2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/netdev_features.h>
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* return minimum truesize of one skb containing X bytes of data */
51 #define SKB_TRUESIZE(X) ((X) + \
52 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
53 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 /* A. Checksumming of received packets by device.
57 * NONE: device failed to checksum this packet.
58 * skb->csum is undefined.
60 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
61 * skb->csum is undefined.
62 * It is bad option, but, unfortunately, many of vendors do this.
63 * Apparently with secret goal to sell you new device, when you
64 * will add new protocol to your host. F.e. IPv6. 8)
66 * COMPLETE: the most generic way. Device supplied checksum of _all_
67 * the packet as seen by netif_rx in skb->csum.
68 * NOTE: Even if device supports only some protocols, but
69 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * PARTIAL: identical to the case for output below. This may occur
73 * on a packet received directly from another Linux OS, e.g.,
74 * a virtualised Linux kernel on the same host. The packet can
75 * be treated in the same way as UNNECESSARY except that on
76 * output (i.e., forwarding) the checksum must be filled in
77 * by the OS or the hardware.
79 * B. Checksumming on output.
81 * NONE: skb is checksummed by protocol or csum is not required.
83 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
84 * from skb->csum_start to the end and to record the checksum
85 * at skb->csum_start + skb->csum_offset.
87 * Device must show its capabilities in dev->features, set
88 * at device setup time.
89 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 * Any questions? No questions, good. --ANK
102 struct pipe_inode_info
;
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack
{
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info
{
113 struct net_device
*physindev
;
114 struct net_device
*physoutdev
;
116 unsigned long data
[32 / sizeof(unsigned long)];
120 struct sk_buff_head
{
121 /* These two members must be first. */
122 struct sk_buff
*next
;
123 struct sk_buff
*prev
;
131 /* To allow 64K frame to be packed as single skb without frag_list we
132 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
133 * buffers which do not start on a page boundary.
135 * Since GRO uses frags we allocate at least 16 regardless of page
138 #if (65536/PAGE_SIZE + 1) < 16
139 #define MAX_SKB_FRAGS 16UL
141 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
144 typedef struct skb_frag_struct skb_frag_t
;
146 struct skb_frag_struct
{
150 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 static inline unsigned int skb_frag_size(const skb_frag_t
*frag
)
164 static inline void skb_frag_size_set(skb_frag_t
*frag
, unsigned int size
)
169 static inline void skb_frag_size_add(skb_frag_t
*frag
, int delta
)
174 static inline void skb_frag_size_sub(skb_frag_t
*frag
, int delta
)
179 #define HAVE_HW_TIME_STAMP
182 * struct skb_shared_hwtstamps - hardware time stamps
183 * @hwtstamp: hardware time stamp transformed into duration
184 * since arbitrary point in time
185 * @syststamp: hwtstamp transformed to system time base
187 * Software time stamps generated by ktime_get_real() are stored in
188 * skb->tstamp. The relation between the different kinds of time
189 * stamps is as follows:
191 * syststamp and tstamp can be compared against each other in
192 * arbitrary combinations. The accuracy of a
193 * syststamp/tstamp/"syststamp from other device" comparison is
194 * limited by the accuracy of the transformation into system time
195 * base. This depends on the device driver and its underlying
198 * hwtstamps can only be compared against other hwtstamps from
201 * This structure is attached to packets as part of the
202 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
204 struct skb_shared_hwtstamps
{
209 /* Definitions for tx_flags in struct skb_shared_info */
211 /* generate hardware time stamp */
212 SKBTX_HW_TSTAMP
= 1 << 0,
214 /* generate software time stamp */
215 SKBTX_SW_TSTAMP
= 1 << 1,
217 /* device driver is going to provide hardware time stamp */
218 SKBTX_IN_PROGRESS
= 1 << 2,
220 /* ensure the originating sk reference is available on driver level */
221 SKBTX_DRV_NEEDS_SK_REF
= 1 << 3,
223 /* device driver supports TX zero-copy buffers */
224 SKBTX_DEV_ZEROCOPY
= 1 << 4,
226 /* generate wifi status information (where possible) */
227 SKBTX_WIFI_STATUS
= 1 << 5,
231 * The callback notifies userspace to release buffers when skb DMA is done in
232 * lower device, the skb last reference should be 0 when calling this.
233 * The desc is used to track userspace buffer index.
236 void (*callback
)(void *);
241 /* This data is invariant across clones and lives at
242 * the end of the header data, ie. at skb->end.
244 struct skb_shared_info
{
245 unsigned char nr_frags
;
247 unsigned short gso_size
;
248 /* Warning: this field is not always filled in (UFO)! */
249 unsigned short gso_segs
;
250 unsigned short gso_type
;
251 struct sk_buff
*frag_list
;
252 struct skb_shared_hwtstamps hwtstamps
;
256 * Warning : all fields before dataref are cleared in __alloc_skb()
260 /* Intermediate layers must ensure that destructor_arg
261 * remains valid until skb destructor */
262 void * destructor_arg
;
264 /* must be last field, see pskb_expand_head() */
265 skb_frag_t frags
[MAX_SKB_FRAGS
];
268 /* We divide dataref into two halves. The higher 16 bits hold references
269 * to the payload part of skb->data. The lower 16 bits hold references to
270 * the entire skb->data. A clone of a headerless skb holds the length of
271 * the header in skb->hdr_len.
273 * All users must obey the rule that the skb->data reference count must be
274 * greater than or equal to the payload reference count.
276 * Holding a reference to the payload part means that the user does not
277 * care about modifications to the header part of skb->data.
