1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32
igb_get_invariants_82575(struct e1000_hw
*);
39 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
40 static void igb_release_phy_82575(struct e1000_hw
*);
41 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
42 static void igb_release_nvm_82575(struct e1000_hw
*);
43 static s32
igb_check_for_link_82575(struct e1000_hw
*);
44 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
45 static s32
igb_init_hw_82575(struct e1000_hw
*);
46 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
47 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
48 static s32
igb_read_phy_reg_82580(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_write_phy_reg_82580(struct e1000_hw
*, u32
, u16
);
50 static s32
igb_reset_hw_82575(struct e1000_hw
*);
51 static s32
igb_reset_hw_82580(struct e1000_hw
*);
52 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
53 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
54 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
55 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
57 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
58 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
60 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
61 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
62 static bool igb_sgmii_active_82575(struct e1000_hw
*);
63 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
64 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
65 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
66 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
67 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
68 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
69 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
,
71 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
73 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
74 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
75 static const u16 e1000_82580_rxpbs_table
[] =
76 { 36, 72, 144, 1, 2, 4, 8, 16,
78 #define E1000_82580_RXPBS_TABLE_SIZE \
79 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 * @hw: pointer to the HW structure
85 * Called to determine if the I2C pins are being used for I2C or as an
86 * external MDIO interface since the two options are mutually exclusive.
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
91 bool ext_mdio
= false;
93 switch (hw
->mac
.type
) {
96 reg
= rd32(E1000_MDIC
);
97 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
101 reg
= rd32(E1000_MDICNFG
);
102 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
110 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
112 struct e1000_phy_info
*phy
= &hw
->phy
;
113 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
114 struct e1000_mac_info
*mac
= &hw
->mac
;
115 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
121 switch (hw
->device_id
) {
122 case E1000_DEV_ID_82575EB_COPPER
:
123 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
124 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
125 mac
->type
= e1000_82575
;
127 case E1000_DEV_ID_82576
:
128 case E1000_DEV_ID_82576_NS
:
129 case E1000_DEV_ID_82576_NS_SERDES
:
130 case E1000_DEV_ID_82576_FIBER
:
131 case E1000_DEV_ID_82576_SERDES
:
132 case E1000_DEV_ID_82576_QUAD_COPPER
:
133 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
134 case E1000_DEV_ID_82576_SERDES_QUAD
:
135 mac
->type
= e1000_82576
;
137 case E1000_DEV_ID_82580_COPPER
:
138 case E1000_DEV_ID_82580_FIBER
:
139 case E1000_DEV_ID_82580_QUAD_FIBER
:
140 case E1000_DEV_ID_82580_SERDES
:
141 case E1000_DEV_ID_82580_SGMII
:
142 case E1000_DEV_ID_82580_COPPER_DUAL
:
143 case E1000_DEV_ID_DH89XXCC_SGMII
:
144 case E1000_DEV_ID_DH89XXCC_SERDES
:
145 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
146 case E1000_DEV_ID_DH89XXCC_SFP
:
147 mac
->type
= e1000_82580
;
149 case E1000_DEV_ID_I350_COPPER
:
150 case E1000_DEV_ID_I350_FIBER
:
151 case E1000_DEV_ID_I350_SERDES
:
152 case E1000_DEV_ID_I350_SGMII
:
153 mac
->type
= e1000_i350
;
156 return -E1000_ERR_MAC_INIT
;
162 * The 82575 uses bits 22:23 for link mode. The mode can be changed
163 * based on the EEPROM. We cannot rely upon device ID. There
164 * is no distinguishable difference between fiber and internal
165 * SerDes mode on the 82575. There can be an external PHY attached
166 * on the SGMII interface. For this, we'll set sgmii_active to true.
168 phy
->media_type
= e1000_media_type_copper
;
169 dev_spec
->sgmii_active
= false;
171 ctrl_ext
= rd32(E1000_CTRL_EXT
);
172 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
173 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
174 dev_spec
->sgmii_active
= true;
176 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
177 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
178 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
184 /* Set mta register count */
185 mac
->mta_reg_count
= 128;
186 /* Set rar entry count */
187 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
188 if (mac
->type
== e1000_82576
)
189 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
190 if (mac
->type
== e1000_82580
)
191 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
192 if (mac
->type
== e1000_i350
)
193 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
195 if (mac
->type
>= e1000_82580
)
196 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
198 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
199 /* Set if part includes ASF firmware */
200 mac
->asf_firmware_present
= true;
201 /* Set if manageability features are enabled. */
202 mac
->arc_subsystem_valid
=
203 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
205 /* enable EEE on i350 parts */
206 if (mac
->type
== e1000_i350
)
207 dev_spec
->eee_disable
= false;
209 dev_spec
->eee_disable
= true;
210 /* physical interface link setup */
211 mac
->ops
.setup_physical_interface
=
212 (hw
->phy
.media_type
== e1000_media_type_copper
)
213 ? igb_setup_copper_link_82575
214 : igb_setup_serdes_link_82575
;
216 /* NVM initialization */
217 eecd
= rd32(E1000_EECD
);
219 nvm
->opcode_bits
= 8;
221 switch (nvm
->override
) {
222 case e1000_nvm_override_spi_large
:
224 nvm
->address_bits
= 16;
226 case e1000_nvm_override_spi_small
:
228 nvm
->address_bits
= 8;
231 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
232 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
236 nvm
->type
= e1000_nvm_eeprom_spi
;
238 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
239 E1000_EECD_SIZE_EX_SHIFT
);
242 * Added to a constant, "size" becomes the left-shift value
243 * for setting word_size.
