Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[zen-stable.git] / drivers / mmc / core / core.c
blob950b97d7412a4f6f5f562401f132ed0d568a969a
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
35 #include "core.h"
36 #include "bus.h"
37 #include "host.h"
38 #include "sdio_bus.h"
40 #include "mmc_ops.h"
41 #include "sd_ops.h"
42 #include "sdio_ops.h"
44 static struct workqueue_struct *workqueue;
47 * Enabling software CRCs on the data blocks can be a significant (30%)
48 * performance cost, and for other reasons may not always be desired.
49 * So we allow it it to be disabled.
51 int use_spi_crc = 1;
52 module_param(use_spi_crc, bool, 0);
55 * We normally treat cards as removed during suspend if they are not
56 * known to be on a non-removable bus, to avoid the risk of writing
57 * back data to a different card after resume. Allow this to be
58 * overridden if necessary.
60 #ifdef CONFIG_MMC_UNSAFE_RESUME
61 int mmc_assume_removable;
62 #else
63 int mmc_assume_removable = 1;
64 #endif
65 EXPORT_SYMBOL(mmc_assume_removable);
66 module_param_named(removable, mmc_assume_removable, bool, 0644);
67 MODULE_PARM_DESC(
68 removable,
69 "MMC/SD cards are removable and may be removed during suspend");
72 * Internal function. Schedule delayed work in the MMC work queue.
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
77 return queue_delayed_work(workqueue, work, delay);
81 * Internal function. Flush all scheduled work from the MMC work queue.
83 static void mmc_flush_scheduled_work(void)
85 flush_workqueue(workqueue);
88 #ifdef CONFIG_FAIL_MMC_REQUEST
91 * Internal function. Inject random data errors.
92 * If mmc_data is NULL no errors are injected.
94 static void mmc_should_fail_request(struct mmc_host *host,
95 struct mmc_request *mrq)
97 struct mmc_command *cmd = mrq->cmd;
98 struct mmc_data *data = mrq->data;
99 static const int data_errors[] = {
100 -ETIMEDOUT,
101 -EILSEQ,
102 -EIO,
105 if (!data)
106 return;
108 if (cmd->error || data->error ||
109 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
110 return;
112 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
113 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
116 #else /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_should_fail_request(struct mmc_host *host,
119 struct mmc_request *mrq)
123 #endif /* CONFIG_FAIL_MMC_REQUEST */
126 * mmc_request_done - finish processing an MMC request
127 * @host: MMC host which completed request
128 * @mrq: MMC request which request
130 * MMC drivers should call this function when they have completed
131 * their processing of a request.
133 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
135 struct mmc_command *cmd = mrq->cmd;
136 int err = cmd->error;
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
143 if (err && cmd->retries) {
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
148 if (mrq->done)
149 mrq->done(mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
153 led_trigger_event(host->led, LED_OFF);
155 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
156 mmc_hostname(host), cmd->opcode, err,
157 cmd->resp[0], cmd->resp[1],
158 cmd->resp[2], cmd->resp[3]);
160 if (mrq->data) {
161 pr_debug("%s: %d bytes transferred: %d\n",
162 mmc_hostname(host),
163 mrq->data->bytes_xfered, mrq->data->error);
166 if (mrq->stop) {
167 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
168 mmc_hostname(host), mrq->stop->opcode,
169 mrq->stop->error,
170 mrq->stop->resp[0], mrq->stop->resp[1],
171 mrq->stop->resp[2], mrq->stop->resp[3]);
174 if (mrq->done)
175 mrq->done(mrq);
177 mmc_host_clk_release(host);
181 EXPORT_SYMBOL(mmc_request_done);
183 static void
184 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
186 #ifdef CONFIG_MMC_DEBUG
187 unsigned int i, sz;
188 struct scatterlist *sg;
189 #endif
191 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
192 mmc_hostname(host), mrq->cmd->opcode,
193 mrq->cmd->arg, mrq->cmd->flags);
195 if (mrq->data) {
196 pr_debug("%s: blksz %d blocks %d flags %08x "
197 "tsac %d ms nsac %d\n",
198 mmc_hostname(host), mrq->data->blksz,
199 mrq->data->blocks, mrq->data->flags,
200 mrq->data->timeout_ns / 1000000,
201 mrq->data->timeout_clks);
204 if (mrq->stop) {
205 pr_debug("%s: CMD%u arg %08x flags %08x\n",
206 mmc_hostname(host), mrq->stop->opcode,
207 mrq->stop->arg, mrq->stop->flags);
210 WARN_ON(!host->claimed);
212 mrq->cmd->error = 0;
213 mrq->cmd->mrq = mrq;
214 if (mrq->data) {
215 BUG_ON(mrq->data->blksz > host->max_blk_size);
216 BUG_ON(mrq->data->blocks > host->max_blk_count);
217 BUG_ON(mrq->data->blocks * mrq->data->blksz >
218 host->max_req_size);
220 #ifdef CONFIG_MMC_DEBUG
221 sz = 0;
222 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
223 sz += sg->length;
224 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
225 #endif
227 mrq->cmd->data = mrq->data;
228 mrq->data->error = 0;
229 mrq->data->mrq = mrq;
230 if (mrq->stop) {
231 mrq->data->stop = mrq->stop;
232 mrq->stop->error = 0;
233 mrq->stop->mrq = mrq;
236 mmc_host_clk_hold(host);
237 led_trigger_event(host->led, LED_FULL);
238 host->ops->request(host, mrq);
241 static void mmc_wait_done(struct mmc_request *mrq)
243 complete(&mrq->completion);
246 static void __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
248 init_completion(&mrq->completion);
249 mrq->done = mmc_wait_done;
250 mmc_start_request(host, mrq);
253 static void mmc_wait_for_req_done(struct mmc_host *host,
254 struct mmc_request *mrq)
256 struct mmc_command *cmd;
258 while (1) {
259 wait_for_completion(&mrq->completion);
261 cmd = mrq->cmd;
262 if (!cmd->error || !cmd->retries)
263 break;
265 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
266 mmc_hostname(host), cmd->opcode, cmd->error);
267 cmd->retries--;
268 cmd->error = 0;
269 host->ops->request(host, mrq);
274 * mmc_pre_req - Prepare for a new request
275 * @host: MMC host to prepare command
276 * @mrq: MMC request to prepare for
277 * @is_first_req: true if there is no previous started request
278 * that may run in parellel to this call, otherwise false
280 * mmc_pre_req() is called in prior to mmc_start_req() to let
281 * host prepare for the new request. Preparation of a request may be
282 * performed while another request is running on the host.
284 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
285 bool is_first_req)
287 if (host->ops->pre_req)
288 host->ops->pre_req(host, mrq, is_first_req);
292 * mmc_post_req - Post process a completed request
293 * @host: MMC host to post process command
294 * @mrq: MMC request to post process for
295 * @err: Error, if non zero, clean up any resources made in pre_req
297 * Let the host post process a completed request. Post processing of
298 * a request may be performed while another reuqest is running.
300 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
301 int err)
303 if (host->ops->post_req)
304 host->ops->post_req(host, mrq, err);
308 * mmc_start_req - start a non-blocking request
309 * @host: MMC host to start command
310 * @areq: async request to start
311 * @error: out parameter returns 0 for success, otherwise non zero
313 * Start a new MMC custom command request for a host.
314 * If there is on ongoing async request wait for completion
315 * of that request and start the new one and return.
316 * Does not wait for the new request to complete.
318 * Returns the completed request, NULL in case of none completed.
319 * Wait for the an ongoing request (previoulsy started) to complete and
320 * return the completed request. If there is no ongoing request, NULL
321 * is returned without waiting. NULL is not an error condition.
323 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
324 struct mmc_async_req *areq, int *error)
326 int err = 0;
327 struct mmc_async_req *data = host->areq;
329 /* Prepare a new request */
330 if (areq)
331 mmc_pre_req(host, areq->mrq, !host->areq);
333 if (host->areq) {
334 mmc_wait_for_req_done(host, host->areq->mrq);
335 err = host->areq->err_check(host->card, host->areq);
336 if (err) {
337 /* post process the completed failed request */
338 mmc_post_req(host, host->areq->mrq, 0);
339 if (areq)
341 * Cancel the new prepared request, because
342 * it can't run until the failed
343 * request has been properly handled.
