Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[zen-stable.git] / drivers / mmc / card / mmc_test.c
blobb038c4a9468b0a9d06d9ae72ac7d4ee3325ac8a4
1 /*
2 * linux/drivers/mmc/card/mmc_test.c
4 * Copyright 2007-2008 Pierre Ossman
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h> /* For nr_free_buffer_pages() */
20 #include <linux/list.h>
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
27 #define RESULT_OK 0
28 #define RESULT_FAIL 1
29 #define RESULT_UNSUP_HOST 2
30 #define RESULT_UNSUP_CARD 3
32 #define BUFFER_ORDER 2
33 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
36 * Limit the test area size to the maximum MMC HC erase group size. Note that
37 * the maximum SD allocation unit size is just 4MiB.
39 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41 /**
42 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
43 * @page: first page in the allocation
44 * @order: order of the number of pages allocated
46 struct mmc_test_pages {
47 struct page *page;
48 unsigned int order;
51 /**
52 * struct mmc_test_mem - allocated memory.
53 * @arr: array of allocations
54 * @cnt: number of allocations
56 struct mmc_test_mem {
57 struct mmc_test_pages *arr;
58 unsigned int cnt;
61 /**
62 * struct mmc_test_area - information for performance tests.
63 * @max_sz: test area size (in bytes)
64 * @dev_addr: address on card at which to do performance tests
65 * @max_tfr: maximum transfer size allowed by driver (in bytes)
66 * @max_segs: maximum segments allowed by driver in scatterlist @sg
67 * @max_seg_sz: maximum segment size allowed by driver
68 * @blocks: number of (512 byte) blocks currently mapped by @sg
69 * @sg_len: length of currently mapped scatterlist @sg
70 * @mem: allocated memory
71 * @sg: scatterlist
73 struct mmc_test_area {
74 unsigned long max_sz;
75 unsigned int dev_addr;
76 unsigned int max_tfr;
77 unsigned int max_segs;
78 unsigned int max_seg_sz;
79 unsigned int blocks;
80 unsigned int sg_len;
81 struct mmc_test_mem *mem;
82 struct scatterlist *sg;
85 /**
86 * struct mmc_test_transfer_result - transfer results for performance tests.
87 * @link: double-linked list
88 * @count: amount of group of sectors to check
89 * @sectors: amount of sectors to check in one group
90 * @ts: time values of transfer
91 * @rate: calculated transfer rate
92 * @iops: I/O operations per second (times 100)
94 struct mmc_test_transfer_result {
95 struct list_head link;
96 unsigned int count;
97 unsigned int sectors;
98 struct timespec ts;
99 unsigned int rate;
100 unsigned int iops;
104 * struct mmc_test_general_result - results for tests.
105 * @link: double-linked list
106 * @card: card under test
107 * @testcase: number of test case
108 * @result: result of test run
109 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
111 struct mmc_test_general_result {
112 struct list_head link;
113 struct mmc_card *card;
114 int testcase;
115 int result;
116 struct list_head tr_lst;
120 * struct mmc_test_dbgfs_file - debugfs related file.
121 * @link: double-linked list
122 * @card: card under test
123 * @file: file created under debugfs
125 struct mmc_test_dbgfs_file {
126 struct list_head link;
127 struct mmc_card *card;
128 struct dentry *file;
132 * struct mmc_test_card - test information.
133 * @card: card under test
134 * @scratch: transfer buffer
135 * @buffer: transfer buffer
136 * @highmem: buffer for highmem tests
137 * @area: information for performance tests
138 * @gr: pointer to results of current testcase
140 struct mmc_test_card {
141 struct mmc_card *card;
143 u8 scratch[BUFFER_SIZE];
144 u8 *buffer;
145 #ifdef CONFIG_HIGHMEM
146 struct page *highmem;
147 #endif
148 struct mmc_test_area area;
149 struct mmc_test_general_result *gr;
152 enum mmc_test_prep_media {
153 MMC_TEST_PREP_NONE = 0,
154 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
155 MMC_TEST_PREP_ERASE = 1 << 1,
158 struct mmc_test_multiple_rw {
159 unsigned int *sg_len;
160 unsigned int *bs;
161 unsigned int len;
162 unsigned int size;
163 bool do_write;
164 bool do_nonblock_req;
165 enum mmc_test_prep_media prepare;
168 struct mmc_test_async_req {
169 struct mmc_async_req areq;
170 struct mmc_test_card *test;
173 /*******************************************************************/
174 /* General helper functions */
175 /*******************************************************************/
178 * Configure correct block size in card
180 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
182 return mmc_set_blocklen(test->card, size);
186 * Fill in the mmc_request structure given a set of transfer parameters.
188 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
189 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
190 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
192 BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
194 if (blocks > 1) {
195 mrq->cmd->opcode = write ?
196 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
197 } else {
198 mrq->cmd->opcode = write ?
199 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
202 mrq->cmd->arg = dev_addr;
203 if (!mmc_card_blockaddr(test->card))
204 mrq->cmd->arg <<= 9;
206 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
208 if (blocks == 1)
209 mrq->stop = NULL;
210 else {
211 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
212 mrq->stop->arg = 0;
213 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
216 mrq->data->blksz = blksz;
217 mrq->data->blocks = blocks;
218 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
219 mrq->data->sg = sg;
220 mrq->data->sg_len = sg_len;
222 mmc_set_data_timeout(mrq->data, test->card);
225 static int mmc_test_busy(struct mmc_command *cmd)
227 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
228 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
232 * Wait for the card to finish the busy state
234 static int mmc_test_wait_busy(struct mmc_test_card *test)
236 int ret, busy;
237 struct mmc_command cmd = {0};
239 busy = 0;
240 do {
241 memset(&cmd, 0, sizeof(struct mmc_command));
243 cmd.opcode = MMC_SEND_STATUS;
244 cmd.arg = test->card->rca << 16;
245 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
247 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
248 if (ret)
249 break;
251 if (!busy && mmc_test_busy(&cmd)) {
252 busy = 1;
253 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
254 pr_info("%s: Warning: Host did not "
255 "wait for busy state to end.\n",
256 mmc_hostname(test->card->host));
258 } while (mmc_test_busy(&cmd));
260 return ret;
264 * Transfer a single sector of kernel addressable data
266 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
267 u8 *buffer, unsigned addr, unsigned blksz, int write)
269 int ret;
271 struct mmc_request mrq = {0};
272 struct mmc_command cmd = {0};
273 struct mmc_command stop = {0};
274 struct mmc_data data = {0};
276 struct scatterlist sg;
278 mrq.cmd = &cmd;
279 mrq.data = &data;
280 mrq.stop = &stop;
282 sg_init_one(&sg, buffer, blksz);
284 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
286 mmc_wait_for_req(test->card->host, &mrq);
288 if (cmd.error)
289 return cmd.error;
290 if (data.error)
291 return data.error;
293 ret = mmc_test_wait_busy(test);
294 if (ret)
295 return ret;
297 return 0;
300 static void mmc_test_free_mem(struct mmc_test_mem *mem)
302 if (!mem)
303 return;
304 while (mem->cnt--)
305 __free_pages(mem->arr[mem->cnt].page,
306 mem->arr[mem->cnt].order);
307 kfree(mem->arr);
308 kfree(mem);
312 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
313 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
314 * not exceed a maximum number of segments and try not to make segments much
315 * bigger than maximum segment size.
317 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
318 unsigned long max_sz,
319 unsigned int max_segs,
320 unsigned int max_seg_sz)
322 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
323 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
324 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
325 unsigned long page_cnt = 0;
326 unsigned long limit = nr_free_buffer_pages() >> 4;
327 struct mmc_test_mem *mem;
329 if (max_page_cnt > limit)
330 max_page_cnt = limit;
331 if (min_page_cnt > max_page_cnt)
332 min_page_cnt = max_page_cnt;
334 if (max_seg_page_cnt > max_page_cnt)
335 max_seg_page_cnt = max_page_cnt;
337 if (max_segs > max_page_cnt)
338 max_segs = max_page_cnt;
340 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
341 if (!mem)
342 return NULL;
344 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
345 GFP_KERNEL);
346 if (!mem->arr)
347 goto out_free;
349 while (max_page_cnt) {
350 struct page *page;
351 unsigned int order;
352 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
353 __GFP_NORETRY;
355 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
356 while (1) {
357 page = alloc_pages(flags, order);
358 if (page || !order)
359 break;
360 order -= 1;
362 if (!page) {
363 if (page_cnt < min_page_cnt)
364 goto out_free;
365 break;
367 mem->arr[mem->cnt].page = page;
368 mem->arr[mem->cnt].order = order;
369 mem->cnt += 1;
370 if (max_page_cnt <= (1UL << order))
371 break;
372 max_page_cnt -= 1UL << order;
373 page_cnt += 1UL << order;
374 if (mem->cnt >= max_segs) {
375 if (page_cnt < min_page_cnt)
376 goto out_free;
377 break;
381 return mem;
383 out_free:
384 mmc_test_free_mem(mem);
385 return NULL;
389 * Map memory into a scatterlist. Optionally allow the same memory to be
390 * mapped more than once.
