1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/libsas.h> /* For TASK_ATTR_* */
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
65 #define DEBUG_CDB_H(x...)
68 /* #define DEBUG_CMD_MAP */
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
72 #define DEBUG_CMD_M(x...)
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
79 #define DEBUG_MEM(x...)
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
86 #define DEBUG_MEM2(x...)
89 /* #define DEBUG_SG_CALC */
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
93 #define DEBUG_SC(x...)
96 /* #define DEBUG_SE_OBJ */
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
100 #define DEBUG_SO(x...)
103 /* #define DEBUG_CMD_VOL */
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
107 #define DEBUG_VOL(x...)
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
114 #define DEBUG_CS(x...)
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
121 #define DEBUG_PT(x...)
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
128 #define DEBUG_TS(x...)
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
135 #define DEBUG_TRANSPORT_S(x...)
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
142 #define DEBUG_TF(x...)
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
149 #define DEBUG_DO(x...)
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
156 #define DEBUG_TSTATE(x...)
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
163 #define DEBUG_ST(x...)
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
170 #define DEBUG_TT(x...)
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
177 #define DEBUG_GRF(x...)
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
184 #define DEBUG_STA(x...)
187 struct se_global
*se_global
;
189 static struct kmem_cache
*se_cmd_cache
;
190 static struct kmem_cache
*se_sess_cache
;
191 struct kmem_cache
*se_tmr_req_cache
;
192 struct kmem_cache
*se_ua_cache
;
193 struct kmem_cache
*se_mem_cache
;
194 struct kmem_cache
*t10_pr_reg_cache
;
195 struct kmem_cache
*t10_alua_lu_gp_cache
;
196 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
197 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
198 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t
)(struct se_task
*, u32
);
203 static int transport_generic_write_pending(struct se_cmd
*);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device
*dev
);
206 static void transport_complete_task_attr(struct se_cmd
*cmd
);
207 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
208 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
209 static u32
transport_generic_get_cdb_count(struct se_cmd
*cmd
,
210 unsigned long long starting_lba
, u32 sectors
,
211 enum dma_data_direction data_direction
,
212 struct list_head
*mem_list
, int set_counts
);
213 static int transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
,
215 static int transport_generic_remove(struct se_cmd
*cmd
,
216 int release_to_pool
, int session_reinstatement
);
217 static int transport_get_sectors(struct se_cmd
*cmd
);
218 static struct list_head
*transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd
*cmd
,
220 struct list_head
*se_mem_list
, void *in_mem
,
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd
*cmd
,
223 unsigned char *dst
, struct list_head
*se_mem_list
);
224 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
225 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
226 struct se_queue_obj
*qobj
);
227 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
228 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
230 int init_se_global(void)
232 struct se_global
*global
;
234 global
= kzalloc(sizeof(struct se_global
), GFP_KERNEL
);
236 printk(KERN_ERR
"Unable to allocate memory for struct se_global\n");
240 INIT_LIST_HEAD(&global
->g_lu_gps_list
);
241 INIT_LIST_HEAD(&global
->g_se_tpg_list
);
242 INIT_LIST_HEAD(&global
->g_hba_list
);
243 INIT_LIST_HEAD(&global
->g_se_dev_list
);
244 spin_lock_init(&global
->g_device_lock
);
245 spin_lock_init(&global
->hba_lock
);
246 spin_lock_init(&global
->se_tpg_lock
);
247 spin_lock_init(&global
->lu_gps_lock
);
248 spin_lock_init(&global
->plugin_class_lock
);
250 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
251 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
252 if (!(se_cmd_cache
)) {
253 printk(KERN_ERR
"kmem_cache_create for struct se_cmd failed\n");
256 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
257 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
259 if (!(se_tmr_req_cache
)) {
260 printk(KERN_ERR
"kmem_cache_create() for struct se_tmr_req"
264 se_sess_cache
= kmem_cache_create("se_sess_cache",
