6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
114 unsigned long free
, allowed
;
116 vm_acct_memory(pages
);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
124 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
125 free
= global_page_state(NR_FREE_PAGES
);
126 free
+= global_page_state(NR_FILE_PAGES
);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free
-= global_page_state(NR_SHMEM
);
136 free
+= nr_swap_pages
;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free
<= totalreserve_pages
)
152 free
-= totalreserve_pages
;
155 * Leave the last 3% for root
166 allowed
= (totalram_pages
- hugetlb_total_pages())
167 * sysctl_overcommit_ratio
/ 100;
169 * Leave the last 3% for root
172 allowed
-= allowed
/ 32;
173 allowed
+= total_swap_pages
;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
178 allowed
-= mm
->total_vm
/ 32;
180 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
183 vm_unacct_memory(pages
);
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
192 struct file
*file
, struct address_space
*mapping
)
194 if (vma
->vm_flags
& VM_DENYWRITE
)
195 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
196 if (vma
->vm_flags
& VM_SHARED
)
197 mapping
->i_mmap_writable
--;
199 flush_dcache_mmap_lock(mapping
);
200 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
201 list_del_init(&vma
->shared
.vm_set
.list
);
203 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
204 flush_dcache_mmap_unlock(mapping
);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct
*vma
)
213 struct file
*file
= vma
->vm_file
;
216 struct address_space
*mapping
= file
->f_mapping
;
217 mutex_lock(&mapping
->i_mmap_mutex
);
218 __remove_shared_vm_struct(vma
, file
, mapping
);
219 mutex_unlock(&mapping
->i_mmap_mutex
);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
228 struct vm_area_struct
*next
= vma
->vm_next
;
231 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
232 vma
->vm_ops
->close(vma
);
236 fput(vma
->vm_prfile
);
237 if (vma
->vm_flags
& VM_EXECUTABLE
)
238 removed_exe_file_vma(vma
->vm_mm
);
240 mpol_put(vma_policy(vma
));
241 kmem_cache_free(vm_area_cachep
, vma
);
245 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
247 unsigned long rlim
, retval
;
248 unsigned long newbrk
, oldbrk
;
249 struct mm_struct
*mm
= current
->mm
;
250 unsigned long min_brk
;
252 down_write(&mm
->mmap_sem
);
254 #ifdef CONFIG_COMPAT_BRK
256 * CONFIG_COMPAT_BRK can still be overridden by setting
257 * randomize_va_space to 2, which will still cause mm->start_brk
258 * to be arbitrarily shifted
260 if (current
->brk_randomized
)
261 min_brk
= mm
->start_brk
;
263 min_brk
= mm
->end_data
;
265 min_brk
= mm
->start_brk
;
271 * Check against rlimit here. If this check is done later after the test
272 * of oldbrk with newbrk then it can escape the test and let the data
273 * segment grow beyond its set limit the in case where the limit is
274 * not page aligned -Ram Gupta
276 rlim
= rlimit(RLIMIT_DATA
);
277 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
278 (mm
->end_data
- mm
->start_data
) > rlim
)
281 newbrk
= PAGE_ALIGN(brk
);
282 oldbrk
= PAGE_ALIGN(mm
->brk
);
283 if (oldbrk
== newbrk
)
286 /* Always allow shrinking brk. */
287 if (brk
<= mm
->brk
) {
288 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
293 /* Check against existing mmap mappings. */
294 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
297 /* Ok, looks good - let it rip. */
298 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
304 up_write(&mm
->mmap_sem
);
309 static int browse_rb(struct rb_root
*root
)
312 struct rb_node
*nd
, *pn
= NULL
;
313 unsigned long prev
= 0, pend
= 0;
315 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
316 struct vm_area_struct
*vma
;
317 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
318 if (vma
->vm_start
< prev
)
319 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
320 if (vma
->vm_start
< pend
)
321 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
322 if (vma
->vm_start
> vma
->vm_end
)
323 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
326 prev
= vma
->vm_start
;
330 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
334 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
338 void validate_mm(struct mm_struct
*mm
)
342 struct vm_area_struct
*tmp
= mm
->mmap
;
347 if (i
!= mm
->map_count
)
348 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
349 i
= browse_rb(&mm
->mm_rb
);
350 if (i
!= mm
->map_count
)
351 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
355 #define validate_mm(mm) do { } while (0)
358 static struct vm_area_struct
*
359 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
360 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
361 struct rb_node
** rb_parent
)
363 struct vm_area_struct
* vma
;
364 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
366 __rb_link
= &mm
->mm_rb
.rb_node
;
367 rb_prev
= __rb_parent
= NULL
;
371 struct vm_area_struct
*vma_tmp
;
373 __rb_parent
= *__rb_link
;
374 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
376 if (vma_tmp
->vm_end
> addr
) {
378 if (vma_tmp
->vm_start
<= addr
)
380 __rb_link
= &__rb_parent
->rb_left
;
382 rb_prev
= __rb_parent
;
383 __rb_link
= &__rb_parent
->rb_right
;
389 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
390 *rb_link
= __rb_link
;
391 *rb_parent
= __rb_parent
;
395 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
396 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
398 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
399 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
402 static void __vma_link_file(struct vm_area_struct
*vma
)
408 struct address_space
*mapping
= file
->f_mapping
;
410 if (vma
->vm_flags
& VM_DENYWRITE
)
411 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
412 if (vma
->vm_flags
& VM_SHARED
)
413 mapping
->i_mmap_writable
++;
415 flush_dcache_mmap_lock(mapping
);
416 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
417 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
419 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
420 flush_dcache_mmap_unlock(mapping
);
425 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
426 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
427 struct rb_node
*rb_parent
)
429 __vma_link_list(mm
, vma
, prev
, rb_parent
);
430 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
433 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
434 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
435 struct rb_node
*rb_parent
)
437 struct address_space
*mapping
= NULL
;
440 mapping
= vma
->vm_file
->f_mapping
;
443 mutex_lock(&mapping
->i_mmap_mutex
);
445 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
446 __vma_link_file(vma
);
449 mutex_unlock(&mapping
->i_mmap_mutex
);
456 * Helper for vma_adjust in the split_vma insert case:
457 * insert vm structure into list and rbtree and anon_vma,
458 * but it has already been inserted into prio_tree earlier.
460 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
462 struct vm_area_struct
*__vma
, *prev
;
463 struct rb_node
**rb_link
, *rb_parent
;
465 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
466 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
467 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
472 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
473 struct vm_area_struct
*prev
)
475 struct vm_area_struct
*next
= vma
->vm_next
;
477 prev
->vm_next
= next
;
479 next
->vm_prev
= prev
;
480 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
481 if (mm
->mmap_cache
== vma
)
482 mm
->mmap_cache
= prev
;
486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487 * is already present in an i_mmap tree without adjusting the tree.
488 * The following helper function should be used when such adjustments
489 * are necessary. The "insert" vma (if any) is to be inserted
490 * before we drop the necessary locks.
