aufs: tiny, lockdep sub-classing
[zen-stable.git] / mm / memblock.c
blob99f285599501482e8b48c77eb768a62981811cf6
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59 * Address comparison utilities
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
70 unsigned long i;
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
79 return (i < type->cnt) ? i : -1;
82 /**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
90 * Find @size free area aligned to @align in the specified range and node.
92 * RETURNS:
93 * Found address on success, %0 on failure.
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 phys_addr_t end, phys_addr_t size,
97 phys_addr_t align, int nid)
99 phys_addr_t this_start, this_end, cand;
100 u64 i;
102 /* pump up @end */
103 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 end = memblock.current_limit;
106 /* avoid allocating the first page */
107 start = max_t(phys_addr_t, start, PAGE_SIZE);
108 end = max(start, end);
110 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 this_start = clamp(this_start, start, end);
112 this_end = clamp(this_end, start, end);
114 if (this_end < size)
115 continue;
117 cand = round_down(this_end - size, align);
118 if (cand >= this_start)
119 return cand;
121 return 0;
125 * memblock_find_in_range - find free area in given range
126 * @start: start of candidate range
127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128 * @size: size of free area to find
129 * @align: alignment of free area to find
131 * Find @size free area aligned to @align in the specified range.
133 * RETURNS:
134 * Found address on success, %0 on failure.
136 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 phys_addr_t end, phys_addr_t size,
138 phys_addr_t align)
140 return memblock_find_in_range_node(start, end, size, align,
141 MAX_NUMNODES);
145 * Free memblock.reserved.regions
147 int __init_memblock memblock_free_reserved_regions(void)
149 if (memblock.reserved.regions == memblock_reserved_init_regions)
150 return 0;
152 return memblock_free(__pa(memblock.reserved.regions),
153 sizeof(struct memblock_region) * memblock.reserved.max);
157 * Reserve memblock.reserved.regions
159 int __init_memblock memblock_reserve_reserved_regions(void)
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
164 return memblock_reserve(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
168 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
170 type->total_size -= type->regions[r].size;
171 memmove(&type->regions[r], &type->regions[r + 1],
172 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
173 type->cnt--;
175 /* Special case for empty arrays */
176 if (type->cnt == 0) {
177 WARN_ON(type->total_size != 0);
178 type->cnt = 1;
179 type->regions[0].base = 0;
180 type->regions[0].size = 0;
181 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
185 static int __init_memblock memblock_double_array(struct memblock_type *type)
187 struct memblock_region *new_array, *old_array;
188 phys_addr_t old_size, new_size, addr;
189 int use_slab = slab_is_available();
191 /* We don't allow resizing until we know about the reserved regions
192 * of memory that aren't suitable for allocation
194 if (!memblock_can_resize)
195 return -1;
197 /* Calculate new doubled size */
198 old_size = type->max * sizeof(struct memblock_region);
199 new_size = old_size << 1;
201 /* Try to find some space for it.
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
212 if (use_slab) {
213 new_array = kmalloc(new_size, GFP_KERNEL);
214 addr = new_array ? __pa(new_array) : 0;
215 } else
216 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
217 if (!addr) {
218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 memblock_type_name(type), type->max, type->max * 2);
220 return -1;
222 new_array = __va(addr);
224 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
227 /* Found space, we now need to move the array over before
228 * we add the reserved region since it may be our reserved
229 * array itself that is full.
231 memcpy(new_array, type->regions, old_size);
232 memset(new_array + type->max, 0, old_size);
233 old_array = type->regions;
234 type->regions = new_array;
235 type->max <<= 1;
237 /* If we use SLAB that's it, we are done */
238 if (use_slab)
239 return 0;
241 /* Add the new reserved region now. Should not fail ! */
242 BUG_ON(memblock_reserve(addr, new_size));
244 /* If the array wasn't our static init one, then free it. We only do
245 * that before SLAB is available as later on, we don't know whether
246 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
247 * anyways
249 if (old_array != memblock_memory_init_regions &&
250 old_array != memblock_reserved_init_regions)
251 memblock_free(__pa(old_array), old_size);
253 return 0;
257 * memblock_merge_regions - merge neighboring compatible regions
258 * @type: memblock type to scan
260 * Scan @type and merge neighboring compatible regions.