265 sizeof(struct se_session
), __alignof__(struct se_session
),
267 if (!(se_sess_cache
)) {
268 printk(KERN_ERR
"kmem_cache_create() for struct se_session"
272 se_ua_cache
= kmem_cache_create("se_ua_cache",
273 sizeof(struct se_ua
), __alignof__(struct se_ua
),
275 if (!(se_ua_cache
)) {
276 printk(KERN_ERR
"kmem_cache_create() for struct se_ua failed\n");
279 se_mem_cache
= kmem_cache_create("se_mem_cache",
280 sizeof(struct se_mem
), __alignof__(struct se_mem
), 0, NULL
);
281 if (!(se_mem_cache
)) {
282 printk(KERN_ERR
"kmem_cache_create() for struct se_mem failed\n");
285 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
286 sizeof(struct t10_pr_registration
),
287 __alignof__(struct t10_pr_registration
), 0, NULL
);
288 if (!(t10_pr_reg_cache
)) {
289 printk(KERN_ERR
"kmem_cache_create() for struct t10_pr_registration"
293 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
294 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
296 if (!(t10_alua_lu_gp_cache
)) {
297 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_cache"
301 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
302 sizeof(struct t10_alua_lu_gp_member
),
303 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
304 if (!(t10_alua_lu_gp_mem_cache
)) {
305 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_mem_"
309 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
310 sizeof(struct t10_alua_tg_pt_gp
),
311 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
312 if (!(t10_alua_tg_pt_gp_cache
)) {
313 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
317 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
318 "t10_alua_tg_pt_gp_mem_cache",
319 sizeof(struct t10_alua_tg_pt_gp_member
),
320 __alignof__(struct t10_alua_tg_pt_gp_member
),
322 if (!(t10_alua_tg_pt_gp_mem_cache
)) {
323 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
333 kmem_cache_destroy(se_cmd_cache
);
334 if (se_tmr_req_cache
)
335 kmem_cache_destroy(se_tmr_req_cache
);
337 kmem_cache_destroy(se_sess_cache
);
339 kmem_cache_destroy(se_ua_cache
);
341 kmem_cache_destroy(se_mem_cache
);
342 if (t10_pr_reg_cache
)
343 kmem_cache_destroy(t10_pr_reg_cache
);
344 if (t10_alua_lu_gp_cache
)
345 kmem_cache_destroy(t10_alua_lu_gp_cache
);
346 if (t10_alua_lu_gp_mem_cache
)
347 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
348 if (t10_alua_tg_pt_gp_cache
)
349 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
350 if (t10_alua_tg_pt_gp_mem_cache
)
351 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
356 void release_se_global(void)
358 struct se_global
*global
;
364 kmem_cache_destroy(se_cmd_cache
);
365 kmem_cache_destroy(se_tmr_req_cache
);
366 kmem_cache_destroy(se_sess_cache
);
367 kmem_cache_destroy(se_ua_cache
);
368 kmem_cache_destroy(se_mem_cache
);
369 kmem_cache_destroy(t10_pr_reg_cache
);
370 kmem_cache_destroy(t10_alua_lu_gp_cache
);
371 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
372 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
373 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table
;
383 * Initialize the index table for allocating unique row indexes to various mib
386 void init_scsi_index_table(void)
388 memset(&scsi_index_table
, 0, sizeof(struct scsi_index_table
));
389 spin_lock_init(&scsi_index_table
.lock
);
393 * Allocate a new row index for the entry type specified
395 u32
scsi_get_new_index(scsi_index_t type
)
399 if ((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
)) {
400 printk(KERN_ERR
"Invalid index type %d\n", type
);
404 spin_lock(&scsi_index_table
.lock
);
405 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
407 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
408 spin_unlock(&scsi_index_table
.lock
);
413 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
415 atomic_set(&qobj
->queue_cnt
, 0);
416 INIT_LIST_HEAD(&qobj
->qobj_list
);
417 init_waitqueue_head(&qobj
->thread_wq
);
418 spin_lock_init(&qobj
->cmd_queue_lock
);
420 EXPORT_SYMBOL(transport_init_queue_obj
);
422 static int transport_subsystem_reqmods(void)
426 ret
= request_module("target_core_iblock");
428 printk(KERN_ERR
"Unable to load target_core_iblock\n");
430 ret
= request_module("target_core_file");
432 printk(KERN_ERR
"Unable to load target_core_file\n");
434 ret
= request_module("target_core_pscsi");
436 printk(KERN_ERR
"Unable to load target_core_pscsi\n");
438 ret
= request_module("target_core_stgt");
440 printk(KERN_ERR
"Unable to load target_core_stgt\n");
445 int transport_subsystem_check_init(void)
447 if (se_global
->g_sub_api_initialized
)
450 * Request the loading of known TCM subsystem plugins..