279 #define SKB_DATAREF_SHIFT 16
280 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
284 SKB_FCLONE_UNAVAILABLE
,
290 SKB_GSO_TCPV4
= 1 << 0,
291 SKB_GSO_UDP
= 1 << 1,
293 /* This indicates the skb is from an untrusted source. */
294 SKB_GSO_DODGY
= 1 << 2,
296 /* This indicates the tcp segment has CWR set. */
297 SKB_GSO_TCP_ECN
= 1 << 3,
299 SKB_GSO_TCPV6
= 1 << 4,
301 SKB_GSO_FCOE
= 1 << 5,
304 #if BITS_PER_LONG > 32
305 #define NET_SKBUFF_DATA_USES_OFFSET 1
308 #ifdef NET_SKBUFF_DATA_USES_OFFSET
309 typedef unsigned int sk_buff_data_t
;
311 typedef unsigned char *sk_buff_data_t
;
314 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
315 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
316 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
320 * struct sk_buff - socket buffer
321 * @next: Next buffer in list
322 * @prev: Previous buffer in list
323 * @tstamp: Time we arrived
324 * @sk: Socket we are owned by
325 * @dev: Device we arrived on/are leaving by
326 * @cb: Control buffer. Free for use by every layer. Put private vars here
327 * @_skb_refdst: destination entry (with norefcount bit)
328 * @sp: the security path, used for xfrm
329 * @len: Length of actual data
330 * @data_len: Data length
331 * @mac_len: Length of link layer header
332 * @hdr_len: writable header length of cloned skb
333 * @csum: Checksum (must include start/offset pair)
334 * @csum_start: Offset from skb->head where checksumming should start
335 * @csum_offset: Offset from csum_start where checksum should be stored
336 * @priority: Packet queueing priority
337 * @local_df: allow local fragmentation
338 * @cloned: Head may be cloned (check refcnt to be sure)
339 * @ip_summed: Driver fed us an IP checksum
340 * @nohdr: Payload reference only, must not modify header
341 * @nfctinfo: Relationship of this skb to the connection
342 * @pkt_type: Packet class
343 * @fclone: skbuff clone status
344 * @ipvs_property: skbuff is owned by ipvs
345 * @peeked: this packet has been seen already, so stats have been
346 * done for it, don't do them again
347 * @nf_trace: netfilter packet trace flag
348 * @protocol: Packet protocol from driver
349 * @destructor: Destruct function
350 * @nfct: Associated connection, if any
351 * @nfct_reasm: netfilter conntrack re-assembly pointer
352 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
353 * @skb_iif: ifindex of device we arrived on
354 * @tc_index: Traffic control index
355 * @tc_verd: traffic control verdict
356 * @rxhash: the packet hash computed on receive
357 * @queue_mapping: Queue mapping for multiqueue devices
358 * @ndisc_nodetype: router type (from link layer)
359 * @ooo_okay: allow the mapping of a socket to a queue to be changed
360 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
362 * @wifi_acked_valid: wifi_acked was set
363 * @wifi_acked: whether frame was acked on wifi or not
364 * @dma_cookie: a cookie to one of several possible DMA operations
365 * done by skb DMA functions
366 * @secmark: security marking
367 * @mark: Generic packet mark
368 * @dropcount: total number of sk_receive_queue overflows
369 * @vlan_tci: vlan tag control information
370 * @transport_header: Transport layer header
371 * @network_header: Network layer header
372 * @mac_header: Link layer header
373 * @tail: Tail pointer
375 * @head: Head of buffer
376 * @data: Data head pointer
377 * @truesize: Buffer size
378 * @users: User count - see {datagram,tcp}.c
382 /* These two members must be first. */
383 struct sk_buff
*next
;
384 struct sk_buff
*prev
;
389 struct net_device
*dev
;
392 * This is the control buffer. It is free to use for every
393 * layer. Please put your private variables there. If you
394 * want to keep them across layers you have to do a skb_clone()
395 * first. This is owned by whoever has the skb queued ATM.
397 char cb
[48] __aligned(8);
399 unsigned long _skb_refdst
;
415 kmemcheck_bitfield_begin(flags1
);
426 kmemcheck_bitfield_end(flags1
);
429 void (*destructor
)(struct sk_buff
*skb
);
430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 struct nf_conntrack
*nfct
;
433 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
434 struct sk_buff
*nfct_reasm
;
436 #ifdef CONFIG_BRIDGE_NETFILTER
437 struct nf_bridge_info
*nf_bridge
;
441 #ifdef CONFIG_NET_SCHED
442 __u16 tc_index
; /* traffic control index */
443 #ifdef CONFIG_NET_CLS_ACT
444 __u16 tc_verd
; /* traffic control verdict */
451 kmemcheck_bitfield_begin(flags2
);
452 #ifdef CONFIG_IPV6_NDISC_NODETYPE
453 __u8 ndisc_nodetype
:2;
457 __u8 wifi_acked_valid
:1;
459 /* 10/12 bit hole (depending on ndisc_nodetype presence) */
460 kmemcheck_bitfield_end(flags2
);
462 #ifdef CONFIG_NET_DMA
463 dma_cookie_t dma_cookie
;
465 #ifdef CONFIG_NETWORK_SECMARK
476 sk_buff_data_t transport_header
;
477 sk_buff_data_t network_header
;
478 sk_buff_data_t mac_header
;
479 /* These elements must be at the end, see alloc_skb() for details. */
484 unsigned int truesize
;
490 * Handling routines are only of interest to the kernel
492 #include <linux/slab.h>
494 #include <asm/system.h>
497 * skb might have a dst pointer attached, refcounted or not.
498 * _skb_refdst low order bit is set if refcount was _not_ taken
500 #define SKB_DST_NOREF 1UL
501 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
504 * skb_dst - returns skb dst_entry
507 * Returns skb dst_entry, regardless of reference taken or not.
509 static inline struct dst_entry
*skb_dst(const struct sk_buff
*skb
)
511 /* If refdst was not refcounted, check we still are in a
512 * rcu_read_lock section
514 WARN_ON((skb
->_skb_refdst
& SKB_DST_NOREF
) &&
515 !rcu_read_lock_held() &&
516 !rcu_read_lock_bh_held());
517 return (struct dst_entry
*)(skb
->_skb_refdst
& SKB_DST_PTRMASK
);
521 * skb_dst_set - sets skb dst
525 * Sets skb dst, assuming a reference was taken on dst and should
526 * be released by skb_dst_drop()
528 static inline void skb_dst_set(struct sk_buff
*skb
, struct dst_entry
*dst
)
530 skb
->_skb_refdst
= (unsigned long)dst
;
533 extern void skb_dst_set_noref(struct sk_buff
*skb
, struct dst_entry
*dst
);
536 * skb_dst_is_noref - Test if skb dst isn't refcounted
539 static inline bool skb_dst_is_noref(const struct sk_buff
*skb
)
541 return (skb
->_skb_refdst
& SKB_DST_NOREF
) && skb_dst(skb
);
544 static inline struct rtable
*skb_rtable(const struct sk_buff
*skb
)
546 return (struct rtable
*)skb_dst(skb
);
549 extern void kfree_skb(struct sk_buff
*skb
);
550 extern void consume_skb(struct sk_buff
*skb
);
551 extern void __kfree_skb(struct sk_buff
*skb
);
552 extern struct sk_buff
*__alloc_skb(unsigned int size
,
553 gfp_t priority
, int fclone
, int node
);
554 extern struct sk_buff
*build_skb(void *data
);
555 static inline struct sk_buff
*alloc_skb(unsigned int size
,
558 return __alloc_skb(size
, priority
, 0, NUMA_NO_NODE
);
561 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
564 return __alloc_skb(size
, priority
, 1, NUMA_NO_NODE
);
567 extern void skb_recycle(struct sk_buff
*skb
);
568 extern bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
570 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
571 extern int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
);
572 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
574 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
576 extern struct sk_buff
*__pskb_copy(struct sk_buff
*skb
,
577 int headroom
, gfp_t gfp_mask
);
579 extern int pskb_expand_head(struct sk_buff
*skb
,
580 int nhead
, int ntail
,
582 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
583 unsigned int headroom
);
584 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
585 int newheadroom
, int newtailroom
,
587 extern int skb_to_sgvec(struct sk_buff
*skb
,
588 struct scatterlist
*sg
, int offset
,
590 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
591 struct sk_buff
**trailer
);
592 extern int skb_pad(struct sk_buff
*skb
, int pad
);
593 #define dev_kfree_skb(a) consume_skb(a)
595 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
596 int getfrag(void *from
, char *to
, int offset
,
597 int len
,int odd
, struct sk_buff
*skb
),
598 void *from
, int length
);
600 struct skb_seq_state
{
604 __u32 stepped_offset
;
605 struct sk_buff
*root_skb
;
606 struct sk_buff
*cur_skb
;
610 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
611 unsigned int from
, unsigned int to
,
612 struct skb_seq_state
*st
);
613 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
614 struct skb_seq_state
*st
);
615 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
617 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
618 unsigned int to
, struct ts_config
*config
,
619 struct ts_state
*state
);
621 extern void __skb_get_rxhash(struct sk_buff
*skb
);
622 static inline __u32
skb_get_rxhash(struct sk_buff
*skb
)
625 __skb_get_rxhash(skb
);
630 #ifdef NET_SKBUFF_DATA_USES_OFFSET
631 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
633 return skb
->head
+ skb
->end
;
636 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
643 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
645 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
647 return &skb_shinfo(skb
)->hwtstamps
;
651 * skb_queue_empty - check if a queue is empty
654 * Returns true if the queue is empty, false otherwise.