392 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
393 struct scatterlist *sglist, int repeat,
394 unsigned int max_segs, unsigned int max_seg_sz,
395 unsigned int *sg_len, int min_sg_len)
397 struct scatterlist *sg = NULL;
398 unsigned int i;
399 unsigned long sz = size;
401 sg_init_table(sglist, max_segs);
402 if (min_sg_len > max_segs)
403 min_sg_len = max_segs;
405 *sg_len = 0;
406 do {
407 for (i = 0; i < mem->cnt; i++) {
408 unsigned long len = PAGE_SIZE << mem->arr[i].order;
410 if (min_sg_len && (size / min_sg_len < len))
411 len = ALIGN(size / min_sg_len, 512);
412 if (len > sz)
413 len = sz;
414 if (len > max_seg_sz)
415 len = max_seg_sz;
416 if (sg)
417 sg = sg_next(sg);
418 else
419 sg = sglist;
420 if (!sg)
421 return -EINVAL;
422 sg_set_page(sg, mem->arr[i].page, len, 0);
423 sz -= len;
424 *sg_len += 1;
425 if (!sz)
426 break;
428 } while (sz && repeat);
430 if (sz)
431 return -EINVAL;
433 if (sg)
434 sg_mark_end(sg);
436 return 0;
440 * Map memory into a scatterlist so that no pages are contiguous. Allow the
441 * same memory to be mapped more than once.
443 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
444 unsigned long sz,
445 struct scatterlist *sglist,
446 unsigned int max_segs,
447 unsigned int max_seg_sz,
448 unsigned int *sg_len)
450 struct scatterlist *sg = NULL;
451 unsigned int i = mem->cnt, cnt;
452 unsigned long len;
453 void *base, *addr, *last_addr = NULL;
455 sg_init_table(sglist, max_segs);
457 *sg_len = 0;
458 while (sz) {
459 base = page_address(mem->arr[--i].page);
460 cnt = 1 << mem->arr[i].order;
461 while (sz && cnt) {
462 addr = base + PAGE_SIZE * --cnt;
463 if (last_addr && last_addr + PAGE_SIZE == addr)
464 continue;
465 last_addr = addr;
466 len = PAGE_SIZE;
467 if (len > max_seg_sz)
468 len = max_seg_sz;
469 if (len > sz)
470 len = sz;
471 if (sg)
472 sg = sg_next(sg);
473 else
474 sg = sglist;
475 if (!sg)
476 return -EINVAL;
477 sg_set_page(sg, virt_to_page(addr), len, 0);
478 sz -= len;
479 *sg_len += 1;
481 if (i == 0)
482 i = mem->cnt;
485 if (sg)
486 sg_mark_end(sg);
488 return 0;
492 * Calculate transfer rate in bytes per second.
494 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
496 uint64_t ns;
498 ns = ts->tv_sec;
499 ns *= 1000000000;
500 ns += ts->tv_nsec;
502 bytes *= 1000000000;
504 while (ns > UINT_MAX) {
505 bytes >>= 1;
506 ns >>= 1;
509 if (!ns)
510 return 0;
512 do_div(bytes, (uint32_t)ns);
514 return bytes;
518 * Save transfer results for future usage
520 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
521 unsigned int count, unsigned int sectors, struct timespec ts,
522 unsigned int rate, unsigned int iops)
524 struct mmc_test_transfer_result *tr;
526 if (!test->gr)
527 return;
529 tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
530 if (!tr)
531 return;
533 tr->count = count;
534 tr->sectors = sectors;
535 tr->ts = ts;
536 tr->rate = rate;
537 tr->iops = iops;
539 list_add_tail(&tr->link, &test->gr->tr_lst);
543 * Print the transfer rate.
545 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
546 struct timespec *ts1, struct timespec *ts2)
548 unsigned int rate, iops, sectors = bytes >> 9;
549 struct timespec ts;
551 ts = timespec_sub(*ts2, *ts1);
553 rate = mmc_test_rate(bytes, &ts);
554 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
556 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
557 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
558 mmc_hostname(test->card->host), sectors, sectors >> 1,
559 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
560 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
561 iops / 100, iops % 100);
563 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
567 * Print the average transfer rate.
569 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
570 unsigned int count, struct timespec *ts1,
571 struct timespec *ts2)
573 unsigned int rate, iops, sectors = bytes >> 9;
574 uint64_t tot = bytes * count;
575 struct timespec ts;
577 ts = timespec_sub(*ts2, *ts1);
579 rate = mmc_test_rate(tot, &ts);
580 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
582 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
583 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
584 "%u.%02u IOPS, sg_len %d)\n",
585 mmc_hostname(test->card->host), count, sectors, count,
586 sectors >> 1, (sectors & 1 ? ".5" : ""),
587 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
588 rate / 1000, rate / 1024, iops / 100, iops % 100,
589 test->area.sg_len);
591 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
595 * Return the card size in sectors.
597 static unsigned int mmc_test_capacity(struct mmc_card *card)
599 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
600 return card->ext_csd.sectors;
601 else
602 return card->csd.capacity << (card->csd.read_blkbits - 9);
605 /*******************************************************************/
606 /* Test preparation and cleanup */
607 /*******************************************************************/
610 * Fill the first couple of sectors of the card with known data
611 * so that bad reads/writes can be detected
613 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
615 int ret, i;
617 ret = mmc_test_set_blksize(test, 512);
618 if (ret)
619 return ret;
621 if (write)
622 memset(test->buffer, 0xDF, 512);
623 else {
624 for (i = 0;i < 512;i++)
625 test->buffer[i] = i;
628 for (i = 0;i < BUFFER_SIZE / 512;i++) {
629 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
630 if (ret)
631 return ret;
634 return 0;
637 static int mmc_test_prepare_write(struct mmc_test_card *test)
639 return __mmc_test_prepare(test, 1);
642 static int mmc_test_prepare_read(struct mmc_test_card *test)
644 return __mmc_test_prepare(test, 0);
647 static int mmc_test_cleanup(struct mmc_test_card *test)
649 int ret, i;
651 ret = mmc_test_set_blksize(test, 512);
652 if (ret)
653 return ret;
655 memset(test->buffer, 0, 512);
657 for (i = 0;i < BUFFER_SIZE / 512;i++) {
658 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
659 if (ret)
660 return ret;
663 return 0;
666 /*******************************************************************/
667 /* Test execution helpers */
668 /*******************************************************************/
671 * Modifies the mmc_request to perform the "short transfer" tests
673 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
674 struct mmc_request *mrq, int write)
676 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
678 if (mrq->data->blocks > 1) {
679 mrq->cmd->opcode = write ?
680 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 mrq->stop = NULL;
682 } else {
683 mrq->cmd->opcode = MMC_SEND_STATUS;
684 mrq->cmd->arg = test->card->rca << 16;
689 * Checks that a normal transfer didn't have any errors
691 static int mmc_test_check_result(struct mmc_test_card *test,
692 struct mmc_request *mrq)
694 int ret;
696 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
698 ret = 0;
700 if (!ret && mrq->cmd->error)
701 ret = mrq->cmd->error;
702 if (!ret && mrq->data->error)
703 ret = mrq->data->error;
704 if (!ret && mrq->stop && mrq->stop->error)
705 ret = mrq->stop->error;
706 if (!ret && mrq->data->bytes_xfered !=
707 mrq->data->blocks * mrq->data->blksz)
708 ret = RESULT_FAIL;
710 if (ret == -EINVAL)
711 ret = RESULT_UNSUP_HOST;
713 return ret;
716 static int mmc_test_check_result_async(struct mmc_card *card,
717 struct mmc_async_req *areq)
719 struct mmc_test_async_req *test_async =
720 container_of(areq, struct mmc_test_async_req, areq);
722 mmc_test_wait_busy(test_async->test);
724 return mmc_test_check_result(test_async->test, areq->mrq);
728 * Checks that a "short transfer" behaved as expected
730 static int mmc_test_check_broken_result(struct mmc_test_card *test,
731 struct mmc_request *mrq)
733 int ret;
735 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
737 ret = 0;
739 if (!ret && mrq->cmd->error)
740 ret = mrq->cmd->error;
741 if (!ret && mrq->data->error == 0)
742 ret = RESULT_FAIL;
743 if (!ret && mrq->data->error != -ETIMEDOUT)
744 ret = mrq->data->error;
745 if (!ret && mrq->stop && mrq->stop->error)
746 ret = mrq->stop->error;
747 if (mrq->data->blocks > 1) {
748 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
749 ret = RESULT_FAIL;
750 } else {
751 if (!ret && mrq->data->bytes_xfered > 0)
752 ret = RESULT_FAIL;
755 if (ret == -EINVAL)
756 ret = RESULT_UNSUP_HOST;
758 return ret;
762 * Tests nonblock transfer with certain parameters
764 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
765 struct mmc_command *cmd,
766 struct mmc_command *stop,
767 struct mmc_data *data)
769 memset(mrq, 0, sizeof(struct mmc_request));
770 memset(cmd, 0, sizeof(struct mmc_command));
771 memset(data, 0, sizeof(struct mmc_data));
772 memset(stop, 0, sizeof(struct mmc_command));
774 mrq->cmd = cmd;
775 mrq->data = data;
776 mrq->stop = stop;
778 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
779 struct scatterlist *sg, unsigned sg_len,
780 unsigned dev_addr, unsigned blocks,
781 unsigned blksz, int write, int count)
783 struct mmc_request mrq1;
784 struct mmc_command cmd1;
785 struct mmc_command stop1;