245 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
248 * Check for invalid size
250 if ((hw
->mac
.type
== e1000_82576
) && (size
> 15)) {
251 printk("igb: The NVM size is not valid, "
252 "defaulting to 32K.\n");
255 nvm
->word_size
= 1 << size
;
256 if (nvm
->word_size
== (1 << 15))
257 nvm
->page_size
= 128;
259 /* NVM Function Pointers */
260 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
261 if (nvm
->word_size
< (1 << 15))
262 nvm
->ops
.read
= igb_read_nvm_eerd
;
264 nvm
->ops
.read
= igb_read_nvm_spi
;
266 nvm
->ops
.release
= igb_release_nvm_82575
;
267 switch (hw
->mac
.type
) {
269 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
270 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
273 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
274 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
277 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
278 nvm
->ops
.update
= igb_update_nvm_checksum
;
280 nvm
->ops
.write
= igb_write_nvm_spi
;
282 /* if part supports SR-IOV then initialize mailbox parameters */
286 igb_init_mbx_params_pf(hw
);
292 /* setup PHY parameters */
293 if (phy
->media_type
!= e1000_media_type_copper
) {
294 phy
->type
= e1000_phy_none
;
298 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
299 phy
->reset_delay_us
= 100;
301 ctrl_ext
= rd32(E1000_CTRL_EXT
);
303 /* PHY function pointers */
304 if (igb_sgmii_active_82575(hw
)) {
305 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
306 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
308 phy
->ops
.reset
= igb_phy_hw_reset
;
309 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
312 wr32(E1000_CTRL_EXT
, ctrl_ext
);
313 igb_reset_mdicnfg_82580(hw
);
315 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
316 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
317 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
318 } else if (hw
->mac
.type
>= e1000_82580
) {
319 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
320 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
322 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
323 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
327 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
328 E1000_STATUS_FUNC_SHIFT
;
330 /* Set phy->phy_addr and phy->id. */
331 ret_val
= igb_get_phy_id_82575(hw
);
335 /* Verify phy id and set remaining function pointers */
337 case I347AT4_E_PHY_ID
:
338 case M88E1112_E_PHY_ID
:
339 case M88E1111_I_PHY_ID
:
340 phy
->type
= e1000_phy_m88
;
341 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
343 if (phy
->id
== I347AT4_E_PHY_ID
||
344 phy
->id
== M88E1112_E_PHY_ID
)
345 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
347 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
349 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
351 case IGP03E1000_E_PHY_ID
:
352 phy
->type
= e1000_phy_igp_3
;
353 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
354 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
355 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
356 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
357 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
359 case I82580_I_PHY_ID
:
361 phy
->type
= e1000_phy_82580
;
362 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_82580
;
363 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
364 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
367 return -E1000_ERR_PHY
;
374 * igb_acquire_phy_82575 - Acquire rights to access PHY
375 * @hw: pointer to the HW structure
377 * Acquire access rights to the correct PHY. This is a
378 * function pointer entry point called by the api module.
380 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
382 u16 mask
= E1000_SWFW_PHY0_SM
;
384 if (hw
->bus
.func
== E1000_FUNC_1
)
385 mask
= E1000_SWFW_PHY1_SM
;
386 else if (hw
->bus
.func
== E1000_FUNC_2
)
387 mask
= E1000_SWFW_PHY2_SM
;
388 else if (hw
->bus
.func
== E1000_FUNC_3
)
389 mask
= E1000_SWFW_PHY3_SM
;
391 return igb_acquire_swfw_sync_82575(hw
, mask
);
395 * igb_release_phy_82575 - Release rights to access PHY
396 * @hw: pointer to the HW structure
398 * A wrapper to release access rights to the correct PHY. This is a
399 * function pointer entry point called by the api module.
401 static void igb_release_phy_82575(struct e1000_hw
*hw
)
403 u16 mask
= E1000_SWFW_PHY0_SM
;
405 if (hw
->bus
.func
== E1000_FUNC_1
)
406 mask
= E1000_SWFW_PHY1_SM
;
407 else if (hw
->bus
.func
== E1000_FUNC_2
)
408 mask
= E1000_SWFW_PHY2_SM
;
409 else if (hw
->bus
.func
== E1000_FUNC_3
)
410 mask
= E1000_SWFW_PHY3_SM
;
412 igb_release_swfw_sync_82575(hw
, mask
);
416 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
417 * @hw: pointer to the HW structure
418 * @offset: register offset to be read
419 * @data: pointer to the read data
421 * Reads the PHY register at offset using the serial gigabit media independent
422 * interface and stores the retrieved information in data.
424 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
427 s32 ret_val
= -E1000_ERR_PARAM
;
429 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
430 hw_dbg("PHY Address %u is out of range\n", offset
);
434 ret_val
= hw
->phy
.ops
.acquire(hw
);
438 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
440 hw
->phy
.ops
.release(hw
);
447 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
448 * @hw: pointer to the HW structure
449 * @offset: register offset to write to
450 * @data: data to write at register offset
452 * Writes the data to PHY register at the offset using the serial gigabit
453 * media independent interface.