345 mmc_post_req(host, areq->mrq, -EINVAL);
347 host->areq = NULL;
348 goto out;
352 if (areq)
353 __mmc_start_req(host, areq->mrq);
355 if (host->areq)
356 mmc_post_req(host, host->areq->mrq, 0);
358 host->areq = areq;
359 out:
360 if (error)
361 *error = err;
362 return data;
364 EXPORT_SYMBOL(mmc_start_req);
367 * mmc_wait_for_req - start a request and wait for completion
368 * @host: MMC host to start command
369 * @mrq: MMC request to start
371 * Start a new MMC custom command request for a host, and wait
372 * for the command to complete. Does not attempt to parse the
373 * response.
375 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
377 __mmc_start_req(host, mrq);
378 mmc_wait_for_req_done(host, mrq);
380 EXPORT_SYMBOL(mmc_wait_for_req);
383 * mmc_interrupt_hpi - Issue for High priority Interrupt
384 * @card: the MMC card associated with the HPI transfer
386 * Issued High Priority Interrupt, and check for card status
387 * util out-of prg-state.
389 int mmc_interrupt_hpi(struct mmc_card *card)
391 int err;
392 u32 status;
394 BUG_ON(!card);
396 if (!card->ext_csd.hpi_en) {
397 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
398 return 1;
401 mmc_claim_host(card->host);
402 err = mmc_send_status(card, &status);
403 if (err) {
404 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
405 goto out;
409 * If the card status is in PRG-state, we can send the HPI command.
411 if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
412 do {
414 * We don't know when the HPI command will finish
415 * processing, so we need to resend HPI until out
416 * of prg-state, and keep checking the card status
417 * with SEND_STATUS. If a timeout error occurs when
418 * sending the HPI command, we are already out of
419 * prg-state.
421 err = mmc_send_hpi_cmd(card, &status);
422 if (err)
423 pr_debug("%s: abort HPI (%d error)\n",
424 mmc_hostname(card->host), err);
426 err = mmc_send_status(card, &status);
427 if (err)
428 break;
429 } while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
430 } else
431 pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
433 out:
434 mmc_release_host(card->host);
435 return err;
437 EXPORT_SYMBOL(mmc_interrupt_hpi);
440 * mmc_wait_for_cmd - start a command and wait for completion
441 * @host: MMC host to start command
442 * @cmd: MMC command to start
443 * @retries: maximum number of retries
445 * Start a new MMC command for a host, and wait for the command
446 * to complete. Return any error that occurred while the command
447 * was executing. Do not attempt to parse the response.
449 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
451 struct mmc_request mrq = {NULL};
453 WARN_ON(!host->claimed);
455 memset(cmd->resp, 0, sizeof(cmd->resp));
456 cmd->retries = retries;
458 mrq.cmd = cmd;
459 cmd->data = NULL;
461 mmc_wait_for_req(host, &mrq);
463 return cmd->error;
466 EXPORT_SYMBOL(mmc_wait_for_cmd);
469 * mmc_set_data_timeout - set the timeout for a data command
470 * @data: data phase for command
471 * @card: the MMC card associated with the data transfer
473 * Computes the data timeout parameters according to the
474 * correct algorithm given the card type.
476 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
478 unsigned int mult;
481 * SDIO cards only define an upper 1 s limit on access.
483 if (mmc_card_sdio(card)) {
484 data->timeout_ns = 1000000000;
485 data->timeout_clks = 0;
486 return;
490 * SD cards use a 100 multiplier rather than 10
492 mult = mmc_card_sd(card) ? 100 : 10;
495 * Scale up the multiplier (and therefore the timeout) by
496 * the r2w factor for writes.
498 if (data->flags & MMC_DATA_WRITE)
499 mult <<= card->csd.r2w_factor;
501 data->timeout_ns = card->csd.tacc_ns * mult;
502 data->timeout_clks = card->csd.tacc_clks * mult;
505 * SD cards also have an upper limit on the timeout.
507 if (mmc_card_sd(card)) {
508 unsigned int timeout_us, limit_us;
510 timeout_us = data->timeout_ns / 1000;
511 if (mmc_host_clk_rate(card->host))
512 timeout_us += data->timeout_clks * 1000 /
513 (mmc_host_clk_rate(card->host) / 1000);
515 if (data->flags & MMC_DATA_WRITE)
517 * The limit is really 250 ms, but that is
518 * insufficient for some crappy cards.
520 limit_us = 300000;
521 else
522 limit_us = 100000;
525 * SDHC cards always use these fixed values.
527 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
528 data->timeout_ns = limit_us * 1000;
529 data->timeout_clks = 0;
534 * Some cards require longer data read timeout than indicated in CSD.
535 * Address this by setting the read timeout to a "reasonably high"
536 * value. For the cards tested, 300ms has proven enough. If necessary,
537 * this value can be increased if other problematic cards require this.
539 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
540 data->timeout_ns = 300000000;
541 data->timeout_clks = 0;
545 * Some cards need very high timeouts if driven in SPI mode.
546 * The worst observed timeout was 900ms after writing a
547 * continuous stream of data until the internal logic
548 * overflowed.
550 if (mmc_host_is_spi(card->host)) {
551 if (data->flags & MMC_DATA_WRITE) {
552 if (data->timeout_ns < 1000000000)
553 data->timeout_ns = 1000000000; /* 1s */
554 } else {
555 if (data->timeout_ns < 100000000)
556 data->timeout_ns = 100000000; /* 100ms */
560 EXPORT_SYMBOL(mmc_set_data_timeout);
563 * mmc_align_data_size - pads a transfer size to a more optimal value
564 * @card: the MMC card associated with the data transfer
565 * @sz: original transfer size
567 * Pads the original data size with a number of extra bytes in
568 * order to avoid controller bugs and/or performance hits
569 * (e.g. some controllers revert to PIO for certain sizes).
571 * Returns the improved size, which might be unmodified.
573 * Note that this function is only relevant when issuing a
574 * single scatter gather entry.
576 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
579 * FIXME: We don't have a system for the controller to tell
580 * the core about its problems yet, so for now we just 32-bit
581 * align the size.
583 sz = ((sz + 3) / 4) * 4;
585 return sz;
587 EXPORT_SYMBOL(mmc_align_data_size);
590 * mmc_host_enable - enable a host.
591 * @host: mmc host to enable
593 * Hosts that support power saving can use the 'enable' and 'disable'
594 * methods to exit and enter power saving states. For more information
595 * see comments for struct mmc_host_ops.
597 int mmc_host_enable(struct mmc_host *host)
599 if (!(host->caps & MMC_CAP_DISABLE))
600 return 0;
602 if (host->en_dis_recurs)
603 return 0;
605 if (host->nesting_cnt++)
606 return 0;
608 cancel_delayed_work_sync(&host->disable);
610 if (host->enabled)
611 return 0;
613 if (host->ops->enable) {
614 int err;
616 host->en_dis_recurs = 1;
617 err = host->ops->enable(host);
618 host->en_dis_recurs = 0;
620 if (err) {
621 pr_debug("%s: enable error %d\n",
622 mmc_hostname(host), err);
623 return err;
626 host->enabled = 1;
627 return 0;
629 EXPORT_SYMBOL(mmc_host_enable);
631 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
633 if (host->ops->disable) {
634 int err;
636 host->en_dis_recurs = 1;
637 err = host->ops->disable(host, lazy);
638 host->en_dis_recurs = 0;
640 if (err < 0) {
641 pr_debug("%s: disable error %d\n",
642 mmc_hostname(host), err);
643 return err;
645 if (err > 0) {
646 unsigned long delay = msecs_to_jiffies(err);
648 mmc_schedule_delayed_work(&host->disable, delay);
651 host->enabled = 0;
652 return 0;
656 * mmc_host_disable - disable a host.
657 * @host: mmc host to disable
659 * Hosts that support power saving can use the 'enable' and 'disable'
660 * methods to exit and enter power saving states. For more information
661 * see comments for struct mmc_host_ops.