656 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
658 return list
->next
== (struct sk_buff
*)list
;
662 * skb_queue_is_last - check if skb is the last entry in the queue
666 * Returns true if @skb is the last buffer on the list.
668 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
669 const struct sk_buff
*skb
)
671 return skb
->next
== (struct sk_buff
*)list
;
675 * skb_queue_is_first - check if skb is the first entry in the queue
679 * Returns true if @skb is the first buffer on the list.
681 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
682 const struct sk_buff
*skb
)
684 return skb
->prev
== (struct sk_buff
*)list
;
688 * skb_queue_next - return the next packet in the queue
690 * @skb: current buffer
692 * Return the next packet in @list after @skb. It is only valid to
693 * call this if skb_queue_is_last() evaluates to false.
695 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
696 const struct sk_buff
*skb
)
698 /* This BUG_ON may seem severe, but if we just return then we
699 * are going to dereference garbage.
701 BUG_ON(skb_queue_is_last(list
, skb
));
706 * skb_queue_prev - return the prev packet in the queue
708 * @skb: current buffer
710 * Return the prev packet in @list before @skb. It is only valid to
711 * call this if skb_queue_is_first() evaluates to false.
713 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
714 const struct sk_buff
*skb
)
716 /* This BUG_ON may seem severe, but if we just return then we
717 * are going to dereference garbage.
719 BUG_ON(skb_queue_is_first(list
, skb
));
724 * skb_get - reference buffer
725 * @skb: buffer to reference
727 * Makes another reference to a socket buffer and returns a pointer
730 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
732 atomic_inc(&skb
->users
);
737 * If users == 1, we are the only owner and are can avoid redundant
742 * skb_cloned - is the buffer a clone
743 * @skb: buffer to check
745 * Returns true if the buffer was generated with skb_clone() and is
746 * one of multiple shared copies of the buffer. Cloned buffers are
747 * shared data so must not be written to under normal circumstances.
749 static inline int skb_cloned(const struct sk_buff
*skb
)
751 return skb
->cloned
&&
752 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
756 * skb_header_cloned - is the header a clone
757 * @skb: buffer to check
759 * Returns true if modifying the header part of the buffer requires
760 * the data to be copied.
762 static inline int skb_header_cloned(const struct sk_buff
*skb
)
769 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
770 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
775 * skb_header_release - release reference to header
776 * @skb: buffer to operate on
778 * Drop a reference to the header part of the buffer. This is done
779 * by acquiring a payload reference. You must not read from the header
780 * part of skb->data after this.
782 static inline void skb_header_release(struct sk_buff
*skb
)
786 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
790 * skb_shared - is the buffer shared
791 * @skb: buffer to check
793 * Returns true if more than one person has a reference to this
796 static inline int skb_shared(const struct sk_buff
*skb
)
798 return atomic_read(&skb
->users
) != 1;
802 * skb_share_check - check if buffer is shared and if so clone it
803 * @skb: buffer to check
804 * @pri: priority for memory allocation
806 * If the buffer is shared the buffer is cloned and the old copy
807 * drops a reference. A new clone with a single reference is returned.
808 * If the buffer is not shared the original buffer is returned. When
809 * being called from interrupt status or with spinlocks held pri must
812 * NULL is returned on a memory allocation failure.
814 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
817 might_sleep_if(pri
& __GFP_WAIT
);
818 if (skb_shared(skb
)) {
819 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
827 * Copy shared buffers into a new sk_buff. We effectively do COW on
828 * packets to handle cases where we have a local reader and forward
829 * and a couple of other messy ones. The normal one is tcpdumping
830 * a packet thats being forwarded.
834 * skb_unshare - make a copy of a shared buffer
835 * @skb: buffer to check
836 * @pri: priority for memory allocation
838 * If the socket buffer is a clone then this function creates a new
839 * copy of the data, drops a reference count on the old copy and returns
840 * the new copy with the reference count at 1. If the buffer is not a clone
841 * the original buffer is returned. When called with a spinlock held or
842 * from interrupt state @pri must be %GFP_ATOMIC
844 * %NULL is returned on a memory allocation failure.
846 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
849 might_sleep_if(pri
& __GFP_WAIT
);
850 if (skb_cloned(skb
)) {
851 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
852 kfree_skb(skb
); /* Free our shared copy */
859 * skb_peek - peek at the head of an &sk_buff_head
860 * @list_: list to peek at
862 * Peek an &sk_buff. Unlike most other operations you _MUST_
863 * be careful with this one. A peek leaves the buffer on the
864 * list and someone else may run off with it. You must hold
865 * the appropriate locks or have a private queue to do this.
867 * Returns %NULL for an empty list or a pointer to the head element.
868 * The reference count is not incremented and the reference is therefore
869 * volatile. Use with caution.
871 static inline struct sk_buff
*skb_peek(const struct sk_buff_head
*list_
)
873 struct sk_buff
*list
= ((const struct sk_buff
*)list_
)->next
;
874 if (list
== (struct sk_buff
*)list_
)
880 * skb_peek_tail - peek at the tail of an &sk_buff_head
881 * @list_: list to peek at
883 * Peek an &sk_buff. Unlike most other operations you _MUST_
884 * be careful with this one. A peek leaves the buffer on the
885 * list and someone else may run off with it. You must hold
886 * the appropriate locks or have a private queue to do this.
888 * Returns %NULL for an empty list or a pointer to the tail element.
889 * The reference count is not incremented and the reference is therefore
890 * volatile. Use with caution.
892 static inline struct sk_buff
*skb_peek_tail(const struct sk_buff_head
*list_
)
894 struct sk_buff
*list
= ((const struct sk_buff
*)list_
)->prev
;
895 if (list
== (struct sk_buff
*)list_
)
901 * skb_queue_len - get queue length
902 * @list_: list to measure
904 * Return the length of an &sk_buff queue.
906 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
912 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
913 * @list: queue to initialize
915 * This initializes only the list and queue length aspects of
916 * an sk_buff_head object. This allows to initialize the list
917 * aspects of an sk_buff_head without reinitializing things like
918 * the spinlock. It can also be used for on-stack sk_buff_head
919 * objects where the spinlock is known to not be used.