455 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
458 s32 ret_val
= -E1000_ERR_PARAM
;
461 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
462 hw_dbg("PHY Address %d is out of range\n", offset
);
466 ret_val
= hw
->phy
.ops
.acquire(hw
);
470 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
472 hw
->phy
.ops
.release(hw
);
479 * igb_get_phy_id_82575 - Retrieve PHY addr and id
480 * @hw: pointer to the HW structure
482 * Retrieves the PHY address and ID for both PHY's which do and do not use
485 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
487 struct e1000_phy_info
*phy
= &hw
->phy
;
494 * For SGMII PHYs, we try the list of possible addresses until
495 * we find one that works. For non-SGMII PHYs
496 * (e.g. integrated copper PHYs), an address of 1 should
497 * work. The result of this function should mean phy->phy_addr
498 * and phy->id are set correctly.
500 if (!(igb_sgmii_active_82575(hw
))) {
502 ret_val
= igb_get_phy_id(hw
);
506 if (igb_sgmii_uses_mdio_82575(hw
)) {
507 switch (hw
->mac
.type
) {
510 mdic
= rd32(E1000_MDIC
);
511 mdic
&= E1000_MDIC_PHY_MASK
;
512 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
516 mdic
= rd32(E1000_MDICNFG
);
517 mdic
&= E1000_MDICNFG_PHY_MASK
;
518 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
521 ret_val
= -E1000_ERR_PHY
;
525 ret_val
= igb_get_phy_id(hw
);
529 /* Power on sgmii phy if it is disabled */
530 ctrl_ext
= rd32(E1000_CTRL_EXT
);
531 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
536 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
537 * Therefore, we need to test 1-7
539 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
540 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
542 hw_dbg("Vendor ID 0x%08X read at address %u\n",
545 * At the time of this writing, The M88 part is
546 * the only supported SGMII PHY product.
548 if (phy_id
== M88_VENDOR
)
551 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
555 /* A valid PHY type couldn't be found. */
556 if (phy
->addr
== 8) {
558 ret_val
= -E1000_ERR_PHY
;
561 ret_val
= igb_get_phy_id(hw
);
564 /* restore previous sfp cage power state */
565 wr32(E1000_CTRL_EXT
, ctrl_ext
);
572 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
573 * @hw: pointer to the HW structure
575 * Resets the PHY using the serial gigabit media independent interface.
577 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
582 * This isn't a true "hard" reset, but is the only reset
583 * available to us at this time.
586 hw_dbg("Soft resetting SGMII attached PHY...\n");
589 * SFP documentation requires the following to configure the SPF module
590 * to work on SGMII. No further documentation is given.
592 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
596 ret_val
= igb_phy_sw_reset(hw
);
603 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
604 * @hw: pointer to the HW structure
605 * @active: true to enable LPLU, false to disable
607 * Sets the LPLU D0 state according to the active flag. When
608 * activating LPLU this function also disables smart speed
609 * and vice versa. LPLU will not be activated unless the
610 * device autonegotiation advertisement meets standards of
611 * either 10 or 10/100 or 10/100/1000 at all duplexes.
612 * This is a function pointer entry point only called by
613 * PHY setup routines.
615 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
617 struct e1000_phy_info
*phy
= &hw
->phy
;
621 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
626 data
|= IGP02E1000_PM_D0_LPLU
;
627 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
632 /* When LPLU is enabled, we should disable SmartSpeed */
633 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
635 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
636 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
641 data
&= ~IGP02E1000_PM_D0_LPLU
;
642 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
645 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
646 * during Dx states where the power conservation is most
647 * important. During driver activity we should enable
648 * SmartSpeed, so performance is maintained.
650 if (phy
->smart_speed
== e1000_smart_speed_on
) {
651 ret_val
= phy
->ops
.read_reg(hw
,
652 IGP01E1000_PHY_PORT_CONFIG
, &data
);
656 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
657 ret_val
= phy
->ops
.write_reg(hw
,
658 IGP01E1000_PHY_PORT_CONFIG
, data
);
661 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
662 ret_val
= phy
->ops
.read_reg(hw
,
663 IGP01E1000_PHY_PORT_CONFIG
, &data
);
667 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
668 ret_val
= phy
->ops
.write_reg(hw
,
669 IGP01E1000_PHY_PORT_CONFIG
, data
);
680 * igb_acquire_nvm_82575 - Request for access to EEPROM
681 * @hw: pointer to the HW structure
683 * Acquire the necessary semaphores for exclusive access to the EEPROM.
684 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
685 * Return successful if access grant bit set, else clear the request for
686 * EEPROM access and return -E1000_ERR_NVM (-1).
688 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
692 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
696 ret_val
= igb_acquire_nvm(hw
);
699 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
706 * igb_release_nvm_82575 - Release exclusive access to EEPROM
707 * @hw: pointer to the HW structure
709 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
710 * then release the semaphores acquired.
712 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
715 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
719 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
720 * @hw: pointer to the HW structure
721 * @mask: specifies which semaphore to acquire
723 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
724 * will also specify which port we're acquiring the lock for.
726 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
730 u32 fwmask
= mask
<< 16;
732 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
734 while (i
< timeout
) {
735 if (igb_get_hw_semaphore(hw
)) {
736 ret_val
= -E1000_ERR_SWFW_SYNC
;
740 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
741 if (!(swfw_sync
& (fwmask
| swmask
)))
745 * Firmware currently using resource (fwmask)
746 * or other software thread using resource (swmask)
748 igb_put_hw_semaphore(hw
);
754 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
755 ret_val
= -E1000_ERR_SWFW_SYNC
;
760 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
762 igb_put_hw_semaphore(hw
);
769 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
770 * @hw: pointer to the HW structure
771 * @mask: specifies which semaphore to acquire
773 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
774 * will also specify which port we're releasing the lock for.