663 int mmc_host_disable(struct mmc_host *host)
665 int err;
667 if (!(host->caps & MMC_CAP_DISABLE))
668 return 0;
670 if (host->en_dis_recurs)
671 return 0;
673 if (--host->nesting_cnt)
674 return 0;
676 if (!host->enabled)
677 return 0;
679 err = mmc_host_do_disable(host, 0);
680 return err;
682 EXPORT_SYMBOL(mmc_host_disable);
685 * __mmc_claim_host - exclusively claim a host
686 * @host: mmc host to claim
687 * @abort: whether or not the operation should be aborted
689 * Claim a host for a set of operations. If @abort is non null and
690 * dereference a non-zero value then this will return prematurely with
691 * that non-zero value without acquiring the lock. Returns zero
692 * with the lock held otherwise.
694 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
696 DECLARE_WAITQUEUE(wait, current);
697 unsigned long flags;
698 int stop;
700 might_sleep();
702 add_wait_queue(&host->wq, &wait);
703 spin_lock_irqsave(&host->lock, flags);
704 while (1) {
705 set_current_state(TASK_UNINTERRUPTIBLE);
706 stop = abort ? atomic_read(abort) : 0;
707 if (stop || !host->claimed || host->claimer == current)
708 break;
709 spin_unlock_irqrestore(&host->lock, flags);
710 schedule();
711 spin_lock_irqsave(&host->lock, flags);
713 set_current_state(TASK_RUNNING);
714 if (!stop) {
715 host->claimed = 1;
716 host->claimer = current;
717 host->claim_cnt += 1;
718 } else
719 wake_up(&host->wq);
720 spin_unlock_irqrestore(&host->lock, flags);
721 remove_wait_queue(&host->wq, &wait);
722 if (!stop)
723 mmc_host_enable(host);
724 return stop;
727 EXPORT_SYMBOL(__mmc_claim_host);
730 * mmc_try_claim_host - try exclusively to claim a host
731 * @host: mmc host to claim
733 * Returns %1 if the host is claimed, %0 otherwise.
735 int mmc_try_claim_host(struct mmc_host *host)
737 int claimed_host = 0;
738 unsigned long flags;
740 spin_lock_irqsave(&host->lock, flags);
741 if (!host->claimed || host->claimer == current) {
742 host->claimed = 1;
743 host->claimer = current;
744 host->claim_cnt += 1;
745 claimed_host = 1;
747 spin_unlock_irqrestore(&host->lock, flags);
748 return claimed_host;
750 EXPORT_SYMBOL(mmc_try_claim_host);
753 * mmc_do_release_host - release a claimed host
754 * @host: mmc host to release
756 * If you successfully claimed a host, this function will
757 * release it again.
759 void mmc_do_release_host(struct mmc_host *host)
761 unsigned long flags;
763 spin_lock_irqsave(&host->lock, flags);
764 if (--host->claim_cnt) {
765 /* Release for nested claim */
766 spin_unlock_irqrestore(&host->lock, flags);
767 } else {
768 host->claimed = 0;
769 host->claimer = NULL;
770 spin_unlock_irqrestore(&host->lock, flags);
771 wake_up(&host->wq);
774 EXPORT_SYMBOL(mmc_do_release_host);
776 void mmc_host_deeper_disable(struct work_struct *work)
778 struct mmc_host *host =
779 container_of(work, struct mmc_host, disable.work);
781 /* If the host is claimed then we do not want to disable it anymore */
782 if (!mmc_try_claim_host(host))
783 return;
784 mmc_host_do_disable(host, 1);
785 mmc_do_release_host(host);
789 * mmc_host_lazy_disable - lazily disable a host.
790 * @host: mmc host to disable
792 * Hosts that support power saving can use the 'enable' and 'disable'
793 * methods to exit and enter power saving states. For more information
794 * see comments for struct mmc_host_ops.
796 int mmc_host_lazy_disable(struct mmc_host *host)
798 if (!(host->caps & MMC_CAP_DISABLE))
799 return 0;
801 if (host->en_dis_recurs)
802 return 0;
804 if (--host->nesting_cnt)
805 return 0;
807 if (!host->enabled)
808 return 0;
810 if (host->disable_delay) {
811 mmc_schedule_delayed_work(&host->disable,
812 msecs_to_jiffies(host->disable_delay));
813 return 0;
814 } else
815 return mmc_host_do_disable(host, 1);
817 EXPORT_SYMBOL(mmc_host_lazy_disable);
820 * mmc_release_host - release a host
821 * @host: mmc host to release
823 * Release a MMC host, allowing others to claim the host
824 * for their operations.
826 void mmc_release_host(struct mmc_host *host)
828 WARN_ON(!host->claimed);
830 mmc_host_lazy_disable(host);
832 mmc_do_release_host(host);
835 EXPORT_SYMBOL(mmc_release_host);
838 * Internal function that does the actual ios call to the host driver,
839 * optionally printing some debug output.
841 static inline void mmc_set_ios(struct mmc_host *host)
843 struct mmc_ios *ios = &host->ios;
845 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
846 "width %u timing %u\n",
847 mmc_hostname(host), ios->clock, ios->bus_mode,
848 ios->power_mode, ios->chip_select, ios->vdd,
849 ios->bus_width, ios->timing);
851 if (ios->clock > 0)
852 mmc_set_ungated(host);
853 host->ops->set_ios(host, ios);
857 * Control chip select pin on a host.
859 void mmc_set_chip_select(struct mmc_host *host, int mode)
861 mmc_host_clk_hold(host);
862 host->ios.chip_select = mode;
863 mmc_set_ios(host);
864 mmc_host_clk_release(host);
868 * Sets the host clock to the highest possible frequency that
869 * is below "hz".
871 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
873 WARN_ON(hz < host->f_min);
875 if (hz > host->f_max)
876 hz = host->f_max;
878 host->ios.clock = hz;
879 mmc_set_ios(host);
882 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
884 mmc_host_clk_hold(host);
885 __mmc_set_clock(host, hz);
886 mmc_host_clk_release(host);
889 #ifdef CONFIG_MMC_CLKGATE
891 * This gates the clock by setting it to 0 Hz.
893 void mmc_gate_clock(struct mmc_host *host)
895 unsigned long flags;
897 spin_lock_irqsave(&host->clk_lock, flags);
898 host->clk_old = host->ios.clock;
899 host->ios.clock = 0;
900 host->clk_gated = true;
901 spin_unlock_irqrestore(&host->clk_lock, flags);
902 mmc_set_ios(host);
906 * This restores the clock from gating by using the cached
907 * clock value.
909 void mmc_ungate_clock(struct mmc_host *host)
912 * We should previously have gated the clock, so the clock shall
913 * be 0 here! The clock may however be 0 during initialization,
914 * when some request operations are performed before setting
915 * the frequency. When ungate is requested in that situation
916 * we just ignore the call.
918 if (host->clk_old) {
919 BUG_ON(host->ios.clock);
920 /* This call will also set host->clk_gated to false */
921 __mmc_set_clock(host, host->clk_old);
925 void mmc_set_ungated(struct mmc_host *host)
927 unsigned long flags;
930 * We've been given a new frequency while the clock is gated,
931 * so make sure we regard this as ungating it.
933 spin_lock_irqsave(&host->clk_lock, flags);
934 host->clk_gated = false;
935 spin_unlock_irqrestore(&host->clk_lock, flags);
938 #else
939 void mmc_set_ungated(struct mmc_host *host)
942 #endif
945 * Change the bus mode (open drain/push-pull) of a host.
947 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
949 mmc_host_clk_hold(host);
950 host->ios.bus_mode = mode;
951 mmc_set_ios(host);
952 mmc_host_clk_release(host);
956 * Change data bus width of a host.
958 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
960 mmc_host_clk_hold(host);
961 host->ios.bus_width = width;
962 mmc_set_ios(host);
963 mmc_host_clk_release(host);
967 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
968 * @vdd: voltage (mV)
969 * @low_bits: prefer low bits in boundary cases
971 * This function returns the OCR bit number according to the provided @vdd
972 * value. If conversion is not possible a negative errno value returned.