492 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
493 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
495 struct mm_struct
*mm
= vma
->vm_mm
;
496 struct vm_area_struct
*next
= vma
->vm_next
;
497 struct vm_area_struct
*importer
= NULL
;
498 struct address_space
*mapping
= NULL
;
499 struct prio_tree_root
*root
= NULL
;
500 struct anon_vma
*anon_vma
= NULL
;
501 struct file
*file
= vma
->vm_file
;
502 long adjust_next
= 0;
505 if (next
&& !insert
) {
506 struct vm_area_struct
*exporter
= NULL
;
508 if (end
>= next
->vm_end
) {
510 * vma expands, overlapping all the next, and
511 * perhaps the one after too (mprotect case 6).
513 again
: remove_next
= 1 + (end
> next
->vm_end
);
517 } else if (end
> next
->vm_start
) {
519 * vma expands, overlapping part of the next:
520 * mprotect case 5 shifting the boundary up.
522 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
525 } else if (end
< vma
->vm_end
) {
527 * vma shrinks, and !insert tells it's not
528 * split_vma inserting another: so it must be
529 * mprotect case 4 shifting the boundary down.
531 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
537 * Easily overlooked: when mprotect shifts the boundary,
538 * make sure the expanding vma has anon_vma set if the
539 * shrinking vma had, to cover any anon pages imported.
541 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
542 if (anon_vma_clone(importer
, exporter
))
544 importer
->anon_vma
= exporter
->anon_vma
;
549 mapping
= file
->f_mapping
;
550 if (!(vma
->vm_flags
& VM_NONLINEAR
))
551 root
= &mapping
->i_mmap
;
552 mutex_lock(&mapping
->i_mmap_mutex
);
555 * Put into prio_tree now, so instantiated pages
556 * are visible to arm/parisc __flush_dcache_page
557 * throughout; but we cannot insert into address
558 * space until vma start or end is updated.
560 __vma_link_file(insert
);
564 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
567 * When changing only vma->vm_end, we don't really need anon_vma
568 * lock. This is a fairly rare case by itself, but the anon_vma
569 * lock may be shared between many sibling processes. Skipping
570 * the lock for brk adjustments makes a difference sometimes.
572 if (vma
->anon_vma
&& (importer
|| start
!= vma
->vm_start
)) {
573 anon_vma
= vma
->anon_vma
;
574 anon_vma_lock(anon_vma
);
578 flush_dcache_mmap_lock(mapping
);
579 vma_prio_tree_remove(vma
, root
);
581 vma_prio_tree_remove(next
, root
);
584 vma
->vm_start
= start
;
586 vma
->vm_pgoff
= pgoff
;
588 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
589 next
->vm_pgoff
+= adjust_next
;
594 vma_prio_tree_insert(next
, root
);
595 vma_prio_tree_insert(vma
, root
);
596 flush_dcache_mmap_unlock(mapping
);
601 * vma_merge has merged next into vma, and needs
602 * us to remove next before dropping the locks.
604 __vma_unlink(mm
, next
, vma
);
606 __remove_shared_vm_struct(next
, file
, mapping
);
609 * split_vma has split insert from vma, and needs
610 * us to insert it before dropping the locks
611 * (it may either follow vma or precede it).
613 __insert_vm_struct(mm
, insert
);
617 anon_vma_unlock(anon_vma
);
619 mutex_unlock(&mapping
->i_mmap_mutex
);
625 fput(vma
->vm_prfile
);
626 if (next
->vm_flags
& VM_EXECUTABLE
)
627 removed_exe_file_vma(mm
);
630 anon_vma_merge(vma
, next
);
632 mpol_put(vma_policy(next
));
633 kmem_cache_free(vm_area_cachep
, next
);
635 * In mprotect's case 6 (see comments on vma_merge),
636 * we must remove another next too. It would clutter
637 * up the code too much to do both in one go.
639 if (remove_next
== 2) {
651 * If the vma has a ->close operation then the driver probably needs to release
652 * per-vma resources, so we don't attempt to merge those.
654 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
655 struct file
*file
, unsigned long vm_flags
)
657 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
658 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
660 if (vma
->vm_file
!= file
)
662 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
667 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
668 struct anon_vma
*anon_vma2
,
669 struct vm_area_struct
*vma
)
672 * The list_is_singular() test is to avoid merging VMA cloned from
673 * parents. This can improve scalability caused by anon_vma lock.
675 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
676 list_is_singular(&vma
->anon_vma_chain
)))
678 return anon_vma1
== anon_vma2
;
682 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
683 * in front of (at a lower virtual address and file offset than) the vma.
685 * We cannot merge two vmas if they have differently assigned (non-NULL)
686 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688 * We don't check here for the merged mmap wrapping around the end of pagecache
689 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
690 * wrap, nor mmaps which cover the final page at index -1UL.
693 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
694 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
696 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
697 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
698 if (vma
->vm_pgoff
== vm_pgoff
)
705 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
706 * beyond (at a higher virtual address and file offset than) the vma.
708 * We cannot merge two vmas if they have differently assigned (non-NULL)
709 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
713 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
715 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
716 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
718 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
719 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
726 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
727 * whether that can be merged with its predecessor or its successor.
728 * Or both (it neatly fills a hole).
730 * In most cases - when called for mmap, brk or mremap - [addr,end) is
731 * certain not to be mapped by the time vma_merge is called; but when
732 * called for mprotect, it is certain to be already mapped (either at
733 * an offset within prev, or at the start of next), and the flags of
734 * this area are about to be changed to vm_flags - and the no-change
735 * case has already been eliminated.
737 * The following mprotect cases have to be considered, where AAAA is
738 * the area passed down from mprotect_fixup, never extending beyond one
739 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741 * AAAA AAAA AAAA AAAA
742 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
743 * cannot merge might become might become might become
744 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
745 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
746 * mremap move: PPPPNNNNNNNN 8
748 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
749 * might become case 1 below case 2 below case 3 below
751 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
752 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
755 struct vm_area_struct
*prev
, unsigned long addr
,
756 unsigned long end
, unsigned long vm_flags
,
757 struct anon_vma
*anon_vma
, struct file
*file
,
758 pgoff_t pgoff
, struct mempolicy
*policy
)
760 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
761 struct vm_area_struct
*area
, *next
;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags
& VM_SPECIAL
)
772 next
= prev
->vm_next
;
776 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
777 next
= next
->vm_next
;
780 * Can it merge with the predecessor?
782 if (prev
&& prev
->vm_end
== addr
&&
783 mpol_equal(vma_policy(prev
), policy
) &&
784 can_vma_merge_after(prev
, vm_flags
,
785 anon_vma
, file
, pgoff
)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next
&& end
== next
->vm_start
&&
790 mpol_equal(policy
, vma_policy(next
)) &&
791 can_vma_merge_before(next
, vm_flags
,
792 anon_vma
, file
, pgoff
+pglen
) &&
793 is_mergeable_anon_vma(prev
->anon_vma
,
794 next
->anon_vma
, NULL
)) {
796 err
= vma_adjust(prev
, prev
->vm_start
,
797 next
->vm_end
, prev
->vm_pgoff
, NULL
);
798 } else /* cases 2, 5, 7 */
799 err
= vma_adjust(prev
, prev
->vm_start
,
800 end
, prev
->vm_pgoff
, NULL
);
803 khugepaged_enter_vma_merge(prev
);
808 * Can this new request be merged in front of next?