776 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
780 while (igb_get_hw_semaphore(hw
) != 0);
783 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
785 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
787 igb_put_hw_semaphore(hw
);
791 * igb_get_cfg_done_82575 - Read config done bit
792 * @hw: pointer to the HW structure
794 * Read the management control register for the config done bit for
795 * completion status. NOTE: silicon which is EEPROM-less will fail trying
796 * to read the config done bit, so an error is *ONLY* logged and returns
797 * 0. If we were to return with error, EEPROM-less silicon
798 * would not be able to be reset or change link.
800 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
802 s32 timeout
= PHY_CFG_TIMEOUT
;
804 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
806 if (hw
->bus
.func
== 1)
807 mask
= E1000_NVM_CFG_DONE_PORT_1
;
808 else if (hw
->bus
.func
== E1000_FUNC_2
)
809 mask
= E1000_NVM_CFG_DONE_PORT_2
;
810 else if (hw
->bus
.func
== E1000_FUNC_3
)
811 mask
= E1000_NVM_CFG_DONE_PORT_3
;
814 if (rd32(E1000_EEMNGCTL
) & mask
)
820 hw_dbg("MNG configuration cycle has not completed.\n");
822 /* If EEPROM is not marked present, init the PHY manually */
823 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
824 (hw
->phy
.type
== e1000_phy_igp_3
))
825 igb_phy_init_script_igp3(hw
);
831 * igb_check_for_link_82575 - Check for link
832 * @hw: pointer to the HW structure
834 * If sgmii is enabled, then use the pcs register to determine link, otherwise
835 * use the generic interface for determining link.
837 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
842 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
843 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
846 * Use this flag to determine if link needs to be checked or
847 * not. If we have link clear the flag so that we do not
848 * continue to check for link.
850 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
852 ret_val
= igb_check_for_copper_link(hw
);
859 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
860 * @hw: pointer to the HW structure
862 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
867 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
868 !igb_sgmii_active_82575(hw
))
871 /* Enable PCS to turn on link */
872 reg
= rd32(E1000_PCS_CFG0
);
873 reg
|= E1000_PCS_CFG_PCS_EN
;
874 wr32(E1000_PCS_CFG0
, reg
);
876 /* Power up the laser */
877 reg
= rd32(E1000_CTRL_EXT
);
878 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
879 wr32(E1000_CTRL_EXT
, reg
);
881 /* flush the write to verify completion */
887 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
888 * @hw: pointer to the HW structure
889 * @speed: stores the current speed
890 * @duplex: stores the current duplex
892 * Using the physical coding sub-layer (PCS), retrieve the current speed and
893 * duplex, then store the values in the pointers provided.
895 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
898 struct e1000_mac_info
*mac
= &hw
->mac
;
901 /* Set up defaults for the return values of this function */
902 mac
->serdes_has_link
= false;
907 * Read the PCS Status register for link state. For non-copper mode,
908 * the status register is not accurate. The PCS status register is
911 pcs
= rd32(E1000_PCS_LSTAT
);
914 * The link up bit determines when link is up on autoneg. The sync ok
915 * gets set once both sides sync up and agree upon link. Stable link
916 * can be determined by checking for both link up and link sync ok
918 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
919 mac
->serdes_has_link
= true;
921 /* Detect and store PCS speed */
922 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
924 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
930 /* Detect and store PCS duplex */
931 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
932 *duplex
= FULL_DUPLEX
;
934 *duplex
= HALF_DUPLEX
;
942 * igb_shutdown_serdes_link_82575 - Remove link during power down
943 * @hw: pointer to the HW structure
945 * In the case of fiber serdes, shut down optics and PCS on driver unload
946 * when management pass thru is not enabled.
948 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
952 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
953 igb_sgmii_active_82575(hw
))
956 if (!igb_enable_mng_pass_thru(hw
)) {
957 /* Disable PCS to turn off link */
958 reg
= rd32(E1000_PCS_CFG0
);
959 reg
&= ~E1000_PCS_CFG_PCS_EN
;
960 wr32(E1000_PCS_CFG0
, reg
);
962 /* shutdown the laser */
963 reg
= rd32(E1000_CTRL_EXT
);
964 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
965 wr32(E1000_CTRL_EXT
, reg
);
967 /* flush the write to verify completion */
974 * igb_reset_hw_82575 - Reset hardware
975 * @hw: pointer to the HW structure
977 * This resets the hardware into a known state. This is a
978 * function pointer entry point called by the api module.
980 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
986 * Prevent the PCI-E bus from sticking if there is no TLP connection
987 * on the last TLP read/write transaction when MAC is reset.
989 ret_val
= igb_disable_pcie_master(hw
);
991 hw_dbg("PCI-E Master disable polling has failed.\n");
993 /* set the completion timeout for interface */
994 ret_val
= igb_set_pcie_completion_timeout(hw
);
996 hw_dbg("PCI-E Set completion timeout has failed.\n");
999 hw_dbg("Masking off all interrupts\n");
1000 wr32(E1000_IMC
, 0xffffffff);
1002 wr32(E1000_RCTL
, 0);
1003 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1008 ctrl
= rd32(E1000_CTRL
);
1010 hw_dbg("Issuing a global reset to MAC\n");
1011 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1013 ret_val
= igb_get_auto_rd_done(hw
);
1016 * When auto config read does not complete, do not
1017 * return with an error. This can happen in situations
1018 * where there is no eeprom and prevents getting link.