786 struct mmc_data data1;
788 struct mmc_request mrq2;
789 struct mmc_command cmd2;
790 struct mmc_command stop2;
791 struct mmc_data data2;
793 struct mmc_test_async_req test_areq[2];
794 struct mmc_async_req *done_areq;
795 struct mmc_async_req *cur_areq = &test_areq[0].areq;
796 struct mmc_async_req *other_areq = &test_areq[1].areq;
797 int i;
798 int ret;
800 test_areq[0].test = test;
801 test_areq[1].test = test;
803 mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
804 mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
806 cur_areq->mrq = &mrq1;
807 cur_areq->err_check = mmc_test_check_result_async;
808 other_areq->mrq = &mrq2;
809 other_areq->err_check = mmc_test_check_result_async;
811 for (i = 0; i < count; i++) {
812 mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
813 blocks, blksz, write);
814 done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
816 if (ret || (!done_areq && i > 0))
817 goto err;
819 if (done_areq) {
820 if (done_areq->mrq == &mrq2)
821 mmc_test_nonblock_reset(&mrq2, &cmd2,
822 &stop2, &data2);
823 else
824 mmc_test_nonblock_reset(&mrq1, &cmd1,
825 &stop1, &data1);
827 done_areq = cur_areq;
828 cur_areq = other_areq;
829 other_areq = done_areq;
830 dev_addr += blocks;
833 done_areq = mmc_start_req(test->card->host, NULL, &ret);
835 return ret;
836 err:
837 return ret;
841 * Tests a basic transfer with certain parameters
843 static int mmc_test_simple_transfer(struct mmc_test_card *test,
844 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
845 unsigned blocks, unsigned blksz, int write)
847 struct mmc_request mrq = {0};
848 struct mmc_command cmd = {0};
849 struct mmc_command stop = {0};
850 struct mmc_data data = {0};
852 mrq.cmd = &cmd;
853 mrq.data = &data;
854 mrq.stop = &stop;
856 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
857 blocks, blksz, write);
859 mmc_wait_for_req(test->card->host, &mrq);
861 mmc_test_wait_busy(test);
863 return mmc_test_check_result(test, &mrq);
867 * Tests a transfer where the card will fail completely or partly
869 static int mmc_test_broken_transfer(struct mmc_test_card *test,
870 unsigned blocks, unsigned blksz, int write)
872 struct mmc_request mrq = {0};
873 struct mmc_command cmd = {0};
874 struct mmc_command stop = {0};
875 struct mmc_data data = {0};
877 struct scatterlist sg;
879 mrq.cmd = &cmd;
880 mrq.data = &data;
881 mrq.stop = &stop;
883 sg_init_one(&sg, test->buffer, blocks * blksz);
885 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
886 mmc_test_prepare_broken_mrq(test, &mrq, write);
888 mmc_wait_for_req(test->card->host, &mrq);
890 mmc_test_wait_busy(test);
892 return mmc_test_check_broken_result(test, &mrq);
896 * Does a complete transfer test where data is also validated
898 * Note: mmc_test_prepare() must have been done before this call
900 static int mmc_test_transfer(struct mmc_test_card *test,
901 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
902 unsigned blocks, unsigned blksz, int write)
904 int ret, i;
905 unsigned long flags;
907 if (write) {
908 for (i = 0;i < blocks * blksz;i++)
909 test->scratch[i] = i;
910 } else {
911 memset(test->scratch, 0, BUFFER_SIZE);
913 local_irq_save(flags);
914 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
915 local_irq_restore(flags);
917 ret = mmc_test_set_blksize(test, blksz);
918 if (ret)
919 return ret;
921 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
922 blocks, blksz, write);
923 if (ret)
924 return ret;
926 if (write) {
927 int sectors;
929 ret = mmc_test_set_blksize(test, 512);
930 if (ret)
931 return ret;
933 sectors = (blocks * blksz + 511) / 512;
934 if ((sectors * 512) == (blocks * blksz))
935 sectors++;
937 if ((sectors * 512) > BUFFER_SIZE)
938 return -EINVAL;
940 memset(test->buffer, 0, sectors * 512);
942 for (i = 0;i < sectors;i++) {
943 ret = mmc_test_buffer_transfer(test,
944 test->buffer + i * 512,
945 dev_addr + i, 512, 0);
946 if (ret)
947 return ret;
950 for (i = 0;i < blocks * blksz;i++) {
951 if (test->buffer[i] != (u8)i)
952 return RESULT_FAIL;
955 for (;i < sectors * 512;i++) {
956 if (test->buffer[i] != 0xDF)
957 return RESULT_FAIL;
959 } else {
960 local_irq_save(flags);
961 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
962 local_irq_restore(flags);
963 for (i = 0;i < blocks * blksz;i++) {
964 if (test->scratch[i] != (u8)i)
965 return RESULT_FAIL;
969 return 0;
972 /*******************************************************************/
973 /* Tests */
974 /*******************************************************************/
976 struct mmc_test_case {
977 const char *name;
979 int (*prepare)(struct mmc_test_card *);
980 int (*run)(struct mmc_test_card *);
981 int (*cleanup)(struct mmc_test_card *);
984 static int mmc_test_basic_write(struct mmc_test_card *test)
986 int ret;
987 struct scatterlist sg;
989 ret = mmc_test_set_blksize(test, 512);
990 if (ret)
991 return ret;
993 sg_init_one(&sg, test->buffer, 512);
995 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
996 if (ret)
997 return ret;
999 return 0;
1002 static int mmc_test_basic_read(struct mmc_test_card *test)
1004 int ret;
1005 struct scatterlist sg;
1007 ret = mmc_test_set_blksize(test, 512);
1008 if (ret)
1009 return ret;
1011 sg_init_one(&sg, test->buffer, 512);
1013 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1014 if (ret)
1015 return ret;
1017 return 0;
1020 static int mmc_test_verify_write(struct mmc_test_card *test)
1022 int ret;
1023 struct scatterlist sg;
1025 sg_init_one(&sg, test->buffer, 512);
1027 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1028 if (ret)
1029 return ret;
1031 return 0;
1034 static int mmc_test_verify_read(struct mmc_test_card *test)
1036 int ret;
1037 struct scatterlist sg;
1039 sg_init_one(&sg, test->buffer, 512);
1041 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1042 if (ret)
1043 return ret;
1045 return 0;
1048 static int mmc_test_multi_write(struct mmc_test_card *test)
1050 int ret;
1051 unsigned int size;
1052 struct scatterlist sg;
1054 if (test->card->host->max_blk_count == 1)
1055 return RESULT_UNSUP_HOST;
1057 size = PAGE_SIZE * 2;
1058 size = min(size, test->card->host->max_req_size);
1059 size = min(size, test->card->host->max_seg_size);
1060 size = min(size, test->card->host->max_blk_count * 512);
1062 if (size < 1024)
1063 return RESULT_UNSUP_HOST;
1065 sg_init_one(&sg, test->buffer, size);
1067 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1068 if (ret)
1069 return ret;
1071 return 0;
1074 static int mmc_test_multi_read(struct mmc_test_card *test)
1076 int ret;
1077 unsigned int size;
1078 struct scatterlist sg;
1080 if (test->card->host->max_blk_count == 1)
1081 return RESULT_UNSUP_HOST;
1083 size = PAGE_SIZE * 2;
1084 size = min(size, test->card->host->max_req_size);
1085 size = min(size, test->card->host->max_seg_size);
1086 size = min(size, test->card->host->max_blk_count * 512);
1088 if (size < 1024)
1089 return RESULT_UNSUP_HOST;
1091 sg_init_one(&sg, test->buffer, size);
1093 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1094 if (ret)
1095 return ret;
1097 return 0;
1100 static int mmc_test_pow2_write(struct mmc_test_card *test)
1102 int ret, i;
1103 struct scatterlist sg;
1105 if (!test->card->csd.write_partial)
1106 return RESULT_UNSUP_CARD;
1108 for (i = 1; i < 512;i <<= 1) {
1109 sg_init_one(&sg, test->buffer, i);
1110 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1111 if (ret)
1112 return ret;
1115 return 0;
1118 static int mmc_test_pow2_read(struct mmc_test_card *test)
1120 int ret, i;
1121 struct scatterlist sg;
1123 if (!test->card->csd.read_partial)
1124 return RESULT_UNSUP_CARD;
1126 for (i = 1; i < 512;i <<= 1) {
1127 sg_init_one(&sg, test->buffer, i);
1128 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1129 if (ret)
1130 return ret;
1133 return 0;
1136 static int mmc_test_weird_write(struct mmc_test_card *test)
1138 int ret, i;
1139 struct scatterlist sg;
1141 if (!test->card->csd.write_partial)
1142 return RESULT_UNSUP_CARD;
1144 for (i = 3; i < 512;i += 7) {
1145 sg_init_one(&sg, test->buffer, i);
1146 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1147 if (ret)
1148 return ret;
1151 return 0;
1154 static int mmc_test_weird_read(struct mmc_test_card *test)
1156 int ret, i;
1157 struct scatterlist sg;
1159 if (!test->card->csd.read_partial)
1160 return RESULT_UNSUP_CARD;
1162 for (i = 3; i < 512;i += 7) {
1163 sg_init_one(&sg, test->buffer, i);
1164 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1165 if (ret)
1166 return ret;
1169 return 0;
1172 static int mmc_test_align_write(struct mmc_test_card *test)
1174 int ret, i;
1175 struct scatterlist sg;
1177 for (i = 1;i < 4;i++) {
1178 sg_init_one(&sg, test->buffer + i, 512);
1179 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1180 if (ret)
1181 return ret;
1184 return 0;
1187 static int mmc_test_align_read(struct mmc_test_card *test)
1189 int ret, i;
1190 struct scatterlist sg;
1192 for (i = 1;i < 4;i++) {
1193 sg_init_one(&sg, test->buffer + i, 512);
1194 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1195 if (ret)
1196 return ret;
1199 return 0;
1202 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1204 int ret, i;