810 if (next
&& end
== next
->vm_start
&&
811 mpol_equal(policy
, vma_policy(next
)) &&
812 can_vma_merge_before(next
, vm_flags
,
813 anon_vma
, file
, pgoff
+pglen
)) {
814 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
815 err
= vma_adjust(prev
, prev
->vm_start
,
816 addr
, prev
->vm_pgoff
, NULL
);
817 else /* cases 3, 8 */
818 err
= vma_adjust(area
, addr
, next
->vm_end
,
819 next
->vm_pgoff
- pglen
, NULL
);
822 khugepaged_enter_vma_merge(area
);
830 * Rough compatbility check to quickly see if it's even worth looking
831 * at sharing an anon_vma.
833 * They need to have the same vm_file, and the flags can only differ
834 * in things that mprotect may change.
836 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
837 * we can merge the two vma's. For example, we refuse to merge a vma if
838 * there is a vm_ops->close() function, because that indicates that the
839 * driver is doing some kind of reference counting. But that doesn't
840 * really matter for the anon_vma sharing case.
842 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
844 return a
->vm_end
== b
->vm_start
&&
845 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
846 a
->vm_file
== b
->vm_file
&&
847 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
848 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
852 * Do some basic sanity checking to see if we can re-use the anon_vma
853 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
854 * the same as 'old', the other will be the new one that is trying
855 * to share the anon_vma.
857 * NOTE! This runs with mm_sem held for reading, so it is possible that
858 * the anon_vma of 'old' is concurrently in the process of being set up
859 * by another page fault trying to merge _that_. But that's ok: if it
860 * is being set up, that automatically means that it will be a singleton
861 * acceptable for merging, so we can do all of this optimistically. But
862 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
864 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
865 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
866 * is to return an anon_vma that is "complex" due to having gone through
869 * We also make sure that the two vma's are compatible (adjacent,
870 * and with the same memory policies). That's all stable, even with just
871 * a read lock on the mm_sem.
873 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
875 if (anon_vma_compatible(a
, b
)) {
876 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
878 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
885 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
886 * neighbouring vmas for a suitable anon_vma, before it goes off
887 * to allocate a new anon_vma. It checks because a repetitive
888 * sequence of mprotects and faults may otherwise lead to distinct
889 * anon_vmas being allocated, preventing vma merge in subsequent
892 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
894 struct anon_vma
*anon_vma
;
895 struct vm_area_struct
*near
;
901 anon_vma
= reusable_anon_vma(near
, vma
, near
);
909 anon_vma
= reusable_anon_vma(near
, near
, vma
);
914 * There's no absolute need to look only at touching neighbours:
915 * we could search further afield for "compatible" anon_vmas.
916 * But it would probably just be a waste of time searching,
917 * or lead to too many vmas hanging off the same anon_vma.
918 * We're trying to allow mprotect remerging later on,
919 * not trying to minimize memory used for anon_vmas.
924 #ifdef CONFIG_PROC_FS
925 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
926 struct file
*file
, long pages
)
928 const unsigned long stack_flags
929 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
932 mm
->shared_vm
+= pages
;
933 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
934 mm
->exec_vm
+= pages
;
935 } else if (flags
& stack_flags
)
936 mm
->stack_vm
+= pages
;
937 if (flags
& (VM_RESERVED
|VM_IO
))
938 mm
->reserved_vm
+= pages
;
940 #endif /* CONFIG_PROC_FS */
943 * The caller must hold down_write(¤t->mm->mmap_sem).
946 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
947 unsigned long len
, unsigned long prot
,
948 unsigned long flags
, unsigned long pgoff
)
950 struct mm_struct
* mm
= current
->mm
;
954 unsigned long reqprot
= prot
;
957 * Does the application expect PROT_READ to imply PROT_EXEC?
959 * (the exception is when the underlying filesystem is noexec
960 * mounted, in which case we dont add PROT_EXEC.)
962 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
963 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
969 if (!(flags
& MAP_FIXED
))
970 addr
= round_hint_to_min(addr
);
972 /* Careful about overflows.. */
973 len
= PAGE_ALIGN(len
);
977 /* offset overflow? */
978 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
981 /* Too many mappings? */
982 if (mm
->map_count
> sysctl_max_map_count
)
985 /* Obtain the address to map to. we verify (or select) it and ensure
986 * that it represents a valid section of the address space.
988 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
989 if (addr
& ~PAGE_MASK
)
992 /* Do simple checking here so the lower-level routines won't have
993 * to. we assume access permissions have been handled by the open
994 * of the memory object, so we don't do any here.
996 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
997 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
999 if (flags
& MAP_LOCKED
)
1000 if (!can_do_mlock())
1003 /* mlock MCL_FUTURE? */
1004 if (vm_flags
& VM_LOCKED
) {
1005 unsigned long locked
, lock_limit
;
1006 locked
= len
>> PAGE_SHIFT
;
1007 locked
+= mm
->locked_vm
;
1008 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1009 lock_limit
>>= PAGE_SHIFT
;
1010 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1014 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1017 switch (flags
& MAP_TYPE
) {
1019 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1023 * Make sure we don't allow writing to an append-only
1026 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1030 * Make sure there are no mandatory locks on the file.
1032 if (locks_verify_locked(inode
))
1035 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1036 if (!(file
->f_mode
& FMODE_WRITE
))
1037 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1041 if (!(file
->f_mode
& FMODE_READ
))
1043 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1044 if (vm_flags
& VM_EXEC
)
1046 vm_flags
&= ~VM_MAYEXEC
;
1049 if (!file
->f_op
|| !file
->f_op
->mmap
)
1057 switch (flags
& MAP_TYPE
) {
1063 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1067 * Set pgoff according to addr for anon_vma.