1020 hw_dbg("Auto Read Done did not complete\n");
1023 /* If EEPROM is not present, run manual init scripts */
1024 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1025 igb_reset_init_script_82575(hw
);
1027 /* Clear any pending interrupt events. */
1028 wr32(E1000_IMC
, 0xffffffff);
1029 icr
= rd32(E1000_ICR
);
1031 /* Install any alternate MAC address into RAR0 */
1032 ret_val
= igb_check_alt_mac_addr(hw
);
1038 * igb_init_hw_82575 - Initialize hardware
1039 * @hw: pointer to the HW structure
1041 * This inits the hardware readying it for operation.
1043 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1045 struct e1000_mac_info
*mac
= &hw
->mac
;
1047 u16 i
, rar_count
= mac
->rar_entry_count
;
1049 /* Initialize identification LED */
1050 ret_val
= igb_id_led_init(hw
);
1052 hw_dbg("Error initializing identification LED\n");
1053 /* This is not fatal and we should not stop init due to this */
1056 /* Disabling VLAN filtering */
1057 hw_dbg("Initializing the IEEE VLAN\n");
1060 /* Setup the receive address */
1061 igb_init_rx_addrs(hw
, rar_count
);
1063 /* Zero out the Multicast HASH table */
1064 hw_dbg("Zeroing the MTA\n");
1065 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1066 array_wr32(E1000_MTA
, i
, 0);
1068 /* Zero out the Unicast HASH table */
1069 hw_dbg("Zeroing the UTA\n");
1070 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1071 array_wr32(E1000_UTA
, i
, 0);
1073 /* Setup link and flow control */
1074 ret_val
= igb_setup_link(hw
);
1077 * Clear all of the statistics registers (clear on read). It is
1078 * important that we do this after we have tried to establish link
1079 * because the symbol error count will increment wildly if there
1082 igb_clear_hw_cntrs_82575(hw
);
1088 * igb_setup_copper_link_82575 - Configure copper link settings
1089 * @hw: pointer to the HW structure
1091 * Configures the link for auto-neg or forced speed and duplex. Then we check
1092 * for link, once link is established calls to configure collision distance
1093 * and flow control are called.
1095 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1100 ctrl
= rd32(E1000_CTRL
);
1101 ctrl
|= E1000_CTRL_SLU
;
1102 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1103 wr32(E1000_CTRL
, ctrl
);
1105 ret_val
= igb_setup_serdes_link_82575(hw
);
1109 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1110 /* allow time for SFP cage time to power up phy */
1113 ret_val
= hw
->phy
.ops
.reset(hw
);
1115 hw_dbg("Error resetting the PHY.\n");
1119 switch (hw
->phy
.type
) {
1121 if (hw
->phy
.id
== I347AT4_E_PHY_ID
||
1122 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1123 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1125 ret_val
= igb_copper_link_setup_m88(hw
);
1127 case e1000_phy_igp_3
:
1128 ret_val
= igb_copper_link_setup_igp(hw
);
1130 case e1000_phy_82580
:
1131 ret_val
= igb_copper_link_setup_82580(hw
);
1134 ret_val
= -E1000_ERR_PHY
;
1141 ret_val
= igb_setup_copper_link(hw
);
1147 * igb_setup_serdes_link_82575 - Setup link for serdes
1148 * @hw: pointer to the HW structure
1150 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1151 * used on copper connections where the serialized gigabit media independent
1152 * interface (sgmii), or serdes fiber is being used. Configures the link
1153 * for auto-negotiation or forces speed/duplex.
1155 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1157 u32 ctrl_ext
, ctrl_reg
, reg
;
1160 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1161 !igb_sgmii_active_82575(hw
))
1165 * On the 82575, SerDes loopback mode persists until it is
1166 * explicitly turned off or a power cycle is performed. A read to
1167 * the register does not indicate its status. Therefore, we ensure
1168 * loopback mode is disabled during initialization.
1170 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1172 /* power on the sfp cage if present */
1173 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1174 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1175 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1177 ctrl_reg
= rd32(E1000_CTRL
);
1178 ctrl_reg
|= E1000_CTRL_SLU
;
1180 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1181 /* set both sw defined pins */
1182 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1184 /* Set switch control to serdes energy detect */
1185 reg
= rd32(E1000_CONNSW
);
1186 reg
|= E1000_CONNSW_ENRGSRC
;
1187 wr32(E1000_CONNSW
, reg
);
1190 reg
= rd32(E1000_PCS_LCTL
);
1192 /* default pcs_autoneg to the same setting as mac autoneg */
1193 pcs_autoneg
= hw
->mac
.autoneg
;
1195 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1196 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1197 /* sgmii mode lets the phy handle forcing speed/duplex */
1199 /* autoneg time out should be disabled for SGMII mode */
1200 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1202 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1203 /* disable PCS autoneg and support parallel detect only */
1204 pcs_autoneg
= false;
1207 * non-SGMII modes only supports a speed of 1000/Full for the
1208 * link so it is best to just force the MAC and let the pcs
1209 * link either autoneg or be forced to 1000/Full
1211 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1212 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1214 /* set speed of 1000/Full if speed/duplex is forced */
1215 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1219 wr32(E1000_CTRL
, ctrl_reg
);
1222 * New SerDes mode allows for forcing speed or autonegotiating speed
1223 * at 1gb. Autoneg should be default set by most drivers. This is the
1224 * mode that will be compatible with older link partners and switches.
