /* This personality cannot handle reshaping... */
4858 mddev->pers = NULL;
4859 module_put(pers->owner);
4860 return -EINVAL;
4863 if (pers->sync_request) {
4864 /* Warn if this is a potentially silly
4865 * configuration.
4867 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4868 struct md_rdev *rdev2;
4869 int warned = 0;
4871 list_for_each_entry(rdev, &mddev->disks, same_set)
4872 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4873 if (rdev < rdev2 &&
4874 rdev->bdev->bd_contains ==
4875 rdev2->bdev->bd_contains) {
4876 printk(KERN_WARNING
4877 "%s: WARNING: %s appears to be"
4878 " on the same physical disk as"
4879 " %s.\n",
4880 mdname(mddev),
4881 bdevname(rdev->bdev,b),
4882 bdevname(rdev2->bdev,b2));
4883 warned = 1;
4887 if (warned)
4888 printk(KERN_WARNING
4889 "True protection against single-disk"
4890 " failure might be compromised.\n");
4893 mddev->recovery = 0;
4894 /* may be over-ridden by personality */
4895 mddev->resync_max_sectors = mddev->dev_sectors;
4897 mddev->ok_start_degraded = start_dirty_degraded;
4899 if (start_readonly && mddev->ro == 0)
4900 mddev->ro = 2; /* read-only, but switch on first write */
4902 err = mddev->pers->run(mddev);
4903 if (err)
4904 printk(KERN_ERR "md: pers->run() failed ...\n");
4905 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4906 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4907 " but 'external_size' not in effect?\n", __func__);
4908 printk(KERN_ERR
4909 "md: invalid array_size %llu > default size %llu\n",
4910 (unsigned long long)mddev->array_sectors / 2,
4911 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4912 err = -EINVAL;
4913 mddev->pers->stop(mddev);
4915 if (err == 0 && mddev->pers->sync_request) {
4916 err = bitmap_create(mddev);
4917 if (err) {
4918 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4919 mdname(mddev), err);
4920 mddev->pers->stop(mddev);
4923 if (err) {
4924 module_put(mddev->pers->owner);
4925 mddev->pers = NULL;
4926 bitmap_destroy(mddev);
4927 return err;
4929 if (mddev->pers->sync_request) {
4930 if (mddev->kobj.sd &&
4931 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4932 printk(KERN_WARNING
4933 "md: cannot register extra attributes for %s\n",
4934 mdname(mddev));
4935 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4936 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4937 mddev->ro = 0;
4939 atomic_set(&mddev->writes_pending,0);
4940 atomic_set(&mddev->max_corr_read_errors,
4941 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4942 mddev->safemode = 0;
4943 mddev->safemode_timer.function = md_safemode_timeout;
4944 mddev->safemode_timer.data = (unsigned long) mddev;
4945 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4946 mddev->in_sync = 1;
4947 smp_wmb();
4948 mddev->ready = 1;
4949 list_for_each_entry(rdev, &mddev->disks, same_set)
4950 if (rdev->raid_disk >= 0)
4951 if (sysfs_link_rdev(mddev, rdev))
4952 /* failure here is OK */;
4954 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4956 if (mddev->flags)
4957 md_update_sb(mddev, 0);
4959 md_new_event(mddev);
4960 sysfs_notify_dirent_safe(mddev->sysfs_state);
4961 sysfs_notify_dirent_safe(mddev->sysfs_action);
4962 sysfs_notify(&mddev->kobj, NULL, "degraded");
4963 return 0;
4965 EXPORT_SYMBOL_GPL(md_run);
4967 static int do_md_run(struct mddev *mddev)
4969 int err;
4971 err = md_run(mddev);
4972 if (err)
4973 goto out;
4974 err = bitmap_load(mddev);
4975 if (err) {
4976 bitmap_destroy(mddev);
4977 goto out;
4980 md_wakeup_thread(mddev->thread);
4981 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4983 set_capacity(mddev->gendisk, mddev->array_sectors);
4984 revalidate_disk(mddev->gendisk);
4985 mddev->changed = 1;
4986 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4987 out:
4988 return err;
4991 static int restart_array(struct mddev *mddev)
4993 struct gendisk *disk = mddev->gendisk;
4995 /* Complain if it has no devices */
4996 if (list_empty(&mddev->disks))
4997 return -ENXIO;
4998 if (!mddev->pers)
4999 return -EINVAL;
5000 if (!mddev->ro)
5001 return -EBUSY;
5002 mddev->safemode = 0;
5003 mddev->ro = 0;
5004 set_disk_ro(disk, 0);
5005 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5006 mdname(mddev));
5007 /* Kick recovery or resync if necessary */
5008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5009 md_wakeup_thread(mddev->thread);
5010 md_wakeup_thread(mddev->sync_thread);
5011 sysfs_notify_dirent_safe(mddev->sysfs_state);
5012 return 0;
5015 /* similar to deny_write_access, but accounts for our holding a reference
5016 * to the file ourselves */
5017 static int deny_bitmap_write_access(struct file * file)
5019 struct inode *inode = file->f_mapping->host;
5021 spin_lock(&inode->i_lock);
5022 if (atomic_read(&inode->i_writecount) > 1) {
5023 spin_unlock(&inode->i_lock);
5024 return -ETXTBSY;
5026 atomic_set(&inode->i_writecount, -1);
5027 spin_unlock(&inode->i_lock);
5029 return 0;
5032 void restore_bitmap_write_access(struct file *file)
5034 struct inode *inode = file->f_mapping->host;
5036 spin_lock(&inode->i_lock);
5037 atomic_set(&inode->i_writecount, 1);
5038 spin_unlock(&inode->i_lock);
5041 static void md_clean(struct mddev *mddev)
5043 mddev->array_sectors = 0;
5044 mddev->external_size = 0;
5045 mddev->dev_sectors = 0;
5046 mddev->raid_disks = 0;
5047 mddev->recovery_cp = 0;
5048 mddev->resync_min = 0;
5049 mddev->resync_max = MaxSector;
5050 mddev->reshape_position = MaxSector;
5051 mddev->external = 0;
5052 mddev->persistent = 0;
5053 mddev->level = LEVEL_NONE;
5054 mddev->clevel[0] = 0;
5055 mddev->flags = 0;
5056 mddev->ro = 0;
5057 mddev->metadata_type[0] = 0;
5058 mddev->chunk_sectors = 0;
5059 mddev->ctime = mddev->utime = 0;
5060 mddev->layout = 0;
5061 mddev->max_disks = 0;
5062 mddev->events = 0;
5063 mddev->can_decrease_events = 0;
5064 mddev->delta_disks = 0;
5065 mddev->new_level = LEVEL_NONE;
5066 mddev->new_layout = 0;
5067 mddev->new_chunk_sectors = 0;
5068 mddev->curr_resync = 0;
5069 mddev->resync_mismatches = 0;
5070 mddev->suspend_lo = mddev->suspend_hi = 0;
5071 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5072 mddev->recovery = 0;
5073 mddev->in_sync = 0;
5074 mddev->changed = 0;
5075 mddev->degraded = 0;
5076 mddev->safemode = 0;
5077 mddev->bitmap_info.offset = 0;
5078 mddev->bitmap_info.default_offset = 0;
5079 mddev->bitmap_info.chunksize = 0;
5080 mddev->bitmap_info.daemon_sleep = 0;
5081 mddev->bitmap_info.max_write_behind = 0;
5084 static void __md_stop_writes(struct mddev *mddev)
5086 if (mddev->sync_thread) {
5087 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5088 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5089 reap_sync_thread(mddev);
5092 del_timer_sync(&mddev->safemode_timer);
5094 bitmap_flush(mddev);
5095 md_super_wait(mddev);
5097 if (!mddev->in_sync || mddev->flags) {
5098 /* mark array as shutdown cleanly */
5099 mddev->in_sync = 1;
5100 md_update_sb(mddev, 1);
5104 void md_stop_writes(struct mddev *mddev)
5106 mddev_lock(mddev);
5107 __md_stop_writes(mddev);
5108 mddev_unlock(mddev);
5110 EXPORT_SYMBOL_GPL(md_stop_writes);
5112 void md_stop(struct mddev *mddev)
5114 mddev->ready = 0;
5115 mddev->pers->stop(mddev);
5116 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5117 mddev->to_remove = &md_redundancy_group;
5118 module_put(mddev->pers->owner);
5119 mddev->pers = NULL;
5120 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5122 EXPORT_SYMBOL_GPL(md_stop);
5124 static int md_set_readonly(struct mddev *mddev, int is_open)
5126 int err = 0;
5127 mutex_lock(&mddev->open_mutex);
5128 if (atomic_read(&mddev->openers) > is_open) {
5129 printk("md: %s still in use.\n",mdname(mddev));
5130 err = -EBUSY;
5131 goto out;
5133 if (mddev->pers) {
5134 __md_stop_writes(mddev);
5136 err = -ENXIO;
5137 if (mddev->ro==1)
5138 goto out;
5139 mddev->ro = 1;
5140 set_disk_ro(mddev->gendisk, 1);
5141 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5142 sysfs_notify_dirent_safe(mddev->sysfs_state);
5143 err = 0;
5145 out:
5146 mutex_unlock(&mddev->open_mutex);
5147 return err;
5150 /* mode:
5151 * 0 - completely stop and dis-assemble array
5152 * 2 - stop but do not disassemble array
5154 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5156 struct gendisk *disk = mddev->gendisk;
5157 struct md_rdev *rdev;
5159 mutex_lock(&mddev->open_mutex);
5160 if (atomic_read(&mddev->openers) > is_open ||
5161 mddev->sysfs_active) {
5162 printk("md: %s still in use.\n",mdname(mddev));
5163 mutex_unlock(&mddev->open_mutex);
5164 return -EBUSY;
5167 if (mddev->pers) {
5168 if (mddev->ro)
5169 set_disk_ro(disk, 0);
5171 __md_stop_writes(mddev);
5172 md_stop(mddev);
5173 mddev->queue->merge_bvec_fn = NULL;
5174 mddev->queue->backing_dev_info.congested_fn = NULL;
5176 /* tell userspace to handle 'inactive' */
5177 sysfs_notify_dirent_safe(mddev->sysfs_state);
5179 list_for_each_entry(rdev, &mddev->disks, same_set)
5180 if (rdev->raid_disk >= 0)
5181 sysfs_unlink_rdev(mddev, rdev);
5183 set_capacity(disk, 0);
5184 mutex_unlock(&mddev->open_mutex);
5185 mddev->changed = 1;
5186 revalidate_disk(disk);
5188 if (mddev->ro)
5189 mddev->ro = 0;
5190 } else
5191 mutex_unlock(&mddev->open_mutex);
5193 * Free resources if final stop
5195 if (mode == 0) {
5196 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5198 bitmap_destroy(mddev);
5199 if (mddev->bitmap_info.file) {
5200 restore_bitmap_write_access(mddev->bitmap_info.file);
5201 fput(mddev->bitmap_info.file);
5202 mddev->bitmap_info.file = NULL;
5204 mddev->bitmap_info.offset = 0;
5206 export_array(mddev);
5208 md_clean(mddev);
5209 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5210 if (mddev->hold_active == UNTIL_STOP)
5211 mddev->hold_active = 0;
5213 blk_integrity_unregister(disk);
5214 md_new_event(mddev);
5215 sysfs_notify_dirent_safe(mddev->sysfs_state);
5216 return 0;
5219 #ifndef MODULE
5220 static void autorun_array(struct mddev *mddev)
5222 struct md_rdev *rdev;
5223 int err;
5225 if (list_empty(&mddev->disks))
5226 return;
5228 printk(KERN_INFO "md: running: ");
5230 list_for_each_entry(rdev, &mddev->disks, same_set) {
5231 char b[BDEVNAME_SIZE];
5232 printk("<%s>", bdevname(rdev->bdev,b));
5234 printk("\n");
5236 err = do_md_run(mddev);
5237 if (err) {
5238 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5239 do_md_stop(mddev, 0, 0);
5244 * lets try to run arrays based on all disks that have arrived
5245 * until now. (those are in pending_raid_disks)
5247 * the method: pick the first pending disk, collect all disks with
5248 * the same UUID, remove all from the pending list and put them into
5249 * the 'same_array' list. Then order this list based on superblock
5250 * update time (freshest comes first), kick out 'old' disks and
5251 * compare superblocks. If everything's fine then run it.