974 * Depending on the @low_bits flag the function prefers low or high OCR bits
975 * on boundary voltages. For example,
976 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
977 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
979 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
981 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
983 const int max_bit = ilog2(MMC_VDD_35_36);
984 int bit;
986 if (vdd < 1650 || vdd > 3600)
987 return -EINVAL;
989 if (vdd >= 1650 && vdd <= 1950)
990 return ilog2(MMC_VDD_165_195);
992 if (low_bits)
993 vdd -= 1;
995 /* Base 2000 mV, step 100 mV, bit's base 8. */
996 bit = (vdd - 2000) / 100 + 8;
997 if (bit > max_bit)
998 return max_bit;
999 return bit;
1003 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1004 * @vdd_min: minimum voltage value (mV)
1005 * @vdd_max: maximum voltage value (mV)
1007 * This function returns the OCR mask bits according to the provided @vdd_min
1008 * and @vdd_max values. If conversion is not possible the function returns 0.
1010 * Notes wrt boundary cases:
1011 * This function sets the OCR bits for all boundary voltages, for example
1012 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1013 * MMC_VDD_34_35 mask.
1015 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1017 u32 mask = 0;
1019 if (vdd_max < vdd_min)
1020 return 0;
1022 /* Prefer high bits for the boundary vdd_max values. */
1023 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1024 if (vdd_max < 0)
1025 return 0;
1027 /* Prefer low bits for the boundary vdd_min values. */
1028 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1029 if (vdd_min < 0)
1030 return 0;
1032 /* Fill the mask, from max bit to min bit. */
1033 while (vdd_max >= vdd_min)
1034 mask |= 1 << vdd_max--;
1036 return mask;
1038 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1040 #ifdef CONFIG_REGULATOR
1043 * mmc_regulator_get_ocrmask - return mask of supported voltages
1044 * @supply: regulator to use
1046 * This returns either a negative errno, or a mask of voltages that
1047 * can be provided to MMC/SD/SDIO devices using the specified voltage
1048 * regulator. This would normally be called before registering the
1049 * MMC host adapter.
1051 int mmc_regulator_get_ocrmask(struct regulator *supply)
1053 int result = 0;
1054 int count;
1055 int i;
1057 count = regulator_count_voltages(supply);
1058 if (count < 0)
1059 return count;
1061 for (i = 0; i < count; i++) {
1062 int vdd_uV;
1063 int vdd_mV;
1065 vdd_uV = regulator_list_voltage(supply, i);
1066 if (vdd_uV <= 0)
1067 continue;
1069 vdd_mV = vdd_uV / 1000;
1070 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1073 return result;
1075 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
1078 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1079 * @mmc: the host to regulate
1080 * @supply: regulator to use
1081 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1083 * Returns zero on success, else negative errno.
1085 * MMC host drivers may use this to enable or disable a regulator using
1086 * a particular supply voltage. This would normally be called from the
1087 * set_ios() method.
1089 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1090 struct regulator *supply,
1091 unsigned short vdd_bit)
1093 int result = 0;
1094 int min_uV, max_uV;
1096 if (vdd_bit) {
1097 int tmp;
1098 int voltage;
1100 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
1101 * bits this regulator doesn't quite support ... don't
1102 * be too picky, most cards and regulators are OK with
1103 * a 0.1V range goof (it's a small error percentage).
1105 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1106 if (tmp == 0) {
1107 min_uV = 1650 * 1000;
1108 max_uV = 1950 * 1000;
1109 } else {
1110 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1111 max_uV = min_uV + 100 * 1000;
1114 /* avoid needless changes to this voltage; the regulator
1115 * might not allow this operation
1117 voltage = regulator_get_voltage(supply);
1118 if (voltage < 0)
1119 result = voltage;
1120 else if (voltage < min_uV || voltage > max_uV)
1121 result = regulator_set_voltage(supply, min_uV, max_uV);
1122 else
1123 result = 0;
1125 if (result == 0 && !mmc->regulator_enabled) {
1126 result = regulator_enable(supply);
1127 if (!result)
1128 mmc->regulator_enabled = true;
1130 } else if (mmc->regulator_enabled) {
1131 result = regulator_disable(supply);
1132 if (result == 0)
1133 mmc->regulator_enabled = false;
1136 if (result)
1137 dev_err(mmc_dev(mmc),
1138 "could not set regulator OCR (%d)\n", result);
1139 return result;
1141 EXPORT_SYMBOL(mmc_regulator_set_ocr);
1143 #endif /* CONFIG_REGULATOR */
1146 * Mask off any voltages we don't support and select
1147 * the lowest voltage
1149 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1151 int bit;
1153 ocr &= host->ocr_avail;
1155 bit = ffs(ocr);
1156 if (bit) {
1157 bit -= 1;
1159 ocr &= 3 << bit;
1161 mmc_host_clk_hold(host);
1162 host->ios.vdd = bit;
1163 mmc_set_ios(host);
1164 mmc_host_clk_release(host);
1165 } else {
1166 pr_warning("%s: host doesn't support card's voltages\n",
1167 mmc_hostname(host));
1168 ocr = 0;
1171 return ocr;
1174 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1176 struct mmc_command cmd = {0};
1177 int err = 0;
1179 BUG_ON(!host);
1182 * Send CMD11 only if the request is to switch the card to
1183 * 1.8V signalling.
1185 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1186 cmd.opcode = SD_SWITCH_VOLTAGE;
1187 cmd.arg = 0;
1188 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1190 err = mmc_wait_for_cmd(host, &cmd, 0);
1191 if (err)
1192 return err;
1194 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1195 return -EIO;
1198 host->ios.signal_voltage = signal_voltage;
1200 if (host->ops->start_signal_voltage_switch)
1201 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1203 return err;
1207 * Select timing parameters for host.
1209 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1211 mmc_host_clk_hold(host);
1212 host->ios.timing = timing;
1213 mmc_set_ios(host);
1214 mmc_host_clk_release(host);
1218 * Select appropriate driver type for host.
1220 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1222 mmc_host_clk_hold(host);
1223 host->ios.drv_type = drv_type;
1224 mmc_set_ios(host);
1225 mmc_host_clk_release(host);
1228 static void mmc_poweroff_notify(struct mmc_host *host)
1230 struct mmc_card *card;
1231 unsigned int timeout;
1232 unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1233 int err = 0;
1235 card = host->card;
1238 * Send power notify command only if card
1239 * is mmc and notify state is powered ON
1241 if (card && mmc_card_mmc(card) &&
1242 (card->poweroff_notify_state == MMC_POWERED_ON)) {
1244 if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1245 notify_type = EXT_CSD_POWER_OFF_SHORT;
1246 timeout = card->ext_csd.generic_cmd6_time;
1247 card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1248 } else {
1249 notify_type = EXT_CSD_POWER_OFF_LONG;
1250 timeout = card->ext_csd.power_off_longtime;
1251 card->poweroff_notify_state = MMC_POWEROFF_LONG;
1254 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1255 EXT_CSD_POWER_OFF_NOTIFICATION,
1256 notify_type, timeout);
1258 if (err && err != -EBADMSG)
1259 pr_err("Device failed to respond within %d poweroff "
1260 "time. Forcefully powering down the device\n",
1261 timeout);
1263 /* Set the card state to no notification after the poweroff */
1264 card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1269 * Apply power to the MMC stack. This is a two-stage process.
1270 * First, we enable power to the card without the clock running.
1271 * We then wait a bit for the power to stabilise. Finally,
1272 * enable the bus drivers and clock to the card.
1274 * We must _NOT_ enable the clock prior to power stablising.
1276 * If a host does all the power sequencing itself, ignore the
1277 * initial MMC_POWER_UP stage.
1279 static void mmc_power_up(struct mmc_host *host)
1281 int bit;
1283 mmc_host_clk_hold(host);
1285 /* If ocr is set, we use it */
1286 if (host->ocr)
1287 bit = ffs(host->ocr) - 1;
1288 else
1289 bit = fls(host->ocr_avail) - 1;
1291 host->ios.vdd = bit;
1292 if (mmc_host_is_spi(host))
1293 host->ios.chip_select = MMC_CS_HIGH;
1294 else
1295 host->ios.chip_select = MMC_CS_DONTCARE;
1296 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1297 host->ios.power_mode = MMC_POWER_UP;
1298 host->ios.bus_width = MMC_BUS_WIDTH_1;
1299 host->ios.timing = MMC_TIMING_LEGACY;
1300 mmc_set_ios(host);
1303 * This delay should be sufficient to allow the power supply
1304 * to reach the minimum voltage.