1225 * However, both are supported by the hardware and some drivers/tools.
1227 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1228 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1231 * We force flow control to prevent the CTRL register values from being
1232 * overwritten by the autonegotiated flow control values
1234 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1237 /* Set PCS register for autoneg */
1238 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1239 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1240 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1242 /* Set PCS register for forced link */
1243 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1245 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1248 wr32(E1000_PCS_LCTL
, reg
);
1250 if (!igb_sgmii_active_82575(hw
))
1251 igb_force_mac_fc(hw
);
1257 * igb_sgmii_active_82575 - Return sgmii state
1258 * @hw: pointer to the HW structure
1260 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1261 * which can be enabled for use in the embedded applications. Simply
1262 * return the current state of the sgmii interface.
1264 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1266 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1267 return dev_spec
->sgmii_active
;
1271 * igb_reset_init_script_82575 - Inits HW defaults after reset
1272 * @hw: pointer to the HW structure
1274 * Inits recommended HW defaults after a reset when there is no EEPROM
1275 * detected. This is only for the 82575.
1277 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1279 if (hw
->mac
.type
== e1000_82575
) {
1280 hw_dbg("Running reset init script for 82575\n");
1281 /* SerDes configuration via SERDESCTRL */
1282 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1283 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1284 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1285 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1287 /* CCM configuration via CCMCTL register */
1288 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1289 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1291 /* PCIe lanes configuration */
1292 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1293 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1294 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1295 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1297 /* PCIe PLL Configuration */
1298 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1299 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1300 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1307 * igb_read_mac_addr_82575 - Read device MAC address
1308 * @hw: pointer to the HW structure
1310 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1315 * If there's an alternate MAC address place it in RAR0
1316 * so that it will override the Si installed default perm
1319 ret_val
= igb_check_alt_mac_addr(hw
);
1323 ret_val
= igb_read_mac_addr(hw
);
1330 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1331 * @hw: pointer to the HW structure
1333 * In the case of a PHY power down to save power, or to turn off link during a
1334 * driver unload, or wake on lan is not enabled, remove the link.
1336 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1338 /* If the management interface is not enabled, then power down */
1339 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1340 igb_power_down_phy_copper(hw
);
1344 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1345 * @hw: pointer to the HW structure
1347 * Clears the hardware counters by reading the counter registers.
1349 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1351 igb_clear_hw_cntrs_base(hw
);
1357 rd32(E1000_PRC1023
);
1358 rd32(E1000_PRC1522
);
1363 rd32(E1000_PTC1023
);
1364 rd32(E1000_PTC1522
);
1366 rd32(E1000_ALGNERRC
);
1369 rd32(E1000_CEXTERR
);
1380 rd32(E1000_ICRXPTC
);
1381 rd32(E1000_ICRXATC
);
1382 rd32(E1000_ICTXPTC
);
1383 rd32(E1000_ICTXATC
);
1384 rd32(E1000_ICTXQEC
);
1385 rd32(E1000_ICTXQMTC
);
1386 rd32(E1000_ICRXDMTC
);
1393 rd32(E1000_HTCBDPC
);
1398 rd32(E1000_LENERRS
);
1400 /* This register should not be read in copper configurations */
1401 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1402 igb_sgmii_active_82575(hw
))
1407 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1408 * @hw: pointer to the HW structure
1410 * After rx enable if managability is enabled then there is likely some
1411 * bad data at the start of the fifo and possibly in the DMA fifo. This
1412 * function clears the fifos and flushes any packets that came in as rx was
1415 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1417 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1420 if (hw
->mac
.type
!= e1000_82575
||
1421 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1424 /* Disable all RX queues */
1425 for (i
= 0; i
< 4; i
++) {
1426 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1427 wr32(E1000_RXDCTL(i
),
1428 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1430 /* Poll all queues to verify they have shut down */
1431 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1434 for (i
= 0; i
< 4; i
++)
1435 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1436 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1441 hw_dbg("Queue disable timed out after 10ms\n");
1443 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1444 * incoming packets are rejected. Set enable and wait 2ms so that
1445 * any packet that was coming in as RCTL.EN was set is flushed
1447 rfctl
= rd32(E1000_RFCTL
);
1448 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1450 rlpml
= rd32(E1000_RLPML
);
1451 wr32(E1000_RLPML
, 0);
1453 rctl
= rd32(E1000_RCTL
);
1454 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1455 temp_rctl
|= E1000_RCTL_LPE
;
1457 wr32(E1000_RCTL
, temp_rctl
);
1458 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1462 /* Enable RX queues that were previously enabled and restore our
1465 for (i
= 0; i
< 4; i
++)
1466 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1467 wr32(E1000_RCTL
, rctl
);
1470 wr32(E1000_RLPML
, rlpml
);
1471 wr32(E1000_RFCTL
, rfctl
);
1473 /* Flush receive errors generated by workaround */
1480 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1481 * @hw: pointer to the HW structure
1483 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1484 * however the hardware default for these parts is 500us to 1ms which is less
1485 * than the 10ms recommended by the pci-e spec. To address this we need to
1486 * increase the value to either 10ms to 200ms for capability version 1 config,
1487 * or 16ms to 55ms for version 2.