1069 pgoff
= addr
>> PAGE_SHIFT
;
1076 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1080 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1082 EXPORT_SYMBOL(do_mmap_pgoff
);
1084 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1085 unsigned long, prot
, unsigned long, flags
,
1086 unsigned long, fd
, unsigned long, pgoff
)
1088 struct file
*file
= NULL
;
1089 unsigned long retval
= -EBADF
;
1091 if (!(flags
& MAP_ANONYMOUS
)) {
1092 audit_mmap_fd(fd
, flags
);
1093 if (unlikely(flags
& MAP_HUGETLB
))
1098 } else if (flags
& MAP_HUGETLB
) {
1099 struct user_struct
*user
= NULL
;
1101 * VM_NORESERVE is used because the reservations will be
1102 * taken when vm_ops->mmap() is called
1103 * A dummy user value is used because we are not locking
1104 * memory so no accounting is necessary
1106 len
= ALIGN(len
, huge_page_size(&default_hstate
));
1107 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
1108 &user
, HUGETLB_ANONHUGE_INODE
);
1110 return PTR_ERR(file
);
1113 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1115 down_write(¤t
->mm
->mmap_sem
);
1116 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1117 up_write(¤t
->mm
->mmap_sem
);
1125 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1126 struct mmap_arg_struct
{
1130 unsigned long flags
;
1132 unsigned long offset
;
1135 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1137 struct mmap_arg_struct a
;
1139 if (copy_from_user(&a
, arg
, sizeof(a
)))
1141 if (a
.offset
& ~PAGE_MASK
)
1144 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1145 a
.offset
>> PAGE_SHIFT
);
1147 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1150 * Some shared mappigns will want the pages marked read-only
1151 * to track write events. If so, we'll downgrade vm_page_prot
1152 * to the private version (using protection_map[] without the
1155 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1157 vm_flags_t vm_flags
= vma
->vm_flags
;
1159 /* If it was private or non-writable, the write bit is already clear */
1160 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1163 /* The backer wishes to know when pages are first written to? */
1164 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1167 /* The open routine did something to the protections already? */
1168 if (pgprot_val(vma
->vm_page_prot
) !=
1169 pgprot_val(vm_get_page_prot(vm_flags
)))
1172 /* Specialty mapping? */
1173 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1176 /* Can the mapping track the dirty pages? */
1177 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1178 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1182 * We account for memory if it's a private writeable mapping,
1183 * not hugepages and VM_NORESERVE wasn't set.
1185 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1188 * hugetlb has its own accounting separate from the core VM
1189 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1191 if (file
&& is_file_hugepages(file
))
1194 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1197 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1198 unsigned long len
, unsigned long flags
,
1199 vm_flags_t vm_flags
, unsigned long pgoff
)
1201 struct mm_struct
*mm
= current
->mm
;
1202 struct vm_area_struct
*vma
, *prev
;
1203 int correct_wcount
= 0;
1205 struct rb_node
**rb_link
, *rb_parent
;
1206 unsigned long charged
= 0;
1207 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1209 /* Clear old maps */
1212 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1213 if (vma
&& vma
->vm_start
< addr
+ len
) {
1214 if (do_munmap(mm
, addr
, len
))
1219 /* Check against address space limit. */
1220 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1224 * Set 'VM_NORESERVE' if we should not account for the
1225 * memory use of this mapping.
1227 if ((flags
& MAP_NORESERVE
)) {
1228 /* We honor MAP_NORESERVE if allowed to overcommit */
1229 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1230 vm_flags
|= VM_NORESERVE
;
1232 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1233 if (file
&& is_file_hugepages(file
))
1234 vm_flags
|= VM_NORESERVE
;
1238 * Private writable mapping: check memory availability
1240 if (accountable_mapping(file
, vm_flags
)) {
1241 charged
= len
>> PAGE_SHIFT
;
1242 if (security_vm_enough_memory(charged
))
1244 vm_flags
|= VM_ACCOUNT
;
1248 * Can we just expand an old mapping?
1250 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1255 * Determine the object being mapped and call the appropriate
1256 * specific mapper. the address has already been validated, but
1257 * not unmapped, but the maps are removed from the list.
1259 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1266 vma
->vm_start
= addr
;
1267 vma
->vm_end
= addr
+ len
;
1268 vma
->vm_flags
= vm_flags
;
1269 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1270 vma
->vm_pgoff
= pgoff
;
1271 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1273 error
= -EINVAL
; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1276 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1278 if (vm_flags
& VM_DENYWRITE
) {
1279 error
= deny_write_access(file
);
1284 vma
->vm_file
= file
;
1286 error
= file
->f_op
->mmap(file
, vma
);
1288 goto unmap_and_free_vma
;
1289 if (vm_flags
& VM_EXECUTABLE
)
1290 added_exe_file_vma(mm
);
1292 /* Can addr have changed??
1294 * Answer: Yes, several device drivers can do it in their
1295 * f_op->mmap method. -DaveM
1297 addr
= vma
->vm_start
;
1298 pgoff
= vma
->vm_pgoff
;
1299 vm_flags
= vma
->vm_flags
;
1300 } else if (vm_flags
& VM_SHARED
) {
1301 if (unlikely(vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
)))
1303 error
= shmem_zero_setup(vma
);
1308 if (vma_wants_writenotify(vma
)) {
1309 pgprot_t pprot
= vma
->vm_page_prot
;
1311 /* Can vma->vm_page_prot have changed??
1313 * Answer: Yes, drivers may have changed it in their
1314 * f_op->mmap method.
1316 * Ensures that vmas marked as uncached stay that way.
1318 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1319 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1320 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1323 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1324 file
= vma
->vm_file
;
1326 /* Once vma denies write, undo our temporary denial count */
1328 atomic_inc(&inode
->i_writecount
);
1330 perf_event_mmap(vma
);
1332 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1333 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1334 if (vm_flags
& VM_LOCKED
) {
1335 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1336 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1337 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1338 make_pages_present(addr
, addr
+ len
);
1343 atomic_inc(&inode
->i_writecount
);
1344 vma
->vm_file
= NULL
;
1347 /* Undo any partial mapping done by a device driver. */
1348 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1351 kmem_cache_free(vm_area_cachep
, vma
);
1354 vm_unacct_memory(charged
);
1358 /* Get an address range which is currently unmapped.
1359 * For shmat() with addr=0.
1361 * Ugly calling convention alert:
1362 * Return value with the low bits set means error value,
1364 * if (ret & ~PAGE_MASK)
1367 * This function "knows" that -ENOMEM has the bits set.
1369 #ifndef HAVE_ARCH_UNMAPPED_AREA
1371 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1372 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1374 struct mm_struct
*mm
= current
->mm
;
1375 struct vm_area_struct
*vma
;
1376 unsigned long start_addr
;
1378 if (len
> TASK_SIZE
)
1381 if (flags
& MAP_FIXED
)
1385 addr
= PAGE_ALIGN(addr
);
1386 vma
= find_vma(mm
, addr
);
1387 if (TASK_SIZE
- len
>= addr
&&
1388 (!vma
|| addr
+ len
<= vma
->vm_start
))
1391 if (len
> mm
->cached_hole_size
) {
1392 start_addr
= addr
= mm
->free_area_cache
;
1394 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1395 mm
->cached_hole_size
= 0;
1399 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1400 /* At this point: (!vma || addr < vma->vm_end). */
1401 if (TASK_SIZE
- len
< addr
) {
1403 * Start a new search - just in case we missed
1406 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1407 addr
= TASK_UNMAPPED_BASE
;
1409 mm
->cached_hole_size
= 0;
1414 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1416 * Remember the place where we stopped the search:
1418 mm
->free_area_cache
= addr
+ len
;
1421 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1422 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1428 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1431 * Is this a new hole at the lowest possible address?