1306 mmc_delay(10);
1308 host->ios.clock = host->f_init;
1310 host->ios.power_mode = MMC_POWER_ON;
1311 mmc_set_ios(host);
1314 * This delay must be at least 74 clock sizes, or 1 ms, or the
1315 * time required to reach a stable voltage.
1317 mmc_delay(10);
1319 mmc_host_clk_release(host);
1322 void mmc_power_off(struct mmc_host *host)
1324 mmc_host_clk_hold(host);
1326 host->ios.clock = 0;
1327 host->ios.vdd = 0;
1329 mmc_poweroff_notify(host);
1332 * Reset ocr mask to be the highest possible voltage supported for
1333 * this mmc host. This value will be used at next power up.
1335 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1337 if (!mmc_host_is_spi(host)) {
1338 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1339 host->ios.chip_select = MMC_CS_DONTCARE;
1341 host->ios.power_mode = MMC_POWER_OFF;
1342 host->ios.bus_width = MMC_BUS_WIDTH_1;
1343 host->ios.timing = MMC_TIMING_LEGACY;
1344 mmc_set_ios(host);
1347 * Some configurations, such as the 802.11 SDIO card in the OLPC
1348 * XO-1.5, require a short delay after poweroff before the card
1349 * can be successfully turned on again.
1351 mmc_delay(1);
1353 mmc_host_clk_release(host);
1357 * Cleanup when the last reference to the bus operator is dropped.
1359 static void __mmc_release_bus(struct mmc_host *host)
1361 BUG_ON(!host);
1362 BUG_ON(host->bus_refs);
1363 BUG_ON(!host->bus_dead);
1365 host->bus_ops = NULL;
1369 * Increase reference count of bus operator
1371 static inline void mmc_bus_get(struct mmc_host *host)
1373 unsigned long flags;
1375 spin_lock_irqsave(&host->lock, flags);
1376 host->bus_refs++;
1377 spin_unlock_irqrestore(&host->lock, flags);
1381 * Decrease reference count of bus operator and free it if
1382 * it is the last reference.
1384 static inline void mmc_bus_put(struct mmc_host *host)
1386 unsigned long flags;
1388 spin_lock_irqsave(&host->lock, flags);
1389 host->bus_refs--;
1390 if ((host->bus_refs == 0) && host->bus_ops)
1391 __mmc_release_bus(host);
1392 spin_unlock_irqrestore(&host->lock, flags);
1396 * Assign a mmc bus handler to a host. Only one bus handler may control a
1397 * host at any given time.
1399 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401 unsigned long flags;
1403 BUG_ON(!host);
1404 BUG_ON(!ops);
1406 WARN_ON(!host->claimed);
1408 spin_lock_irqsave(&host->lock, flags);
1410 BUG_ON(host->bus_ops);
1411 BUG_ON(host->bus_refs);
1413 host->bus_ops = ops;
1414 host->bus_refs = 1;
1415 host->bus_dead = 0;
1417 spin_unlock_irqrestore(&host->lock, flags);
1421 * Remove the current bus handler from a host.
1423 void mmc_detach_bus(struct mmc_host *host)
1425 unsigned long flags;
1427 BUG_ON(!host);
1429 WARN_ON(!host->claimed);
1430 WARN_ON(!host->bus_ops);
1432 spin_lock_irqsave(&host->lock, flags);
1434 host->bus_dead = 1;
1436 spin_unlock_irqrestore(&host->lock, flags);
1438 mmc_bus_put(host);
1442 * mmc_detect_change - process change of state on a MMC socket
1443 * @host: host which changed state.
1444 * @delay: optional delay to wait before detection (jiffies)
1446 * MMC drivers should call this when they detect a card has been
1447 * inserted or removed. The MMC layer will confirm that any
1448 * present card is still functional, and initialize any newly
1449 * inserted.
1451 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1453 #ifdef CONFIG_MMC_DEBUG
1454 unsigned long flags;
1455 spin_lock_irqsave(&host->lock, flags);
1456 WARN_ON(host->removed);
1457 spin_unlock_irqrestore(&host->lock, flags);
1458 #endif
1460 mmc_schedule_delayed_work(&host->detect, delay);
1463 EXPORT_SYMBOL(mmc_detect_change);
1465 void mmc_init_erase(struct mmc_card *card)
1467 unsigned int sz;
1469 if (is_power_of_2(card->erase_size))
1470 card->erase_shift = ffs(card->erase_size) - 1;
1471 else
1472 card->erase_shift = 0;
1475 * It is possible to erase an arbitrarily large area of an SD or MMC
1476 * card. That is not desirable because it can take a long time
1477 * (minutes) potentially delaying more important I/O, and also the
1478 * timeout calculations become increasingly hugely over-estimated.
1479 * Consequently, 'pref_erase' is defined as a guide to limit erases
1480 * to that size and alignment.
1482 * For SD cards that define Allocation Unit size, limit erases to one
1483 * Allocation Unit at a time. For MMC cards that define High Capacity
1484 * Erase Size, whether it is switched on or not, limit to that size.
1485 * Otherwise just have a stab at a good value. For modern cards it
1486 * will end up being 4MiB. Note that if the value is too small, it
1487 * can end up taking longer to erase.
1489 if (mmc_card_sd(card) && card->ssr.au) {
1490 card->pref_erase = card->ssr.au;
1491 card->erase_shift = ffs(card->ssr.au) - 1;
1492 } else if (card->ext_csd.hc_erase_size) {
1493 card->pref_erase = card->ext_csd.hc_erase_size;
1494 } else {
1495 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1496 if (sz < 128)
1497 card->pref_erase = 512 * 1024 / 512;
1498 else if (sz < 512)
1499 card->pref_erase = 1024 * 1024 / 512;
1500 else if (sz < 1024)
1501 card->pref_erase = 2 * 1024 * 1024 / 512;
1502 else
1503 card->pref_erase = 4 * 1024 * 1024 / 512;
1504 if (card->pref_erase < card->erase_size)
1505 card->pref_erase = card->erase_size;
1506 else {
1507 sz = card->pref_erase % card->erase_size;
1508 if (sz)
1509 card->pref_erase += card->erase_size - sz;
1514 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1515 unsigned int arg, unsigned int qty)
1517 unsigned int erase_timeout;
1519 if (card->ext_csd.erase_group_def & 1) {
1520 /* High Capacity Erase Group Size uses HC timeouts */
1521 if (arg == MMC_TRIM_ARG)
1522 erase_timeout = card->ext_csd.trim_timeout;
1523 else
1524 erase_timeout = card->ext_csd.hc_erase_timeout;
1525 } else {
1526 /* CSD Erase Group Size uses write timeout */
1527 unsigned int mult = (10 << card->csd.r2w_factor);
1528 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1529 unsigned int timeout_us;
1531 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1532 if (card->csd.tacc_ns < 1000000)
1533 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1534 else
1535 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1538 * ios.clock is only a target. The real clock rate might be
1539 * less but not that much less, so fudge it by multiplying by 2.
1541 timeout_clks <<= 1;
1542 timeout_us += (timeout_clks * 1000) /
1543 (mmc_host_clk_rate(card->host) / 1000);
1545 erase_timeout = timeout_us / 1000;
1548 * Theoretically, the calculation could underflow so round up
1549 * to 1ms in that case.