921 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
923 list
->prev
= list
->next
= (struct sk_buff
*)list
;
928 * This function creates a split out lock class for each invocation;
929 * this is needed for now since a whole lot of users of the skb-queue
930 * infrastructure in drivers have different locking usage (in hardirq)
931 * than the networking core (in softirq only). In the long run either the
932 * network layer or drivers should need annotation to consolidate the
933 * main types of usage into 3 classes.
935 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
937 spin_lock_init(&list
->lock
);
938 __skb_queue_head_init(list
);
941 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
942 struct lock_class_key
*class)
944 skb_queue_head_init(list
);
945 lockdep_set_class(&list
->lock
, class);
949 * Insert an sk_buff on a list.
951 * The "__skb_xxxx()" functions are the non-atomic ones that
952 * can only be called with interrupts disabled.
954 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
955 static inline void __skb_insert(struct sk_buff
*newsk
,
956 struct sk_buff
*prev
, struct sk_buff
*next
,
957 struct sk_buff_head
*list
)
961 next
->prev
= prev
->next
= newsk
;
965 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
966 struct sk_buff
*prev
,
967 struct sk_buff
*next
)
969 struct sk_buff
*first
= list
->next
;
970 struct sk_buff
*last
= list
->prev
;
980 * skb_queue_splice - join two skb lists, this is designed for stacks
981 * @list: the new list to add
982 * @head: the place to add it in the first list
984 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
985 struct sk_buff_head
*head
)
987 if (!skb_queue_empty(list
)) {
988 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
989 head
->qlen
+= list
->qlen
;
994 * skb_queue_splice - join two skb lists and reinitialise the emptied list
995 * @list: the new list to add
996 * @head: the place to add it in the first list
998 * The list at @list is reinitialised
1000 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
1001 struct sk_buff_head
*head
)
1003 if (!skb_queue_empty(list
)) {
1004 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
1005 head
->qlen
+= list
->qlen
;
1006 __skb_queue_head_init(list
);
1011 * skb_queue_splice_tail - join two skb lists, each list being a queue
1012 * @list: the new list to add
1013 * @head: the place to add it in the first list
1015 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
1016 struct sk_buff_head
*head
)
1018 if (!skb_queue_empty(list
)) {
1019 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1020 head
->qlen
+= list
->qlen
;
1025 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1026 * @list: the new list to add
1027 * @head: the place to add it in the first list
1029 * Each of the lists is a queue.
1030 * The list at @list is reinitialised
1032 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
1033 struct sk_buff_head
*head
)
1035 if (!skb_queue_empty(list
)) {
1036 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
1037 head
->qlen
+= list
->qlen
;
1038 __skb_queue_head_init(list
);
1043 * __skb_queue_after - queue a buffer at the list head
1044 * @list: list to use
1045 * @prev: place after this buffer
1046 * @newsk: buffer to queue
1048 * Queue a buffer int the middle of a list. This function takes no locks
1049 * and you must therefore hold required locks before calling it.
1051 * A buffer cannot be placed on two lists at the same time.
1053 static inline void __skb_queue_after(struct sk_buff_head
*list
,
1054 struct sk_buff
*prev
,
1055 struct sk_buff
*newsk
)
1057 __skb_insert(newsk
, prev
, prev
->next
, list
);
1060 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
1061 struct sk_buff_head
*list
);
1063 static inline void __skb_queue_before(struct sk_buff_head
*list
,
1064 struct sk_buff
*next
,
1065 struct sk_buff
*newsk
)
1067 __skb_insert(newsk
, next
->prev
, next
, list
);
1071 * __skb_queue_head - queue a buffer at the list head
1072 * @list: list to use
1073 * @newsk: buffer to queue
1075 * Queue a buffer at the start of a list. This function takes no locks
1076 * and you must therefore hold required locks before calling it.
1078 * A buffer cannot be placed on two lists at the same time.
1080 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1081 static inline void __skb_queue_head(struct sk_buff_head
*list
,
1082 struct sk_buff
*newsk
)
1084 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
1088 * __skb_queue_tail - queue a buffer at the list tail
1089 * @list: list to use
1090 * @newsk: buffer to queue
1092 * Queue a buffer at the end of a list. This function takes no locks
1093 * and you must therefore hold required locks before calling it.
1095 * A buffer cannot be placed on two lists at the same time.
1097 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
1098 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
1099 struct sk_buff
*newsk
)
1101 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
1105 * remove sk_buff from list. _Must_ be called atomically, and with
1108 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
1109 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1111 struct sk_buff
*next
, *prev
;
1116 skb
->next
= skb
->prev
= NULL
;
1122 * __skb_dequeue - remove from the head of the queue
1123 * @list: list to dequeue from
1125 * Remove the head of the list. This function does not take any locks
1126 * so must be used with appropriate locks held only. The head item is
1127 * returned or %NULL if the list is empty.
1129 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1130 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1132 struct sk_buff
*skb
= skb_peek(list
);
1134 __skb_unlink(skb
, list
);
1139 * __skb_dequeue_tail - remove from the tail of the queue
1140 * @list: list to dequeue from
1142 * Remove the tail of the list. This function does not take any locks
1143 * so must be used with appropriate locks held only. The tail item is
1144 * returned or %NULL if the list is empty.
1146 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1147 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1149 struct sk_buff
*skb
= skb_peek_tail(list
);
1151 __skb_unlink(skb
, list
);
1156 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1158 return skb
->data_len
;
1161 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1163 return skb
->len
- skb
->data_len
;
1166 static inline int skb_pagelen(const struct sk_buff
*skb
)
1170 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1171 len
+= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1172 return len
+ skb_headlen(skb
);
1176 * __skb_fill_page_desc - initialise a paged fragment in an skb
1177 * @skb: buffer containing fragment to be initialised
1178 * @i: paged fragment index to initialise
1179 * @page: the page to use for this fragment
1180 * @off: the offset to the data with @page
1181 * @size: the length of the data
1183 * Initialises the @i'th fragment of @skb to point to &size bytes at
1184 * offset @off within @page.
1186 * Does not take any additional reference on the fragment.
1188 static inline void __skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1189 struct page
*page
, int off
, int size
)
1191 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1193 frag
->page
.p
= page
;
1194 frag
->page_offset
= off
;
1195 skb_frag_size_set(frag
, size
);
1199 * skb_fill_page_desc - initialise a paged fragment in an skb
1200 * @skb: buffer containing fragment to be initialised
1201 * @i: paged fragment index to initialise
1202 * @page: the page to use for this fragment
1203 * @off: the offset to the data with @page
1204 * @size: the length of the data
1206 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1207 * @skb to point to &size bytes at offset @off within @page. In
1208 * addition updates @skb such that @i is the last fragment.
1210 * Does not take any additional reference on the fragment.