1433 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1434 mm
->free_area_cache
= addr
;
1435 mm
->cached_hole_size
= ~0UL;
1440 * This mmap-allocator allocates new areas top-down from below the
1441 * stack's low limit (the base):
1443 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1445 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1446 const unsigned long len
, const unsigned long pgoff
,
1447 const unsigned long flags
)
1449 struct vm_area_struct
*vma
;
1450 struct mm_struct
*mm
= current
->mm
;
1451 unsigned long addr
= addr0
;
1453 /* requested length too big for entire address space */
1454 if (len
> TASK_SIZE
)
1457 if (flags
& MAP_FIXED
)
1460 /* requesting a specific address */
1462 addr
= PAGE_ALIGN(addr
);
1463 vma
= find_vma(mm
, addr
);
1464 if (TASK_SIZE
- len
>= addr
&&
1465 (!vma
|| addr
+ len
<= vma
->vm_start
))
1469 /* check if free_area_cache is useful for us */
1470 if (len
<= mm
->cached_hole_size
) {
1471 mm
->cached_hole_size
= 0;
1472 mm
->free_area_cache
= mm
->mmap_base
;
1475 /* either no address requested or can't fit in requested address hole */
1476 addr
= mm
->free_area_cache
;
1478 /* make sure it can fit in the remaining address space */
1480 vma
= find_vma(mm
, addr
-len
);
1481 if (!vma
|| addr
<= vma
->vm_start
)
1482 /* remember the address as a hint for next time */
1483 return (mm
->free_area_cache
= addr
-len
);
1486 if (mm
->mmap_base
< len
)
1489 addr
= mm
->mmap_base
-len
;
1493 * Lookup failure means no vma is above this address,
1494 * else if new region fits below vma->vm_start,
1495 * return with success:
1497 vma
= find_vma(mm
, addr
);
1498 if (!vma
|| addr
+len
<= vma
->vm_start
)
1499 /* remember the address as a hint for next time */
1500 return (mm
->free_area_cache
= addr
);
1502 /* remember the largest hole we saw so far */
1503 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1504 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1506 /* try just below the current vma->vm_start */
1507 addr
= vma
->vm_start
-len
;
1508 } while (len
< vma
->vm_start
);
1512 * A failed mmap() very likely causes application failure,
1513 * so fall back to the bottom-up function here. This scenario
1514 * can happen with large stack limits and large mmap()
1517 mm
->cached_hole_size
= ~0UL;
1518 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1519 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1521 * Restore the topdown base:
1523 mm
->free_area_cache
= mm
->mmap_base
;
1524 mm
->cached_hole_size
= ~0UL;
1530 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1533 * Is this a new hole at the highest possible address?
1535 if (addr
> mm
->free_area_cache
)
1536 mm
->free_area_cache
= addr
;
1538 /* dont allow allocations above current base */
1539 if (mm
->free_area_cache
> mm
->mmap_base
)
1540 mm
->free_area_cache
= mm
->mmap_base
;
1544 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1545 unsigned long pgoff
, unsigned long flags
)
1547 unsigned long (*get_area
)(struct file
*, unsigned long,
1548 unsigned long, unsigned long, unsigned long);
1550 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1554 /* Careful about overflows.. */
1555 if (len
> TASK_SIZE
)
1558 get_area
= current
->mm
->get_unmapped_area
;
1559 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1560 get_area
= file
->f_op
->get_unmapped_area
;
1561 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1562 if (IS_ERR_VALUE(addr
))
1565 if (addr
> TASK_SIZE
- len
)
1567 if (addr
& ~PAGE_MASK
)
1570 return arch_rebalance_pgtables(addr
, len
);
1573 EXPORT_SYMBOL(get_unmapped_area
);
1575 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1576 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1578 struct vm_area_struct
*vma
= NULL
;
1581 /* Check the cache first. */
1582 /* (Cache hit rate is typically around 35%.) */
1583 vma
= mm
->mmap_cache
;
1584 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1585 struct rb_node
* rb_node
;
1587 rb_node
= mm
->mm_rb
.rb_node
;
1591 struct vm_area_struct
* vma_tmp
;
1593 vma_tmp
= rb_entry(rb_node
,
1594 struct vm_area_struct
, vm_rb
);
1596 if (vma_tmp
->vm_end
> addr
) {
1598 if (vma_tmp
->vm_start
<= addr
)
1600 rb_node
= rb_node
->rb_left
;
1602 rb_node
= rb_node
->rb_right
;
1605 mm
->mmap_cache
= vma
;
1611 EXPORT_SYMBOL(find_vma
);
1614 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1616 struct vm_area_struct
*
1617 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1618 struct vm_area_struct
**pprev
)
1620 struct vm_area_struct
*vma
;
1622 vma
= find_vma(mm
, addr
);
1624 *pprev
= vma
->vm_prev
;
1626 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1629 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1630 rb_node
= rb_node
->rb_right
;
1637 * Verify that the stack growth is acceptable and
1638 * update accounting. This is shared with both the
1639 * grow-up and grow-down cases.
1641 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1643 struct mm_struct
*mm
= vma
->vm_mm
;
1644 struct rlimit
*rlim
= current
->signal
->rlim
;
1645 unsigned long new_start
;
1647 /* address space limit tests */
1648 if (!may_expand_vm(mm
, grow
))
1651 /* Stack limit test */
1652 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1655 /* mlock limit tests */
1656 if (vma
->vm_flags
& VM_LOCKED
) {
1657 unsigned long locked
;
1658 unsigned long limit
;
1659 locked
= mm
->locked_vm
+ grow
;
1660 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1661 limit
>>= PAGE_SHIFT
;
1662 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1666 /* Check to ensure the stack will not grow into a hugetlb-only region */
1667 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1669 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1673 * Overcommit.. This must be the final test, as it will
1674 * update security statistics.
1676 if (security_vm_enough_memory_mm(mm
, grow
))
1679 /* Ok, everything looks good - let it rip */
1680 mm
->total_vm
+= grow
;
1681 if (vma
->vm_flags
& VM_LOCKED
)
1682 mm
->locked_vm
+= grow
;
1683 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1687 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1689 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1690 * vma is the last one with address > vma->vm_end. Have to extend vma.
1692 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1696 if (!(vma
->vm_flags
& VM_GROWSUP
))
1700 * We must make sure the anon_vma is allocated
1701 * so that the anon_vma locking is not a noop.
1703 if (unlikely(anon_vma_prepare(vma
)))
1705 vma_lock_anon_vma(vma
);
1708 * vma->vm_start/vm_end cannot change under us because the caller
1709 * is required to hold the mmap_sem in read mode. We need the
1710 * anon_vma lock to serialize against concurrent expand_stacks.
1711 * Also guard against wrapping around to address 0.
1713 if (address
< PAGE_ALIGN(address
+4))
1714 address
= PAGE_ALIGN(address
+4);
1716 vma_unlock_anon_vma(vma
);
1721 /* Somebody else might have raced and expanded it already */
1722 if (address
> vma
->vm_end
) {
1723 unsigned long size
, grow
;
1725 size
= address
- vma
->vm_start
;
1726 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1729 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
1730 error
= acct_stack_growth(vma
, size
, grow
);
1732 vma
->vm_end
= address
;
1733 perf_event_mmap(vma
);
1737 vma_unlock_anon_vma(vma
);
1738 khugepaged_enter_vma_merge(vma
);
1741 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1744 * vma is the first one with address < vma->vm_start. Have to extend vma.