5253 * If "unit" is allocated, then bump its reference count
5255 static void autorun_devices(int part)
5257 struct md_rdev *rdev0, *rdev, *tmp;
5258 struct mddev *mddev;
5259 char b[BDEVNAME_SIZE];
5261 printk(KERN_INFO "md: autorun ...\n");
5262 while (!list_empty(&pending_raid_disks)) {
5263 int unit;
5264 dev_t dev;
5265 LIST_HEAD(candidates);
5266 rdev0 = list_entry(pending_raid_disks.next,
5267 struct md_rdev, same_set);
5269 printk(KERN_INFO "md: considering %s ...\n",
5270 bdevname(rdev0->bdev,b));
5271 INIT_LIST_HEAD(&candidates);
5272 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5273 if (super_90_load(rdev, rdev0, 0) >= 0) {
5274 printk(KERN_INFO "md: adding %s ...\n",
5275 bdevname(rdev->bdev,b));
5276 list_move(&rdev->same_set, &candidates);
5279 * now we have a set of devices, with all of them having
5280 * mostly sane superblocks. It's time to allocate the
5281 * mddev.
5283 if (part) {
5284 dev = MKDEV(mdp_major,
5285 rdev0->preferred_minor << MdpMinorShift);
5286 unit = MINOR(dev) >> MdpMinorShift;
5287 } else {
5288 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5289 unit = MINOR(dev);
5291 if (rdev0->preferred_minor != unit) {
5292 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5293 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5294 break;
5297 md_probe(dev, NULL, NULL);
5298 mddev = mddev_find(dev);
5299 if (!mddev || !mddev->gendisk) {
5300 if (mddev)
5301 mddev_put(mddev);
5302 printk(KERN_ERR
5303 "md: cannot allocate memory for md drive.\n");
5304 break;
5306 if (mddev_lock(mddev))
5307 printk(KERN_WARNING "md: %s locked, cannot run\n",
5308 mdname(mddev));
5309 else if (mddev->raid_disks || mddev->major_version
5310 || !list_empty(&mddev->disks)) {
5311 printk(KERN_WARNING
5312 "md: %s already running, cannot run %s\n",
5313 mdname(mddev), bdevname(rdev0->bdev,b));
5314 mddev_unlock(mddev);
5315 } else {
5316 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5317 mddev->persistent = 1;
5318 rdev_for_each_list(rdev, tmp, &candidates) {
5319 list_del_init(&rdev->same_set);
5320 if (bind_rdev_to_array(rdev, mddev))
5321 export_rdev(rdev);
5323 autorun_array(mddev);
5324 mddev_unlock(mddev);
5326 /* on success, candidates will be empty, on error
5327 * it won't...
5329 rdev_for_each_list(rdev, tmp, &candidates) {
5330 list_del_init(&rdev->same_set);
5331 export_rdev(rdev);
5333 mddev_put(mddev);
5335 printk(KERN_INFO "md: ... autorun DONE.\n");
5337 #endif /* !MODULE */
5339 static int get_version(void __user * arg)
5341 mdu_version_t ver;
5343 ver.major = MD_MAJOR_VERSION;
5344 ver.minor = MD_MINOR_VERSION;
5345 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5347 if (copy_to_user(arg, &ver, sizeof(ver)))
5348 return -EFAULT;
5350 return 0;
5353 static int get_array_info(struct mddev * mddev, void __user * arg)
5355 mdu_array_info_t info;
5356 int nr,working,insync,failed,spare;
5357 struct md_rdev *rdev;
5359 nr=working=insync=failed=spare=0;
5360 list_for_each_entry(rdev, &mddev->disks, same_set) {
5361 nr++;
5362 if (test_bit(Faulty, &rdev->flags))
5363 failed++;
5364 else {
5365 working++;
5366 if (test_bit(In_sync, &rdev->flags))
5367 insync++;
5368 else
5369 spare++;
5373 info.major_version = mddev->major_version;
5374 info.minor_version = mddev->minor_version;
5375 info.patch_version = MD_PATCHLEVEL_VERSION;
5376 info.ctime = mddev->ctime;
5377 info.level = mddev->level;
5378 info.size = mddev->dev_sectors / 2;
5379 if (info.size != mddev->dev_sectors / 2) /* overflow */
5380 info.size = -1;
5381 info.nr_disks = nr;
5382 info.raid_disks = mddev->raid_disks;
5383 info.md_minor = mddev->md_minor;
5384 info.not_persistent= !mddev->persistent;
5386 info.utime = mddev->utime;
5387 info.state = 0;
5388 if (mddev->in_sync)
5389 info.state = (1<<MD_SB_CLEAN);
5390 if (mddev->bitmap && mddev->bitmap_info.offset)
5391 info.state = (1<<MD_SB_BITMAP_PRESENT);
5392 info.active_disks = insync;
5393 info.working_disks = working;
5394 info.failed_disks = failed;
5395 info.spare_disks = spare;
5397 info.layout = mddev->layout;
5398 info.chunk_size = mddev->chunk_sectors << 9;
5400 if (copy_to_user(arg, &info, sizeof(info)))
5401 return -EFAULT;
5403 return 0;
5406 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5408 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5409 char *ptr, *buf = NULL;
5410 int err = -ENOMEM;
5412 if (md_allow_write(mddev))
5413 file = kmalloc(sizeof(*file), GFP_NOIO);
5414 else
5415 file = kmalloc(sizeof(*file), GFP_KERNEL);
5417 if (!file)
5418 goto out;
5420 /* bitmap disabled, zero the first byte and copy out */
5421 if (!mddev->bitmap || !mddev->bitmap->file) {
5422 file->pathname[0] = '\0';
5423 goto copy_out;
5426 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5427 if (!buf)
5428 goto out;
5430 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5431 if (IS_ERR(ptr))
5432 goto out;
5434 strcpy(file->pathname, ptr);
5436 copy_out:
5437 err = 0;
5438 if (copy_to_user(arg, file, sizeof(*file)))
5439 err = -EFAULT;
5440 out:
5441 kfree(buf);
5442 kfree(file);
5443 return err;
5446 static int get_disk_info(struct mddev * mddev, void __user * arg)
5448 mdu_disk_info_t info;
5449 struct md_rdev *rdev;
5451 if (copy_from_user(&info, arg, sizeof(info)))
5452 return -EFAULT;
5454 rdev = find_rdev_nr(mddev, info.number);
5455 if (rdev) {
5456 info.major = MAJOR(rdev->bdev->bd_dev);
5457 info.minor = MINOR(rdev->bdev->bd_dev);
5458 info.raid_disk = rdev->raid_disk;
5459 info.state = 0;
5460 if (test_bit(Faulty, &rdev->flags))
5461 info.state |= (1<<MD_DISK_FAULTY);
5462 else if (test_bit(In_sync, &rdev->flags)) {
5463 info.state |= (1<<MD_DISK_ACTIVE);
5464 info.state |= (1<<MD_DISK_SYNC);
5466 if (test_bit(WriteMostly, &rdev->flags))
5467 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5468 } else {
5469 info.major = info.minor = 0;
5470 info.raid_disk = -1;
5471 info.state = (1<<MD_DISK_REMOVED);
5474 if (copy_to_user(arg, &info, sizeof(info)))
5475 return -EFAULT;
5477 return 0;
5480 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5482 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5483 struct md_rdev *rdev;
5484 dev_t dev = MKDEV(info->major,info->minor);
5486 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5487 return -EOVERFLOW;
5489 if (!mddev->raid_disks) {
5490 int err;
5491 /* expecting a device which has a superblock */
5492 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5493 if (IS_ERR(rdev)) {
5494 printk(KERN_WARNING
5495 "md: md_import_device returned %ld\n",
5496 PTR_ERR(rdev));
5497 return PTR_ERR(rdev);
5499 if (!list_empty(&mddev->disks)) {
5500 struct md_rdev *rdev0
5501 = list_entry(mddev->disks.next,
5502 struct md_rdev, same_set);
5503 err = super_types[mddev->major_version]
5504 .load_super(rdev, rdev0, mddev->minor_version);
5505 if (err < 0) {
5506 printk(KERN_WARNING
5507 "md: %s has different UUID to %s\n",
5508 bdevname(rdev->bdev,b),
5509 bdevname(rdev0->bdev,b2));
5510 export_rdev(rdev);
5511 return -EINVAL;
5514 err = bind_rdev_to_array(rdev, mddev);
5515 if (err)
5516 export_rdev(rdev);
5517 return err;
5521 * add_new_disk can be used once the array is assembled
5522 * to add "hot spares". They must already have a superblock
5523 * written
5525 if (mddev->pers) {
5526 int err;
5527 if (!mddev->pers->hot_add_disk) {
5528 printk(KERN_WARNING
5529 "%s: personality does not support diskops!\n",
5530 mdname(mddev));
5531 return -EINVAL;
5533 if (mddev->persistent)
5534 rdev = md_import_device(dev, mddev->major_version,
5535 mddev->minor_version);
5536 else
5537 rdev = md_import_device(dev, -1, -1);
5538 if (IS_ERR(rdev)) {
5539 printk(KERN_WARNING
5540 "md: md_import_device returned %ld\n",
5541 PTR_ERR(rdev));
5542 return PTR_ERR(rdev);
5544 /* set saved_raid_disk if appropriate */
5545 if (!mddev->persistent) {
5546 if (info->state & (1<<MD_DISK_SYNC) &&
5547 info->raid_disk < mddev->raid_disks) {
5548 rdev->raid_disk = info->raid_disk;
5549 set_bit(In_sync, &rdev->flags);
5550 } else
5551 rdev->raid_disk = -1;
5552 } else
5553 super_types[mddev->major_version].
5554 validate_super(mddev, rdev);
5555 if ((info->state & (1<<MD_DISK_SYNC)) &&
5556 (!test_bit(In_sync, &rdev->flags) ||
5557 rdev->raid_disk != info->raid_disk)) {
5558 /* This was a hot-add request, but events doesn't
5559 * match, so reject it.
5561 export_rdev(rdev);
5562 return -EINVAL;
5565 if (test_bit(In_sync, &rdev->flags))
5566 rdev->saved_raid_disk = rdev->raid_disk;
5567 else
5568 rdev->saved_raid_disk = -1;
5570 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5571 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5572 set_bit(WriteMostly, &rdev->flags);
5573 else
5574 clear_bit(WriteMostly, &rdev->flags);
5576 rdev->raid_disk = -1;
5577 err = bind_rdev_to_array(rdev, mddev);
5578 if (!err && !mddev->pers->hot_remove_disk) {
5579 /* If there is hot_add_disk but no hot_remove_disk
5580 * then added disks for geometry changes,
5581 * and should be added immediately.
5583 super_types[mddev->major_version].
5584 validate_super(mddev, rdev);
5585 err = mddev->pers->hot_add_disk(mddev, rdev);
5586 if (err)
5587 unbind_rdev_from_array(rdev);
5589 if (err)
5590 export_rdev(rdev);
5591 else
5592 sysfs_notify_dirent_safe(rdev->sysfs_state);
5594 md_update_sb(mddev, 1);
5595 if (mddev->degraded)
5596 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5598 if (!err)
5599 md_new_event(mddev);
5600 md_wakeup_thread(mddev->thread);
5601 return err;
5604 /* otherwise, add_new_disk is only allowed
5605 * for major_version==0 superblocks
5607 if (mddev->major_version != 0) {
5608 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5609 mdname(mddev));
5610 return -EINVAL;
5613 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5614 int err;
5615 rdev = md_import_device(dev, -1, 0);
5616 if (IS_ERR(rdev)) {
5617 printk(KERN_WARNING
5618 "md: error, md_import_device() returned %ld\n",
5619 PTR_ERR(rdev));
5620 return PTR_ERR(rdev);
5622 rdev->desc_nr = info->number;
5623 if (info->raid_disk < mddev->raid_disks)
5624 rdev->raid_disk = info->raid_disk;
5625 else
5626 rdev->raid_disk = -1;
5628 if (rdev->raid_disk < mddev->raid_disks)
5629 if (info->state & (1<<MD_DISK_SYNC))
5630 set_bit(In_sync, &rdev->flags);
5632 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5633 set_bit(WriteMostly, &rdev->flags);
5635 if (!mddev->persistent) {
5636 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5637 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5638 } else
5639 rdev->sb_start = calc_dev_sboffset(rdev);
5640 rdev->sectors = rdev->sb_start;
5642 err = bind_rdev_to_array(rdev, mddev);
5643 if (err) {
5644 export_rdev(rdev);
5645 return err;
5649 return 0;
5652 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5654 char b[BDEVNAME_SIZE];
5655 struct md_rdev *rdev;
5657 rdev = find_rdev(mddev, dev);
5658 if (!rdev)
5659 return -ENXIO;
5661 if (rdev->raid_disk >= 0)
5662 goto busy;
5664 kick_rdev_from_array(rdev);
5665 md_update_sb(mddev, 1);
5666 md_new_event(mddev);
5668 return 0;
5669 busy:
5670 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5671 bdevname(rdev->bdev,b), mdname(mddev));
5672 return -EBUSY;
5675 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5677 char b[BDEVNAME_SIZE];
5678 int err;
5679 struct md_rdev *rdev;
5681 if (!mddev->pers)
5682 return -ENODEV;
5684 if (mddev->major_version != 0) {
5685 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5686 " version-0 superblocks.\n",
5687 mdname(mddev));
5688 return -EINVAL;
5690 if (!mddev->pers->hot_add_disk) {
5691 printk(KERN_WARNING
5692 "%s: personality does not support diskops!\n",
5693 mdname(mddev));
5694 return -EINVAL;
5697 rdev = md_import_device(dev, -1, 0);
5698 if (IS_ERR(rdev)) {
5699 printk(KERN_WARNING
5700 "md: error, md_import_device() returned %ld\n",
5701 PTR_ERR(rdev));
5702 return -EINVAL;
5705 if (mddev->persistent)
5706 rdev->sb_start = calc_dev_sboffset(rdev);
5707 else
5708 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5710 rdev->sectors = rdev->sb_start;
5712 if (test_bit(Faulty, &rdev->flags)) {
5713 printk(KERN_WARNING
5714 "md: can not hot-add faulty %s disk to %s!\n",
5715 bdevname(rdev->bdev,b), mdname(mddev));
5716 err = -EINVAL;
5717 goto abort_export;
5719 clear_bit(In_sync, &rdev->flags);
5720 rdev->desc_nr = -1;
5721 rdev->saved_raid_disk = -1;
5722 err = bind_rdev_to_array(rdev, mddev);
5723 if (err)
5724 goto abort_export;
5727 * The rest should better be atomic, we can have disk failures
5728 * noticed in interrupt contexts ...