1212 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1213 struct page
*page
, int off
, int size
)
1215 __skb_fill_page_desc(skb
, i
, page
, off
, size
);
1216 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1219 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1222 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1223 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1224 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1226 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1227 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1229 return skb
->head
+ skb
->tail
;
1232 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1234 skb
->tail
= skb
->data
- skb
->head
;
1237 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1239 skb_reset_tail_pointer(skb
);
1240 skb
->tail
+= offset
;
1242 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1243 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1248 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1250 skb
->tail
= skb
->data
;
1253 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1255 skb
->tail
= skb
->data
+ offset
;
1258 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1261 * Add data to an sk_buff
1263 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1264 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1266 unsigned char *tmp
= skb_tail_pointer(skb
);
1267 SKB_LINEAR_ASSERT(skb
);
1273 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1274 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1281 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1282 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1285 BUG_ON(skb
->len
< skb
->data_len
);
1286 return skb
->data
+= len
;
1289 static inline unsigned char *skb_pull_inline(struct sk_buff
*skb
, unsigned int len
)
1291 return unlikely(len
> skb
->len
) ? NULL
: __skb_pull(skb
, len
);
1294 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1296 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1298 if (len
> skb_headlen(skb
) &&
1299 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1302 return skb
->data
+= len
;
1305 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1307 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1310 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1312 if (likely(len
<= skb_headlen(skb
)))
1314 if (unlikely(len
> skb
->len
))
1316 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1320 * skb_headroom - bytes at buffer head
1321 * @skb: buffer to check
1323 * Return the number of bytes of free space at the head of an &sk_buff.
1325 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1327 return skb
->data
- skb
->head
;
1331 * skb_tailroom - bytes at buffer end
1332 * @skb: buffer to check
1334 * Return the number of bytes of free space at the tail of an sk_buff
1336 static inline int skb_tailroom(const struct sk_buff
*skb
)
1338 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1342 * skb_availroom - bytes at buffer end
1343 * @skb: buffer to check
1345 * Return the number of bytes of free space at the tail of an sk_buff
1346 * allocated by sk_stream_alloc()
1348 static inline int skb_availroom(const struct sk_buff
*skb
)
1350 return skb_is_nonlinear(skb
) ? 0 : skb
->avail_size
- skb
->len
;
1354 * skb_reserve - adjust headroom
1355 * @skb: buffer to alter
1356 * @len: bytes to move
1358 * Increase the headroom of an empty &sk_buff by reducing the tail
1359 * room. This is only allowed for an empty buffer.
1361 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1367 static inline void skb_reset_mac_len(struct sk_buff
*skb
)
1369 skb
->mac_len
= skb
->network_header
- skb
->mac_header
;
1372 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1373 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1375 return skb
->head
+ skb
->transport_header
;
1378 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1380 skb
->transport_header
= skb
->data
- skb
->head
;
1383 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1386 skb_reset_transport_header(skb
);
1387 skb
->transport_header
+= offset
;
1390 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1392 return skb
->head
+ skb
->network_header
;
1395 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1397 skb
->network_header
= skb
->data
- skb
->head
;
1400 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1402 skb_reset_network_header(skb
);
1403 skb
->network_header
+= offset
;
1406 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1408 return skb
->head
+ skb
->mac_header
;
1411 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1413 return skb
->mac_header
!= ~0U;
1416 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1418 skb
->mac_header
= skb
->data
- skb
->head
;
1421 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1423 skb_reset_mac_header(skb
);
1424 skb
->mac_header
+= offset
;
1427 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1429 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1431 return skb
->transport_header
;
1434 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1436 skb
->transport_header
= skb
->data
;
1439 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1442 skb
->transport_header
= skb
->data
+ offset
;
1445 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1447 return skb
->network_header
;
1450 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1452 skb
->network_header
= skb
->data
;
1455 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1457 skb
->network_header
= skb
->data
+ offset
;
1460 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1462 return skb
->mac_header
;
1465 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1467 return skb
->mac_header
!= NULL
;
1470 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1472 skb
->mac_header
= skb
->data
;
1475 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1477 skb
->mac_header
= skb
->data
+ offset
;
1479 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1481 static inline void skb_mac_header_rebuild(struct sk_buff
*skb
)
1483 if (skb_mac_header_was_set(skb
)) {
1484 const unsigned char *old_mac
= skb_mac_header(skb
);
1486 skb_set_mac_header(skb
, -skb
->mac_len
);
1487 memmove(skb_mac_header(skb
), old_mac
, skb
->mac_len
);
1491 static inline int skb_checksum_start_offset(const struct sk_buff
*skb
)
1493 return skb
->csum_start
- skb_headroom(skb
);
1496 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1498 return skb_transport_header(skb
) - skb
->data
;
1501 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1503 return skb
->transport_header
- skb
->network_header
;
1506 static inline int skb_network_offset(const struct sk_buff
*skb
)
1508 return skb_network_header(skb
) - skb
->data
;
1511 static inline int pskb_network_may_pull(struct sk_buff
*skb
, unsigned int len
)
1513 return pskb_may_pull(skb
, skb_network_offset(skb
) + len
);
1517 * CPUs often take a performance hit when accessing unaligned memory
1518 * locations. The actual performance hit varies, it can be small if the
1519 * hardware handles it or large if we have to take an exception and fix it
1522 * Since an ethernet header is 14 bytes network drivers often end up with
1523 * the IP header at an unaligned offset. The IP header can be aligned by
1524 * shifting the start of the packet by 2 bytes. Drivers should do this
1527 * skb_reserve(skb, NET_IP_ALIGN);
1529 * The downside to this alignment of the IP header is that the DMA is now
1530 * unaligned. On some architectures the cost of an unaligned DMA is high
1531 * and this cost outweighs the gains made by aligning the IP header.
1533 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1536 #ifndef NET_IP_ALIGN
1537 #define NET_IP_ALIGN 2
1541 * The networking layer reserves some headroom in skb data (via
1542 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1543 * the header has to grow. In the default case, if the header has to grow
1544 * 32 bytes or less we avoid the reallocation.
1546 * Unfortunately this headroom changes the DMA alignment of the resulting
1547 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1548 * on some architectures. An architecture can override this value,
1549 * perhaps setting it to a cacheline in size (since that will maintain
1550 * cacheline alignment of the DMA). It must be a power of 2.
1552 * Various parts of the networking layer expect at least 32 bytes of
1553 * headroom, you should not reduce this.
1555 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1556 * to reduce average number of cache lines per packet.
1557 * get_rps_cpus() for example only access one 64 bytes aligned block :
1558 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1561 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1564 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1566 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1568 if (unlikely(skb_is_nonlinear(skb
))) {
1573 skb_set_tail_pointer(skb
, len
);
1576 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1578 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1581 return ___pskb_trim(skb
, len
);
1582 __skb_trim(skb
, len
);
1586 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1588 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1592 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1593 * @skb: buffer to alter
1596 * This is identical to pskb_trim except that the caller knows that
1597 * the skb is not cloned so we should never get an error due to out-
1600 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1602 int err
= pskb_trim(skb
, len
);
1607 * skb_orphan - orphan a buffer
1608 * @skb: buffer to orphan
1610 * If a buffer currently has an owner then we call the owner's
1611 * destructor function and make the @skb unowned. The buffer continues
1612 * to exist but is no longer charged to its former owner.