1746 int expand_downwards(struct vm_area_struct
*vma
,
1747 unsigned long address
)
1752 * We must make sure the anon_vma is allocated
1753 * so that the anon_vma locking is not a noop.
1755 if (unlikely(anon_vma_prepare(vma
)))
1758 address
&= PAGE_MASK
;
1759 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1763 vma_lock_anon_vma(vma
);
1766 * vma->vm_start/vm_end cannot change under us because the caller
1767 * is required to hold the mmap_sem in read mode. We need the
1768 * anon_vma lock to serialize against concurrent expand_stacks.
1771 /* Somebody else might have raced and expanded it already */
1772 if (address
< vma
->vm_start
) {
1773 unsigned long size
, grow
;
1775 size
= vma
->vm_end
- address
;
1776 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1779 if (grow
<= vma
->vm_pgoff
) {
1780 error
= acct_stack_growth(vma
, size
, grow
);
1782 vma
->vm_start
= address
;
1783 vma
->vm_pgoff
-= grow
;
1784 perf_event_mmap(vma
);
1788 vma_unlock_anon_vma(vma
);
1789 khugepaged_enter_vma_merge(vma
);
1793 #ifdef CONFIG_STACK_GROWSUP
1794 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1796 return expand_upwards(vma
, address
);
1799 struct vm_area_struct
*
1800 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1802 struct vm_area_struct
*vma
, *prev
;
1805 vma
= find_vma_prev(mm
, addr
, &prev
);
1806 if (vma
&& (vma
->vm_start
<= addr
))
1808 if (!prev
|| expand_stack(prev
, addr
))
1810 if (prev
->vm_flags
& VM_LOCKED
) {
1811 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1816 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1818 return expand_downwards(vma
, address
);
1821 struct vm_area_struct
*
1822 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1824 struct vm_area_struct
* vma
;
1825 unsigned long start
;
1828 vma
= find_vma(mm
,addr
);
1831 if (vma
->vm_start
<= addr
)
1833 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1835 start
= vma
->vm_start
;
1836 if (expand_stack(vma
, addr
))
1838 if (vma
->vm_flags
& VM_LOCKED
) {
1839 mlock_vma_pages_range(vma
, addr
, start
);
1846 * Ok - we have the memory areas we should free on the vma list,
1847 * so release them, and do the vma updates.
1849 * Called with the mm semaphore held.
1851 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1853 /* Update high watermark before we lower total_vm */
1854 update_hiwater_vm(mm
);
1856 long nrpages
= vma_pages(vma
);
1858 mm
->total_vm
-= nrpages
;
1859 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1860 vma
= remove_vma(vma
);
1866 * Get rid of page table information in the indicated region.
1868 * Called with the mm semaphore held.
1870 static void unmap_region(struct mm_struct
*mm
,
1871 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1872 unsigned long start
, unsigned long end
)
1874 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1875 struct mmu_gather tlb
;
1876 unsigned long nr_accounted
= 0;
1879 tlb_gather_mmu(&tlb
, mm
, 0);
1880 update_hiwater_rss(mm
);
1881 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1882 vm_unacct_memory(nr_accounted
);
1883 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1884 next
? next
->vm_start
: 0);
1885 tlb_finish_mmu(&tlb
, start
, end
);
1889 * Create a list of vma's touched by the unmap, removing them from the mm's
1890 * vma list as we go..
1893 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1894 struct vm_area_struct
*prev
, unsigned long end
)
1896 struct vm_area_struct
**insertion_point
;
1897 struct vm_area_struct
*tail_vma
= NULL
;
1900 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1901 vma
->vm_prev
= NULL
;
1903 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1907 } while (vma
&& vma
->vm_start
< end
);
1908 *insertion_point
= vma
;
1910 vma
->vm_prev
= prev
;
1911 tail_vma
->vm_next
= NULL
;
1912 if (mm
->unmap_area
== arch_unmap_area
)
1913 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1915 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1916 mm
->unmap_area(mm
, addr
);
1917 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1921 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1922 * munmap path where it doesn't make sense to fail.
1924 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1925 unsigned long addr
, int new_below
)
1927 struct mempolicy
*pol
;
1928 struct vm_area_struct
*new;
1931 if (is_vm_hugetlb_page(vma
) && (addr
&
1932 ~(huge_page_mask(hstate_vma(vma
)))))
1935 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1939 /* most fields are the same, copy all, and then fixup */
1942 INIT_LIST_HEAD(&new->anon_vma_chain
);
1947 new->vm_start
= addr
;
1948 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1951 pol
= mpol_dup(vma_policy(vma
));
1956 vma_set_policy(new, pol
);
1958 if (anon_vma_clone(new, vma
))
1962 get_file(new->vm_file
);
1964 get_file(new->vm_prfile
);
1965 if (vma
->vm_flags
& VM_EXECUTABLE
)
1966 added_exe_file_vma(mm
);
1969 if (new->vm_ops
&& new->vm_ops
->open
)
1970 new->vm_ops
->open(new);
1973 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1974 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1976 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1982 /* Clean everything up if vma_adjust failed. */
1983 if (new->vm_ops
&& new->vm_ops
->close
)
1984 new->vm_ops
->close(new);
1986 if (vma
->vm_flags
& VM_EXECUTABLE
)
1987 removed_exe_file_vma(mm
);
1990 fput(new->vm_prfile
);
1992 unlink_anon_vmas(new);
1996 kmem_cache_free(vm_area_cachep
, new);
2002 * Split a vma into two pieces at address 'addr', a new vma is allocated
2003 * either for the first part or the tail.
2005 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2006 unsigned long addr
, int new_below
)
2008 if (mm
->map_count
>= sysctl_max_map_count
)
2011 return __split_vma(mm
, vma
, addr
, new_below
);
2014 /* Munmap is split into 2 main parts -- this part which finds
2015 * what needs doing, and the areas themselves, which do the
2016 * work. This now handles partial unmappings.
2017 * Jeremy Fitzhardinge <jeremy@goop.org>
2019 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2022 struct vm_area_struct
*vma
, *prev
, *last
;
2024 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2027 if ((len
= PAGE_ALIGN(len
)) == 0)
2030 /* Find the first overlapping VMA */
2031 vma
= find_vma(mm
, start
);
2034 prev
= vma
->vm_prev
;
2035 /* we have start < vma->vm_end */
2037 /* if it doesn't overlap, we have nothing.. */
2039 if (vma
->vm_start
>= end
)
2043 * If we need to split any vma, do it now to save pain later.
2045 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2046 * unmapped vm_area_struct will remain in use: so lower split_vma
2047 * places tmp vma above, and higher split_vma places tmp vma below.
2049 if (start
> vma
->vm_start
) {
2053 * Make sure that map_count on return from munmap() will
2054 * not exceed its limit; but let map_count go just above
2055 * its limit temporarily, to help free resources as expected.