5731 rdev->raid_disk = -1;
5733 md_update_sb(mddev, 1);
5736 * Kick recovery, maybe this spare has to be added to the
5737 * array immediately.
5739 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5740 md_wakeup_thread(mddev->thread);
5741 md_new_event(mddev);
5742 return 0;
5744 abort_export:
5745 export_rdev(rdev);
5746 return err;
5749 static int set_bitmap_file(struct mddev *mddev, int fd)
5751 int err;
5753 if (mddev->pers) {
5754 if (!mddev->pers->quiesce)
5755 return -EBUSY;
5756 if (mddev->recovery || mddev->sync_thread)
5757 return -EBUSY;
5758 /* we should be able to change the bitmap.. */
5762 if (fd >= 0) {
5763 if (mddev->bitmap)
5764 return -EEXIST; /* cannot add when bitmap is present */
5765 mddev->bitmap_info.file = fget(fd);
5767 if (mddev->bitmap_info.file == NULL) {
5768 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5769 mdname(mddev));
5770 return -EBADF;
5773 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5774 if (err) {
5775 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5776 mdname(mddev));
5777 fput(mddev->bitmap_info.file);
5778 mddev->bitmap_info.file = NULL;
5779 return err;
5781 mddev->bitmap_info.offset = 0; /* file overrides offset */
5782 } else if (mddev->bitmap == NULL)
5783 return -ENOENT; /* cannot remove what isn't there */
5784 err = 0;
5785 if (mddev->pers) {
5786 mddev->pers->quiesce(mddev, 1);
5787 if (fd >= 0) {
5788 err = bitmap_create(mddev);
5789 if (!err)
5790 err = bitmap_load(mddev);
5792 if (fd < 0 || err) {
5793 bitmap_destroy(mddev);
5794 fd = -1; /* make sure to put the file */
5796 mddev->pers->quiesce(mddev, 0);
5798 if (fd < 0) {
5799 if (mddev->bitmap_info.file) {
5800 restore_bitmap_write_access(mddev->bitmap_info.file);
5801 fput(mddev->bitmap_info.file);
5803 mddev->bitmap_info.file = NULL;
5806 return err;
5810 * set_array_info is used two different ways
5811 * The original usage is when creating a new array.
5812 * In this usage, raid_disks is > 0 and it together with
5813 * level, size, not_persistent,layout,chunksize determine the
5814 * shape of the array.
5815 * This will always create an array with a type-0.90.0 superblock.
5816 * The newer usage is when assembling an array.
5817 * In this case raid_disks will be 0, and the major_version field is
5818 * use to determine which style super-blocks are to be found on the devices.
5819 * The minor and patch _version numbers are also kept incase the
5820 * super_block handler wishes to interpret them.
5822 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5825 if (info->raid_disks == 0) {
5826 /* just setting version number for superblock loading */
5827 if (info->major_version < 0 ||
5828 info->major_version >= ARRAY_SIZE(super_types) ||
5829 super_types[info->major_version].name == NULL) {
5830 /* maybe try to auto-load a module? */
5831 printk(KERN_INFO
5832 "md: superblock version %d not known\n",
5833 info->major_version);
5834 return -EINVAL;
5836 mddev->major_version = info->major_version;
5837 mddev->minor_version = info->minor_version;
5838 mddev->patch_version = info->patch_version;
5839 mddev->persistent = !info->not_persistent;
5840 /* ensure mddev_put doesn't delete this now that there
5841 * is some minimal configuration.
5843 mddev->ctime = get_seconds();
5844 return 0;
5846 mddev->major_version = MD_MAJOR_VERSION;
5847 mddev->minor_version = MD_MINOR_VERSION;
5848 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5849 mddev->ctime = get_seconds();
5851 mddev->level = info->level;
5852 mddev->clevel[0] = 0;
5853 mddev->dev_sectors = 2 * (sector_t)info->size;
5854 mddev->raid_disks = info->raid_disks;
5855 /* don't set md_minor, it is determined by which /dev/md* was
5856 * openned
5858 if (info->state & (1<<MD_SB_CLEAN))
5859 mddev->recovery_cp = MaxSector;
5860 else
5861 mddev->recovery_cp = 0;
5862 mddev->persistent = ! info->not_persistent;
5863 mddev->external = 0;
5865 mddev->layout = info->layout;
5866 mddev->chunk_sectors = info->chunk_size >> 9;
5868 mddev->max_disks = MD_SB_DISKS;
5870 if (mddev->persistent)
5871 mddev->flags = 0;
5872 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5874 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5875 mddev->bitmap_info.offset = 0;
5877 mddev->reshape_position = MaxSector;
5880 * Generate a 128 bit UUID
5882 get_random_bytes(mddev->uuid, 16);
5884 mddev->new_level = mddev->level;
5885 mddev->new_chunk_sectors = mddev->chunk_sectors;
5886 mddev->new_layout = mddev->layout;
5887 mddev->delta_disks = 0;
5889 return 0;
5892 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5894 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5896 if (mddev->external_size)
5897 return;
5899 mddev->array_sectors = array_sectors;
5901 EXPORT_SYMBOL(md_set_array_sectors);
5903 static int update_size(struct mddev *mddev, sector_t num_sectors)
5905 struct md_rdev *rdev;
5906 int rv;
5907 int fit = (num_sectors == 0);
5909 if (mddev->pers->resize == NULL)
5910 return -EINVAL;
5911 /* The "num_sectors" is the number of sectors of each device that
5912 * is used. This can only make sense for arrays with redundancy.
5913 * linear and raid0 always use whatever space is available. We can only
5914 * consider changing this number if no resync or reconstruction is
5915 * happening, and if the new size is acceptable. It must fit before the
5916 * sb_start or, if that is <data_offset, it must fit before the size
5917 * of each device. If num_sectors is zero, we find the largest size
5918 * that fits.
5920 if (mddev->sync_thread)
5921 return -EBUSY;
5922 if (mddev->bitmap)
5923 /* Sorry, cannot grow a bitmap yet, just remove it,
5924 * grow, and re-add.
5926 return -EBUSY;
5927 list_for_each_entry(rdev, &mddev->disks, same_set) {
5928 sector_t avail = rdev->sectors;
5930 if (fit && (num_sectors == 0 || num_sectors > avail))
5931 num_sectors = avail;
5932 if (avail < num_sectors)
5933 return -ENOSPC;
5935 rv = mddev->pers->resize(mddev, num_sectors);
5936 if (!rv)
5937 revalidate_disk(mddev->gendisk);
5938 return rv;
5941 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5943 int rv;
5944 /* change the number of raid disks */
5945 if (mddev->pers->check_reshape == NULL)
5946 return -EINVAL;
5947 if (raid_disks <= 0 ||
5948 (mddev->max_disks && raid_disks >= mddev->max_disks))
5949 return -EINVAL;
5950 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5951 return -EBUSY;
5952 mddev->delta_disks = raid_disks - mddev->raid_disks;
5954 rv = mddev->pers->check_reshape(mddev);
5955 if (rv < 0)
5956 mddev->delta_disks = 0;
5957 return rv;
5962 * update_array_info is used to change the configuration of an
5963 * on-line array.
5964 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5965 * fields in the info are checked against the array.
5966 * Any differences that cannot be handled will cause an error.
5967 * Normally, only one change can be managed at a time.
5969 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5971 int rv = 0;
5972 int cnt = 0;
5973 int state = 0;
5975 /* calculate expected state,ignoring low bits */
5976 if (mddev->bitmap && mddev->bitmap_info.offset)
5977 state |= (1 << MD_SB_BITMAP_PRESENT);
5979 if (mddev->major_version != info->major_version ||
5980 mddev->minor_version != info->minor_version ||
5981 /* mddev->patch_version != info->patch_version || */
5982 mddev->ctime != info->ctime ||
5983 mddev->level != info->level ||
5984 /* mddev->layout != info->layout || */
5985 !mddev->persistent != info->not_persistent||
5986 mddev->chunk_sectors != info->chunk_size >> 9 ||
5987 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5988 ((state^info->state) & 0xfffffe00)
5990 return -EINVAL;
5991 /* Check there is only one change */
5992 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5993 cnt++;
5994 if (mddev->raid_disks != info->raid_disks)
5995 cnt++;
5996 if (mddev->layout != info->layout)
5997 cnt++;
5998 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5999 cnt++;
6000 if (cnt == 0)
6001 return 0;
6002 if (cnt > 1)
6003 return -EINVAL;
6005 if (mddev->layout != info->layout) {
6006 /* Change layout
6007 * we don't need to do anything at the md level, the
6008 * personality will take care of it all.