1205 unsigned int size;
1206 struct scatterlist sg;
1208 if (test->card->host->max_blk_count == 1)
1209 return RESULT_UNSUP_HOST;
1211 size = PAGE_SIZE * 2;
1212 size = min(size, test->card->host->max_req_size);
1213 size = min(size, test->card->host->max_seg_size);
1214 size = min(size, test->card->host->max_blk_count * 512);
1216 if (size < 1024)
1217 return RESULT_UNSUP_HOST;
1219 for (i = 1;i < 4;i++) {
1220 sg_init_one(&sg, test->buffer + i, size);
1221 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1222 if (ret)
1223 return ret;
1226 return 0;
1229 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1231 int ret, i;
1232 unsigned int size;
1233 struct scatterlist sg;
1235 if (test->card->host->max_blk_count == 1)
1236 return RESULT_UNSUP_HOST;
1238 size = PAGE_SIZE * 2;
1239 size = min(size, test->card->host->max_req_size);
1240 size = min(size, test->card->host->max_seg_size);
1241 size = min(size, test->card->host->max_blk_count * 512);
1243 if (size < 1024)
1244 return RESULT_UNSUP_HOST;
1246 for (i = 1;i < 4;i++) {
1247 sg_init_one(&sg, test->buffer + i, size);
1248 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1249 if (ret)
1250 return ret;
1253 return 0;
1256 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1258 int ret;
1260 ret = mmc_test_set_blksize(test, 512);
1261 if (ret)
1262 return ret;
1264 ret = mmc_test_broken_transfer(test, 1, 512, 1);
1265 if (ret)
1266 return ret;
1268 return 0;
1271 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1273 int ret;
1275 ret = mmc_test_set_blksize(test, 512);
1276 if (ret)
1277 return ret;
1279 ret = mmc_test_broken_transfer(test, 1, 512, 0);
1280 if (ret)
1281 return ret;
1283 return 0;
1286 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1288 int ret;
1290 if (test->card->host->max_blk_count == 1)
1291 return RESULT_UNSUP_HOST;
1293 ret = mmc_test_set_blksize(test, 512);
1294 if (ret)
1295 return ret;
1297 ret = mmc_test_broken_transfer(test, 2, 512, 1);
1298 if (ret)
1299 return ret;
1301 return 0;
1304 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1306 int ret;
1308 if (test->card->host->max_blk_count == 1)
1309 return RESULT_UNSUP_HOST;
1311 ret = mmc_test_set_blksize(test, 512);
1312 if (ret)
1313 return ret;
1315 ret = mmc_test_broken_transfer(test, 2, 512, 0);
1316 if (ret)
1317 return ret;
1319 return 0;
1322 #ifdef CONFIG_HIGHMEM
1324 static int mmc_test_write_high(struct mmc_test_card *test)
1326 int ret;
1327 struct scatterlist sg;
1329 sg_init_table(&sg, 1);
1330 sg_set_page(&sg, test->highmem, 512, 0);
1332 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333 if (ret)
1334 return ret;
1336 return 0;
1339 static int mmc_test_read_high(struct mmc_test_card *test)
1341 int ret;
1342 struct scatterlist sg;
1344 sg_init_table(&sg, 1);
1345 sg_set_page(&sg, test->highmem, 512, 0);
1347 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1348 if (ret)
1349 return ret;
1351 return 0;
1354 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1356 int ret;
1357 unsigned int size;
1358 struct scatterlist sg;
1360 if (test->card->host->max_blk_count == 1)
1361 return RESULT_UNSUP_HOST;
1363 size = PAGE_SIZE * 2;
1364 size = min(size, test->card->host->max_req_size);
1365 size = min(size, test->card->host->max_seg_size);
1366 size = min(size, test->card->host->max_blk_count * 512);
1368 if (size < 1024)
1369 return RESULT_UNSUP_HOST;
1371 sg_init_table(&sg, 1);
1372 sg_set_page(&sg, test->highmem, size, 0);
1374 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1375 if (ret)
1376 return ret;
1378 return 0;
1381 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1383 int ret;
1384 unsigned int size;
1385 struct scatterlist sg;
1387 if (test->card->host->max_blk_count == 1)
1388 return RESULT_UNSUP_HOST;
1390 size = PAGE_SIZE * 2;
1391 size = min(size, test->card->host->max_req_size);
1392 size = min(size, test->card->host->max_seg_size);
1393 size = min(size, test->card->host->max_blk_count * 512);
1395 if (size < 1024)
1396 return RESULT_UNSUP_HOST;
1398 sg_init_table(&sg, 1);
1399 sg_set_page(&sg, test->highmem, size, 0);
1401 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1402 if (ret)
1403 return ret;
1405 return 0;
1408 #else
1410 static int mmc_test_no_highmem(struct mmc_test_card *test)
1412 pr_info("%s: Highmem not configured - test skipped\n",
1413 mmc_hostname(test->card->host));
1414 return 0;
1417 #endif /* CONFIG_HIGHMEM */
1420 * Map sz bytes so that it can be transferred.
1422 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1423 int max_scatter, int min_sg_len)
1425 struct mmc_test_area *t = &test->area;
1426 int err;
1428 t->blocks = sz >> 9;
1430 if (max_scatter) {
1431 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1432 t->max_segs, t->max_seg_sz,
1433 &t->sg_len);
1434 } else {
1435 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1436 t->max_seg_sz, &t->sg_len, min_sg_len);
1438 if (err)
1439 pr_info("%s: Failed to map sg list\n",
1440 mmc_hostname(test->card->host));
1441 return err;
1445 * Transfer bytes mapped by mmc_test_area_map().
1447 static int mmc_test_area_transfer(struct mmc_test_card *test,
1448 unsigned int dev_addr, int write)
1450 struct mmc_test_area *t = &test->area;
1452 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1453 t->blocks, 512, write);
1457 * Map and transfer bytes for multiple transfers.
1459 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1460 unsigned int dev_addr, int write,
1461 int max_scatter, int timed, int count,
1462 bool nonblock, int min_sg_len)
1464 struct timespec ts1, ts2;
1465 int ret = 0;
1466 int i;
1467 struct mmc_test_area *t = &test->area;
1470 * In the case of a maximally scattered transfer, the maximum transfer
1471 * size is further limited by using PAGE_SIZE segments.
1473 if (max_scatter) {
1474 struct mmc_test_area *t = &test->area;
1475 unsigned long max_tfr;
1477 if (t->max_seg_sz >= PAGE_SIZE)
1478 max_tfr = t->max_segs * PAGE_SIZE;
1479 else
1480 max_tfr = t->max_segs * t->max_seg_sz;
1481 if (sz > max_tfr)
1482 sz = max_tfr;
1485 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1486 if (ret)
1487 return ret;
1489 if (timed)
1490 getnstimeofday(&ts1);
1491 if (nonblock)
1492 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1493 dev_addr, t->blocks, 512, write, count);
1494 else
1495 for (i = 0; i < count && ret == 0; i++) {
1496 ret = mmc_test_area_transfer(test, dev_addr, write);
1497 dev_addr += sz >> 9;
1500 if (ret)
1501 return ret;
1503 if (timed)
1504 getnstimeofday(&ts2);
1506 if (timed)
1507 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1509 return 0;
1512 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1513 unsigned int dev_addr, int write, int max_scatter,
1514 int timed)
1516 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1517 timed, 1, false, 0);
1521 * Write the test area entirely.
1523 static int mmc_test_area_fill(struct mmc_test_card *test)
1525 struct mmc_test_area *t = &test->area;
1527 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1531 * Erase the test area entirely.
1533 static int mmc_test_area_erase(struct mmc_test_card *test)
1535 struct mmc_test_area *t = &test->area;
1537 if (!mmc_can_erase(test->card))
1538 return 0;
1540 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1541 MMC_ERASE_ARG);
1545 * Cleanup struct mmc_test_area.
1547 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1549 struct mmc_test_area *t = &test->area;
1551 kfree(t->sg);
1552 mmc_test_free_mem(t->mem);
1554 return 0;
1558 * Initialize an area for testing large transfers. The test area is set to the
1559 * middle of the card because cards may have different charateristics at the
1560 * front (for FAT file system optimization). Optionally, the area is erased
1561 * (if the card supports it) which may improve write performance. Optionally,
1562 * the area is filled with data for subsequent read tests.
1564 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1566 struct mmc_test_area *t = &test->area;
1567 unsigned long min_sz = 64 * 1024, sz;
1568 int ret;
1570 ret = mmc_test_set_blksize(test, 512);
1571 if (ret)
1572 return ret;
1574 /* Make the test area size about 4MiB */
1575 sz = (unsigned long)test->card->pref_erase << 9;
1576 t->max_sz = sz;
1577 while (t->max_sz < 4 * 1024 * 1024)
1578 t->max_sz += sz;
1579 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1580 t->max_sz -= sz;
1582 t->max_segs = test->card->host->max_segs;
1583 t->max_seg_sz = test->card->host->max_seg_size;
1585 t->max_tfr = t->max_sz;
1586 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1587 t->max_tfr = test->card->host->max_blk_count << 9;
1588 if (t->max_tfr > test->card->host->max_req_size)
1589 t->max_tfr = test->card->host->max_req_size;
1590 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1591 t->max_tfr = t->max_segs * t->max_seg_sz;
1594 * Try to allocate enough memory for a max. sized transfer. Less is OK
1595 * because the same memory can be mapped into the scatterlist more than
1596 * once. Also, take into account the limits imposed on scatterlist
1597 * segments by the host driver.