1489 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1491 u32 gcr
= rd32(E1000_GCR
);
1495 /* only take action if timeout value is defaulted to 0 */
1496 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1500 * if capababilities version is type 1 we can write the
1501 * timeout of 10ms to 200ms through the GCR register
1503 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1504 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1509 * for version 2 capabilities we need to write the config space
1510 * directly in order to set the completion timeout value for
1513 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1518 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1520 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1523 /* disable completion timeout resend */
1524 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1526 wr32(E1000_GCR
, gcr
);
1531 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1532 * @hw: pointer to the hardware struct
1533 * @enable: state to enter, either enabled or disabled
1534 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1536 * enables/disables L2 switch anti-spoofing functionality.
1538 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
1542 switch (hw
->mac
.type
) {
1545 dtxswc
= rd32(E1000_DTXSWC
);
1547 dtxswc
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
1548 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1549 /* The PF can spoof - it has to in order to
1550 * support emulation mode NICs */
1551 dtxswc
^= (1 << pf
| 1 << (pf
+ MAX_NUM_VFS
));
1553 dtxswc
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
1554 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1556 wr32(E1000_DTXSWC
, dtxswc
);
1564 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1565 * @hw: pointer to the hardware struct
1566 * @enable: state to enter, either enabled or disabled
1568 * enables/disables L2 switch loopback functionality.
1570 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1572 u32 dtxswc
= rd32(E1000_DTXSWC
);
1575 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1577 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1579 wr32(E1000_DTXSWC
, dtxswc
);
1583 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1584 * @hw: pointer to the hardware struct
1585 * @enable: state to enter, either enabled or disabled
1587 * enables/disables replication of packets across multiple pools.
1589 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1591 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1594 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1596 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1598 wr32(E1000_VT_CTL
, vt_ctl
);
1602 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1603 * @hw: pointer to the HW structure
1604 * @offset: register offset to be read
1605 * @data: pointer to the read data
1607 * Reads the MDI control register in the PHY at offset and stores the
1608 * information read to data.
1610 static s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
1615 ret_val
= hw
->phy
.ops
.acquire(hw
);
1619 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
1621 hw
->phy
.ops
.release(hw
);
1628 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1629 * @hw: pointer to the HW structure
1630 * @offset: register offset to write to
1631 * @data: data to write to register at offset
1633 * Writes data to MDI control register in the PHY at offset.
1635 static s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
1640 ret_val
= hw
->phy
.ops
.acquire(hw
);
1644 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
1646 hw
->phy
.ops
.release(hw
);
1653 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1654 * @hw: pointer to the HW structure
1656 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1657 * the values found in the EEPROM. This addresses an issue in which these
1658 * bits are not restored from EEPROM after reset.
1660 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
1666 if (hw
->mac
.type
!= e1000_82580
)
1668 if (!igb_sgmii_active_82575(hw
))
1671 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1672 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1675 hw_dbg("NVM Read Error\n");
1679 mdicnfg
= rd32(E1000_MDICNFG
);
1680 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
1681 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
1682 if (nvm_data
& NVM_WORD24_COM_MDIO
)
1683 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
1684 wr32(E1000_MDICNFG
, mdicnfg
);
1690 * igb_reset_hw_82580 - Reset hardware
1691 * @hw: pointer to the HW structure
1693 * This resets function or entire device (all ports, etc.)
1696 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
1699 /* BH SW mailbox bit in SW_FW_SYNC */
1700 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
1702 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
1705 hw
->dev_spec
._82575
.global_device_reset
= false;
1707 /* Get current control state. */
1708 ctrl
= rd32(E1000_CTRL
);
1711 * Prevent the PCI-E bus from sticking if there is no TLP connection
1712 * on the last TLP read/write transaction when MAC is reset.
1714 ret_val
= igb_disable_pcie_master(hw
);
1716 hw_dbg("PCI-E Master disable polling has failed.\n");
1718 hw_dbg("Masking off all interrupts\n");
1719 wr32(E1000_IMC
, 0xffffffff);
1720 wr32(E1000_RCTL
, 0);
1721 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1726 /* Determine whether or not a global dev reset is requested */
1727 if (global_device_reset
&&
1728 igb_acquire_swfw_sync_82575(hw
, swmbsw_mask
))
1729 global_device_reset
= false;
1731 if (global_device_reset
&&
1732 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
1733 ctrl
|= E1000_CTRL_DEV_RST
;
1735 ctrl
|= E1000_CTRL_RST
;
1737 wr32(E1000_CTRL
, ctrl
);
1739 /* Add delay to insure DEV_RST has time to complete */
1740 if (global_device_reset
)
1743 ret_val
= igb_get_auto_rd_done(hw
);
1746 * When auto config read does not complete, do not
1747 * return with an error. This can happen in situations
1748 * where there is no eeprom and prevents getting link.
1750 hw_dbg("Auto Read Done did not complete\n");
1753 /* If EEPROM is not present, run manual init scripts */
1754 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1755 igb_reset_init_script_82575(hw
);
1757 /* clear global device reset status bit */
1758 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
1760 /* Clear any pending interrupt events. */
1761 wr32(E1000_IMC
, 0xffffffff);
1762 icr
= rd32(E1000_ICR
);
1764 ret_val
= igb_reset_mdicnfg_82580(hw
);
1766 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1768 /* Install any alternate MAC address into RAR0 */
1769 ret_val
= igb_check_alt_mac_addr(hw
);
1771 /* Release semaphore */
1772 if (global_device_reset
)
1773 igb_release_swfw_sync_82575(hw
, swmbsw_mask
);
1779 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1780 * @data: data received by reading RXPBS register
1782 * The 82580 uses a table based approach for packet buffer allocation sizes.