262 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
264 int i = 0;
266 /* cnt never goes below 1 */
267 while (i < type->cnt - 1) {
268 struct memblock_region *this = &type->regions[i];
269 struct memblock_region *next = &type->regions[i + 1];
271 if (this->base + this->size != next->base ||
272 memblock_get_region_node(this) !=
273 memblock_get_region_node(next)) {
274 BUG_ON(this->base + this->size > next->base);
275 i++;
276 continue;
279 this->size += next->size;
280 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
281 type->cnt--;
286 * memblock_insert_region - insert new memblock region
287 * @type: memblock type to insert into
288 * @idx: index for the insertion point
289 * @base: base address of the new region
290 * @size: size of the new region
292 * Insert new memblock region [@base,@base+@size) into @type at @idx.
293 * @type must already have extra room to accomodate the new region.
295 static void __init_memblock memblock_insert_region(struct memblock_type *type,
296 int idx, phys_addr_t base,
297 phys_addr_t size, int nid)
299 struct memblock_region *rgn = &type->regions[idx];
301 BUG_ON(type->cnt >= type->max);
302 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
303 rgn->base = base;
304 rgn->size = size;
305 memblock_set_region_node(rgn, nid);
306 type->cnt++;
307 type->total_size += size;
311 * memblock_add_region - add new memblock region
312 * @type: memblock type to add new region into
313 * @base: base address of the new region
314 * @size: size of the new region
315 * @nid: nid of the new region
317 * Add new memblock region [@base,@base+@size) into @type. The new region
318 * is allowed to overlap with existing ones - overlaps don't affect already
319 * existing regions. @type is guaranteed to be minimal (all neighbouring
320 * compatible regions are merged) after the addition.
322 * RETURNS:
323 * 0 on success, -errno on failure.
325 static int __init_memblock memblock_add_region(struct memblock_type *type,
326 phys_addr_t base, phys_addr_t size, int nid)
328 bool insert = false;
329 phys_addr_t obase = base;
330 phys_addr_t end = base + memblock_cap_size(base, &size);
331 int i, nr_new;
333 /* special case for empty array */
334 if (type->regions[0].size == 0) {
335 WARN_ON(type->cnt != 1 || type->total_size);
336 type->regions[0].base = base;
337 type->regions[0].size = size;
338 memblock_set_region_node(&type->regions[0], nid);
339 type->total_size = size;
340 return 0;
342 repeat:
344 * The following is executed twice. Once with %false @insert and
345 * then with %true. The first counts the number of regions needed
346 * to accomodate the new area. The second actually inserts them.
348 base = obase;
349 nr_new = 0;
351 for (i = 0; i < type->cnt; i++) {
352 struct memblock_region *rgn = &type->regions[i];
353 phys_addr_t rbase = rgn->base;
354 phys_addr_t rend = rbase + rgn->size;
356 if (rbase >= end)
357 break;
358 if (rend <= base)
359 continue;
361 * @rgn overlaps. If it separates the lower part of new
362 * area, insert that portion.
364 if (rbase > base) {
365 nr_new++;
366 if (insert)
367 memblock_insert_region(type, i++, base,
368 rbase - base, nid);
370 /* area below @rend is dealt with, forget about it */
371 base = min(rend, end);
374 /* insert the remaining portion */
375 if (base < end) {
376 nr_new++;
377 if (insert)
378 memblock_insert_region(type, i, base, end - base, nid);
382 * If this was the first round, resize array and repeat for actual
383 * insertions; otherwise, merge and return.
385 if (!insert) {
386 while (type->cnt + nr_new > type->max)
387 if (memblock_double_array(type) < 0)
388 return -ENOMEM;
389 insert = true;
390 goto repeat;
391 } else {
392 memblock_merge_regions(type);
393 return 0;
397 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
398 int nid)
400 return memblock_add_region(&memblock.memory, base, size, nid);
403 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
405 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
409 * memblock_isolate_range - isolate given range into disjoint memblocks
410 * @type: memblock type to isolate range for
411 * @base: base of range to isolate
412 * @size: size of range to isolate
413 * @start_rgn: out parameter for the start of isolated region
414 * @end_rgn: out parameter for the end of isolated region
416 * Walk @type and ensure that regions don't cross the boundaries defined by
417 * [@base,@base+@size). Crossing regions are split at the boundaries,
418 * which may create at most two more regions. The index of the first
419 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
421 * RETURNS:
422 * 0 on success, -errno on failure.