6010 if (mddev->pers->check_reshape == NULL)
6011 return -EINVAL;
6012 else {
6013 mddev->new_layout = info->layout;
6014 rv = mddev->pers->check_reshape(mddev);
6015 if (rv)
6016 mddev->new_layout = mddev->layout;
6017 return rv;
6020 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6021 rv = update_size(mddev, (sector_t)info->size * 2);
6023 if (mddev->raid_disks != info->raid_disks)
6024 rv = update_raid_disks(mddev, info->raid_disks);
6026 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6027 if (mddev->pers->quiesce == NULL)
6028 return -EINVAL;
6029 if (mddev->recovery || mddev->sync_thread)
6030 return -EBUSY;
6031 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6032 /* add the bitmap */
6033 if (mddev->bitmap)
6034 return -EEXIST;
6035 if (mddev->bitmap_info.default_offset == 0)
6036 return -EINVAL;
6037 mddev->bitmap_info.offset =
6038 mddev->bitmap_info.default_offset;
6039 mddev->pers->quiesce(mddev, 1);
6040 rv = bitmap_create(mddev);
6041 if (!rv)
6042 rv = bitmap_load(mddev);
6043 if (rv)
6044 bitmap_destroy(mddev);
6045 mddev->pers->quiesce(mddev, 0);
6046 } else {
6047 /* remove the bitmap */
6048 if (!mddev->bitmap)
6049 return -ENOENT;
6050 if (mddev->bitmap->file)
6051 return -EINVAL;
6052 mddev->pers->quiesce(mddev, 1);
6053 bitmap_destroy(mddev);
6054 mddev->pers->quiesce(mddev, 0);
6055 mddev->bitmap_info.offset = 0;
6058 md_update_sb(mddev, 1);
6059 return rv;
6062 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6064 struct md_rdev *rdev;
6066 if (mddev->pers == NULL)
6067 return -ENODEV;
6069 rdev = find_rdev(mddev, dev);
6070 if (!rdev)
6071 return -ENODEV;
6073 md_error(mddev, rdev);
6074 if (!test_bit(Faulty, &rdev->flags))
6075 return -EBUSY;
6076 return 0;
6080 * We have a problem here : there is no easy way to give a CHS
6081 * virtual geometry. We currently pretend that we have a 2 heads
6082 * 4 sectors (with a BIG number of cylinders...). This drives
6083 * dosfs just mad... ;-)
6085 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6087 struct mddev *mddev = bdev->bd_disk->private_data;
6089 geo->heads = 2;
6090 geo->sectors = 4;
6091 geo->cylinders = mddev->array_sectors / 8;
6092 return 0;
6095 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6096 unsigned int cmd, unsigned long arg)
6098 int err = 0;
6099 void __user *argp = (void __user *)arg;
6100 struct mddev *mddev = NULL;
6101 int ro;
6103 switch (cmd) {
6104 case RAID_VERSION:
6105 case GET_ARRAY_INFO:
6106 case GET_DISK_INFO:
6107 break;
6108 default:
6109 if (!capable(CAP_SYS_ADMIN))
6110 return -EACCES;
6114 * Commands dealing with the RAID driver but not any
6115 * particular array:
6117 switch (cmd)
6119 case RAID_VERSION:
6120 err = get_version(argp);
6121 goto done;
6123 case PRINT_RAID_DEBUG:
6124 err = 0;
6125 md_print_devices();
6126 goto done;
6128 #ifndef MODULE
6129 case RAID_AUTORUN:
6130 err = 0;
6131 autostart_arrays(arg);
6132 goto done;
6133 #endif
6134 default:;
6138 * Commands creating/starting a new array:
6141 mddev = bdev->bd_disk->private_data;
6143 if (!mddev) {
6144 BUG();
6145 goto abort;
6148 err = mddev_lock(mddev);
6149 if (err) {
6150 printk(KERN_INFO
6151 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6152 err, cmd);
6153 goto abort;
6156 switch (cmd)
6158 case SET_ARRAY_INFO:
6160 mdu_array_info_t info;
6161 if (!arg)
6162 memset(&info, 0, sizeof(info));
6163 else if (copy_from_user(&info, argp, sizeof(info))) {
6164 err = -EFAULT;
6165 goto abort_unlock;
6167 if (mddev->pers) {
6168 err = update_array_info(mddev, &info);
6169 if (err) {
6170 printk(KERN_WARNING "md: couldn't update"
6171 " array info. %d\n", err);
6172 goto abort_unlock;
6174 goto done_unlock;
6176 if (!list_empty(&mddev->disks)) {
6177 printk(KERN_WARNING
6178 "md: array %s already has disks!\n",
6179 mdname(mddev));
6180 err = -EBUSY;
6181 goto abort_unlock;
6183 if (mddev->raid_disks) {
6184 printk(KERN_WARNING
6185 "md: array %s already initialised!\n",
6186 mdname(mddev));
6187 err = -EBUSY;
6188 goto abort_unlock;
6190 err = set_array_info(mddev, &info);
6191 if (err) {
6192 printk(KERN_WARNING "md: couldn't set"
6193 " array info. %d\n", err);
6194 goto abort_unlock;
6197 goto done_unlock;
6199 default:;
6203 * Commands querying/configuring an existing array:
6205 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6206 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6207 if ((!mddev->raid_disks && !mddev->external)
6208 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6209 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6210 && cmd != GET_BITMAP_FILE) {
6211 err = -ENODEV;
6212 goto abort_unlock;
6216 * Commands even a read-only array can execute:
6218 switch (cmd)
6220 case GET_ARRAY_INFO:
6221 err = get_array_info(mddev, argp);
6222 goto done_unlock;
6224 case GET_BITMAP_FILE:
6225 err = get_bitmap_file(mddev, argp);
6226 goto done_unlock;
6228 case GET_DISK_INFO:
6229 err = get_disk_info(mddev, argp);
6230 goto done_unlock;
6232 case RESTART_ARRAY_RW:
6233 err = restart_array(mddev);
6234 goto done_unlock;
6236 case STOP_ARRAY:
6237 err = do_md_stop(mddev, 0, 1);
6238 goto done_unlock;
6240 case STOP_ARRAY_RO:
6241 err = md_set_readonly(mddev, 1);
6242 goto done_unlock;
6244 case BLKROSET:
6245 if (get_user(ro, (int __user *)(arg))) {
6246 err = -EFAULT;
6247 goto done_unlock;
6249 err = -EINVAL;
6251 /* if the bdev is going readonly the value of mddev->ro
6252 * does not matter, no writes are coming
6254 if (ro)
6255 goto done_unlock;
6257 /* are we are already prepared for writes? */
6258 if (mddev->ro != 1)
6259 goto done_unlock;
6261 /* transitioning to readauto need only happen for
6262 * arrays that call md_write_start
6264 if (mddev->pers) {
6265 err = restart_array(mddev);
6266 if (err == 0) {
6267 mddev->ro = 2;
6268 set_disk_ro(mddev->gendisk, 0);
6271 goto done_unlock;
6275 * The remaining ioctls are changing the state of the
6276 * superblock, so we do not allow them on read-only arrays.
6277 * However non-MD ioctls (e.g. get-size) will still come through
6278 * here and hit the 'default' below, so only disallow
6279 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6281 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6282 if (mddev->ro == 2) {
6283 mddev->ro = 0;
6284 sysfs_notify_dirent_safe(mddev->sysfs_state);
6285 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6286 md_wakeup_thread(mddev->thread);
6287 } else {
6288 err = -EROFS;
6289 goto abort_unlock;
6293 switch (cmd)
6295 case ADD_NEW_DISK:
6297 mdu_disk_info_t info;
6298 if (copy_from_user(&info, argp, sizeof(info)))
6299 err = -EFAULT;
6300 else
6301 err = add_new_disk(mddev, &info);
6302 goto done_unlock;
6305 case HOT_REMOVE_DISK:
6306 err = hot_remove_disk(mddev, new_decode_dev(arg));
6307 goto done_unlock;
6309 case HOT_ADD_DISK:
6310 err = hot_add_disk(mddev, new_decode_dev(arg));
6311 goto done_unlock;
6313 case SET_DISK_FAULTY:
6314 err = set_disk_faulty(mddev, new_decode_dev(arg));
6315 goto done_unlock;
6317 case RUN_ARRAY:
6318 err = do_md_run(mddev);
6319 goto done_unlock;
6321 case SET_BITMAP_FILE:
6322 err = set_bitmap_file(mddev, (int)arg);
6323 goto done_unlock;
6325 default:
6326 err = -EINVAL;
6327 goto abort_unlock;
6330 done_unlock:
6331 abort_unlock:
6332 if (mddev->hold_active == UNTIL_IOCTL &&
6333 err != -EINVAL)
6334 mddev->hold_active = 0;
6335 mddev_unlock(mddev);
6337 return err;
6338 done:
6339 if (err)
6340 MD_BUG();
6341 abort:
6342 return err;
6344 #ifdef CONFIG_COMPAT
6345 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6346 unsigned int cmd, unsigned long arg)
6348 switch (cmd) {
6349 case HOT_REMOVE_DISK:
6350 case HOT_ADD_DISK:
6351 case SET_DISK_FAULTY:
6352 case SET_BITMAP_FILE:
6353 /* These take in integer arg, do not convert */
6354 break;
6355 default:
6356 arg = (unsigned long)compat_ptr(arg);
6357 break;
6360 return md_ioctl(bdev, mode, cmd, arg);
6362 #endif /* CONFIG_COMPAT */
6364 static int md_open(struct block_device *bdev, fmode_t mode)
6367 * Succeed if we can lock the mddev, which confirms that
6368 * it isn't being stopped right now.
6370 struct mddev *mddev = mddev_find(bdev->bd_dev);
6371 int err;
6373 if (mddev->gendisk != bdev->bd_disk) {
6374 /* we are racing with mddev_put which is discarding this
6375 * bd_disk.
6377 mddev_put(mddev);
6378 /* Wait until bdev->bd_disk is definitely gone */
6379 flush_workqueue(md_misc_wq);
6380 /* Then retry the open from the top */
6381 return -ERESTARTSYS;
6383 BUG_ON(mddev != bdev->bd_disk->private_data);
6385 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6386 goto out;
6388 err = 0;
6389 atomic_inc(&mddev->openers);
6390 mutex_unlock(&mddev->open_mutex);
6392 check_disk_change(bdev);
6393 out:
6394 return err;
6397 static int md_release(struct gendisk *disk, fmode_t mode)
6399 struct mddev *mddev = disk->private_data;
6401 BUG_ON(!mddev);
6402 atomic_dec(&mddev->openers);
6403 mddev_put(mddev);
6405 return 0;
6408 static int md_media_changed(struct gendisk *disk)
6410 struct mddev *mddev = disk->private_data;
6412 return mddev->changed;
6415 static int md_revalidate(struct gendisk *disk)
6417 struct mddev *mddev = disk->private_data;
6419 mddev->changed = 0;
6420 return 0;
6422 static const struct block_device_operations md_fops =
6424 .owner = THIS_MODULE,
6425 .open = md_open,
6426 .release = md_release,
6427 .ioctl = md_ioctl,
6428 #ifdef CONFIG_COMPAT
6429 .compat_ioctl = md_compat_ioctl,
6430 #endif
6431 .getgeo = md_getgeo,
6432 .media_changed = md_media_changed,
6433 .revalidate_disk= md_revalidate,
6436 static int md_thread(void * arg)
6438 struct md_thread *thread = arg;
6441 * md_thread is a 'system-thread', it's priority should be very
6442 * high. We avoid resource deadlocks individually in each
6443 * raid personality. (RAID5 does preallocation) We also use RR and
6444 * the very same RT priority as kswapd, thus we will never get
6445 * into a priority inversion deadlock.
6447 * we definitely have to have equal or higher priority than
6448 * bdflush, otherwise bdflush will deadlock if there are too
6449 * many dirty RAID5 blocks.
6452 allow_signal(SIGKILL);
6453 while (!kthread_should_stop()) {
6455 /* We need to wait INTERRUPTIBLE so that
6456 * we don't add to the load-average.
6457 * That means we need to be sure no signals are
6458 * pending
6460 if (signal_pending(current))
6461 flush_signals(current);
6463 wait_event_interruptible_timeout
6464 (thread->wqueue,
6465 test_bit(THREAD_WAKEUP, &thread->flags)
6466 || kthread_should_stop(),
6467 thread->timeout);
6469 clear_bit(THREAD_WAKEUP, &thread->flags);
6470 if (!kthread_should_stop())
6471 thread->run(thread->mddev);
6474 return 0;
6477 void md_wakeup_thread(struct md_thread *thread)
6479 if (thread) {
6480 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6481 set_bit(THREAD_WAKEUP, &thread->flags);
6482 wake_up(&thread->wqueue);
6486 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6487 const char *name)
6489 struct md_thread *thread;
6491 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6492 if (!thread)
6493 return NULL;
6495 init_waitqueue_head(&thread->wqueue);
6497 thread->run = run;
6498 thread->mddev = mddev;
6499 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6500 thread->tsk = kthread_run(md_thread, thread,
6501 "%s_%s",
6502 mdname(thread->mddev),
6503 name ?: mddev->pers->name);
6504 if (IS_ERR(thread->tsk)) {
6505 kfree(thread);
6506 return NULL;
6508 return thread;
6511 void md_unregister_thread(struct md_thread **threadp)
6513 struct md_thread *thread = *threadp;
6514 if (!thread)
6515 return;
6516 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6517 /* Locking ensures that mddev_unlock does not wake_up a
6518 * non-existent thread
6520 spin_lock(&pers_lock);
6521 *threadp = NULL;
6522 spin_unlock(&pers_lock);
6524 kthread_stop(thread->tsk);
6525 kfree(thread);
6528 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6530 if (!mddev) {
6531 MD_BUG();
6532 return;
6535 if (!rdev || test_bit(Faulty, &rdev->flags))
6536 return;
6538 if (!mddev->pers || !mddev->pers->error_handler)
6539 return;
6540 mddev->pers->error_handler(mddev,rdev);
6541 if (mddev->degraded)
6542 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6543 sysfs_notify_dirent_safe(rdev->sysfs_state);
6544 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6545 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6546 md_wakeup_thread(mddev->thread);
6547 if (mddev->event_work.func)
6548 queue_work(md_misc_wq, &mddev->event_work);
6549 md_new_event_inintr(mddev);
6552 /* seq_file implementation /proc/mdstat */
6554 static void status_unused(struct seq_file *seq)
6556 int i = 0;
6557 struct md_rdev *rdev;
6559 seq_printf(seq, "unused devices: ");
6561 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6562 char b[BDEVNAME_SIZE];
6563 i++;
6564 seq_printf(seq, "%s ",
6565 bdevname(rdev->bdev,b));
6567 if (!i)
6568 seq_printf(seq, "<none>");
6570 seq_printf(seq, "\n");
6574 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6576 sector_t max_sectors, resync, res;
6577 unsigned long dt, db;
6578 sector_t rt;
6579 int scale;
6580 unsigned int per_milli;
6582 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6584 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6585 max_sectors = mddev->resync_max_sectors;
6586 else
6587 max_sectors = mddev->dev_sectors;
6590 * Should not happen.
6592 if (!max_sectors) {
6593 MD_BUG();
6594 return;
6596 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6597 * in a sector_t, and (max_sectors>>scale) will fit in a
6598 * u32, as those are the requirements for sector_div.