452 if (transport_subsystem_reqmods() < 0)
455 se_global
->g_sub_api_initialized
= 1;
459 struct se_session
*transport_init_session(void)
461 struct se_session
*se_sess
;
463 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
465 printk(KERN_ERR
"Unable to allocate struct se_session from"
467 return ERR_PTR(-ENOMEM
);
469 INIT_LIST_HEAD(&se_sess
->sess_list
);
470 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
474 EXPORT_SYMBOL(transport_init_session
);
477 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
479 void __transport_register_session(
480 struct se_portal_group
*se_tpg
,
481 struct se_node_acl
*se_nacl
,
482 struct se_session
*se_sess
,
483 void *fabric_sess_ptr
)
485 unsigned char buf
[PR_REG_ISID_LEN
];
487 se_sess
->se_tpg
= se_tpg
;
488 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
490 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
492 * Only set for struct se_session's that will actually be moving I/O.
493 * eg: *NOT* discovery sessions.
497 * If the fabric module supports an ISID based TransportID,
498 * save this value in binary from the fabric I_T Nexus now.
500 if (TPG_TFO(se_tpg
)->sess_get_initiator_sid
!= NULL
) {
501 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
502 TPG_TFO(se_tpg
)->sess_get_initiator_sid(se_sess
,
503 &buf
[0], PR_REG_ISID_LEN
);
504 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
506 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
508 * The se_nacl->nacl_sess pointer will be set to the
509 * last active I_T Nexus for each struct se_node_acl.
511 se_nacl
->nacl_sess
= se_sess
;
513 list_add_tail(&se_sess
->sess_acl_list
,
514 &se_nacl
->acl_sess_list
);
515 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
517 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
519 printk(KERN_INFO
"TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520 TPG_TFO(se_tpg
)->get_fabric_name(), se_sess
->fabric_sess_ptr
);
522 EXPORT_SYMBOL(__transport_register_session
);
524 void transport_register_session(
525 struct se_portal_group
*se_tpg
,
526 struct se_node_acl
*se_nacl
,
527 struct se_session
*se_sess
,
528 void *fabric_sess_ptr
)
530 spin_lock_bh(&se_tpg
->session_lock
);
531 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
532 spin_unlock_bh(&se_tpg
->session_lock
);
534 EXPORT_SYMBOL(transport_register_session
);
536 void transport_deregister_session_configfs(struct se_session
*se_sess
)
538 struct se_node_acl
*se_nacl
;
541 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
543 se_nacl
= se_sess
->se_node_acl
;
545 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
546 list_del(&se_sess
->sess_acl_list
);
548 * If the session list is empty, then clear the pointer.
549 * Otherwise, set the struct se_session pointer from the tail
550 * element of the per struct se_node_acl active session list.
552 if (list_empty(&se_nacl
->acl_sess_list
))
553 se_nacl
->nacl_sess
= NULL
;
555 se_nacl
->nacl_sess
= container_of(
556 se_nacl
->acl_sess_list
.prev
,
557 struct se_session
, sess_acl_list
);
559 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
562 EXPORT_SYMBOL(transport_deregister_session_configfs
);
564 void transport_free_session(struct se_session
*se_sess
)
566 kmem_cache_free(se_sess_cache
, se_sess
);
568 EXPORT_SYMBOL(transport_free_session
);
570 void transport_deregister_session(struct se_session
*se_sess
)
572 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
573 struct se_node_acl
*se_nacl
;
576 transport_free_session(se_sess
);
580 spin_lock_bh(&se_tpg
->session_lock
);
581 list_del(&se_sess
->sess_list
);
582 se_sess
->se_tpg
= NULL
;
583 se_sess
->fabric_sess_ptr
= NULL
;
584 spin_unlock_bh(&se_tpg
->session_lock
);
587 * Determine if we need to do extra work for this initiator node's
588 * struct se_node_acl if it had been previously dynamically generated.
590 se_nacl
= se_sess
->se_node_acl
;
592 spin_lock_bh(&se_tpg
->acl_node_lock
);
593 if (se_nacl
->dynamic_node_acl
) {
594 if (!(TPG_TFO(se_tpg
)->tpg_check_demo_mode_cache(
596 list_del(&se_nacl
->acl_list
);
597 se_tpg
->num_node_acls
--;
598 spin_unlock_bh(&se_tpg
->acl_node_lock
);
600 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
601 core_free_device_list_for_node(se_nacl
, se_tpg
);
602 TPG_TFO(se_tpg
)->tpg_release_fabric_acl(se_tpg
,
604 spin_lock_bh(&se_tpg
->acl_node_lock
);
607 spin_unlock_bh(&se_tpg
->acl_node_lock
);
610 transport_free_session(se_sess
);
612 printk(KERN_INFO
"TARGET_CORE[%s]: Deregistered fabric_sess\n",
613 TPG_TFO(se_tpg
)->get_fabric_name());
615 EXPORT_SYMBOL(transport_deregister_session
);
618 * Called with T_TASK(cmd)->t_state_lock held.