1551 if (!erase_timeout)
1552 erase_timeout = 1;
1555 /* Multiplier for secure operations */
1556 if (arg & MMC_SECURE_ARGS) {
1557 if (arg == MMC_SECURE_ERASE_ARG)
1558 erase_timeout *= card->ext_csd.sec_erase_mult;
1559 else
1560 erase_timeout *= card->ext_csd.sec_trim_mult;
1563 erase_timeout *= qty;
1566 * Ensure at least a 1 second timeout for SPI as per
1567 * 'mmc_set_data_timeout()'
1569 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1570 erase_timeout = 1000;
1572 return erase_timeout;
1575 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1576 unsigned int arg,
1577 unsigned int qty)
1579 unsigned int erase_timeout;
1581 if (card->ssr.erase_timeout) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout = card->ssr.erase_timeout * qty +
1584 card->ssr.erase_offset;
1585 } else {
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1590 erase_timeout = 250 * qty;
1593 /* Must not be less than 1 second */
1594 if (erase_timeout < 1000)
1595 erase_timeout = 1000;
1597 return erase_timeout;
1600 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1601 unsigned int arg,
1602 unsigned int qty)
1604 if (mmc_card_sd(card))
1605 return mmc_sd_erase_timeout(card, arg, qty);
1606 else
1607 return mmc_mmc_erase_timeout(card, arg, qty);
1610 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1611 unsigned int to, unsigned int arg)
1613 struct mmc_command cmd = {0};
1614 unsigned int qty = 0;
1615 int err;
1618 * qty is used to calculate the erase timeout which depends on how many
1619 * erase groups (or allocation units in SD terminology) are affected.
1620 * We count erasing part of an erase group as one erase group.
1621 * For SD, the allocation units are always a power of 2. For MMC, the
1622 * erase group size is almost certainly also power of 2, but it does not
1623 * seem to insist on that in the JEDEC standard, so we fall back to
1624 * division in that case. SD may not specify an allocation unit size,
1625 * in which case the timeout is based on the number of write blocks.
1627 * Note that the timeout for secure trim 2 will only be correct if the
1628 * number of erase groups specified is the same as the total of all
1629 * preceding secure trim 1 commands. Since the power may have been
1630 * lost since the secure trim 1 commands occurred, it is generally
1631 * impossible to calculate the secure trim 2 timeout correctly.
1633 if (card->erase_shift)
1634 qty += ((to >> card->erase_shift) -
1635 (from >> card->erase_shift)) + 1;
1636 else if (mmc_card_sd(card))
1637 qty += to - from + 1;
1638 else
1639 qty += ((to / card->erase_size) -
1640 (from / card->erase_size)) + 1;
1642 if (!mmc_card_blockaddr(card)) {
1643 from <<= 9;
1644 to <<= 9;
1647 if (mmc_card_sd(card))
1648 cmd.opcode = SD_ERASE_WR_BLK_START;
1649 else
1650 cmd.opcode = MMC_ERASE_GROUP_START;
1651 cmd.arg = from;
1652 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1653 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1654 if (err) {
1655 pr_err("mmc_erase: group start error %d, "
1656 "status %#x\n", err, cmd.resp[0]);
1657 err = -EIO;
1658 goto out;
1661 memset(&cmd, 0, sizeof(struct mmc_command));
1662 if (mmc_card_sd(card))
1663 cmd.opcode = SD_ERASE_WR_BLK_END;
1664 else
1665 cmd.opcode = MMC_ERASE_GROUP_END;
1666 cmd.arg = to;
1667 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1668 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1669 if (err) {
1670 pr_err("mmc_erase: group end error %d, status %#x\n",
1671 err, cmd.resp[0]);
1672 err = -EIO;
1673 goto out;
1676 memset(&cmd, 0, sizeof(struct mmc_command));
1677 cmd.opcode = MMC_ERASE;
1678 cmd.arg = arg;
1679 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1680 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1681 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1682 if (err) {
1683 pr_err("mmc_erase: erase error %d, status %#x\n",
1684 err, cmd.resp[0]);
1685 err = -EIO;
1686 goto out;
1689 if (mmc_host_is_spi(card->host))
1690 goto out;
1692 do {
1693 memset(&cmd, 0, sizeof(struct mmc_command));
1694 cmd.opcode = MMC_SEND_STATUS;
1695 cmd.arg = card->rca << 16;
1696 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1697 /* Do not retry else we can't see errors */
1698 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1699 if (err || (cmd.resp[0] & 0xFDF92000)) {
1700 pr_err("error %d requesting status %#x\n",
1701 err, cmd.resp[0]);
1702 err = -EIO;
1703 goto out;
1705 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1706 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1707 out:
1708 return err;
1712 * mmc_erase - erase sectors.
1713 * @card: card to erase
1714 * @from: first sector to erase
1715 * @nr: number of sectors to erase
1716 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1718 * Caller must claim host before calling this function.
1720 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1721 unsigned int arg)
1723 unsigned int rem, to = from + nr;
1725 if (!(card->host->caps & MMC_CAP_ERASE) ||
1726 !(card->csd.cmdclass & CCC_ERASE))
1727 return -EOPNOTSUPP;
1729 if (!card->erase_size)
1730 return -EOPNOTSUPP;
1732 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1733 return -EOPNOTSUPP;
1735 if ((arg & MMC_SECURE_ARGS) &&
1736 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1737 return -EOPNOTSUPP;
1739 if ((arg & MMC_TRIM_ARGS) &&
1740 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1741 return -EOPNOTSUPP;
1743 if (arg == MMC_SECURE_ERASE_ARG) {
1744 if (from % card->erase_size || nr % card->erase_size)
1745 return -EINVAL;
1748 if (arg == MMC_ERASE_ARG) {
1749 rem = from % card->erase_size;
1750 if (rem) {
1751 rem = card->erase_size - rem;
1752 from += rem;
1753 if (nr > rem)
1754 nr -= rem;
1755 else
1756 return 0;
1758 rem = nr % card->erase_size;
1759 if (rem)
1760 nr -= rem;
1763 if (nr == 0)
1764 return 0;
1766 to = from + nr;
1768 if (to <= from)
1769 return -EINVAL;
1771 /* 'from' and 'to' are inclusive */
1772 to -= 1;
1774 return mmc_do_erase(card, from, to, arg);
1776 EXPORT_SYMBOL(mmc_erase);
1778 int mmc_can_erase(struct mmc_card *card)
1780 if ((card->host->caps & MMC_CAP_ERASE) &&
1781 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1782 return 1;
1783 return 0;
1785 EXPORT_SYMBOL(mmc_can_erase);
1787 int mmc_can_trim(struct mmc_card *card)
1789 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1790 return 1;
1791 if (mmc_can_discard(card))
1792 return 1;
1793 return 0;
1795 EXPORT_SYMBOL(mmc_can_trim);
1797 int mmc_can_discard(struct mmc_card *card)
1800 * As there's no way to detect the discard support bit at v4.5
1801 * use the s/w feature support filed.
1803 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1804 return 1;
1805 return 0;
1807 EXPORT_SYMBOL(mmc_can_discard);
1809 int mmc_can_sanitize(struct mmc_card *card)
1811 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1812 return 1;
1813 return 0;
1815 EXPORT_SYMBOL(mmc_can_sanitize);
1817 int mmc_can_secure_erase_trim(struct mmc_card *card)
1819 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1820 return 1;
1821 return 0;
1823 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1825 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1826 unsigned int nr)
1828 if (!card->erase_size)
1829 return 0;
1830 if (from % card->erase_size || nr % card->erase_size)
1831 return 0;
1832 return 1;
1834 EXPORT_SYMBOL(mmc_erase_group_aligned);
1836 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1837 unsigned int arg)
1839 struct mmc_host *host = card->host;
1840 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1841 unsigned int last_timeout = 0;
1843 if (card->erase_shift)
1844 max_qty = UINT_MAX >> card->erase_shift;
1845 else if (mmc_card_sd(card))
1846 max_qty = UINT_MAX;
1847 else
1848 max_qty = UINT_MAX / card->erase_size;
1850 /* Find the largest qty with an OK timeout */
1851 do {
1852 y = 0;
1853 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1854 timeout = mmc_erase_timeout(card, arg, qty + x);
1855 if (timeout > host->max_discard_to)
1856 break;
1857 if (timeout < last_timeout)
1858 break;
1859 last_timeout = timeout;
1860 y = x;
1862 qty += y;
1863 } while (y);
1865 if (!qty)
1866 return 0;
1868 if (qty == 1)
1869 return 1;
1871 /* Convert qty to sectors */
1872 if (card->erase_shift)
1873 max_discard = --qty << card->erase_shift;
1874 else if (mmc_card_sd(card))
1875 max_discard = qty;
1876 else
1877 max_discard = --qty * card->erase_size;
1879 return max_discard;
1882 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1884 struct mmc_host *host = card->host;
1885 unsigned int max_discard, max_trim;
1887 if (!host->max_discard_to)
1888 return UINT_MAX;
1891 * Without erase_group_def set, MMC erase timeout depends on clock
1892 * frequence which can change. In that case, the best choice is
1893 * just the preferred erase size.