1614 static inline void skb_orphan(struct sk_buff
*skb
)
1616 if (skb
->destructor
)
1617 skb
->destructor(skb
);
1618 skb
->destructor
= NULL
;
1623 * __skb_queue_purge - empty a list
1624 * @list: list to empty
1626 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1627 * the list and one reference dropped. This function does not take the
1628 * list lock and the caller must hold the relevant locks to use it.
1630 extern void skb_queue_purge(struct sk_buff_head
*list
);
1631 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1633 struct sk_buff
*skb
;
1634 while ((skb
= __skb_dequeue(list
)) != NULL
)
1639 * __dev_alloc_skb - allocate an skbuff for receiving
1640 * @length: length to allocate
1641 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1643 * Allocate a new &sk_buff and assign it a usage count of one. The
1644 * buffer has unspecified headroom built in. Users should allocate
1645 * the headroom they think they need without accounting for the
1646 * built in space. The built in space is used for optimisations.
1648 * %NULL is returned if there is no free memory.
1650 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1653 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1655 skb_reserve(skb
, NET_SKB_PAD
);
1659 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1661 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1662 unsigned int length
, gfp_t gfp_mask
);
1665 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1666 * @dev: network device to receive on
1667 * @length: length to allocate
1669 * Allocate a new &sk_buff and assign it a usage count of one. The
1670 * buffer has unspecified headroom built in. Users should allocate
1671 * the headroom they think they need without accounting for the
1672 * built in space. The built in space is used for optimisations.
1674 * %NULL is returned if there is no free memory. Although this function
1675 * allocates memory it can be called from an interrupt.
1677 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1678 unsigned int length
)
1680 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1683 static inline struct sk_buff
*__netdev_alloc_skb_ip_align(struct net_device
*dev
,
1684 unsigned int length
, gfp_t gfp
)
1686 struct sk_buff
*skb
= __netdev_alloc_skb(dev
, length
+ NET_IP_ALIGN
, gfp
);
1688 if (NET_IP_ALIGN
&& skb
)
1689 skb_reserve(skb
, NET_IP_ALIGN
);
1693 static inline struct sk_buff
*netdev_alloc_skb_ip_align(struct net_device
*dev
,
1694 unsigned int length
)
1696 return __netdev_alloc_skb_ip_align(dev
, length
, GFP_ATOMIC
);
1700 * skb_frag_page - retrieve the page refered to by a paged fragment
1701 * @frag: the paged fragment
1703 * Returns the &struct page associated with @frag.
1705 static inline struct page
*skb_frag_page(const skb_frag_t
*frag
)
1707 return frag
->page
.p
;
1711 * __skb_frag_ref - take an addition reference on a paged fragment.
1712 * @frag: the paged fragment
1714 * Takes an additional reference on the paged fragment @frag.
1716 static inline void __skb_frag_ref(skb_frag_t
*frag
)
1718 get_page(skb_frag_page(frag
));
1722 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1724 * @f: the fragment offset.
1726 * Takes an additional reference on the @f'th paged fragment of @skb.
1728 static inline void skb_frag_ref(struct sk_buff
*skb
, int f
)
1730 __skb_frag_ref(&skb_shinfo(skb
)->frags
[f
]);
1734 * __skb_frag_unref - release a reference on a paged fragment.
1735 * @frag: the paged fragment
1737 * Releases a reference on the paged fragment @frag.
1739 static inline void __skb_frag_unref(skb_frag_t
*frag
)
1741 put_page(skb_frag_page(frag
));
1745 * skb_frag_unref - release a reference on a paged fragment of an skb.
1747 * @f: the fragment offset
1749 * Releases a reference on the @f'th paged fragment of @skb.
1751 static inline void skb_frag_unref(struct sk_buff
*skb
, int f
)
1753 __skb_frag_unref(&skb_shinfo(skb
)->frags
[f
]);
1757 * skb_frag_address - gets the address of the data contained in a paged fragment
1758 * @frag: the paged fragment buffer
1760 * Returns the address of the data within @frag. The page must already
1763 static inline void *skb_frag_address(const skb_frag_t
*frag
)
1765 return page_address(skb_frag_page(frag
)) + frag
->page_offset
;
1769 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1770 * @frag: the paged fragment buffer
1772 * Returns the address of the data within @frag. Checks that the page
1773 * is mapped and returns %NULL otherwise.
1775 static inline void *skb_frag_address_safe(const skb_frag_t
*frag
)
1777 void *ptr
= page_address(skb_frag_page(frag
));
1781 return ptr
+ frag
->page_offset
;
1785 * __skb_frag_set_page - sets the page contained in a paged fragment
1786 * @frag: the paged fragment
1787 * @page: the page to set
1789 * Sets the fragment @frag to contain @page.
1791 static inline void __skb_frag_set_page(skb_frag_t
*frag
, struct page
*page
)
1793 frag
->page
.p
= page
;
1797 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1799 * @f: the fragment offset
1800 * @page: the page to set
1802 * Sets the @f'th fragment of @skb to contain @page.
1804 static inline void skb_frag_set_page(struct sk_buff
*skb
, int f
,
1807 __skb_frag_set_page(&skb_shinfo(skb
)->frags
[f
], page
);
1811 * skb_frag_dma_map - maps a paged fragment via the DMA API
1812 * @dev: the device to map the fragment to
1813 * @frag: the paged fragment to map
1814 * @offset: the offset within the fragment (starting at the
1815 * fragment's own offset)
1816 * @size: the number of bytes to map
1817 * @dir: the direction of the mapping (%PCI_DMA_*)
1819 * Maps the page associated with @frag to @device.
1821 static inline dma_addr_t
skb_frag_dma_map(struct device
*dev
,
1822 const skb_frag_t
*frag
,
1823 size_t offset
, size_t size
,
1824 enum dma_data_direction dir
)
1826 return dma_map_page(dev
, skb_frag_page(frag
),
1827 frag
->page_offset
+ offset
, size
, dir
);
1830 static inline struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
1833 return __pskb_copy(skb
, skb_headroom(skb
), gfp_mask
);
1837 * skb_clone_writable - is the header of a clone writable
1838 * @skb: buffer to check
1839 * @len: length up to which to write
1841 * Returns true if modifying the header part of the cloned buffer
1842 * does not requires the data to be copied.
1844 static inline int skb_clone_writable(const struct sk_buff
*skb
, unsigned int len
)
1846 return !skb_header_cloned(skb
) &&
1847 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1850 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1855 if (headroom
< NET_SKB_PAD
)
1856 headroom
= NET_SKB_PAD
;
1857 if (headroom
> skb_headroom(skb
))
1858 delta
= headroom
- skb_headroom(skb
);
1860 if (delta
|| cloned
)
1861 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1867 * skb_cow - copy header of skb when it is required
1868 * @skb: buffer to cow
1869 * @headroom: needed headroom
1871 * If the skb passed lacks sufficient headroom or its data part
1872 * is shared, data is reallocated. If reallocation fails, an error
1873 * is returned and original skb is not changed.
1875 * The result is skb with writable area skb->head...skb->tail
1876 * and at least @headroom of space at head.