2057 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2060 error
= __split_vma(mm
, vma
, start
, 0);
2066 /* Does it split the last one? */
2067 last
= find_vma(mm
, end
);
2068 if (last
&& end
> last
->vm_start
) {
2069 int error
= __split_vma(mm
, last
, end
, 1);
2073 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2076 * unlock any mlock()ed ranges before detaching vmas
2078 if (mm
->locked_vm
) {
2079 struct vm_area_struct
*tmp
= vma
;
2080 while (tmp
&& tmp
->vm_start
< end
) {
2081 if (tmp
->vm_flags
& VM_LOCKED
) {
2082 mm
->locked_vm
-= vma_pages(tmp
);
2083 munlock_vma_pages_all(tmp
);
2090 * Remove the vma's, and unmap the actual pages
2092 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2093 unmap_region(mm
, vma
, prev
, start
, end
);
2095 /* Fix up all other VM information */
2096 remove_vma_list(mm
, vma
);
2101 EXPORT_SYMBOL(do_munmap
);
2103 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2106 struct mm_struct
*mm
= current
->mm
;
2108 profile_munmap(addr
);
2110 down_write(&mm
->mmap_sem
);
2111 ret
= do_munmap(mm
, addr
, len
);
2112 up_write(&mm
->mmap_sem
);
2116 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2118 #ifdef CONFIG_DEBUG_VM
2119 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2121 up_read(&mm
->mmap_sem
);
2127 * this is really a simplified "do_mmap". it only handles
2128 * anonymous maps. eventually we may be able to do some
2129 * brk-specific accounting here.
2131 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2133 struct mm_struct
* mm
= current
->mm
;
2134 struct vm_area_struct
* vma
, * prev
;
2135 unsigned long flags
;
2136 struct rb_node
** rb_link
, * rb_parent
;
2137 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2140 len
= PAGE_ALIGN(len
);
2144 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2148 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2150 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2151 if (error
& ~PAGE_MASK
)
2157 if (mm
->def_flags
& VM_LOCKED
) {
2158 unsigned long locked
, lock_limit
;
2159 locked
= len
>> PAGE_SHIFT
;
2160 locked
+= mm
->locked_vm
;
2161 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2162 lock_limit
>>= PAGE_SHIFT
;
2163 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2168 * mm->mmap_sem is required to protect against another thread
2169 * changing the mappings in case we sleep.
2171 verify_mm_writelocked(mm
);
2174 * Clear old maps. this also does some error checking for us
2177 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2178 if (vma
&& vma
->vm_start
< addr
+ len
) {
2179 if (do_munmap(mm
, addr
, len
))
2184 /* Check against address space limits *after* clearing old maps... */
2185 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2188 if (mm
->map_count
> sysctl_max_map_count
)
2191 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2194 /* Can we just expand an old private anonymous mapping? */
2195 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2196 NULL
, NULL
, pgoff
, NULL
);
2201 * create a vma struct for an anonymous mapping
2203 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2205 vm_unacct_memory(len
>> PAGE_SHIFT
);
2209 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2211 vma
->vm_start
= addr
;
2212 vma
->vm_end
= addr
+ len
;
2213 vma
->vm_pgoff
= pgoff
;
2214 vma
->vm_flags
= flags
;
2215 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2216 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2218 perf_event_mmap(vma
);
2219 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2220 if (flags
& VM_LOCKED
) {
2221 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2222 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2227 EXPORT_SYMBOL(do_brk
);
2229 /* Release all mmaps. */
2230 void exit_mmap(struct mm_struct
*mm
)
2232 struct mmu_gather tlb
;
2233 struct vm_area_struct
*vma
;
2234 unsigned long nr_accounted
= 0;
2237 /* mm's last user has gone, and its about to be pulled down */
2238 mmu_notifier_release(mm
);
2240 if (mm
->locked_vm
) {
2243 if (vma
->vm_flags
& VM_LOCKED
)
2244 munlock_vma_pages_all(vma
);
2252 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2257 tlb_gather_mmu(&tlb
, mm
, 1);
2258 /* update_hiwater_rss(mm) here? but nobody should be looking */
2259 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2260 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2261 vm_unacct_memory(nr_accounted
);
2263 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2264 tlb_finish_mmu(&tlb
, 0, end
);
2267 * Walk the list again, actually closing and freeing it,
2268 * with preemption enabled, without holding any MM locks.
2271 vma
= remove_vma(vma
);
2273 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2276 /* Insert vm structure into process list sorted by address
2277 * and into the inode's i_mmap tree. If vm_file is non-NULL
2278 * then i_mmap_mutex is taken here.
2280 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2282 struct vm_area_struct
* __vma
, * prev
;
2283 struct rb_node
** rb_link
, * rb_parent
;
2286 * The vm_pgoff of a purely anonymous vma should be irrelevant
2287 * until its first write fault, when page's anon_vma and index
2288 * are set. But now set the vm_pgoff it will almost certainly
2289 * end up with (unless mremap moves it elsewhere before that
2290 * first wfault), so /proc/pid/maps tells a consistent story.
2292 * By setting it to reflect the virtual start address of the
2293 * vma, merges and splits can happen in a seamless way, just
2294 * using the existing file pgoff checks and manipulations.
2295 * Similarly in do_mmap_pgoff and in do_brk.
2297 if (!vma
->vm_file
) {
2298 BUG_ON(vma
->anon_vma
);
2299 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2301 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2302 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2304 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2305 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2307 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2312 * Copy the vma structure to a new location in the same mm,
2313 * prior to moving page table entries, to effect an mremap move.
2315 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2316 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2318 struct vm_area_struct
*vma
= *vmap
;
2319 unsigned long vma_start
= vma
->vm_start
;
2320 struct mm_struct
*mm
= vma
->vm_mm
;
2321 struct vm_area_struct
*new_vma
, *prev
;
2322 struct rb_node
**rb_link
, *rb_parent
;
2323 struct mempolicy
*pol
;
2324 bool faulted_in_anon_vma
= true;
2327 * If anonymous vma has not yet been faulted, update new pgoff
2328 * to match new location, to increase its chance of merging.
2330 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2331 pgoff
= addr
>> PAGE_SHIFT
;
2332 faulted_in_anon_vma
= false;
2335 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2336 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2337 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2340 * Source vma may have been merged into new_vma
2342 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2343 vma_start
< new_vma
->vm_end
)) {
2345 * The only way we can get a vma_merge with
2346 * self during an mremap is if the vma hasn't
2347 * been faulted in yet and we were allowed to
2348 * reset the dst vma->vm_pgoff to the
2349 * destination address of the mremap to allow
2350 * the merge to happen. mremap must change the
2351 * vm_pgoff linearity between src and dst vmas
2352 * (in turn preventing a vma_merge) to be
2353 * safe. It is only safe to keep the vm_pgoff
2354 * linear if there are no pages mapped yet.