6599 * Thus 'scale' must be at least 10
6601 scale = 10;
6602 if (sizeof(sector_t) > sizeof(unsigned long)) {
6603 while ( max_sectors/2 > (1ULL<<(scale+32)))
6604 scale++;
6606 res = (resync>>scale)*1000;
6607 sector_div(res, (u32)((max_sectors>>scale)+1));
6609 per_milli = res;
6611 int i, x = per_milli/50, y = 20-x;
6612 seq_printf(seq, "[");
6613 for (i = 0; i < x; i++)
6614 seq_printf(seq, "=");
6615 seq_printf(seq, ">");
6616 for (i = 0; i < y; i++)
6617 seq_printf(seq, ".");
6618 seq_printf(seq, "] ");
6620 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6621 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6622 "reshape" :
6623 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6624 "check" :
6625 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6626 "resync" : "recovery"))),
6627 per_milli/10, per_milli % 10,
6628 (unsigned long long) resync/2,
6629 (unsigned long long) max_sectors/2);
6632 * dt: time from mark until now
6633 * db: blocks written from mark until now
6634 * rt: remaining time
6636 * rt is a sector_t, so could be 32bit or 64bit.
6637 * So we divide before multiply in case it is 32bit and close
6638 * to the limit.
6639 * We scale the divisor (db) by 32 to avoid losing precision
6640 * near the end of resync when the number of remaining sectors
6641 * is close to 'db'.
6642 * We then divide rt by 32 after multiplying by db to compensate.
6643 * The '+1' avoids division by zero if db is very small.
6645 dt = ((jiffies - mddev->resync_mark) / HZ);
6646 if (!dt) dt++;
6647 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6648 - mddev->resync_mark_cnt;
6650 rt = max_sectors - resync; /* number of remaining sectors */
6651 sector_div(rt, db/32+1);
6652 rt *= dt;
6653 rt >>= 5;
6655 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6656 ((unsigned long)rt % 60)/6);
6658 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6661 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6663 struct list_head *tmp;
6664 loff_t l = *pos;
6665 struct mddev *mddev;
6667 if (l >= 0x10000)
6668 return NULL;
6669 if (!l--)
6670 /* header */
6671 return (void*)1;
6673 spin_lock(&all_mddevs_lock);
6674 list_for_each(tmp,&all_mddevs)
6675 if (!l--) {
6676 mddev = list_entry(tmp, struct mddev, all_mddevs);
6677 mddev_get(mddev);
6678 spin_unlock(&all_mddevs_lock);
6679 return mddev;
6681 spin_unlock(&all_mddevs_lock);
6682 if (!l--)
6683 return (void*)2;/* tail */
6684 return NULL;
6687 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6689 struct list_head *tmp;
6690 struct mddev *next_mddev, *mddev = v;
6692 ++*pos;
6693 if (v == (void*)2)
6694 return NULL;
6696 spin_lock(&all_mddevs_lock);
6697 if (v == (void*)1)
6698 tmp = all_mddevs.next;
6699 else
6700 tmp = mddev->all_mddevs.next;
6701 if (tmp != &all_mddevs)
6702 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6703 else {
6704 next_mddev = (void*)2;
6705 *pos = 0x10000;
6707 spin_unlock(&all_mddevs_lock);
6709 if (v != (void*)1)
6710 mddev_put(mddev);
6711 return next_mddev;
6715 static void md_seq_stop(struct seq_file *seq, void *v)
6717 struct mddev *mddev = v;
6719 if (mddev && v != (void*)1 && v != (void*)2)
6720 mddev_put(mddev);
6723 static int md_seq_show(struct seq_file *seq, void *v)
6725 struct mddev *mddev = v;
6726 sector_t sectors;
6727 struct md_rdev *rdev;
6728 struct bitmap *bitmap;
6730 if (v == (void*)1) {
6731 struct md_personality *pers;
6732 seq_printf(seq, "Personalities : ");
6733 spin_lock(&pers_lock);
6734 list_for_each_entry(pers, &pers_list, list)
6735 seq_printf(seq, "[%s] ", pers->name);
6737 spin_unlock(&pers_lock);
6738 seq_printf(seq, "\n");
6739 seq->poll_event = atomic_read(&md_event_count);
6740 return 0;
6742 if (v == (void*)2) {
6743 status_unused(seq);
6744 return 0;
6747 if (mddev_lock(mddev) < 0)
6748 return -EINTR;
6750 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6751 seq_printf(seq, "%s : %sactive", mdname(mddev),
6752 mddev->pers ? "" : "in");
6753 if (mddev->pers) {
6754 if (mddev->ro==1)
6755 seq_printf(seq, " (read-only)");
6756 if (mddev->ro==2)
6757 seq_printf(seq, " (auto-read-only)");
6758 seq_printf(seq, " %s", mddev->pers->name);
6761 sectors = 0;
6762 list_for_each_entry(rdev, &mddev->disks, same_set) {
6763 char b[BDEVNAME_SIZE];
6764 seq_printf(seq, " %s[%d]",
6765 bdevname(rdev->bdev,b), rdev->desc_nr);
6766 if (test_bit(WriteMostly, &rdev->flags))
6767 seq_printf(seq, "(W)");
6768 if (test_bit(Faulty, &rdev->flags)) {
6769 seq_printf(seq, "(F)");
6770 continue;
6772 if (rdev->raid_disk < 0)
6773 seq_printf(seq, "(S)"); /* spare */
6774 if (test_bit(Replacement, &rdev->flags))
6775 seq_printf(seq, "(R)");
6776 sectors += rdev->sectors;
6779 if (!list_empty(&mddev->disks)) {
6780 if (mddev->pers)
6781 seq_printf(seq, "\n %llu blocks",
6782 (unsigned long long)
6783 mddev->array_sectors / 2);
6784 else
6785 seq_printf(seq, "\n %llu blocks",
6786 (unsigned long long)sectors / 2);
6788 if (mddev->persistent) {
6789 if (mddev->major_version != 0 ||
6790 mddev->minor_version != 90) {
6791 seq_printf(seq," super %d.%d",
6792 mddev->major_version,
6793 mddev->minor_version);
6795 } else if (mddev->external)
6796 seq_printf(seq, " super external:%s",
6797 mddev->metadata_type);
6798 else
6799 seq_printf(seq, " super non-persistent");
6801 if (mddev->pers) {
6802 mddev->pers->status(seq, mddev);
6803 seq_printf(seq, "\n ");
6804 if (mddev->pers->sync_request) {
6805 if (mddev->curr_resync > 2) {
6806 status_resync(seq, mddev);
6807 seq_printf(seq, "\n ");
6808 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6809 seq_printf(seq, "\tresync=DELAYED\n ");
6810 else if (mddev->recovery_cp < MaxSector)
6811 seq_printf(seq, "\tresync=PENDING\n ");
6813 } else
6814 seq_printf(seq, "\n ");
6816 if ((bitmap = mddev->bitmap)) {
6817 unsigned long chunk_kb;
6818 unsigned long flags;
6819 spin_lock_irqsave(&bitmap->lock, flags);
6820 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6821 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6822 "%lu%s chunk",
6823 bitmap->pages - bitmap->missing_pages,
6824 bitmap->pages,
6825 (bitmap->pages - bitmap->missing_pages)
6826 << (PAGE_SHIFT - 10),
6827 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6828 chunk_kb ? "KB" : "B");
6829 if (bitmap->file) {
6830 seq_printf(seq, ", file: ");
6831 seq_path(seq, &bitmap->file->f_path, " \t\n");
6834 seq_printf(seq, "\n");
6835 spin_unlock_irqrestore(&bitmap->lock, flags);
6838 seq_printf(seq, "\n");
6840 mddev_unlock(mddev);
6842 return 0;
6845 static const struct seq_operations md_seq_ops = {
6846 .start = md_seq_start,
6847 .next = md_seq_next,
6848 .stop = md_seq_stop,
6849 .show = md_seq_show,
6852 static int md_seq_open(struct inode *inode, struct file *file)
6854 struct seq_file *seq;
6855 int error;
6857 error = seq_open(file, &md_seq_ops);
6858 if (error)
6859 return error;
6861 seq = file->private_data;
6862 seq->poll_event = atomic_read(&md_event_count);
6863 return error;
6866 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6868 struct seq_file *seq = filp->private_data;
6869 int mask;
6871 poll_wait(filp, &md_event_waiters, wait);
6873 /* always allow read */
6874 mask = POLLIN | POLLRDNORM;
6876 if (seq->poll_event != atomic_read(&md_event_count))
6877 mask |= POLLERR | POLLPRI;
6878 return mask;
6881 static const struct file_operations md_seq_fops = {
6882 .owner = THIS_MODULE,
6883 .open = md_seq_open,
6884 .read = seq_read,
6885 .llseek = seq_lseek,
6886 .release = seq_release_private,
6887 .poll = mdstat_poll,
6890 int register_md_personality(struct md_personality *p)
6892 spin_lock(&pers_lock);
6893 list_add_tail(&p->list, &pers_list);
6894 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6895 spin_unlock(&pers_lock);
6896 return 0;
6899 int unregister_md_personality(struct md_personality *p)
6901 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6902 spin_lock(&pers_lock);
6903 list_del_init(&p->list);
6904 spin_unlock(&pers_lock);
6905 return 0;
6908 static int is_mddev_idle(struct mddev *mddev, int init)
6910 struct md_rdev * rdev;
6911 int idle;
6912 int curr_events;
6914 idle = 1;
6915 rcu_read_lock();
6916 rdev_for_each_rcu(rdev, mddev) {
6917 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6918 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6919 (int)part_stat_read(&disk->part0, sectors[1]) -
6920 atomic_read(&disk->sync_io);
6921 /* sync IO will cause sync_io to increase before the disk_stats
6922 * as sync_io is counted when a request starts, and
6923 * disk_stats is counted when it completes.
6924 * So resync activity will cause curr_events to be smaller than
6925 * when there was no such activity.
6926 * non-sync IO will cause disk_stat to increase without
6927 * increasing sync_io so curr_events will (eventually)
6928 * be larger than it was before. Once it becomes
6929 * substantially larger, the test below will cause
6930 * the array to appear non-idle, and resync will slow
6931 * down.
6932 * If there is a lot of outstanding resync activity when
6933 * we set last_event to curr_events, then all that activity
6934 * completing might cause the array to appear non-idle
6935 * and resync will be slowed down even though there might
6936 * not have been non-resync activity. This will only
6937 * happen once though. 'last_events' will soon reflect
6938 * the state where there is little or no outstanding
6939 * resync requests, and further resync activity will
6940 * always make curr_events less than last_events.
6943 if (init || curr_events - rdev->last_events > 64) {
6944 rdev->last_events = curr_events;
6945 idle = 0;
6948 rcu_read_unlock();
6949 return idle;
6952 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6954 /* another "blocks" (512byte) blocks have been synced */
6955 atomic_sub(blocks, &mddev->recovery_active);
6956 wake_up(&mddev->recovery_wait);
6957 if (!ok) {
6958 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6959 md_wakeup_thread(mddev->thread);
6960 // stop recovery, signal do_sync ....
6965 /* md_write_start(mddev, bi)
6966 * If we need to update some array metadata (e.g. 'active' flag
6967 * in superblock) before writing, schedule a superblock update
6968 * and wait for it to complete.
6970 void md_write_start(struct mddev *mddev, struct bio *bi)
6972 int did_change = 0;
6973 if (bio_data_dir(bi) != WRITE)
6974 return;
6976 BUG_ON(mddev->ro == 1);
6977 if (mddev->ro == 2) {
6978 /* need to switch to read/write */
6979 mddev->ro = 0;
6980 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6981 md_wakeup_thread(mddev->thread);
6982 md_wakeup_thread(mddev->sync_thread);
6983 did_change = 1;
6985 atomic_inc(&mddev->writes_pending);
6986 if (mddev->safemode == 1)
6987 mddev->safemode = 0;
6988 if (mddev->in_sync) {
6989 spin_lock_irq(&mddev->write_lock);
6990 if (mddev->in_sync) {
6991 mddev->in_sync = 0;
6992 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6993 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6994 md_wakeup_thread(mddev->thread);
6995 did_change = 1;
6997 spin_unlock_irq(&mddev->write_lock);
6999 if (did_change)
7000 sysfs_notify_dirent_safe(mddev->sysfs_state);
7001 wait_event(mddev->sb_wait,
7002 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7005 void md_write_end(struct mddev *mddev)
7007 if (atomic_dec_and_test(&mddev->writes_pending)) {
7008 if (mddev->safemode == 2)
7009 md_wakeup_thread(mddev->thread);
7010 else if (mddev->safemode_delay)
7011 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7015 /* md_allow_write(mddev)
7016 * Calling this ensures that the array is marked 'active' so that writes
7017 * may proceed without blocking. It is important to call this before
7018 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7019 * Must be called with mddev_lock held.
7021 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7022 * is dropped, so return -EAGAIN after notifying userspace.