1599 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1600 t->max_seg_sz);
1601 if (!t->mem)
1602 return -ENOMEM;
1604 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1605 if (!t->sg) {
1606 ret = -ENOMEM;
1607 goto out_free;
1610 t->dev_addr = mmc_test_capacity(test->card) / 2;
1611 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1613 if (erase) {
1614 ret = mmc_test_area_erase(test);
1615 if (ret)
1616 goto out_free;
1619 if (fill) {
1620 ret = mmc_test_area_fill(test);
1621 if (ret)
1622 goto out_free;
1625 return 0;
1627 out_free:
1628 mmc_test_area_cleanup(test);
1629 return ret;
1633 * Prepare for large transfers. Do not erase the test area.
1635 static int mmc_test_area_prepare(struct mmc_test_card *test)
1637 return mmc_test_area_init(test, 0, 0);
1641 * Prepare for large transfers. Do erase the test area.
1643 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1645 return mmc_test_area_init(test, 1, 0);
1649 * Prepare for large transfers. Erase and fill the test area.
1651 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1653 return mmc_test_area_init(test, 1, 1);
1657 * Test best-case performance. Best-case performance is expected from
1658 * a single large transfer.
1660 * An additional option (max_scatter) allows the measurement of the same
1661 * transfer but with no contiguous pages in the scatter list. This tests
1662 * the efficiency of DMA to handle scattered pages.
1664 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1665 int max_scatter)
1667 struct mmc_test_area *t = &test->area;
1669 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1670 max_scatter, 1);
1674 * Best-case read performance.
1676 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1678 return mmc_test_best_performance(test, 0, 0);
1682 * Best-case write performance.
1684 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1686 return mmc_test_best_performance(test, 1, 0);
1690 * Best-case read performance into scattered pages.
1692 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1694 return mmc_test_best_performance(test, 0, 1);
1698 * Best-case write performance from scattered pages.
1700 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1702 return mmc_test_best_performance(test, 1, 1);
1706 * Single read performance by transfer size.
1708 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1710 struct mmc_test_area *t = &test->area;
1711 unsigned long sz;
1712 unsigned int dev_addr;
1713 int ret;
1715 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1716 dev_addr = t->dev_addr + (sz >> 9);
1717 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1718 if (ret)
1719 return ret;
1721 sz = t->max_tfr;
1722 dev_addr = t->dev_addr;
1723 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1727 * Single write performance by transfer size.
1729 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1731 struct mmc_test_area *t = &test->area;
1732 unsigned long sz;
1733 unsigned int dev_addr;
1734 int ret;
1736 ret = mmc_test_area_erase(test);
1737 if (ret)
1738 return ret;
1739 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1740 dev_addr = t->dev_addr + (sz >> 9);
1741 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1742 if (ret)
1743 return ret;
1745 ret = mmc_test_area_erase(test);
1746 if (ret)
1747 return ret;
1748 sz = t->max_tfr;
1749 dev_addr = t->dev_addr;
1750 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1754 * Single trim performance by transfer size.
1756 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1758 struct mmc_test_area *t = &test->area;
1759 unsigned long sz;
1760 unsigned int dev_addr;
1761 struct timespec ts1, ts2;
1762 int ret;
1764 if (!mmc_can_trim(test->card))
1765 return RESULT_UNSUP_CARD;
1767 if (!mmc_can_erase(test->card))
1768 return RESULT_UNSUP_HOST;
1770 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1771 dev_addr = t->dev_addr + (sz >> 9);
1772 getnstimeofday(&ts1);
1773 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1774 if (ret)
1775 return ret;
1776 getnstimeofday(&ts2);
1777 mmc_test_print_rate(test, sz, &ts1, &ts2);
1779 dev_addr = t->dev_addr;
1780 getnstimeofday(&ts1);
1781 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1782 if (ret)
1783 return ret;
1784 getnstimeofday(&ts2);
1785 mmc_test_print_rate(test, sz, &ts1, &ts2);
1786 return 0;
1789 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1791 struct mmc_test_area *t = &test->area;
1792 unsigned int dev_addr, i, cnt;
1793 struct timespec ts1, ts2;
1794 int ret;
1796 cnt = t->max_sz / sz;
1797 dev_addr = t->dev_addr;
1798 getnstimeofday(&ts1);
1799 for (i = 0; i < cnt; i++) {
1800 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1801 if (ret)
1802 return ret;
1803 dev_addr += (sz >> 9);
1805 getnstimeofday(&ts2);
1806 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1807 return 0;
1811 * Consecutive read performance by transfer size.
1813 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1815 struct mmc_test_area *t = &test->area;
1816 unsigned long sz;
1817 int ret;
1819 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1820 ret = mmc_test_seq_read_perf(test, sz);
1821 if (ret)
1822 return ret;
1824 sz = t->max_tfr;
1825 return mmc_test_seq_read_perf(test, sz);
1828 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1830 struct mmc_test_area *t = &test->area;
1831 unsigned int dev_addr, i, cnt;
1832 struct timespec ts1, ts2;
1833 int ret;
1835 ret = mmc_test_area_erase(test);
1836 if (ret)
1837 return ret;
1838 cnt = t->max_sz / sz;
1839 dev_addr = t->dev_addr;
1840 getnstimeofday(&ts1);
1841 for (i = 0; i < cnt; i++) {
1842 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1843 if (ret)
1844 return ret;
1845 dev_addr += (sz >> 9);
1847 getnstimeofday(&ts2);
1848 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1849 return 0;
1853 * Consecutive write performance by transfer size.
1855 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1857 struct mmc_test_area *t = &test->area;
1858 unsigned long sz;
1859 int ret;
1861 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1862 ret = mmc_test_seq_write_perf(test, sz);
1863 if (ret)
1864 return ret;
1866 sz = t->max_tfr;
1867 return mmc_test_seq_write_perf(test, sz);
1871 * Consecutive trim performance by transfer size.
1873 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1875 struct mmc_test_area *t = &test->area;
1876 unsigned long sz;
1877 unsigned int dev_addr, i, cnt;
1878 struct timespec ts1, ts2;
1879 int ret;
1881 if (!mmc_can_trim(test->card))
1882 return RESULT_UNSUP_CARD;
1884 if (!mmc_can_erase(test->card))
1885 return RESULT_UNSUP_HOST;
1887 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1888 ret = mmc_test_area_erase(test);
1889 if (ret)
1890 return ret;
1891 ret = mmc_test_area_fill(test);
1892 if (ret)
1893 return ret;
1894 cnt = t->max_sz / sz;
1895 dev_addr = t->dev_addr;
1896 getnstimeofday(&ts1);
1897 for (i = 0; i < cnt; i++) {
1898 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1899 MMC_TRIM_ARG);
1900 if (ret)
1901 return ret;
1902 dev_addr += (sz >> 9);
1904 getnstimeofday(&ts2);
1905 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1907 return 0;
1910 static unsigned int rnd_next = 1;
1912 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1914 uint64_t r;
1916 rnd_next = rnd_next * 1103515245 + 12345;
1917 r = (rnd_next >> 16) & 0x7fff;
1918 return (r * rnd_cnt) >> 15;
1921 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1922 unsigned long sz)
1924 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1925 unsigned int ssz;
1926 struct timespec ts1, ts2, ts;
1927 int ret;
1929 ssz = sz >> 9;
1931 rnd_addr = mmc_test_capacity(test->card) / 4;
1932 range1 = rnd_addr / test->card->pref_erase;
1933 range2 = range1 / ssz;
1935 getnstimeofday(&ts1);
1936 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1937 getnstimeofday(&ts2);
1938 ts = timespec_sub(ts2, ts1);
1939 if (ts.tv_sec >= 10)
1940 break;
1941 ea = mmc_test_rnd_num(range1);
1942 if (ea == last_ea)
1943 ea -= 1;
1944 last_ea = ea;
1945 dev_addr = rnd_addr + test->card->pref_erase * ea +
1946 ssz * mmc_test_rnd_num(range2);
1947 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1948 if (ret)
1949 return ret;
1951 if (print)
1952 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1953 return 0;
1956 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1958 struct mmc_test_area *t = &test->area;
1959 unsigned int next;
1960 unsigned long sz;
1961 int ret;
1963 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1965 * When writing, try to get more consistent results by running
1966 * the test twice with exactly the same I/O but outputting the
1967 * results only for the 2nd run.
1969 if (write) {
1970 next = rnd_next;
1971 ret = mmc_test_rnd_perf(test, write, 0, sz);
1972 if (ret)
1973 return ret;
1974 rnd_next = next;
1976 ret = mmc_test_rnd_perf(test, write, 1, sz);
1977 if (ret)
1978 return ret;
1980 sz = t->max_tfr;
1981 if (write) {
1982 next = rnd_next;
1983 ret = mmc_test_rnd_perf(test, write, 0, sz);
1984 if (ret)
1985 return ret;
1986 rnd_next = next;
1988 return mmc_test_rnd_perf(test, write, 1, sz);
1992 * Random read performance by transfer size.