2356 VM_BUG_ON(faulted_in_anon_vma
);
2359 anon_vma_moveto_tail(new_vma
);
2361 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2364 pol
= mpol_dup(vma_policy(vma
));
2367 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2368 if (anon_vma_clone(new_vma
, vma
))
2369 goto out_free_mempol
;
2370 vma_set_policy(new_vma
, pol
);
2371 new_vma
->vm_start
= addr
;
2372 new_vma
->vm_end
= addr
+ len
;
2373 new_vma
->vm_pgoff
= pgoff
;
2374 if (new_vma
->vm_file
) {
2375 get_file(new_vma
->vm_file
);
2376 if (new_vma
->vm_prfile
)
2377 get_file(new_vma
->vm_prfile
);
2378 if (vma
->vm_flags
& VM_EXECUTABLE
)
2379 added_exe_file_vma(mm
);
2381 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2382 new_vma
->vm_ops
->open(new_vma
);
2383 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2391 kmem_cache_free(vm_area_cachep
, new_vma
);
2396 * Return true if the calling process may expand its vm space by the passed
2399 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2401 unsigned long cur
= mm
->total_vm
; /* pages */
2404 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2406 if (cur
+ npages
> lim
)
2412 static int special_mapping_fault(struct vm_area_struct
*vma
,
2413 struct vm_fault
*vmf
)
2416 struct page
**pages
;
2419 * special mappings have no vm_file, and in that case, the mm
2420 * uses vm_pgoff internally. So we have to subtract it from here.
2421 * We are allowed to do this because we are the mm; do not copy
2422 * this code into drivers!
2424 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2426 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2430 struct page
*page
= *pages
;
2436 return VM_FAULT_SIGBUS
;
2440 * Having a close hook prevents vma merging regardless of flags.
2442 static void special_mapping_close(struct vm_area_struct
*vma
)
2446 static const struct vm_operations_struct special_mapping_vmops
= {
2447 .close
= special_mapping_close
,
2448 .fault
= special_mapping_fault
,
2452 * Called with mm->mmap_sem held for writing.
2453 * Insert a new vma covering the given region, with the given flags.
2454 * Its pages are supplied by the given array of struct page *.
2455 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2456 * The region past the last page supplied will always produce SIGBUS.
2457 * The array pointer and the pages it points to are assumed to stay alive
2458 * for as long as this mapping might exist.
2460 int install_special_mapping(struct mm_struct
*mm
,
2461 unsigned long addr
, unsigned long len
,
2462 unsigned long vm_flags
, struct page
**pages
)
2465 struct vm_area_struct
*vma
;
2467 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2468 if (unlikely(vma
== NULL
))
2471 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2473 vma
->vm_start
= addr
;
2474 vma
->vm_end
= addr
+ len
;
2476 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2477 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2479 vma
->vm_ops
= &special_mapping_vmops
;
2480 vma
->vm_private_data
= pages
;
2482 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2486 ret
= insert_vm_struct(mm
, vma
);
2490 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2492 perf_event_mmap(vma
);
2497 kmem_cache_free(vm_area_cachep
, vma
);
2501 static DEFINE_MUTEX(mm_all_locks_mutex
);
2503 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2505 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2507 * The LSB of head.next can't change from under us
2508 * because we hold the mm_all_locks_mutex.
2510 mutex_lock_nest_lock(&anon_vma
->root
->mutex
, &mm
->mmap_sem
);
2512 * We can safely modify head.next after taking the
2513 * anon_vma->root->mutex. If some other vma in this mm shares
2514 * the same anon_vma we won't take it again.
2516 * No need of atomic instructions here, head.next
2517 * can't change from under us thanks to the
2518 * anon_vma->root->mutex.
2520 if (__test_and_set_bit(0, (unsigned long *)
2521 &anon_vma
->root
->head
.next
))
2526 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2528 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2530 * AS_MM_ALL_LOCKS can't change from under us because
2531 * we hold the mm_all_locks_mutex.
2533 * Operations on ->flags have to be atomic because
2534 * even if AS_MM_ALL_LOCKS is stable thanks to the
2535 * mm_all_locks_mutex, there may be other cpus
2536 * changing other bitflags in parallel to us.
2538 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2540 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2545 * This operation locks against the VM for all pte/vma/mm related
2546 * operations that could ever happen on a certain mm. This includes
2547 * vmtruncate, try_to_unmap, and all page faults.
2549 * The caller must take the mmap_sem in write mode before calling
2550 * mm_take_all_locks(). The caller isn't allowed to release the
2551 * mmap_sem until mm_drop_all_locks() returns.
2553 * mmap_sem in write mode is required in order to block all operations
2554 * that could modify pagetables and free pages without need of
2555 * altering the vma layout (for example populate_range() with
2556 * nonlinear vmas). It's also needed in write mode to avoid new
2557 * anon_vmas to be associated with existing vmas.
2559 * A single task can't take more than one mm_take_all_locks() in a row
2560 * or it would deadlock.
2562 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2563 * mapping->flags avoid to take the same lock twice, if more than one
2564 * vma in this mm is backed by the same anon_vma or address_space.
2566 * We can take all the locks in random order because the VM code
2567 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2568 * takes more than one of them in a row. Secondly we're protected
2569 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2571 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2572 * that may have to take thousand of locks.
2574 * mm_take_all_locks() can fail if it's interrupted by signals.
2576 int mm_take_all_locks(struct mm_struct
*mm
)
2578 struct vm_area_struct
*vma
;
2579 struct anon_vma_chain
*avc
;
2581 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2583 mutex_lock(&mm_all_locks_mutex
);
2585 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2586 if (signal_pending(current
))
2588 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2589 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2592 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2593 if (signal_pending(current
))
2596 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2597 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2603 mm_drop_all_locks(mm
);
2607 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2609 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2611 * The LSB of head.next can't change to 0 from under
2612 * us because we hold the mm_all_locks_mutex.
2614 * We must however clear the bitflag before unlocking
2615 * the vma so the users using the anon_vma->head will
2616 * never see our bitflag.
2618 * No need of atomic instructions here, head.next
2619 * can't change from under us until we release the
2620 * anon_vma->root->mutex.
2622 if (!__test_and_clear_bit(0, (unsigned long *)
2623 &anon_vma
->root
->head
.next
))
2625 anon_vma_unlock(anon_vma
);
2629 static void vm_unlock_mapping(struct address_space
*mapping
)
2631 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2633 * AS_MM_ALL_LOCKS can't change to 0 from under us
2634 * because we hold the mm_all_locks_mutex.
2636 mutex_unlock(&mapping
->i_mmap_mutex
);
2637 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2644 * The mmap_sem cannot be released by the caller until
2645 * mm_drop_all_locks() returns.
2647 void mm_drop_all_locks(struct mm_struct
*mm
)
2649 struct vm_area_struct
*vma
;
2650 struct anon_vma_chain
*avc
;
2652 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2653 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2655 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2657 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2658 vm_unlock_anon_vma(avc
->anon_vma
);
2659 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2660 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2663 mutex_unlock(&mm_all_locks_mutex
);
2667 * initialise the VMA slab
2669 void __init
mmap_init(void)
2673 ret
= percpu_counter_init(&vm_committed_as
, 0);