424 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
425 phys_addr_t base, phys_addr_t size,
426 int *start_rgn, int *end_rgn)
428 phys_addr_t end = base + memblock_cap_size(base, &size);
429 int i;
431 *start_rgn = *end_rgn = 0;
433 /* we'll create at most two more regions */
434 while (type->cnt + 2 > type->max)
435 if (memblock_double_array(type) < 0)
436 return -ENOMEM;
438 for (i = 0; i < type->cnt; i++) {
439 struct memblock_region *rgn = &type->regions[i];
440 phys_addr_t rbase = rgn->base;
441 phys_addr_t rend = rbase + rgn->size;
443 if (rbase >= end)
444 break;
445 if (rend <= base)
446 continue;
448 if (rbase < base) {
450 * @rgn intersects from below. Split and continue
451 * to process the next region - the new top half.
453 rgn->base = base;
454 rgn->size -= base - rbase;
455 type->total_size -= base - rbase;
456 memblock_insert_region(type, i, rbase, base - rbase,
457 memblock_get_region_node(rgn));
458 } else if (rend > end) {
460 * @rgn intersects from above. Split and redo the
461 * current region - the new bottom half.
463 rgn->base = end;
464 rgn->size -= end - rbase;
465 type->total_size -= end - rbase;
466 memblock_insert_region(type, i--, rbase, end - rbase,
467 memblock_get_region_node(rgn));
468 } else {
469 /* @rgn is fully contained, record it */
470 if (!*end_rgn)
471 *start_rgn = i;
472 *end_rgn = i + 1;
476 return 0;
479 static int __init_memblock __memblock_remove(struct memblock_type *type,
480 phys_addr_t base, phys_addr_t size)
482 int start_rgn, end_rgn;
483 int i, ret;
485 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
486 if (ret)
487 return ret;
489 for (i = end_rgn - 1; i >= start_rgn; i--)
490 memblock_remove_region(type, i);
491 return 0;
494 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
496 return __memblock_remove(&memblock.memory, base, size);
499 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
501 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
502 (unsigned long long)base,
503 (unsigned long long)base + size,
504 (void *)_RET_IP_);
506 return __memblock_remove(&memblock.reserved, base, size);
509 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
511 struct memblock_type *_rgn = &memblock.reserved;
513 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
514 (unsigned long long)base,
515 (unsigned long long)base + size,
516 (void *)_RET_IP_);
517 BUG_ON(0 == size);
519 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
523 * __next_free_mem_range - next function for for_each_free_mem_range()
524 * @idx: pointer to u64 loop variable
525 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
526 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
527 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
528 * @p_nid: ptr to int for nid of the range, can be %NULL
530 * Find the first free area from *@idx which matches @nid, fill the out
531 * parameters, and update *@idx for the next iteration. The lower 32bit of
532 * *@idx contains index into memory region and the upper 32bit indexes the
533 * areas before each reserved region. For example, if reserved regions
534 * look like the following,
536 * 0:[0-16), 1:[32-48), 2:[128-130)
538 * The upper 32bit indexes the following regions.
540 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
542 * As both region arrays are sorted, the function advances the two indices
543 * in lockstep and returns each intersection.
545 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
546 phys_addr_t *out_start,
547 phys_addr_t *out_end, int *out_nid)
549 struct memblock_type *mem = &memblock.memory;
550 struct memblock_type *rsv = &memblock.reserved;
551 int mi = *idx & 0xffffffff;
552 int ri = *idx >> 32;
554 for ( ; mi < mem->cnt; mi++) {
555 struct memblock_region *m = &mem->regions[mi];
556 phys_addr_t m_start = m->base;
557 phys_addr_t m_end = m->base + m->size;
559 /* only memory regions are associated with nodes, check it */
560 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
561 continue;
563 /* scan areas before each reservation for intersection */
564 for ( ; ri < rsv->cnt + 1; ri++) {
565 struct memblock_region *r = &rsv->regions[ri];
566 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
567 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
569 /* if ri advanced past mi, break out to advance mi */
570 if (r_start >= m_end)
571 break;
572 /* if the two regions intersect, we're done */
573 if (m_start < r_end) {
574 if (out_start)
575 *out_start = max(m_start, r_start);
576 if (out_end)
577 *out_end = min(m_end, r_end);
578 if (out_nid)
579 *out_nid = memblock_get_region_node(m);
581 * The region which ends first is advanced
582 * for the next iteration.