1994 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1996 return mmc_test_random_perf(test, 0);
2000 * Random write performance by transfer size.
2002 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2004 return mmc_test_random_perf(test, 1);
2007 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2008 unsigned int tot_sz, int max_scatter)
2010 struct mmc_test_area *t = &test->area;
2011 unsigned int dev_addr, i, cnt, sz, ssz;
2012 struct timespec ts1, ts2;
2013 int ret;
2015 sz = t->max_tfr;
2018 * In the case of a maximally scattered transfer, the maximum transfer
2019 * size is further limited by using PAGE_SIZE segments.
2021 if (max_scatter) {
2022 unsigned long max_tfr;
2024 if (t->max_seg_sz >= PAGE_SIZE)
2025 max_tfr = t->max_segs * PAGE_SIZE;
2026 else
2027 max_tfr = t->max_segs * t->max_seg_sz;
2028 if (sz > max_tfr)
2029 sz = max_tfr;
2032 ssz = sz >> 9;
2033 dev_addr = mmc_test_capacity(test->card) / 4;
2034 if (tot_sz > dev_addr << 9)
2035 tot_sz = dev_addr << 9;
2036 cnt = tot_sz / sz;
2037 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2039 getnstimeofday(&ts1);
2040 for (i = 0; i < cnt; i++) {
2041 ret = mmc_test_area_io(test, sz, dev_addr, write,
2042 max_scatter, 0);
2043 if (ret)
2044 return ret;
2045 dev_addr += ssz;
2047 getnstimeofday(&ts2);
2049 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2051 return 0;
2054 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2056 int ret, i;
2058 for (i = 0; i < 10; i++) {
2059 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2060 if (ret)
2061 return ret;
2063 for (i = 0; i < 5; i++) {
2064 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2065 if (ret)
2066 return ret;
2068 for (i = 0; i < 3; i++) {
2069 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2070 if (ret)
2071 return ret;
2074 return ret;
2078 * Large sequential read performance.
2080 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2082 return mmc_test_large_seq_perf(test, 0);
2086 * Large sequential write performance.
2088 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2090 return mmc_test_large_seq_perf(test, 1);
2093 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2094 struct mmc_test_multiple_rw *tdata,
2095 unsigned int reqsize, unsigned int size,
2096 int min_sg_len)
2098 unsigned int dev_addr;
2099 struct mmc_test_area *t = &test->area;
2100 int ret = 0;
2102 /* Set up test area */
2103 if (size > mmc_test_capacity(test->card) / 2 * 512)
2104 size = mmc_test_capacity(test->card) / 2 * 512;
2105 if (reqsize > t->max_tfr)
2106 reqsize = t->max_tfr;
2107 dev_addr = mmc_test_capacity(test->card) / 4;
2108 if ((dev_addr & 0xffff0000))
2109 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2110 else
2111 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2112 if (!dev_addr)
2113 goto err;
2115 if (reqsize > size)
2116 return 0;
2118 /* prepare test area */
2119 if (mmc_can_erase(test->card) &&
2120 tdata->prepare & MMC_TEST_PREP_ERASE) {
2121 ret = mmc_erase(test->card, dev_addr,
2122 size / 512, MMC_SECURE_ERASE_ARG);
2123 if (ret)
2124 ret = mmc_erase(test->card, dev_addr,
2125 size / 512, MMC_ERASE_ARG);
2126 if (ret)
2127 goto err;
2130 /* Run test */
2131 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2132 tdata->do_write, 0, 1, size / reqsize,
2133 tdata->do_nonblock_req, min_sg_len);
2134 if (ret)
2135 goto err;
2137 return ret;
2138 err:
2139 pr_info("[%s] error\n", __func__);
2140 return ret;
2143 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2144 struct mmc_test_multiple_rw *rw)
2146 int ret = 0;
2147 int i;
2148 void *pre_req = test->card->host->ops->pre_req;
2149 void *post_req = test->card->host->ops->post_req;
2151 if (rw->do_nonblock_req &&
2152 ((!pre_req && post_req) || (pre_req && !post_req))) {
2153 pr_info("error: only one of pre/post is defined\n");
2154 return -EINVAL;
2157 for (i = 0 ; i < rw->len && ret == 0; i++) {
2158 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2159 if (ret)
2160 break;
2162 return ret;
2165 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2166 struct mmc_test_multiple_rw *rw)
2168 int ret = 0;
2169 int i;
2171 for (i = 0 ; i < rw->len && ret == 0; i++) {
2172 ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2173 rw->sg_len[i]);
2174 if (ret)
2175 break;
2177 return ret;
2181 * Multiple blocking write 4k to 4 MB chunks
2183 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2185 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2186 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2187 struct mmc_test_multiple_rw test_data = {
2188 .bs = bs,
2189 .size = TEST_AREA_MAX_SIZE,
2190 .len = ARRAY_SIZE(bs),
2191 .do_write = true,
2192 .do_nonblock_req = false,
2193 .prepare = MMC_TEST_PREP_ERASE,
2196 return mmc_test_rw_multiple_size(test, &test_data);
2200 * Multiple non-blocking write 4k to 4 MB chunks
2202 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2204 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2205 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2206 struct mmc_test_multiple_rw test_data = {
2207 .bs = bs,
2208 .size = TEST_AREA_MAX_SIZE,
2209 .len = ARRAY_SIZE(bs),
2210 .do_write = true,
2211 .do_nonblock_req = true,
2212 .prepare = MMC_TEST_PREP_ERASE,
2215 return mmc_test_rw_multiple_size(test, &test_data);
2219 * Multiple blocking read 4k to 4 MB chunks
2221 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2223 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2224 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2225 struct mmc_test_multiple_rw test_data = {
2226 .bs = bs,
2227 .size = TEST_AREA_MAX_SIZE,
2228 .len = ARRAY_SIZE(bs),
2229 .do_write = false,
2230 .do_nonblock_req = false,
2231 .prepare = MMC_TEST_PREP_NONE,
2234 return mmc_test_rw_multiple_size(test, &test_data);
2238 * Multiple non-blocking read 4k to 4 MB chunks
2240 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2242 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2243 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2244 struct mmc_test_multiple_rw test_data = {
2245 .bs = bs,
2246 .size = TEST_AREA_MAX_SIZE,
2247 .len = ARRAY_SIZE(bs),
2248 .do_write = false,
2249 .do_nonblock_req = true,
2250 .prepare = MMC_TEST_PREP_NONE,
2253 return mmc_test_rw_multiple_size(test, &test_data);
2257 * Multiple blocking write 1 to 512 sg elements
2259 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2261 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2262 1 << 7, 1 << 8, 1 << 9};
2263 struct mmc_test_multiple_rw test_data = {
2264 .sg_len = sg_len,
2265 .size = TEST_AREA_MAX_SIZE,
2266 .len = ARRAY_SIZE(sg_len),
2267 .do_write = true,
2268 .do_nonblock_req = false,
2269 .prepare = MMC_TEST_PREP_ERASE,
2272 return mmc_test_rw_multiple_sg_len(test, &test_data);
2276 * Multiple non-blocking write 1 to 512 sg elements
2278 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2280 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2281 1 << 7, 1 << 8, 1 << 9};
2282 struct mmc_test_multiple_rw test_data = {
2283 .sg_len = sg_len,
2284 .size = TEST_AREA_MAX_SIZE,
2285 .len = ARRAY_SIZE(sg_len),
2286 .do_write = true,
2287 .do_nonblock_req = true,
2288 .prepare = MMC_TEST_PREP_ERASE,
2291 return mmc_test_rw_multiple_sg_len(test, &test_data);
2295 * Multiple blocking read 1 to 512 sg elements
2297 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2299 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2300 1 << 7, 1 << 8, 1 << 9};
2301 struct mmc_test_multiple_rw test_data = {
2302 .sg_len = sg_len,
2303 .size = TEST_AREA_MAX_SIZE,
2304 .len = ARRAY_SIZE(sg_len),
2305 .do_write = false,
2306 .do_nonblock_req = false,
2307 .prepare = MMC_TEST_PREP_NONE,
2310 return mmc_test_rw_multiple_sg_len(test, &test_data);
2314 * Multiple non-blocking read 1 to 512 sg elements
2316 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2318 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2319 1 << 7, 1 << 8, 1 << 9};
2320 struct mmc_test_multiple_rw test_data = {
2321 .sg_len = sg_len,
2322 .size = TEST_AREA_MAX_SIZE,
2323 .len = ARRAY_SIZE(sg_len),
2324 .do_write = false,
2325 .do_nonblock_req = true,
2326 .prepare = MMC_TEST_PREP_NONE,
2329 return mmc_test_rw_multiple_sg_len(test, &test_data);
2333 * eMMC hardware reset.