1878 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1880 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1884 * skb_cow_head - skb_cow but only making the head writable
1885 * @skb: buffer to cow
1886 * @headroom: needed headroom
1888 * This function is identical to skb_cow except that we replace the
1889 * skb_cloned check by skb_header_cloned. It should be used when
1890 * you only need to push on some header and do not need to modify
1893 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1895 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1899 * skb_padto - pad an skbuff up to a minimal size
1900 * @skb: buffer to pad
1901 * @len: minimal length
1903 * Pads up a buffer to ensure the trailing bytes exist and are
1904 * blanked. If the buffer already contains sufficient data it
1905 * is untouched. Otherwise it is extended. Returns zero on
1906 * success. The skb is freed on error.
1909 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1911 unsigned int size
= skb
->len
;
1912 if (likely(size
>= len
))
1914 return skb_pad(skb
, len
- size
);
1917 static inline int skb_add_data(struct sk_buff
*skb
,
1918 char __user
*from
, int copy
)
1920 const int off
= skb
->len
;
1922 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1924 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1927 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1930 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1933 __skb_trim(skb
, off
);
1937 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1938 const struct page
*page
, int off
)
1941 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1943 return page
== skb_frag_page(frag
) &&
1944 off
== frag
->page_offset
+ skb_frag_size(frag
);
1949 static inline int __skb_linearize(struct sk_buff
*skb
)
1951 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1955 * skb_linearize - convert paged skb to linear one
1956 * @skb: buffer to linarize
1958 * If there is no free memory -ENOMEM is returned, otherwise zero
1959 * is returned and the old skb data released.
1961 static inline int skb_linearize(struct sk_buff
*skb
)
1963 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1967 * skb_linearize_cow - make sure skb is linear and writable
1968 * @skb: buffer to process
1970 * If there is no free memory -ENOMEM is returned, otherwise zero
1971 * is returned and the old skb data released.
1973 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1975 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1976 __skb_linearize(skb
) : 0;
1980 * skb_postpull_rcsum - update checksum for received skb after pull
1981 * @skb: buffer to update
1982 * @start: start of data before pull
1983 * @len: length of data pulled
1985 * After doing a pull on a received packet, you need to call this to
1986 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1987 * CHECKSUM_NONE so that it can be recomputed from scratch.
1990 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1991 const void *start
, unsigned int len
)
1993 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1994 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1997 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
2000 * pskb_trim_rcsum - trim received skb and update checksum
2001 * @skb: buffer to trim
2004 * This is exactly the same as pskb_trim except that it ensures the
2005 * checksum of received packets are still valid after the operation.
2008 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
2010 if (likely(len
>= skb
->len
))
2012 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2013 skb
->ip_summed
= CHECKSUM_NONE
;
2014 return __pskb_trim(skb
, len
);
2017 #define skb_queue_walk(queue, skb) \
2018 for (skb = (queue)->next; \
2019 skb != (struct sk_buff *)(queue); \
2022 #define skb_queue_walk_safe(queue, skb, tmp) \
2023 for (skb = (queue)->next, tmp = skb->next; \
2024 skb != (struct sk_buff *)(queue); \
2025 skb = tmp, tmp = skb->next)
2027 #define skb_queue_walk_from(queue, skb) \
2028 for (; skb != (struct sk_buff *)(queue); \
2031 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2032 for (tmp = skb->next; \
2033 skb != (struct sk_buff *)(queue); \
2034 skb = tmp, tmp = skb->next)
2036 #define skb_queue_reverse_walk(queue, skb) \
2037 for (skb = (queue)->prev; \
2038 skb != (struct sk_buff *)(queue); \
2041 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2042 for (skb = (queue)->prev, tmp = skb->prev; \
2043 skb != (struct sk_buff *)(queue); \
2044 skb = tmp, tmp = skb->prev)
2046 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2047 for (tmp = skb->prev; \
2048 skb != (struct sk_buff *)(queue); \
2049 skb = tmp, tmp = skb->prev)
2051 static inline bool skb_has_frag_list(const struct sk_buff
*skb
)
2053 return skb_shinfo(skb
)->frag_list
!= NULL
;
2056 static inline void skb_frag_list_init(struct sk_buff
*skb
)
2058 skb_shinfo(skb
)->frag_list
= NULL
;
2061 static inline void skb_frag_add_head(struct sk_buff
*skb
, struct sk_buff
*frag
)
2063 frag
->next
= skb_shinfo(skb
)->frag_list
;
2064 skb_shinfo(skb
)->frag_list
= frag
;
2067 #define skb_walk_frags(skb, iter) \
2068 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2070 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2071 int *peeked
, int *err
);
2072 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
2073 int noblock
, int *err
);
2074 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
2075 struct poll_table_struct
*wait
);
2076 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
2077 int offset
, struct iovec
*to
,
2079 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
2082 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
2084 const struct iovec
*from
,
2087 extern int skb_copy_datagram_const_iovec(const struct sk_buff
*from
,
2089 const struct iovec
*to
,
2092 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
2093 extern void skb_free_datagram_locked(struct sock
*sk
,
2094 struct sk_buff
*skb
);
2095 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
2096 unsigned int flags
);
2097 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2098 int len
, __wsum csum
);
2099 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
2101 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
2102 const void *from
, int len
);
2103 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
2104 int offset
, u8
*to
, int len
,
2106 extern int skb_splice_bits(struct sk_buff
*skb
,
2107 unsigned int offset
,
2108 struct pipe_inode_info
*pipe
,
2110 unsigned int flags
);
2111 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
2112 extern void skb_split(struct sk_buff
*skb
,
2113 struct sk_buff
*skb1
, const u32 len
);
2114 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
2117 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
,
2118 netdev_features_t features
);
2120 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
2121 int len
, void *buffer
)
2123 int hlen
= skb_headlen(skb
);
2125 if (hlen
- offset
>= len
)
2126 return skb
->data
+ offset
;
2128 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
2134 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
2136 const unsigned int len
)
2138 memcpy(to
, skb
->data
, len
);
2141 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
2142 const int offset
, void *to
,
2143 const unsigned int len
)
2145 memcpy(to
, skb
->data
+ offset
, len
);
2148 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
2150 const unsigned int len
)
2152 memcpy(skb
->data
, from
, len
);
2155 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
2158 const unsigned int len
)
2160 memcpy(skb
->data
+ offset
, from
, len
);
2163 extern void skb_init(void);
2165 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
2171 * skb_get_timestamp - get timestamp from a skb
2172 * @skb: skb to get stamp from
2173 * @stamp: pointer to struct timeval to store stamp in
2175 * Timestamps are stored in the skb as offsets to a base timestamp.
2176 * This function converts the offset back to a struct timeval and stores
2179 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
2180 struct timeval
*stamp
)
2182 *stamp
= ktime_to_timeval(skb
->tstamp
);
2185 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
2186 struct timespec
*stamp
)
2188 *stamp
= ktime_to_timespec(skb
->tstamp
);
2191 static inline void __net_timestamp(struct sk_buff
*skb
)
2193 skb
->tstamp
= ktime_get_real();
2196 static inline ktime_t
net_timedelta(ktime_t t
)
2198 return ktime_sub(ktime_get_real(), t
);
2201 static inline ktime_t
net_invalid_timestamp(void)
2203 return ktime_set(0, 0);
2206 extern void skb_timestamping_init(void);
2208 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2210 extern void skb_clone_tx_timestamp(struct sk_buff
*skb
);
2211 extern bool skb_defer_rx_timestamp(struct sk_buff
*skb
);
2213 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2215 static inline void skb_clone_tx_timestamp(struct sk_buff
*skb
)
2219 static inline bool skb_defer_rx_timestamp(struct sk_buff
*skb
)
2224 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2227 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2229 * PHY drivers may accept clones of transmitted packets for
2230 * timestamping via their phy_driver.txtstamp method. These drivers
2231 * must call this function to return the skb back to the stack, with
2232 * or without a timestamp.