1895 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1896 return card->pref_erase;
1898 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1899 if (mmc_can_trim(card)) {
1900 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1901 if (max_trim < max_discard)
1902 max_discard = max_trim;
1903 } else if (max_discard < card->erase_size) {
1904 max_discard = 0;
1906 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1907 mmc_hostname(host), max_discard, host->max_discard_to);
1908 return max_discard;
1910 EXPORT_SYMBOL(mmc_calc_max_discard);
1912 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1914 struct mmc_command cmd = {0};
1916 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1917 return 0;
1919 cmd.opcode = MMC_SET_BLOCKLEN;
1920 cmd.arg = blocklen;
1921 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1922 return mmc_wait_for_cmd(card->host, &cmd, 5);
1924 EXPORT_SYMBOL(mmc_set_blocklen);
1926 static void mmc_hw_reset_for_init(struct mmc_host *host)
1928 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1929 return;
1930 mmc_host_clk_hold(host);
1931 host->ops->hw_reset(host);
1932 mmc_host_clk_release(host);
1935 int mmc_can_reset(struct mmc_card *card)
1937 u8 rst_n_function;
1939 if (!mmc_card_mmc(card))
1940 return 0;
1941 rst_n_function = card->ext_csd.rst_n_function;
1942 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1943 return 0;
1944 return 1;
1946 EXPORT_SYMBOL(mmc_can_reset);
1948 static int mmc_do_hw_reset(struct mmc_host *host, int check)
1950 struct mmc_card *card = host->card;
1952 if (!host->bus_ops->power_restore)
1953 return -EOPNOTSUPP;
1955 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1956 return -EOPNOTSUPP;
1958 if (!card)
1959 return -EINVAL;
1961 if (!mmc_can_reset(card))
1962 return -EOPNOTSUPP;
1964 mmc_host_clk_hold(host);
1965 mmc_set_clock(host, host->f_init);
1967 host->ops->hw_reset(host);
1969 /* If the reset has happened, then a status command will fail */
1970 if (check) {
1971 struct mmc_command cmd = {0};
1972 int err;
1974 cmd.opcode = MMC_SEND_STATUS;
1975 if (!mmc_host_is_spi(card->host))
1976 cmd.arg = card->rca << 16;
1977 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1978 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1979 if (!err) {
1980 mmc_host_clk_release(host);
1981 return -ENOSYS;
1985 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1986 if (mmc_host_is_spi(host)) {
1987 host->ios.chip_select = MMC_CS_HIGH;
1988 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1989 } else {
1990 host->ios.chip_select = MMC_CS_DONTCARE;
1991 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1993 host->ios.bus_width = MMC_BUS_WIDTH_1;
1994 host->ios.timing = MMC_TIMING_LEGACY;
1995 mmc_set_ios(host);
1997 mmc_host_clk_release(host);
1999 return host->bus_ops->power_restore(host);
2002 int mmc_hw_reset(struct mmc_host *host)
2004 return mmc_do_hw_reset(host, 0);
2006 EXPORT_SYMBOL(mmc_hw_reset);
2008 int mmc_hw_reset_check(struct mmc_host *host)
2010 return mmc_do_hw_reset(host, 1);
2012 EXPORT_SYMBOL(mmc_hw_reset_check);
2014 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2016 host->f_init = freq;
2018 #ifdef CONFIG_MMC_DEBUG
2019 pr_info("%s: %s: trying to init card at %u Hz\n",
2020 mmc_hostname(host), __func__, host->f_init);
2021 #endif
2022 mmc_power_up(host);
2025 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2026 * do a hardware reset if possible.
2028 mmc_hw_reset_for_init(host);
2031 * sdio_reset sends CMD52 to reset card. Since we do not know
2032 * if the card is being re-initialized, just send it. CMD52
2033 * should be ignored by SD/eMMC cards.
2035 sdio_reset(host);
2036 mmc_go_idle(host);
2038 mmc_send_if_cond(host, host->ocr_avail);
2040 /* Order's important: probe SDIO, then SD, then MMC */
2041 if (!mmc_attach_sdio(host))
2042 return 0;
2043 if (!mmc_attach_sd(host))
2044 return 0;
2045 if (!mmc_attach_mmc(host))
2046 return 0;
2048 mmc_power_off(host);
2049 return -EIO;
2052 void mmc_rescan(struct work_struct *work)
2054 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
2055 struct mmc_host *host =
2056 container_of(work, struct mmc_host, detect.work);
2057 int i;
2059 if (host->rescan_disable)
2060 return;
2062 mmc_bus_get(host);
2065 * if there is a _removable_ card registered, check whether it is
2066 * still present
2068 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2069 && !(host->caps & MMC_CAP_NONREMOVABLE))
2070 host->bus_ops->detect(host);
2073 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2074 * the card is no longer present.
2076 mmc_bus_put(host);
2077 mmc_bus_get(host);
2079 /* if there still is a card present, stop here */
2080 if (host->bus_ops != NULL) {
2081 mmc_bus_put(host);
2082 goto out;
2086 * Only we can add a new handler, so it's safe to
2087 * release the lock here.
2089 mmc_bus_put(host);
2091 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
2092 goto out;
2094 mmc_claim_host(host);
2095 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2096 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2097 break;
2098 if (freqs[i] <= host->f_min)
2099 break;
2101 mmc_release_host(host);
2103 out:
2104 if (host->caps & MMC_CAP_NEEDS_POLL)
2105 mmc_schedule_delayed_work(&host->detect, HZ);
2108 void mmc_start_host(struct mmc_host *host)
2110 mmc_power_off(host);
2111 mmc_detect_change(host, 0);
2114 void mmc_stop_host(struct mmc_host *host)
2116 #ifdef CONFIG_MMC_DEBUG
2117 unsigned long flags;
2118 spin_lock_irqsave(&host->lock, flags);
2119 host->removed = 1;
2120 spin_unlock_irqrestore(&host->lock, flags);
2121 #endif
2123 if (host->caps & MMC_CAP_DISABLE)
2124 cancel_delayed_work(&host->disable);
2125 cancel_delayed_work_sync(&host->detect);
2126 mmc_flush_scheduled_work();
2128 /* clear pm flags now and let card drivers set them as needed */
2129 host->pm_flags = 0;
2131 mmc_bus_get(host);
2132 if (host->bus_ops && !host->bus_dead) {
2133 if (host->bus_ops->remove)
2134 host->bus_ops->remove(host);
2136 mmc_claim_host(host);
2137 mmc_detach_bus(host);
2138 mmc_power_off(host);
2139 mmc_release_host(host);
2140 mmc_bus_put(host);
2141 return;
2143 mmc_bus_put(host);
2145 BUG_ON(host->card);
2147 mmc_power_off(host);
2150 int mmc_power_save_host(struct mmc_host *host)
2152 int ret = 0;
2154 #ifdef CONFIG_MMC_DEBUG
2155 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2156 #endif
2158 mmc_bus_get(host);
2160 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2161 mmc_bus_put(host);
2162 return -EINVAL;
2165 if (host->bus_ops->power_save)
2166 ret = host->bus_ops->power_save(host);
2168 mmc_bus_put(host);
2170 mmc_power_off(host);
2172 return ret;
2174 EXPORT_SYMBOL(mmc_power_save_host);
2176 int mmc_power_restore_host(struct mmc_host *host)
2178 int ret;
2180 #ifdef CONFIG_MMC_DEBUG
2181 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2182 #endif
2184 mmc_bus_get(host);
2186 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2187 mmc_bus_put(host);
2188 return -EINVAL;
2191 mmc_power_up(host);
2192 ret = host->bus_ops->power_restore(host);
2194 mmc_bus_put(host);
2196 return ret;
2198 EXPORT_SYMBOL(mmc_power_restore_host);
2200 int mmc_card_awake(struct mmc_host *host)
2202 int err = -ENOSYS;
2204 mmc_bus_get(host);
2206 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2207 err = host->bus_ops->awake(host);
2209 mmc_bus_put(host);
2211 return err;
2213 EXPORT_SYMBOL(mmc_card_awake);
2215 int mmc_card_sleep(struct mmc_host *host)
2217 int err = -ENOSYS;
2219 mmc_bus_get(host);
2221 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2222 err = host->bus_ops->sleep(host);
2224 mmc_bus_put(host);
2226 return err;
2228 EXPORT_SYMBOL(mmc_card_sleep);
2230 int mmc_card_can_sleep(struct mmc_host *host)
2232 struct mmc_card *card = host->card;
2234 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2235 return 1;
2236 return 0;
2238 EXPORT_SYMBOL(mmc_card_can_sleep);
2241 * Flush the cache to the non-volatile storage.