7024 int md_allow_write(struct mddev *mddev)
7026 if (!mddev->pers)
7027 return 0;
7028 if (mddev->ro)
7029 return 0;
7030 if (!mddev->pers->sync_request)
7031 return 0;
7033 spin_lock_irq(&mddev->write_lock);
7034 if (mddev->in_sync) {
7035 mddev->in_sync = 0;
7036 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7037 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7038 if (mddev->safemode_delay &&
7039 mddev->safemode == 0)
7040 mddev->safemode = 1;
7041 spin_unlock_irq(&mddev->write_lock);
7042 md_update_sb(mddev, 0);
7043 sysfs_notify_dirent_safe(mddev->sysfs_state);
7044 } else
7045 spin_unlock_irq(&mddev->write_lock);
7047 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7048 return -EAGAIN;
7049 else
7050 return 0;
7052 EXPORT_SYMBOL_GPL(md_allow_write);
7054 #define SYNC_MARKS 10
7055 #define SYNC_MARK_STEP (3*HZ)
7056 void md_do_sync(struct mddev *mddev)
7058 struct mddev *mddev2;
7059 unsigned int currspeed = 0,
7060 window;
7061 sector_t max_sectors,j, io_sectors;
7062 unsigned long mark[SYNC_MARKS];
7063 sector_t mark_cnt[SYNC_MARKS];
7064 int last_mark,m;
7065 struct list_head *tmp;
7066 sector_t last_check;
7067 int skipped = 0;
7068 struct md_rdev *rdev;
7069 char *desc;
7071 /* just incase thread restarts... */
7072 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7073 return;
7074 if (mddev->ro) /* never try to sync a read-only array */
7075 return;
7077 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7078 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7079 desc = "data-check";
7080 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7081 desc = "requested-resync";
7082 else
7083 desc = "resync";
7084 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7085 desc = "reshape";
7086 else
7087 desc = "recovery";
7089 /* we overload curr_resync somewhat here.
7090 * 0 == not engaged in resync at all
7091 * 2 == checking that there is no conflict with another sync
7092 * 1 == like 2, but have yielded to allow conflicting resync to
7093 * commense
7094 * other == active in resync - this many blocks
7096 * Before starting a resync we must have set curr_resync to
7097 * 2, and then checked that every "conflicting" array has curr_resync
7098 * less than ours. When we find one that is the same or higher
7099 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7100 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7101 * This will mean we have to start checking from the beginning again.
7105 do {
7106 mddev->curr_resync = 2;
7108 try_again:
7109 if (kthread_should_stop())
7110 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7112 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7113 goto skip;
7114 for_each_mddev(mddev2, tmp) {
7115 if (mddev2 == mddev)
7116 continue;
7117 if (!mddev->parallel_resync
7118 && mddev2->curr_resync
7119 && match_mddev_units(mddev, mddev2)) {
7120 DEFINE_WAIT(wq);
7121 if (mddev < mddev2 && mddev->curr_resync == 2) {
7122 /* arbitrarily yield */
7123 mddev->curr_resync = 1;
7124 wake_up(&resync_wait);
7126 if (mddev > mddev2 && mddev->curr_resync == 1)
7127 /* no need to wait here, we can wait the next
7128 * time 'round when curr_resync == 2
7130 continue;
7131 /* We need to wait 'interruptible' so as not to
7132 * contribute to the load average, and not to
7133 * be caught by 'softlockup'
7135 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7136 if (!kthread_should_stop() &&
7137 mddev2->curr_resync >= mddev->curr_resync) {
7138 printk(KERN_INFO "md: delaying %s of %s"
7139 " until %s has finished (they"
7140 " share one or more physical units)\n",
7141 desc, mdname(mddev), mdname(mddev2));
7142 mddev_put(mddev2);
7143 if (signal_pending(current))
7144 flush_signals(current);
7145 schedule();
7146 finish_wait(&resync_wait, &wq);
7147 goto try_again;
7149 finish_wait(&resync_wait, &wq);
7152 } while (mddev->curr_resync < 2);
7154 j = 0;
7155 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7156 /* resync follows the size requested by the personality,
7157 * which defaults to physical size, but can be virtual size
7159 max_sectors = mddev->resync_max_sectors;
7160 mddev->resync_mismatches = 0;
7161 /* we don't use the checkpoint if there's a bitmap */
7162 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7163 j = mddev->resync_min;
7164 else if (!mddev->bitmap)
7165 j = mddev->recovery_cp;
7167 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7168 max_sectors = mddev->dev_sectors;
7169 else {
7170 /* recovery follows the physical size of devices */
7171 max_sectors = mddev->dev_sectors;
7172 j = MaxSector;
7173 rcu_read_lock();
7174 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7175 if (rdev->raid_disk >= 0 &&
7176 !test_bit(Faulty, &rdev->flags) &&
7177 !test_bit(In_sync, &rdev->flags) &&
7178 rdev->recovery_offset < j)
7179 j = rdev->recovery_offset;
7180 rcu_read_unlock();
7183 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7184 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7185 " %d KB/sec/disk.\n", speed_min(mddev));
7186 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7187 "(but not more than %d KB/sec) for %s.\n",
7188 speed_max(mddev), desc);
7190 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7192 io_sectors = 0;
7193 for (m = 0; m < SYNC_MARKS; m++) {
7194 mark[m] = jiffies;
7195 mark_cnt[m] = io_sectors;
7197 last_mark = 0;
7198 mddev->resync_mark = mark[last_mark];
7199 mddev->resync_mark_cnt = mark_cnt[last_mark];
7202 * Tune reconstruction:
7204 window = 32*(PAGE_SIZE/512);
7205 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7206 window/2, (unsigned long long)max_sectors/2);
7208 atomic_set(&mddev->recovery_active, 0);
7209 last_check = 0;
7211 if (j>2) {
7212 printk(KERN_INFO
7213 "md: resuming %s of %s from checkpoint.\n",
7214 desc, mdname(mddev));
7215 mddev->curr_resync = j;
7217 mddev->curr_resync_completed = j;
7219 while (j < max_sectors) {
7220 sector_t sectors;
7222 skipped = 0;
7224 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7225 ((mddev->curr_resync > mddev->curr_resync_completed &&
7226 (mddev->curr_resync - mddev->curr_resync_completed)
7227 > (max_sectors >> 4)) ||
7228 (j - mddev->curr_resync_completed)*2
7229 >= mddev->resync_max - mddev->curr_resync_completed
7230 )) {
7231 /* time to update curr_resync_completed */
7232 wait_event(mddev->recovery_wait,
7233 atomic_read(&mddev->recovery_active) == 0);
7234 mddev->curr_resync_completed = j;
7235 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7236 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7239 while (j >= mddev->resync_max && !kthread_should_stop()) {
7240 /* As this condition is controlled by user-space,
7241 * we can block indefinitely, so use '_interruptible'
7242 * to avoid triggering warnings.
7244 flush_signals(current); /* just in case */
7245 wait_event_interruptible(mddev->recovery_wait,
7246 mddev->resync_max > j
7247 || kthread_should_stop());
7250 if (kthread_should_stop())
7251 goto interrupted;
7253 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7254 currspeed < speed_min(mddev));
7255 if (sectors == 0) {
7256 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7257 goto out;
7260 if (!skipped) { /* actual IO requested */
7261 io_sectors += sectors;
7262 atomic_add(sectors, &mddev->recovery_active);
7265 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7266 break;
7268 j += sectors;
7269 if (j>1) mddev->curr_resync = j;
7270 mddev->curr_mark_cnt = io_sectors;
7271 if (last_check == 0)
7272 /* this is the earliest that rebuild will be
7273 * visible in /proc/mdstat
7275 md_new_event(mddev);
7277 if (last_check + window > io_sectors || j == max_sectors)
7278 continue;
7280 last_check = io_sectors;
7281 repeat:
7282 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7283 /* step marks */
7284 int next = (last_mark+1) % SYNC_MARKS;
7286 mddev->resync_mark = mark[next];
7287 mddev->resync_mark_cnt = mark_cnt[next];
7288 mark[next] = jiffies;
7289 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7290 last_mark = next;
7294 if (kthread_should_stop())
7295 goto interrupted;
7299 * this loop exits only if either when we are slower than
7300 * the 'hard' speed limit, or the system was IO-idle for
7301 * a jiffy.
7302 * the system might be non-idle CPU-wise, but we only care
7303 * about not overloading the IO subsystem. (things like an
7304 * e2fsck being done on the RAID array should execute fast)
7306 cond_resched();
7308 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7309 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7311 if (currspeed > speed_min(mddev)) {
7312 if ((currspeed > speed_max(mddev)) ||
7313 !is_mddev_idle(mddev, 0)) {
7314 msleep(500);
7315 goto repeat;
7319 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7321 * this also signals 'finished resyncing' to md_stop
7323 out:
7324 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7326 /* tell personality that we are finished */
7327 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7329 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7330 mddev->curr_resync > 2) {
7331 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7332 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7333 if (mddev->curr_resync >= mddev->recovery_cp) {
7334 printk(KERN_INFO
7335 "md: checkpointing %s of %s.\n",
7336 desc, mdname(mddev));
7337 mddev->recovery_cp =
7338 mddev->curr_resync_completed;
7340 } else
7341 mddev->recovery_cp = MaxSector;
7342 } else {
7343 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7344 mddev->curr_resync = MaxSector;
7345 rcu_read_lock();
7346 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7347 if (rdev->raid_disk >= 0 &&
7348 mddev->delta_disks >= 0 &&
7349 !test_bit(Faulty, &rdev->flags) &&
7350 !test_bit(In_sync, &rdev->flags) &&
7351 rdev->recovery_offset < mddev->curr_resync)
7352 rdev->recovery_offset = mddev->curr_resync;
7353 rcu_read_unlock();
7356 skip:
7357 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7359 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7360 /* We completed so min/max setting can be forgotten if used. */
7361 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7362 mddev->resync_min = 0;
7363 mddev->resync_max = MaxSector;
7364 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7365 mddev->resync_min = mddev->curr_resync_completed;
7366 mddev->curr_resync = 0;
7367 wake_up(&resync_wait);
7368 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7369 md_wakeup_thread(mddev->thread);
7370 return;
7372 interrupted:
7374 * got a signal, exit.
7376 printk(KERN_INFO
7377 "md: md_do_sync() got signal ... exiting\n");
7378 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7379 goto out;
7382 EXPORT_SYMBOL_GPL(md_do_sync);
7384 static int remove_and_add_spares(struct mddev *mddev)
7386 struct md_rdev *rdev;
7387 int spares = 0;
7388 int removed = 0;
7390 mddev->curr_resync_completed = 0;
7392 list_for_each_entry(rdev, &mddev->disks, same_set)
7393 if (rdev->raid_disk >= 0 &&
7394 !test_bit(Blocked, &rdev->flags) &&
7395 (test_bit(Faulty, &rdev->flags) ||
7396 ! test_bit(In_sync, &rdev->flags)) &&
7397 atomic_read(&rdev->nr_pending)==0) {
7398 if (mddev->pers->hot_remove_disk(
7399 mddev, rdev) == 0) {
7400 sysfs_unlink_rdev(mddev, rdev);
7401 rdev->raid_disk = -1;
7402 removed++;
7405 if (removed)
7406 sysfs_notify(&mddev->kobj, NULL,
7407 "degraded");
7410 list_for_each_entry(rdev, &mddev->disks, same_set) {
7411 if (rdev->raid_disk >= 0 &&
7412 !test_bit(In_sync, &rdev->flags) &&
7413 !test_bit(Faulty, &rdev->flags))
7414 spares++;
7415 if (rdev->raid_disk < 0
7416 && !test_bit(Faulty, &rdev->flags)) {
7417 rdev->recovery_offset = 0;
7418 if (mddev->pers->
7419 hot_add_disk(mddev, rdev) == 0) {
7420 if (sysfs_link_rdev(mddev, rdev))
7421 /* failure here is OK */;
7422 spares++;
7423 md_new_event(mddev);
7424 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7428 return spares;
7431 static void reap_sync_thread(struct mddev *mddev)
7433 struct md_rdev *rdev;
7435 /* resync has finished, collect result */
7436 md_unregister_thread(&mddev->sync_thread);
7437 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7438 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7439 /* success...*/
7440 /* activate any spares */
7441 if (mddev->pers->spare_active(mddev))
7442 sysfs_notify(&mddev->kobj, NULL,
7443 "degraded");
7445 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7446 mddev->pers->finish_reshape)
7447 mddev->pers->finish_reshape(mddev);
7449 /* If array is no-longer degraded, then any saved_raid_disk
7450 * information must be scrapped. Also if any device is now
7451 * In_sync we must scrape the saved_raid_disk for that device
7452 * do the superblock for an incrementally recovered device
7453 * written out.