2234 * @skb: clone of the the original outgoing packet
2235 * @hwtstamps: hardware time stamps, may be NULL if not available
2238 void skb_complete_tx_timestamp(struct sk_buff
*skb
,
2239 struct skb_shared_hwtstamps
*hwtstamps
);
2242 * skb_tstamp_tx - queue clone of skb with send time stamps
2243 * @orig_skb: the original outgoing packet
2244 * @hwtstamps: hardware time stamps, may be NULL if not available
2246 * If the skb has a socket associated, then this function clones the
2247 * skb (thus sharing the actual data and optional structures), stores
2248 * the optional hardware time stamping information (if non NULL) or
2249 * generates a software time stamp (otherwise), then queues the clone
2250 * to the error queue of the socket. Errors are silently ignored.
2252 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
2253 struct skb_shared_hwtstamps
*hwtstamps
);
2255 static inline void sw_tx_timestamp(struct sk_buff
*skb
)
2257 if (skb_shinfo(skb
)->tx_flags
& SKBTX_SW_TSTAMP
&&
2258 !(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2259 skb_tstamp_tx(skb
, NULL
);
2263 * skb_tx_timestamp() - Driver hook for transmit timestamping
2265 * Ethernet MAC Drivers should call this function in their hard_xmit()
2266 * function immediately before giving the sk_buff to the MAC hardware.
2268 * @skb: A socket buffer.
2270 static inline void skb_tx_timestamp(struct sk_buff
*skb
)
2272 skb_clone_tx_timestamp(skb
);
2273 sw_tx_timestamp(skb
);
2277 * skb_complete_wifi_ack - deliver skb with wifi status
2279 * @skb: the original outgoing packet
2280 * @acked: ack status
2283 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
);
2285 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
2286 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
2288 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
2290 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
2294 * skb_checksum_complete - Calculate checksum of an entire packet
2295 * @skb: packet to process
2297 * This function calculates the checksum over the entire packet plus
2298 * the value of skb->csum. The latter can be used to supply the
2299 * checksum of a pseudo header as used by TCP/UDP. It returns the
2302 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2303 * this function can be used to verify that checksum on received
2304 * packets. In that case the function should return zero if the
2305 * checksum is correct. In particular, this function will return zero
2306 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2307 * hardware has already verified the correctness of the checksum.
2309 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
2311 return skb_csum_unnecessary(skb
) ?
2312 0 : __skb_checksum_complete(skb
);
2315 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2316 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
2317 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
2319 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
2320 nf_conntrack_destroy(nfct
);
2322 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
2325 atomic_inc(&nfct
->use
);
2328 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2329 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
2332 atomic_inc(&skb
->users
);
2334 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
2340 #ifdef CONFIG_BRIDGE_NETFILTER
2341 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
2343 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
2346 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
2349 atomic_inc(&nf_bridge
->use
);
2351 #endif /* CONFIG_BRIDGE_NETFILTER */
2352 static inline void nf_reset(struct sk_buff
*skb
)
2354 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2355 nf_conntrack_put(skb
->nfct
);
2358 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2359 nf_conntrack_put_reasm(skb
->nfct_reasm
);
2360 skb
->nfct_reasm
= NULL
;
2362 #ifdef CONFIG_BRIDGE_NETFILTER
2363 nf_bridge_put(skb
->nf_bridge
);
2364 skb
->nf_bridge
= NULL
;
2368 /* Note: This doesn't put any conntrack and bridge info in dst. */
2369 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2371 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2372 dst
->nfct
= src
->nfct
;
2373 nf_conntrack_get(src
->nfct
);
2374 dst
->nfctinfo
= src
->nfctinfo
;
2376 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2377 dst
->nfct_reasm
= src
->nfct_reasm
;
2378 nf_conntrack_get_reasm(src
->nfct_reasm
);
2380 #ifdef CONFIG_BRIDGE_NETFILTER
2381 dst
->nf_bridge
= src
->nf_bridge
;
2382 nf_bridge_get(src
->nf_bridge
);
2386 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
2388 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2389 nf_conntrack_put(dst
->nfct
);
2391 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2392 nf_conntrack_put_reasm(dst
->nfct_reasm
);
2394 #ifdef CONFIG_BRIDGE_NETFILTER
2395 nf_bridge_put(dst
->nf_bridge
);
2397 __nf_copy(dst
, src
);
2400 #ifdef CONFIG_NETWORK_SECMARK
2401 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2403 to
->secmark
= from
->secmark
;
2406 static inline void skb_init_secmark(struct sk_buff
*skb
)
2411 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
2414 static inline void skb_init_secmark(struct sk_buff
*skb
)
2418 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
2420 skb
->queue_mapping
= queue_mapping
;
2423 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
2425 return skb
->queue_mapping
;
2428 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
2430 to
->queue_mapping
= from
->queue_mapping
;
2433 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
2435 skb
->queue_mapping
= rx_queue
+ 1;
2438 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
2440 return skb
->queue_mapping
- 1;
2443 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
2445 return skb
->queue_mapping
!= 0;
2448 extern u16
__skb_tx_hash(const struct net_device
*dev
,
2449 const struct sk_buff
*skb
,
2450 unsigned int num_tx_queues
);
2453 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2458 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2464 static inline int skb_is_gso(const struct sk_buff
*skb
)
2466 return skb_shinfo(skb
)->gso_size
;
2469 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2471 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2474 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2476 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2478 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2479 * wanted then gso_type will be set. */
2480 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2482 if (skb_is_nonlinear(skb
) && shinfo
->gso_size
!= 0 &&
2483 unlikely(shinfo
->gso_type
== 0)) {
2484 __skb_warn_lro_forwarding(skb
);
2490 static inline void skb_forward_csum(struct sk_buff
*skb
)
2492 /* Unfortunately we don't support this one. Any brave souls? */
2493 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2494 skb
->ip_summed
= CHECKSUM_NONE
;
2498 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2499 * @skb: skb to check
2501 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2502 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2503 * use this helper, to document places where we make this assertion.
2505 static inline void skb_checksum_none_assert(const struct sk_buff
*skb
)
2508 BUG_ON(skb
->ip_summed
!= CHECKSUM_NONE
);
2512 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2514 static inline bool skb_is_recycleable(const struct sk_buff
*skb
, int skb_size
)
2516 if (irqs_disabled())
2519 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
)
2522 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
2525 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
2526 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
2529 if (skb_shared(skb
) || skb_cloned(skb
))
2534 #endif /* __KERNEL__ */
2535 #endif /* _LINUX_SKBUFF_H */