584 if (m_end <= r_end)
585 mi++;
586 else
587 ri++;
588 *idx = (u32)mi | (u64)ri << 32;
589 return;
594 /* signal end of iteration */
595 *idx = ULLONG_MAX;
599 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
600 * @idx: pointer to u64 loop variable
601 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
602 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
603 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
604 * @p_nid: ptr to int for nid of the range, can be %NULL
606 * Reverse of __next_free_mem_range().
608 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
609 phys_addr_t *out_start,
610 phys_addr_t *out_end, int *out_nid)
612 struct memblock_type *mem = &memblock.memory;
613 struct memblock_type *rsv = &memblock.reserved;
614 int mi = *idx & 0xffffffff;
615 int ri = *idx >> 32;
617 if (*idx == (u64)ULLONG_MAX) {
618 mi = mem->cnt - 1;
619 ri = rsv->cnt;
622 for ( ; mi >= 0; mi--) {
623 struct memblock_region *m = &mem->regions[mi];
624 phys_addr_t m_start = m->base;
625 phys_addr_t m_end = m->base + m->size;
627 /* only memory regions are associated with nodes, check it */
628 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
629 continue;
631 /* scan areas before each reservation for intersection */
632 for ( ; ri >= 0; ri--) {
633 struct memblock_region *r = &rsv->regions[ri];
634 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
635 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
637 /* if ri advanced past mi, break out to advance mi */
638 if (r_end <= m_start)
639 break;
640 /* if the two regions intersect, we're done */
641 if (m_end > r_start) {
642 if (out_start)
643 *out_start = max(m_start, r_start);
644 if (out_end)
645 *out_end = min(m_end, r_end);
646 if (out_nid)
647 *out_nid = memblock_get_region_node(m);
649 if (m_start >= r_start)
650 mi--;
651 else
652 ri--;
653 *idx = (u32)mi | (u64)ri << 32;
654 return;
659 *idx = ULLONG_MAX;
662 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
664 * Common iterator interface used to define for_each_mem_range().
666 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
667 unsigned long *out_start_pfn,
668 unsigned long *out_end_pfn, int *out_nid)
670 struct memblock_type *type = &memblock.memory;
671 struct memblock_region *r;
673 while (++*idx < type->cnt) {
674 r = &type->regions[*idx];
676 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
677 continue;
678 if (nid == MAX_NUMNODES || nid == r->nid)
679 break;
681 if (*idx >= type->cnt) {
682 *idx = -1;
683 return;
686 if (out_start_pfn)
687 *out_start_pfn = PFN_UP(r->base);
688 if (out_end_pfn)
689 *out_end_pfn = PFN_DOWN(r->base + r->size);
690 if (out_nid)
691 *out_nid = r->nid;
695 * memblock_set_node - set node ID on memblock regions
696 * @base: base of area to set node ID for
697 * @size: size of area to set node ID for
698 * @nid: node ID to set
700 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
701 * Regions which cross the area boundaries are split as necessary.
703 * RETURNS:
704 * 0 on success, -errno on failure.