7455 list_for_each_entry(rdev, &mddev->disks, same_set)
7456 if (!mddev->degraded ||
7457 test_bit(In_sync, &rdev->flags))
7458 rdev->saved_raid_disk = -1;
7460 md_update_sb(mddev, 1);
7461 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7462 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7463 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7464 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7465 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7466 /* flag recovery needed just to double check */
7467 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7468 sysfs_notify_dirent_safe(mddev->sysfs_action);
7469 md_new_event(mddev);
7470 if (mddev->event_work.func)
7471 queue_work(md_misc_wq, &mddev->event_work);
7475 * This routine is regularly called by all per-raid-array threads to
7476 * deal with generic issues like resync and super-block update.
7477 * Raid personalities that don't have a thread (linear/raid0) do not
7478 * need this as they never do any recovery or update the superblock.
7480 * It does not do any resync itself, but rather "forks" off other threads
7481 * to do that as needed.
7482 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7483 * "->recovery" and create a thread at ->sync_thread.
7484 * When the thread finishes it sets MD_RECOVERY_DONE
7485 * and wakeups up this thread which will reap the thread and finish up.
7486 * This thread also removes any faulty devices (with nr_pending == 0).
7488 * The overall approach is:
7489 * 1/ if the superblock needs updating, update it.
7490 * 2/ If a recovery thread is running, don't do anything else.
7491 * 3/ If recovery has finished, clean up, possibly marking spares active.
7492 * 4/ If there are any faulty devices, remove them.
7493 * 5/ If array is degraded, try to add spares devices
7494 * 6/ If array has spares or is not in-sync, start a resync thread.
7496 void md_check_recovery(struct mddev *mddev)
7498 if (mddev->suspended)
7499 return;
7501 if (mddev->bitmap)
7502 bitmap_daemon_work(mddev);
7504 if (signal_pending(current)) {
7505 if (mddev->pers->sync_request && !mddev->external) {
7506 printk(KERN_INFO "md: %s in immediate safe mode\n",
7507 mdname(mddev));
7508 mddev->safemode = 2;
7510 flush_signals(current);
7513 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7514 return;
7515 if ( ! (
7516 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7517 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7518 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7519 (mddev->external == 0 && mddev->safemode == 1) ||
7520 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7521 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7523 return;
7525 if (mddev_trylock(mddev)) {
7526 int spares = 0;
7528 if (mddev->ro) {
7529 /* Only thing we do on a ro array is remove
7530 * failed devices.
7532 struct md_rdev *rdev;
7533 list_for_each_entry(rdev, &mddev->disks, same_set)
7534 if (rdev->raid_disk >= 0 &&
7535 !test_bit(Blocked, &rdev->flags) &&
7536 test_bit(Faulty, &rdev->flags) &&
7537 atomic_read(&rdev->nr_pending)==0) {
7538 if (mddev->pers->hot_remove_disk(
7539 mddev, rdev) == 0) {
7540 sysfs_unlink_rdev(mddev, rdev);
7541 rdev->raid_disk = -1;
7544 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7545 goto unlock;
7548 if (!mddev->external) {
7549 int did_change = 0;
7550 spin_lock_irq(&mddev->write_lock);
7551 if (mddev->safemode &&
7552 !atomic_read(&mddev->writes_pending) &&
7553 !mddev->in_sync &&
7554 mddev->recovery_cp == MaxSector) {
7555 mddev->in_sync = 1;
7556 did_change = 1;
7557 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7559 if (mddev->safemode == 1)
7560 mddev->safemode = 0;
7561 spin_unlock_irq(&mddev->write_lock);
7562 if (did_change)
7563 sysfs_notify_dirent_safe(mddev->sysfs_state);
7566 if (mddev->flags)
7567 md_update_sb(mddev, 0);
7569 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7570 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7571 /* resync/recovery still happening */
7572 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7573 goto unlock;
7575 if (mddev->sync_thread) {
7576 reap_sync_thread(mddev);
7577 goto unlock;
7579 /* Set RUNNING before clearing NEEDED to avoid
7580 * any transients in the value of "sync_action".
7582 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7583 /* Clear some bits that don't mean anything, but
7584 * might be left set
7586 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7587 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7589 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7590 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7591 goto unlock;
7592 /* no recovery is running.
7593 * remove any failed drives, then
7594 * add spares if possible.
7595 * Spare are also removed and re-added, to allow
7596 * the personality to fail the re-add.
7599 if (mddev->reshape_position != MaxSector) {
7600 if (mddev->pers->check_reshape == NULL ||
7601 mddev->pers->check_reshape(mddev) != 0)
7602 /* Cannot proceed */
7603 goto unlock;
7604 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7605 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7606 } else if ((spares = remove_and_add_spares(mddev))) {
7607 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7608 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7609 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7610 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7611 } else if (mddev->recovery_cp < MaxSector) {
7612 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7613 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7614 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7615 /* nothing to be done ... */
7616 goto unlock;
7618 if (mddev->pers->sync_request) {
7619 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7620 /* We are adding a device or devices to an array
7621 * which has the bitmap stored on all devices.
7622 * So make sure all bitmap pages get written
7624 bitmap_write_all(mddev->bitmap);
7626 mddev->sync_thread = md_register_thread(md_do_sync,
7627 mddev,
7628 "resync");
7629 if (!mddev->sync_thread) {
7630 printk(KERN_ERR "%s: could not start resync"
7631 " thread...\n",
7632 mdname(mddev));
7633 /* leave the spares where they are, it shouldn't hurt */
7634 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7635 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7636 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7637 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7638 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7639 } else
7640 md_wakeup_thread(mddev->sync_thread);
7641 sysfs_notify_dirent_safe(mddev->sysfs_action);
7642 md_new_event(mddev);
7644 unlock:
7645 if (!mddev->sync_thread) {
7646 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7647 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7648 &mddev->recovery))
7649 if (mddev->sysfs_action)
7650 sysfs_notify_dirent_safe(mddev->sysfs_action);
7652 mddev_unlock(mddev);
7656 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7658 sysfs_notify_dirent_safe(rdev->sysfs_state);
7659 wait_event_timeout(rdev->blocked_wait,
7660 !test_bit(Blocked, &rdev->flags) &&
7661 !test_bit(BlockedBadBlocks, &rdev->flags),
7662 msecs_to_jiffies(5000));
7663 rdev_dec_pending(rdev, mddev);
7665 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7668 /* Bad block management.
7669 * We can record which blocks on each device are 'bad' and so just
7670 * fail those blocks, or that stripe, rather than the whole device.
7671 * Entries in the bad-block table are 64bits wide. This comprises:
7672 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7673 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7674 * A 'shift' can be set so that larger blocks are tracked and
7675 * consequently larger devices can be covered.
7676 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7678 * Locking of the bad-block table uses a seqlock so md_is_badblock
7679 * might need to retry if it is very unlucky.
7680 * We will sometimes want to check for bad blocks in a bi_end_io function,
7681 * so we use the write_seqlock_irq variant.
7683 * When looking for a bad block we specify a range and want to
7684 * know if any block in the range is bad. So we binary-search
7685 * to the last range that starts at-or-before the given endpoint,
7686 * (or "before the sector after the target range")
7687 * then see if it ends after the given start.
7688 * We return
7689 * 0 if there are no known bad blocks in the range
7690 * 1 if there are known bad block which are all acknowledged
7691 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7692 * plus the start/length of the first bad section we overlap.
7694 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7695 sector_t *first_bad, int *bad_sectors)
7697 int hi;
7698 int lo = 0;
7699 u64 *p = bb->page;
7700 int rv = 0;
7701 sector_t target = s + sectors;
7702 unsigned seq;
7704 if (bb->shift > 0) {
7705 /* round the start down, and the end up */
7706 s >>= bb->shift;
7707 target += (1<<bb->shift) - 1;
7708 target >>= bb->shift;
7709 sectors = target - s;
7711 /* 'target' is now the first block after the bad range */
7713 retry:
7714 seq = read_seqbegin(&bb->lock);
7716 hi = bb->count;
7718 /* Binary search between lo and hi for 'target'
7719 * i.e. for the last range that starts before 'target'
7721 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7722 * are known not to be the last range before target.
7723 * VARIANT: hi-lo is the number of possible
7724 * ranges, and decreases until it reaches 1
7726 while (hi - lo > 1) {
7727 int mid = (lo + hi) / 2;
7728 sector_t a = BB_OFFSET(p[mid]);
7729 if (a < target)
7730 /* This could still be the one, earlier ranges
7731 * could not. */
7732 lo = mid;
7733 else
7734 /* This and later ranges are definitely out. */
7735 hi = mid;
7737 /* 'lo' might be the last that started before target, but 'hi' isn't */
7738 if (hi > lo) {
7739 /* need to check all range that end after 's' to see if
7740 * any are unacknowledged.
7742 while (lo >= 0 &&
7743 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7744 if (BB_OFFSET(p[lo]) < target) {
7745 /* starts before the end, and finishes after
7746 * the start, so they must overlap
7748 if (rv != -1 && BB_ACK(p[lo]))
7749 rv = 1;
7750 else
7751 rv = -1;
7752 *first_bad = BB_OFFSET(p[lo]);
7753 *bad_sectors = BB_LEN(p[lo]);
7755 lo--;
7759 if (read_seqretry(&bb->lock, seq))
7760 goto retry;
7762 return rv;
7764 EXPORT_SYMBOL_GPL(md_is_badblock);
7767 * Add a range of bad blocks to the table.
7768 * This might extend the table, or might contract it
7769 * if two adjacent ranges can be merged.
7770 * We binary-search to find the 'insertion' point, then
7771 * decide how best to handle it.
7773 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7774 int acknowledged)
7776 u64 *p;
7777 int lo, hi;
7778 int rv = 1;
7780 if (bb->shift < 0)
7781 /* badblocks are disabled */
7782 return 0;
7784 if (bb->shift) {
7785 /* round the start down, and the end up */
7786 sector_t next = s + sectors;
7787 s >>= bb->shift;
7788 next += (1<<bb->shift) - 1;
7789 next >>= bb->shift;
7790 sectors = next - s;
7793 write_seqlock_irq(&bb->lock);
7795 p = bb->page;
7796 lo = 0;
7797 hi = bb->count;
7798 /* Find the last range that starts at-or-before 's' */
7799 while (hi - lo > 1) {
7800 int mid = (lo + hi) / 2;
7801 sector_t a = BB_OFFSET(p[mid]);
7802 if (a <= s)
7803 lo = mid;
7804 else
7805 hi = mid;
7807 if (hi > lo && BB_OFFSET(p[lo]) > s)
7808 hi = lo;
7810 if (hi > lo) {
7811 /* we found a range that might merge with the start
7812 * of our new range
7814 sector_t a = BB_OFFSET(p[lo]);
7815 sector_t e = a + BB_LEN(p[lo]);
7816 int ack = BB_ACK(p[lo]);
7817 if (e >= s) {
7818 /* Yes, we can merge with a previous range */
7819 if (s == a && s + sectors >= e)
7820 /* new range covers old */
7821 ack = acknowledged;
7822 else
7823 ack = ack && acknowledged;
7825 if (e < s + sectors)
7826 e = s + sectors;
7827 if (e - a <= BB_MAX_LEN) {
7828 p[lo] = BB_MAKE(a, e-a, ack);
7829 s = e;
7830 } else {
7831 /* does not all fit in one range,
7832 * make p[lo] maximal
7834 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7835 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7836 s = a + BB_MAX_LEN;
7838 sectors = e - s;
7841 if (sectors && hi < bb->count) {
7842 /* 'hi' points to the first range that starts after 's'.
7843 * Maybe we can merge with the start of that range */
7844 sector_t a = BB_OFFSET(p[hi]);
7845 sector_t e = a + BB_LEN(p[hi]);
7846 int ack = BB_ACK(p[hi]);
7847 if (a <= s + sectors) {
7848 /* merging is possible */
7849 if (e <= s + sectors) {
7850 /* full overlap */
7851 e = s + sectors;
7852 ack = acknowledged;
7853 } else
7854 ack = ack && acknowledged;
7856 a = s;
7857 if (e - a <= BB_MAX_LEN) {
7858 p[hi] = BB_MAKE(a, e-a, ack);
7859 s = e;
7860 } else {
7861 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7862 s = a + BB_MAX_LEN;
7864 sectors = e - s;
7865 lo = hi;
7866 hi++;
7869 if (sectors == 0 && hi < bb->count) {
7870 /* we might be able to combine lo and hi */
7871 /* Note: 's' is at the end of 'lo' */
7872 sector_t a = BB_OFFSET(p[hi]);
7873 int lolen = BB_LEN(p[lo]);
7874 int hilen = BB_LEN(p[hi]);
7875 int newlen = lolen + hilen - (s - a);
7876 if (s >= a && newlen < BB_MAX_LEN) {
7877 /* yes, we can combine them */
7878 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7879 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7880 memmove(p + hi, p + hi + 1,
7881 (bb->count - hi - 1) * 8);
7882 bb->count--;
7885 while (sectors) {
7886 /* didn't merge (it all).