2243 int mmc_flush_cache(struct mmc_card *card)
2245 struct mmc_host *host = card->host;
2246 int err = 0;
2248 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2249 return err;
2251 if (mmc_card_mmc(card) &&
2252 (card->ext_csd.cache_size > 0) &&
2253 (card->ext_csd.cache_ctrl & 1)) {
2254 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2255 EXT_CSD_FLUSH_CACHE, 1, 0);
2256 if (err)
2257 pr_err("%s: cache flush error %d\n",
2258 mmc_hostname(card->host), err);
2261 return err;
2263 EXPORT_SYMBOL(mmc_flush_cache);
2266 * Turn the cache ON/OFF.
2267 * Turning the cache OFF shall trigger flushing of the data
2268 * to the non-volatile storage.
2270 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2272 struct mmc_card *card = host->card;
2273 int err = 0;
2275 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2276 mmc_card_is_removable(host))
2277 return err;
2279 if (card && mmc_card_mmc(card) &&
2280 (card->ext_csd.cache_size > 0)) {
2281 enable = !!enable;
2283 if (card->ext_csd.cache_ctrl ^ enable)
2284 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2285 EXT_CSD_CACHE_CTRL, enable, 0);
2286 if (err)
2287 pr_err("%s: cache %s error %d\n",
2288 mmc_hostname(card->host),
2289 enable ? "on" : "off",
2290 err);
2291 else
2292 card->ext_csd.cache_ctrl = enable;
2295 return err;
2297 EXPORT_SYMBOL(mmc_cache_ctrl);
2299 #ifdef CONFIG_PM
2302 * mmc_suspend_host - suspend a host
2303 * @host: mmc host
2305 int mmc_suspend_host(struct mmc_host *host)
2307 int err = 0;
2309 if (host->caps & MMC_CAP_DISABLE)
2310 cancel_delayed_work(&host->disable);
2311 cancel_delayed_work(&host->detect);
2312 mmc_flush_scheduled_work();
2313 err = mmc_cache_ctrl(host, 0);
2314 if (err)
2315 goto out;
2317 mmc_bus_get(host);
2318 if (host->bus_ops && !host->bus_dead) {
2321 * A long response time is not acceptable for device drivers
2322 * when doing suspend. Prevent mmc_claim_host in the suspend
2323 * sequence, to potentially wait "forever" by trying to
2324 * pre-claim the host.
2326 if (mmc_try_claim_host(host)) {
2327 if (host->bus_ops->suspend) {
2329 * For eMMC 4.5 device send notify command
2330 * before sleep, because in sleep state eMMC 4.5
2331 * devices respond to only RESET and AWAKE cmd
2333 mmc_poweroff_notify(host);
2334 err = host->bus_ops->suspend(host);
2336 mmc_do_release_host(host);
2338 if (err == -ENOSYS || !host->bus_ops->resume) {
2340 * We simply "remove" the card in this case.
2341 * It will be redetected on resume.
2343 if (host->bus_ops->remove)
2344 host->bus_ops->remove(host);
2345 mmc_claim_host(host);
2346 mmc_detach_bus(host);
2347 mmc_power_off(host);
2348 mmc_release_host(host);
2349 host->pm_flags = 0;
2350 err = 0;
2352 } else {
2353 err = -EBUSY;
2356 mmc_bus_put(host);
2358 if (!err && !mmc_card_keep_power(host))
2359 mmc_power_off(host);
2361 out:
2362 return err;
2365 EXPORT_SYMBOL(mmc_suspend_host);
2368 * mmc_resume_host - resume a previously suspended host
2369 * @host: mmc host
2371 int mmc_resume_host(struct mmc_host *host)
2373 int err = 0;
2375 mmc_bus_get(host);
2376 if (host->bus_ops && !host->bus_dead) {
2377 if (!mmc_card_keep_power(host)) {
2378 mmc_power_up(host);
2379 mmc_select_voltage(host, host->ocr);
2381 * Tell runtime PM core we just powered up the card,
2382 * since it still believes the card is powered off.
2383 * Note that currently runtime PM is only enabled
2384 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2386 if (mmc_card_sdio(host->card) &&
2387 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2388 pm_runtime_disable(&host->card->dev);
2389 pm_runtime_set_active(&host->card->dev);
2390 pm_runtime_enable(&host->card->dev);
2393 BUG_ON(!host->bus_ops->resume);
2394 err = host->bus_ops->resume(host);
2395 if (err) {
2396 pr_warning("%s: error %d during resume "
2397 "(card was removed?)\n",
2398 mmc_hostname(host), err);
2399 err = 0;
2402 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2403 mmc_bus_put(host);
2405 return err;
2407 EXPORT_SYMBOL(mmc_resume_host);
2409 /* Do the card removal on suspend if card is assumed removeable
2410 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2411 to sync the card.
2413 int mmc_pm_notify(struct notifier_block *notify_block,
2414 unsigned long mode, void *unused)
2416 struct mmc_host *host = container_of(
2417 notify_block, struct mmc_host, pm_notify);
2418 unsigned long flags;
2421 switch (mode) {
2422 case PM_HIBERNATION_PREPARE:
2423 case PM_SUSPEND_PREPARE:
2425 spin_lock_irqsave(&host->lock, flags);
2426 host->rescan_disable = 1;
2427 host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2428 spin_unlock_irqrestore(&host->lock, flags);
2429 cancel_delayed_work_sync(&host->detect);
2431 if (!host->bus_ops || host->bus_ops->suspend)
2432 break;
2434 mmc_claim_host(host);
2436 if (host->bus_ops->remove)
2437 host->bus_ops->remove(host);
2439 mmc_detach_bus(host);
2440 mmc_power_off(host);
2441 mmc_release_host(host);
2442 host->pm_flags = 0;
2443 break;
2445 case PM_POST_SUSPEND:
2446 case PM_POST_HIBERNATION:
2447 case PM_POST_RESTORE:
2449 spin_lock_irqsave(&host->lock, flags);
2450 host->rescan_disable = 0;
2451 host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2452 spin_unlock_irqrestore(&host->lock, flags);
2453 mmc_detect_change(host, 0);
2457 return 0;
2459 #endif
2461 static int __init mmc_init(void)
2463 int ret;
2465 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2466 if (!workqueue)
2467 return -ENOMEM;
2469 ret = mmc_register_bus();
2470 if (ret)
2471 goto destroy_workqueue;
2473 ret = mmc_register_host_class();
2474 if (ret)
2475 goto unregister_bus;
2477 ret = sdio_register_bus();
2478 if (ret)
2479 goto unregister_host_class;
2481 return 0;
2483 unregister_host_class:
2484 mmc_unregister_host_class();
2485 unregister_bus:
2486 mmc_unregister_bus();
2487 destroy_workqueue:
2488 destroy_workqueue(workqueue);
2490 return ret;
2493 static void __exit mmc_exit(void)
2495 sdio_unregister_bus();
2496 mmc_unregister_host_class();
2497 mmc_unregister_bus();
2498 destroy_workqueue(workqueue);
2501 subsys_initcall(mmc_init);
2502 module_exit(mmc_exit);
2504 MODULE_LICENSE("GPL");