706 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
707 int nid)
709 struct memblock_type *type = &memblock.memory;
710 int start_rgn, end_rgn;
711 int i, ret;
713 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
714 if (ret)
715 return ret;
717 for (i = start_rgn; i < end_rgn; i++)
718 type->regions[i].nid = nid;
720 memblock_merge_regions(type);
721 return 0;
723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
725 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
726 phys_addr_t align, phys_addr_t max_addr,
727 int nid)
729 phys_addr_t found;
731 /* align @size to avoid excessive fragmentation on reserved array */
732 size = round_up(size, align);
734 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
735 if (found && !memblock_reserve(found, size))
736 return found;
738 return 0;
741 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
743 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
746 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
748 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
751 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
753 phys_addr_t alloc;
755 alloc = __memblock_alloc_base(size, align, max_addr);
757 if (alloc == 0)
758 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
759 (unsigned long long) size, (unsigned long long) max_addr);
761 return alloc;
764 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
766 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
769 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
771 phys_addr_t res = memblock_alloc_nid(size, align, nid);
773 if (res)
774 return res;
775 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
780 * Remaining API functions
783 phys_addr_t __init memblock_phys_mem_size(void)
785 return memblock.memory.total_size;
788 /* lowest address */
789 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
791 return memblock.memory.regions[0].base;
794 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
796 int idx = memblock.memory.cnt - 1;
798 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
801 void __init memblock_enforce_memory_limit(phys_addr_t limit)
803 unsigned long i;
804 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
806 if (!limit)
807 return;
809 /* find out max address */
810 for (i = 0; i < memblock.memory.cnt; i++) {
811 struct memblock_region *r = &memblock.memory.regions[i];
813 if (limit <= r->size) {
814 max_addr = r->base + limit;
815 break;
817 limit -= r->size;
820 /* truncate both memory and reserved regions */
821 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
822 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
825 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
827 unsigned int left = 0, right = type->cnt;
829 do {
830 unsigned int mid = (right + left) / 2;
832 if (addr < type->regions[mid].base)
833 right = mid;
834 else if (addr >= (type->regions[mid].base +
835 type->regions[mid].size))
836 left = mid + 1;
837 else
838 return mid;
839 } while (left < right);
840 return -1;
843 int __init memblock_is_reserved(phys_addr_t addr)
845 return memblock_search(&memblock.reserved, addr) != -1;
848 int __init_memblock memblock_is_memory(phys_addr_t addr)
850 return memblock_search(&memblock.memory, addr) != -1;
853 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
855 int idx = memblock_search(&memblock.memory, base);
856 phys_addr_t end = base + memblock_cap_size(base, &size);
858 if (idx == -1)
859 return 0;
860 return memblock.memory.regions[idx].base <= base &&
861 (memblock.memory.regions[idx].base +
862 memblock.memory.regions[idx].size) >= end;
865 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
867 memblock_cap_size(base, &size);
868 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
872 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
874 memblock.current_limit = limit;
877 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
879 unsigned long long base, size;
880 int i;
882 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
884 for (i = 0; i < type->cnt; i++) {
885 struct memblock_region *rgn = &type->regions[i];
886 char nid_buf[32] = "";
888 base = rgn->base;
889 size = rgn->size;
890 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
891 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
892 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
893 memblock_get_region_node(rgn));
894 #endif
895 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
896 name, i, base, base + size - 1, size, nid_buf);
900 void __init_memblock __memblock_dump_all(void)
902 pr_info("MEMBLOCK configuration:\n");
903 pr_info(" memory size = %#llx reserved size = %#llx\n",
904 (unsigned long long)memblock.memory.total_size,
905 (unsigned long long)memblock.reserved.total_size);
907 memblock_dump(&memblock.memory, "memory");
908 memblock_dump(&memblock.reserved, "reserved");
911 void __init memblock_allow_resize(void)
913 memblock_can_resize = 1;
916 static int __init early_memblock(char *p)
918 if (p && strstr(p, "debug"))
919 memblock_debug = 1;
920 return 0;
922 early_param("memblock", early_memblock);
924 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
926 static int memblock_debug_show(struct seq_file *m, void *private)
928 struct memblock_type *type = m->private;
929 struct memblock_region *reg;
930 int i;
932 for (i = 0; i < type->cnt; i++) {
933 reg = &type->regions[i];
934 seq_printf(m, "%4d: ", i);
935 if (sizeof(phys_addr_t) == 4)
936 seq_printf(m, "0x%08lx..0x%08lx\n",
937 (unsigned long)reg->base,
938 (unsigned long)(reg->base + reg->size - 1));
939 else
940 seq_printf(m, "0x%016llx..0x%016llx\n",
941 (unsigned long long)reg->base,
942 (unsigned long long)(reg->base + reg->size - 1));
945 return 0;
948 static int memblock_debug_open(struct inode *inode, struct file *file)
950 return single_open(file, memblock_debug_show, inode->i_private);
953 static const struct file_operations memblock_debug_fops = {
954 .open = memblock_debug_open,
955 .read = seq_read,
956 .llseek = seq_lseek,
957 .release = single_release,
960 static int __init memblock_init_debugfs(void)
962 struct dentry *root = debugfs_create_dir("memblock", NULL);
963 if (!root)
964 return -ENXIO;
965 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
966 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
968 return 0;
970 __initcall(memblock_init_debugfs);
972 #endif /* CONFIG_DEBUG_FS */