1783 * This function converts the retrieved value into the correct table value
1784 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1785 * 0x0 36 72 144 1 2 4 8 16
1786 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1788 u16
igb_rxpbs_adjust_82580(u32 data
)
1792 if (data
< E1000_82580_RXPBS_TABLE_SIZE
)
1793 ret_val
= e1000_82580_rxpbs_table
[data
];
1799 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1801 * @hw: pointer to the HW structure
1802 * @offset: offset in words of the checksum protected region
1804 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1805 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1807 s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1813 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
1814 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1816 hw_dbg("NVM Read Error\n");
1819 checksum
+= nvm_data
;
1822 if (checksum
!= (u16
) NVM_SUM
) {
1823 hw_dbg("NVM Checksum Invalid\n");
1824 ret_val
= -E1000_ERR_NVM
;
1833 * igb_update_nvm_checksum_with_offset - Update EEPROM
1835 * @hw: pointer to the HW structure
1836 * @offset: offset in words of the checksum protected region
1838 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1839 * up to the checksum. Then calculates the EEPROM checksum and writes the
1840 * value to the EEPROM.
1842 s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1848 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
1849 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1851 hw_dbg("NVM Read Error while updating checksum.\n");
1854 checksum
+= nvm_data
;
1856 checksum
= (u16
) NVM_SUM
- checksum
;
1857 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
1860 hw_dbg("NVM Write Error while updating checksum.\n");
1867 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1868 * @hw: pointer to the HW structure
1870 * Calculates the EEPROM section checksum by reading/adding each word of
1871 * the EEPROM and then verifies that the sum of the EEPROM is
1874 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
1877 u16 eeprom_regions_count
= 1;
1881 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1883 hw_dbg("NVM Read Error\n");
1887 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
1888 /* if checksums compatibility bit is set validate checksums
1889 * for all 4 ports. */
1890 eeprom_regions_count
= 4;
1893 for (j
= 0; j
< eeprom_regions_count
; j
++) {
1894 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1895 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1906 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1907 * @hw: pointer to the HW structure
1909 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1910 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1911 * checksum and writes the value to the EEPROM.
1913 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
1919 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1921 hw_dbg("NVM Read Error while updating checksum"
1922 " compatibility bit.\n");
1926 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
1927 /* set compatibility bit to validate checksums appropriately */
1928 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
1929 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
1932 hw_dbg("NVM Write Error while updating checksum"
1933 " compatibility bit.\n");
1938 for (j
= 0; j
< 4; j
++) {
1939 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1940 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
1950 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1951 * @hw: pointer to the HW structure
1953 * Calculates the EEPROM section checksum by reading/adding each word of
1954 * the EEPROM and then verifies that the sum of the EEPROM is
1957 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
1963 for (j
= 0; j
< 4; j
++) {
1964 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1965 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1976 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
1977 * @hw: pointer to the HW structure
1979 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1980 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1981 * checksum and writes the value to the EEPROM.
1983 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
1989 for (j
= 0; j
< 4; j
++) {
1990 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1991 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2001 * igb_set_eee_i350 - Enable/disable EEE support
2002 * @hw: pointer to the HW structure
2004 * Enable/disable EEE based on setting in dev_spec structure.
2007 s32
igb_set_eee_i350(struct e1000_hw
*hw
)
2010 u32 ipcnfg
, eeer
, ctrl_ext
;
2012 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2013 if ((hw
->mac
.type
!= e1000_i350
) ||
2014 (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
))
2016 ipcnfg
= rd32(E1000_IPCNFG
);
2017 eeer
= rd32(E1000_EEER
);
2019 /* enable or disable per user setting */
2020 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2021 ipcnfg
|= (E1000_IPCNFG_EEE_1G_AN
|
2022 E1000_IPCNFG_EEE_100M_AN
);
2023 eeer
|= (E1000_EEER_TX_LPI_EN
|
2024 E1000_EEER_RX_LPI_EN
|
2028 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2029 E1000_IPCNFG_EEE_100M_AN
);
2030 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2031 E1000_EEER_RX_LPI_EN
|
2034 wr32(E1000_IPCNFG
, ipcnfg
);
2035 wr32(E1000_EEER
, eeer
);
2041 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2042 .init_hw
= igb_init_hw_82575
,
2043 .check_for_link
= igb_check_for_link_82575
,
2044 .rar_set
= igb_rar_set
,
2045 .read_mac_addr
= igb_read_mac_addr_82575
,
2046 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
2049 static struct e1000_phy_operations e1000_phy_ops_82575
= {
2050 .acquire
= igb_acquire_phy_82575
,
2051 .get_cfg_done
= igb_get_cfg_done_82575
,
2052 .release
= igb_release_phy_82575
,
2055 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2056 .acquire
= igb_acquire_nvm_82575
,
2057 .read
= igb_read_nvm_eerd
,
2058 .release
= igb_release_nvm_82575
,
2059 .write
= igb_write_nvm_spi
,
2062 const struct e1000_info e1000_82575_info
= {
2063 .get_invariants
= igb_get_invariants_82575
,
2064 .mac_ops
= &e1000_mac_ops_82575
,
2065 .phy_ops
= &e1000_phy_ops_82575
,
2066 .nvm_ops
= &e1000_nvm_ops_82575
,