2335 static int mmc_test_hw_reset(struct mmc_test_card *test)
2337 struct mmc_card *card = test->card;
2338 struct mmc_host *host = card->host;
2339 int err;
2341 err = mmc_hw_reset_check(host);
2342 if (!err)
2343 return RESULT_OK;
2345 if (err == -ENOSYS)
2346 return RESULT_FAIL;
2348 if (err != -EOPNOTSUPP)
2349 return err;
2351 if (!mmc_can_reset(card))
2352 return RESULT_UNSUP_CARD;
2354 return RESULT_UNSUP_HOST;
2357 static const struct mmc_test_case mmc_test_cases[] = {
2359 .name = "Basic write (no data verification)",
2360 .run = mmc_test_basic_write,
2364 .name = "Basic read (no data verification)",
2365 .run = mmc_test_basic_read,
2369 .name = "Basic write (with data verification)",
2370 .prepare = mmc_test_prepare_write,
2371 .run = mmc_test_verify_write,
2372 .cleanup = mmc_test_cleanup,
2376 .name = "Basic read (with data verification)",
2377 .prepare = mmc_test_prepare_read,
2378 .run = mmc_test_verify_read,
2379 .cleanup = mmc_test_cleanup,
2383 .name = "Multi-block write",
2384 .prepare = mmc_test_prepare_write,
2385 .run = mmc_test_multi_write,
2386 .cleanup = mmc_test_cleanup,
2390 .name = "Multi-block read",
2391 .prepare = mmc_test_prepare_read,
2392 .run = mmc_test_multi_read,
2393 .cleanup = mmc_test_cleanup,
2397 .name = "Power of two block writes",
2398 .prepare = mmc_test_prepare_write,
2399 .run = mmc_test_pow2_write,
2400 .cleanup = mmc_test_cleanup,
2404 .name = "Power of two block reads",
2405 .prepare = mmc_test_prepare_read,
2406 .run = mmc_test_pow2_read,
2407 .cleanup = mmc_test_cleanup,
2411 .name = "Weird sized block writes",
2412 .prepare = mmc_test_prepare_write,
2413 .run = mmc_test_weird_write,
2414 .cleanup = mmc_test_cleanup,
2418 .name = "Weird sized block reads",
2419 .prepare = mmc_test_prepare_read,
2420 .run = mmc_test_weird_read,
2421 .cleanup = mmc_test_cleanup,
2425 .name = "Badly aligned write",
2426 .prepare = mmc_test_prepare_write,
2427 .run = mmc_test_align_write,
2428 .cleanup = mmc_test_cleanup,
2432 .name = "Badly aligned read",
2433 .prepare = mmc_test_prepare_read,
2434 .run = mmc_test_align_read,
2435 .cleanup = mmc_test_cleanup,
2439 .name = "Badly aligned multi-block write",
2440 .prepare = mmc_test_prepare_write,
2441 .run = mmc_test_align_multi_write,
2442 .cleanup = mmc_test_cleanup,
2446 .name = "Badly aligned multi-block read",
2447 .prepare = mmc_test_prepare_read,
2448 .run = mmc_test_align_multi_read,
2449 .cleanup = mmc_test_cleanup,
2453 .name = "Correct xfer_size at write (start failure)",
2454 .run = mmc_test_xfersize_write,
2458 .name = "Correct xfer_size at read (start failure)",
2459 .run = mmc_test_xfersize_read,
2463 .name = "Correct xfer_size at write (midway failure)",
2464 .run = mmc_test_multi_xfersize_write,
2468 .name = "Correct xfer_size at read (midway failure)",
2469 .run = mmc_test_multi_xfersize_read,
2472 #ifdef CONFIG_HIGHMEM
2475 .name = "Highmem write",
2476 .prepare = mmc_test_prepare_write,
2477 .run = mmc_test_write_high,
2478 .cleanup = mmc_test_cleanup,
2482 .name = "Highmem read",
2483 .prepare = mmc_test_prepare_read,
2484 .run = mmc_test_read_high,
2485 .cleanup = mmc_test_cleanup,
2489 .name = "Multi-block highmem write",
2490 .prepare = mmc_test_prepare_write,
2491 .run = mmc_test_multi_write_high,
2492 .cleanup = mmc_test_cleanup,
2496 .name = "Multi-block highmem read",
2497 .prepare = mmc_test_prepare_read,
2498 .run = mmc_test_multi_read_high,
2499 .cleanup = mmc_test_cleanup,
2502 #else
2505 .name = "Highmem write",
2506 .run = mmc_test_no_highmem,
2510 .name = "Highmem read",
2511 .run = mmc_test_no_highmem,
2515 .name = "Multi-block highmem write",
2516 .run = mmc_test_no_highmem,
2520 .name = "Multi-block highmem read",
2521 .run = mmc_test_no_highmem,
2524 #endif /* CONFIG_HIGHMEM */
2527 .name = "Best-case read performance",
2528 .prepare = mmc_test_area_prepare_fill,
2529 .run = mmc_test_best_read_performance,
2530 .cleanup = mmc_test_area_cleanup,
2534 .name = "Best-case write performance",
2535 .prepare = mmc_test_area_prepare_erase,
2536 .run = mmc_test_best_write_performance,
2537 .cleanup = mmc_test_area_cleanup,
2541 .name = "Best-case read performance into scattered pages",
2542 .prepare = mmc_test_area_prepare_fill,
2543 .run = mmc_test_best_read_perf_max_scatter,
2544 .cleanup = mmc_test_area_cleanup,
2548 .name = "Best-case write performance from scattered pages",
2549 .prepare = mmc_test_area_prepare_erase,
2550 .run = mmc_test_best_write_perf_max_scatter,
2551 .cleanup = mmc_test_area_cleanup,
2555 .name = "Single read performance by transfer size",
2556 .prepare = mmc_test_area_prepare_fill,
2557 .run = mmc_test_profile_read_perf,
2558 .cleanup = mmc_test_area_cleanup,
2562 .name = "Single write performance by transfer size",
2563 .prepare = mmc_test_area_prepare,
2564 .run = mmc_test_profile_write_perf,
2565 .cleanup = mmc_test_area_cleanup,
2569 .name = "Single trim performance by transfer size",
2570 .prepare = mmc_test_area_prepare_fill,
2571 .run = mmc_test_profile_trim_perf,
2572 .cleanup = mmc_test_area_cleanup,
2576 .name = "Consecutive read performance by transfer size",
2577 .prepare = mmc_test_area_prepare_fill,
2578 .run = mmc_test_profile_seq_read_perf,
2579 .cleanup = mmc_test_area_cleanup,
2583 .name = "Consecutive write performance by transfer size",
2584 .prepare = mmc_test_area_prepare,
2585 .run = mmc_test_profile_seq_write_perf,
2586 .cleanup = mmc_test_area_cleanup,
2590 .name = "Consecutive trim performance by transfer size",
2591 .prepare = mmc_test_area_prepare,
2592 .run = mmc_test_profile_seq_trim_perf,
2593 .cleanup = mmc_test_area_cleanup,
2597 .name = "Random read performance by transfer size",
2598 .prepare = mmc_test_area_prepare,
2599 .run = mmc_test_random_read_perf,
2600 .cleanup = mmc_test_area_cleanup,
2604 .name = "Random write performance by transfer size",
2605 .prepare = mmc_test_area_prepare,
2606 .run = mmc_test_random_write_perf,
2607 .cleanup = mmc_test_area_cleanup,
2611 .name = "Large sequential read into scattered pages",
2612 .prepare = mmc_test_area_prepare,
2613 .run = mmc_test_large_seq_read_perf,
2614 .cleanup = mmc_test_area_cleanup,
2618 .name = "Large sequential write from scattered pages",
2619 .prepare = mmc_test_area_prepare,
2620 .run = mmc_test_large_seq_write_perf,
2621 .cleanup = mmc_test_area_cleanup,
2625 .name = "Write performance with blocking req 4k to 4MB",
2626 .prepare = mmc_test_area_prepare,
2627 .run = mmc_test_profile_mult_write_blocking_perf,
2628 .cleanup = mmc_test_area_cleanup,
2632 .name = "Write performance with non-blocking req 4k to 4MB",
2633 .prepare = mmc_test_area_prepare,
2634 .run = mmc_test_profile_mult_write_nonblock_perf,
2635 .cleanup = mmc_test_area_cleanup,
2639 .name = "Read performance with blocking req 4k to 4MB",
2640 .prepare = mmc_test_area_prepare,
2641 .run = mmc_test_profile_mult_read_blocking_perf,
2642 .cleanup = mmc_test_area_cleanup,
2646 .name = "Read performance with non-blocking req 4k to 4MB",
2647 .prepare = mmc_test_area_prepare,
2648 .run = mmc_test_profile_mult_read_nonblock_perf,
2649 .cleanup = mmc_test_area_cleanup,
2653 .name = "Write performance blocking req 1 to 512 sg elems",
2654 .prepare = mmc_test_area_prepare,
2655 .run = mmc_test_profile_sglen_wr_blocking_perf,
2656 .cleanup = mmc_test_area_cleanup,
2660 .name = "Write performance non-blocking req 1 to 512 sg elems",
2661 .prepare = mmc_test_area_prepare,
2662 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2663 .cleanup = mmc_test_area_cleanup,
2667 .name = "Read performance blocking req 1 to 512 sg elems",
2668 .prepare = mmc_test_area_prepare,
2669 .run = mmc_test_profile_sglen_r_blocking_perf,
2670 .cleanup = mmc_test_area_cleanup,
2674 .name = "Read performance non-blocking req 1 to 512 sg elems",
2675 .prepare = mmc_test_area_prepare,
2676 .run = mmc_test_profile_sglen_r_nonblock_perf,
2677 .cleanup = mmc_test_area_cleanup,
2681 .name = "eMMC hardware reset",
2682 .run = mmc_test_hw_reset,
2686 static DEFINE_MUTEX(mmc_test_lock);
2688 static LIST_HEAD(mmc_test_result);
2690 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2692 int i, ret;
2694 pr_info("%s: Starting tests of card %s...\n",
2695 mmc_hostname(test->card->host), mmc_card_id(test->card));
2697 mmc_claim_host(test->card->host);
2699 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2700 struct mmc_test_general_result *gr;
2702 if (testcase && ((i + 1) != testcase))
2703 continue;
2705 pr_info("%s: Test case %d. %s...\n",
2706 mmc_hostname(test->card->host), i + 1,
2707 mmc_test_cases[i].name);
2709 if (mmc_test_cases[i].prepare) {
2710 ret = mmc_test_cases[i].prepare(test);
2711 if (ret) {
2712 pr_info("%s: Result: Prepare "
2713 "stage failed! (%d)\n",
2714 mmc_hostname(test->card->host),
2715 ret);
2716 continue;
2720 gr = kzalloc(sizeof(struct mmc_test_general_result),
2721 GFP_KERNEL);
2722 if (gr) {
2723 INIT_LIST_HEAD(&gr->tr_lst);
2725 /* Assign data what we know already */
2726 gr->card = test->card;
2727 gr->testcase = i;
2729 /* Append container to global one */
2730 list_add_tail(&gr->link, &mmc_test_result);
2733 * Save the pointer to created container in our private
2734 * structure.