7887 * Need to add a range just before 'hi' */
7888 if (bb->count >= MD_MAX_BADBLOCKS) {
7889 /* No room for more */
7890 rv = 0;
7891 break;
7892 } else {
7893 int this_sectors = sectors;
7894 memmove(p + hi + 1, p + hi,
7895 (bb->count - hi) * 8);
7896 bb->count++;
7898 if (this_sectors > BB_MAX_LEN)
7899 this_sectors = BB_MAX_LEN;
7900 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7901 sectors -= this_sectors;
7902 s += this_sectors;
7906 bb->changed = 1;
7907 if (!acknowledged)
7908 bb->unacked_exist = 1;
7909 write_sequnlock_irq(&bb->lock);
7911 return rv;
7914 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7915 int acknowledged)
7917 int rv = md_set_badblocks(&rdev->badblocks,
7918 s + rdev->data_offset, sectors, acknowledged);
7919 if (rv) {
7920 /* Make sure they get written out promptly */
7921 sysfs_notify_dirent_safe(rdev->sysfs_state);
7922 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7923 md_wakeup_thread(rdev->mddev->thread);
7925 return rv;
7927 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7930 * Remove a range of bad blocks from the table.
7931 * This may involve extending the table if we spilt a region,
7932 * but it must not fail. So if the table becomes full, we just
7933 * drop the remove request.
7935 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7937 u64 *p;
7938 int lo, hi;
7939 sector_t target = s + sectors;
7940 int rv = 0;
7942 if (bb->shift > 0) {
7943 /* When clearing we round the start up and the end down.
7944 * This should not matter as the shift should align with
7945 * the block size and no rounding should ever be needed.
7946 * However it is better the think a block is bad when it
7947 * isn't than to think a block is not bad when it is.
7949 s += (1<<bb->shift) - 1;
7950 s >>= bb->shift;
7951 target >>= bb->shift;
7952 sectors = target - s;
7955 write_seqlock_irq(&bb->lock);
7957 p = bb->page;
7958 lo = 0;
7959 hi = bb->count;
7960 /* Find the last range that starts before 'target' */
7961 while (hi - lo > 1) {
7962 int mid = (lo + hi) / 2;
7963 sector_t a = BB_OFFSET(p[mid]);
7964 if (a < target)
7965 lo = mid;
7966 else
7967 hi = mid;
7969 if (hi > lo) {
7970 /* p[lo] is the last range that could overlap the
7971 * current range. Earlier ranges could also overlap,
7972 * but only this one can overlap the end of the range.
7974 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7975 /* Partial overlap, leave the tail of this range */
7976 int ack = BB_ACK(p[lo]);
7977 sector_t a = BB_OFFSET(p[lo]);
7978 sector_t end = a + BB_LEN(p[lo]);
7980 if (a < s) {
7981 /* we need to split this range */
7982 if (bb->count >= MD_MAX_BADBLOCKS) {
7983 rv = 0;
7984 goto out;
7986 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7987 bb->count++;
7988 p[lo] = BB_MAKE(a, s-a, ack);
7989 lo++;
7991 p[lo] = BB_MAKE(target, end - target, ack);
7992 /* there is no longer an overlap */
7993 hi = lo;
7994 lo--;
7996 while (lo >= 0 &&
7997 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7998 /* This range does overlap */
7999 if (BB_OFFSET(p[lo]) < s) {
8000 /* Keep the early parts of this range. */
8001 int ack = BB_ACK(p[lo]);
8002 sector_t start = BB_OFFSET(p[lo]);
8003 p[lo] = BB_MAKE(start, s - start, ack);
8004 /* now low doesn't overlap, so.. */
8005 break;
8007 lo--;
8009 /* 'lo' is strictly before, 'hi' is strictly after,
8010 * anything between needs to be discarded
8012 if (hi - lo > 1) {
8013 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8014 bb->count -= (hi - lo - 1);
8018 bb->changed = 1;
8019 out:
8020 write_sequnlock_irq(&bb->lock);
8021 return rv;
8024 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8026 return md_clear_badblocks(&rdev->badblocks,
8027 s + rdev->data_offset,
8028 sectors);
8030 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8033 * Acknowledge all bad blocks in a list.
8034 * This only succeeds if ->changed is clear. It is used by
8035 * in-kernel metadata updates
8037 void md_ack_all_badblocks(struct badblocks *bb)
8039 if (bb->page == NULL || bb->changed)
8040 /* no point even trying */
8041 return;
8042 write_seqlock_irq(&bb->lock);
8044 if (bb->changed == 0) {
8045 u64 *p = bb->page;
8046 int i;
8047 for (i = 0; i < bb->count ; i++) {
8048 if (!BB_ACK(p[i])) {
8049 sector_t start = BB_OFFSET(p[i]);
8050 int len = BB_LEN(p[i]);
8051 p[i] = BB_MAKE(start, len, 1);
8054 bb->unacked_exist = 0;
8056 write_sequnlock_irq(&bb->lock);
8058 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8060 /* sysfs access to bad-blocks list.
8061 * We present two files.
8062 * 'bad-blocks' lists sector numbers and lengths of ranges that
8063 * are recorded as bad. The list is truncated to fit within
8064 * the one-page limit of sysfs.
8065 * Writing "sector length" to this file adds an acknowledged
8066 * bad block list.
8067 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8068 * been acknowledged. Writing to this file adds bad blocks
8069 * without acknowledging them. This is largely for testing.
8072 static ssize_t
8073 badblocks_show(struct badblocks *bb, char *page, int unack)
8075 size_t len;
8076 int i;
8077 u64 *p = bb->page;
8078 unsigned seq;
8080 if (bb->shift < 0)
8081 return 0;
8083 retry:
8084 seq = read_seqbegin(&bb->lock);
8086 len = 0;
8087 i = 0;
8089 while (len < PAGE_SIZE && i < bb->count) {
8090 sector_t s = BB_OFFSET(p[i]);
8091 unsigned int length = BB_LEN(p[i]);
8092 int ack = BB_ACK(p[i]);
8093 i++;
8095 if (unack && ack)
8096 continue;
8098 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8099 (unsigned long long)s << bb->shift,
8100 length << bb->shift);
8102 if (unack && len == 0)
8103 bb->unacked_exist = 0;
8105 if (read_seqretry(&bb->lock, seq))
8106 goto retry;
8108 return len;
8111 #define DO_DEBUG 1
8113 static ssize_t
8114 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8116 unsigned long long sector;
8117 int length;
8118 char newline;
8119 #ifdef DO_DEBUG
8120 /* Allow clearing via sysfs *only* for testing/debugging.
8121 * Normally only a successful write may clear a badblock
8123 int clear = 0;
8124 if (page[0] == '-') {
8125 clear = 1;
8126 page++;
8128 #endif /* DO_DEBUG */
8130 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8131 case 3:
8132 if (newline != '\n')
8133 return -EINVAL;
8134 case 2:
8135 if (length <= 0)
8136 return -EINVAL;
8137 break;
8138 default:
8139 return -EINVAL;
8142 #ifdef DO_DEBUG
8143 if (clear) {
8144 md_clear_badblocks(bb, sector, length);
8145 return len;
8147 #endif /* DO_DEBUG */
8148 if (md_set_badblocks(bb, sector, length, !unack))
8149 return len;
8150 else
8151 return -ENOSPC;
8154 static int md_notify_reboot(struct notifier_block *this,
8155 unsigned long code, void *x)
8157 struct list_head *tmp;
8158 struct mddev *mddev;
8159 int need_delay = 0;
8161 for_each_mddev(mddev, tmp) {
8162 if (mddev_trylock(mddev)) {
8163 if (mddev->pers)
8164 __md_stop_writes(mddev);
8165 mddev->safemode = 2;
8166 mddev_unlock(mddev);
8168 need_delay = 1;
8171 * certain more exotic SCSI devices are known to be
8172 * volatile wrt too early system reboots. While the
8173 * right place to handle this issue is the given
8174 * driver, we do want to have a safe RAID driver ...
8176 if (need_delay)
8177 mdelay(1000*1);
8179 return NOTIFY_DONE;
8182 static struct notifier_block md_notifier = {
8183 .notifier_call = md_notify_reboot,
8184 .next = NULL,
8185 .priority = INT_MAX, /* before any real devices */
8188 static void md_geninit(void)
8190 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8192 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8195 static int __init md_init(void)
8197 int ret = -ENOMEM;
8199 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8200 if (!md_wq)
8201 goto err_wq;
8203 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8204 if (!md_misc_wq)
8205 goto err_misc_wq;
8207 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8208 goto err_md;
8210 if ((ret = register_blkdev(0, "mdp")) < 0)
8211 goto err_mdp;
8212 mdp_major = ret;
8214 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8215 md_probe, NULL, NULL);
8216 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8217 md_probe, NULL, NULL);
8219 register_reboot_notifier(&md_notifier);
8220 raid_table_header = register_sysctl_table(raid_root_table);
8222 md_geninit();
8223 return 0;
8225 err_mdp:
8226 unregister_blkdev(MD_MAJOR, "md");
8227 err_md:
8228 destroy_workqueue(md_misc_wq);
8229 err_misc_wq:
8230 destroy_workqueue(md_wq);
8231 err_wq:
8232 return ret;
8235 #ifndef MODULE
8238 * Searches all registered partitions for autorun RAID arrays
8239 * at boot time.
8242 static LIST_HEAD(all_detected_devices);
8243 struct detected_devices_node {
8244 struct list_head list;
8245 dev_t dev;
8248 void md_autodetect_dev(dev_t dev)
8250 struct detected_devices_node *node_detected_dev;
8252 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8253 if (node_detected_dev) {
8254 node_detected_dev->dev = dev;
8255 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8256 } else {
8257 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8258 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8263 static void autostart_arrays(int part)
8265 struct md_rdev *rdev;
8266 struct detected_devices_node *node_detected_dev;
8267 dev_t dev;
8268 int i_scanned, i_passed;
8270 i_scanned = 0;
8271 i_passed = 0;
8273 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8275 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8276 i_scanned++;
8277 node_detected_dev = list_entry(all_detected_devices.next,
8278 struct detected_devices_node, list);
8279 list_del(&node_detected_dev->list);
8280 dev = node_detected_dev->dev;
8281 kfree(node_detected_dev);
8282 rdev = md_import_device(dev,0, 90);
8283 if (IS_ERR(rdev))
8284 continue;
8286 if (test_bit(Faulty, &rdev->flags)) {
8287 MD_BUG();
8288 continue;
8290 set_bit(AutoDetected, &rdev->flags);
8291 list_add(&rdev->same_set, &pending_raid_disks);
8292 i_passed++;
8295 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8296 i_scanned, i_passed);
8298 autorun_devices(part);
8301 #endif /* !MODULE */
8303 static __exit void md_exit(void)
8305 struct mddev *mddev;
8306 struct list_head *tmp;
8308 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8309 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8311 unregister_blkdev(MD_MAJOR,"md");
8312 unregister_blkdev(mdp_major, "mdp");
8313 unregister_reboot_notifier(&md_notifier);
8314 unregister_sysctl_table(raid_table_header);
8315 remove_proc_entry("mdstat", NULL);
8316 for_each_mddev(mddev, tmp) {
8317 export_array(mddev);
8318 mddev->hold_active = 0;
8320 destroy_workqueue(md_misc_wq);
8321 destroy_workqueue(md_wq);
8324 subsys_initcall(md_init);
8325 module_exit(md_exit)
8327 static int get_ro(char *buffer, struct kernel_param *kp)
8329 return sprintf(buffer, "%d", start_readonly);
8331 static int set_ro(const char *val, struct kernel_param *kp)
8333 char *e;
8334 int num = simple_strtoul(val, &e, 10);
8335 if (*val && (*e == '\0' || *e == '\n')) {
8336 start_readonly = num;
8337 return 0;
8339 return -EINVAL;
8342 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8343 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8345 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8347 EXPORT_SYMBOL(register_md_personality);
8348 EXPORT_SYMBOL(unregister_md_personality);
8349 EXPORT_SYMBOL(md_error);
8350 EXPORT_SYMBOL(md_done_sync);
8351 EXPORT_SYMBOL(md_write_start);
8352 EXPORT_SYMBOL(md_write_end);
8353 EXPORT_SYMBOL(md_register_thread);
8354 EXPORT_SYMBOL(md_unregister_thread);
8355 EXPORT_SYMBOL(md_wakeup_thread);
8356 EXPORT_SYMBOL(md_check_recovery);
8357 MODULE_LICENSE("GPL");
8358 MODULE_DESCRIPTION("MD RAID framework");
8359 MODULE_ALIAS("md");
8360 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);