2736 test->gr = gr;
2739 ret = mmc_test_cases[i].run(test);
2740 switch (ret) {
2741 case RESULT_OK:
2742 pr_info("%s: Result: OK\n",
2743 mmc_hostname(test->card->host));
2744 break;
2745 case RESULT_FAIL:
2746 pr_info("%s: Result: FAILED\n",
2747 mmc_hostname(test->card->host));
2748 break;
2749 case RESULT_UNSUP_HOST:
2750 pr_info("%s: Result: UNSUPPORTED "
2751 "(by host)\n",
2752 mmc_hostname(test->card->host));
2753 break;
2754 case RESULT_UNSUP_CARD:
2755 pr_info("%s: Result: UNSUPPORTED "
2756 "(by card)\n",
2757 mmc_hostname(test->card->host));
2758 break;
2759 default:
2760 pr_info("%s: Result: ERROR (%d)\n",
2761 mmc_hostname(test->card->host), ret);
2764 /* Save the result */
2765 if (gr)
2766 gr->result = ret;
2768 if (mmc_test_cases[i].cleanup) {
2769 ret = mmc_test_cases[i].cleanup(test);
2770 if (ret) {
2771 pr_info("%s: Warning: Cleanup "
2772 "stage failed! (%d)\n",
2773 mmc_hostname(test->card->host),
2774 ret);
2779 mmc_release_host(test->card->host);
2781 pr_info("%s: Tests completed.\n",
2782 mmc_hostname(test->card->host));
2785 static void mmc_test_free_result(struct mmc_card *card)
2787 struct mmc_test_general_result *gr, *grs;
2789 mutex_lock(&mmc_test_lock);
2791 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
2792 struct mmc_test_transfer_result *tr, *trs;
2794 if (card && gr->card != card)
2795 continue;
2797 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
2798 list_del(&tr->link);
2799 kfree(tr);
2802 list_del(&gr->link);
2803 kfree(gr);
2806 mutex_unlock(&mmc_test_lock);
2809 static LIST_HEAD(mmc_test_file_test);
2811 static int mtf_test_show(struct seq_file *sf, void *data)
2813 struct mmc_card *card = (struct mmc_card *)sf->private;
2814 struct mmc_test_general_result *gr;
2816 mutex_lock(&mmc_test_lock);
2818 list_for_each_entry(gr, &mmc_test_result, link) {
2819 struct mmc_test_transfer_result *tr;
2821 if (gr->card != card)
2822 continue;
2824 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
2826 list_for_each_entry(tr, &gr->tr_lst, link) {
2827 seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
2828 tr->count, tr->sectors,
2829 (unsigned long)tr->ts.tv_sec,
2830 (unsigned long)tr->ts.tv_nsec,
2831 tr->rate, tr->iops / 100, tr->iops % 100);
2835 mutex_unlock(&mmc_test_lock);
2837 return 0;
2840 static int mtf_test_open(struct inode *inode, struct file *file)
2842 return single_open(file, mtf_test_show, inode->i_private);
2845 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
2846 size_t count, loff_t *pos)
2848 struct seq_file *sf = (struct seq_file *)file->private_data;
2849 struct mmc_card *card = (struct mmc_card *)sf->private;
2850 struct mmc_test_card *test;
2851 char lbuf[12];
2852 long testcase;
2854 if (count >= sizeof(lbuf))
2855 return -EINVAL;
2857 if (copy_from_user(lbuf, buf, count))
2858 return -EFAULT;
2859 lbuf[count] = '\0';
2861 if (strict_strtol(lbuf, 10, &testcase))
2862 return -EINVAL;
2864 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
2865 if (!test)
2866 return -ENOMEM;
2869 * Remove all test cases associated with given card. Thus we have only
2870 * actual data of the last run.
2872 mmc_test_free_result(card);
2874 test->card = card;
2876 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
2877 #ifdef CONFIG_HIGHMEM
2878 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
2879 #endif
2881 #ifdef CONFIG_HIGHMEM
2882 if (test->buffer && test->highmem) {
2883 #else
2884 if (test->buffer) {
2885 #endif
2886 mutex_lock(&mmc_test_lock);
2887 mmc_test_run(test, testcase);
2888 mutex_unlock(&mmc_test_lock);
2891 #ifdef CONFIG_HIGHMEM
2892 __free_pages(test->highmem, BUFFER_ORDER);
2893 #endif
2894 kfree(test->buffer);
2895 kfree(test);
2897 return count;
2900 static const struct file_operations mmc_test_fops_test = {
2901 .open = mtf_test_open,
2902 .read = seq_read,
2903 .write = mtf_test_write,
2904 .llseek = seq_lseek,
2905 .release = single_release,
2908 static int mtf_testlist_show(struct seq_file *sf, void *data)
2910 int i;
2912 mutex_lock(&mmc_test_lock);
2914 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
2915 seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
2917 mutex_unlock(&mmc_test_lock);
2919 return 0;
2922 static int mtf_testlist_open(struct inode *inode, struct file *file)
2924 return single_open(file, mtf_testlist_show, inode->i_private);
2927 static const struct file_operations mmc_test_fops_testlist = {
2928 .open = mtf_testlist_open,
2929 .read = seq_read,
2930 .llseek = seq_lseek,
2931 .release = single_release,
2934 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
2936 struct mmc_test_dbgfs_file *df, *dfs;
2938 mutex_lock(&mmc_test_lock);
2940 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
2941 if (card && df->card != card)
2942 continue;
2943 debugfs_remove(df->file);
2944 list_del(&df->link);
2945 kfree(df);
2948 mutex_unlock(&mmc_test_lock);
2951 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
2952 const char *name, mode_t mode, const struct file_operations *fops)
2954 struct dentry *file = NULL;
2955 struct mmc_test_dbgfs_file *df;
2957 if (card->debugfs_root)
2958 file = debugfs_create_file(name, mode, card->debugfs_root,
2959 card, fops);
2961 if (IS_ERR_OR_NULL(file)) {
2962 dev_err(&card->dev,
2963 "Can't create %s. Perhaps debugfs is disabled.\n",
2964 name);
2965 return -ENODEV;
2968 df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
2969 if (!df) {
2970 debugfs_remove(file);
2971 dev_err(&card->dev,
2972 "Can't allocate memory for internal usage.\n");
2973 return -ENOMEM;
2976 df->card = card;
2977 df->file = file;
2979 list_add(&df->link, &mmc_test_file_test);
2980 return 0;
2983 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
2985 int ret;
2987 mutex_lock(&mmc_test_lock);
2989 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
2990 &mmc_test_fops_test);
2991 if (ret)
2992 goto err;
2994 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
2995 &mmc_test_fops_testlist);
2996 if (ret)
2997 goto err;
2999 err:
3000 mutex_unlock(&mmc_test_lock);
3002 return ret;
3005 static int mmc_test_probe(struct mmc_card *card)
3007 int ret;
3009 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3010 return -ENODEV;
3012 ret = mmc_test_register_dbgfs_file(card);
3013 if (ret)
3014 return ret;
3016 dev_info(&card->dev, "Card claimed for testing.\n");
3018 return 0;
3021 static void mmc_test_remove(struct mmc_card *card)
3023 mmc_test_free_result(card);
3024 mmc_test_free_dbgfs_file(card);
3027 static struct mmc_driver mmc_driver = {
3028 .drv = {
3029 .name = "mmc_test",
3031 .probe = mmc_test_probe,
3032 .remove = mmc_test_remove,
3035 static int __init mmc_test_init(void)
3037 return mmc_register_driver(&mmc_driver);
3040 static void __exit mmc_test_exit(void)
3042 /* Clear stalled data if card is still plugged */
3043 mmc_test_free_result(NULL);
3044 mmc_test_free_dbgfs_file(NULL);
3046 mmc_unregister_driver(&mmc_driver);
3049 module_init(mmc_test_init);
3050 module_exit(mmc_test_exit);
3052 MODULE_LICENSE("GPL");
3053 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3054 MODULE_AUTHOR("Pierre Ossman");