620 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
622 struct se_device
*dev
;
623 struct se_task
*task
;
629 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
634 if (atomic_read(&task
->task_active
))
637 if (!(atomic_read(&task
->task_state_active
)))
640 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
641 list_del(&task
->t_state_list
);
642 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643 CMD_TFO(cmd
)->tfo_get_task_tag(cmd
), dev
, task
);
644 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
646 atomic_set(&task
->task_state_active
, 0);
647 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_ex_left
);
651 /* transport_cmd_check_stop():
653 * 'transport_off = 1' determines if t_transport_active should be cleared.
654 * 'transport_off = 2' determines if task_dev_state should be removed.
656 * A non-zero u8 t_state sets cmd->t_state.
657 * Returns 1 when command is stopped, else 0.
659 static int transport_cmd_check_stop(
666 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
668 * Determine if IOCTL context caller in requesting the stopping of this
669 * command for LUN shutdown purposes.
671 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
672 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
674 CMD_TFO(cmd
)->get_task_tag(cmd
));
676 cmd
->deferred_t_state
= cmd
->t_state
;
677 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
678 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
679 if (transport_off
== 2)
680 transport_all_task_dev_remove_state(cmd
);
681 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
683 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
687 * Determine if frontend context caller is requesting the stopping of
688 * this command for frontend excpections.
690 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
691 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
693 CMD_TFO(cmd
)->get_task_tag(cmd
));
695 cmd
->deferred_t_state
= cmd
->t_state
;
696 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
697 if (transport_off
== 2)
698 transport_all_task_dev_remove_state(cmd
);
701 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
704 if (transport_off
== 2)
706 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
708 complete(&T_TASK(cmd
)->t_transport_stop_comp
);
712 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
713 if (transport_off
== 2) {
714 transport_all_task_dev_remove_state(cmd
);
716 * Clear struct se_cmd->se_lun before the transport_off == 2
717 * handoff to fabric module.
721 * Some fabric modules like tcm_loop can release
722 * their internally allocated I/O reference now and
725 if (CMD_TFO(cmd
)->check_stop_free
!= NULL
) {
726 spin_unlock_irqrestore(
727 &T_TASK(cmd
)->t_state_lock
, flags
);
729 CMD_TFO(cmd
)->check_stop_free(cmd
);
733 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
737 cmd
->t_state
= t_state
;
738 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
745 return transport_cmd_check_stop(cmd
, 2, 0);
748 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
750 struct se_lun
*lun
= SE_LUN(cmd
);
756 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
757 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
758 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
761 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
762 transport_all_task_dev_remove_state(cmd
);
763 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
765 transport_free_dev_tasks(cmd
);
768 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
769 if (atomic_read(&T_TASK(cmd
)->transport_lun_active
)) {
770 list_del(&cmd
->se_lun_list
);
771 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
773 printk(KERN_INFO
"Removed ITT: 0x%08x from LUN LIST[%d]\n"
774 CMD_TFO(cmd
)->get_task_tag(cmd
), lun
->unpacked_lun
);
777 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
780 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
782 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
783 transport_lun_remove_cmd(cmd
);
785 if (transport_cmd_check_stop_to_fabric(cmd
))
788 transport_generic_remove(cmd
, 0, 0);
791 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
793 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
795 if (transport_cmd_check_stop_to_fabric(cmd
))
798 transport_generic_remove(cmd
, 0, 0);
801 static int transport_add_cmd_to_queue(
805 struct se_device
*dev
= cmd
->se_dev
;
806 struct se_queue_obj
*qobj
= dev
->dev_queue_obj
;
807 struct se_queue_req
*qr
;
810 qr
= kzalloc(sizeof(struct se_queue_req
), GFP_ATOMIC
);
812 printk(KERN_ERR
"Unable to allocate memory for"
813 " struct se_queue_req\n");
816 INIT_LIST_HEAD(&qr
->qr_list
);
818 qr
->cmd
= (void *)cmd
;
822 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
823 cmd
->t_state
= t_state
;
824 atomic_set(&T_TASK(cmd
)->t_transport_active
, 1);
825 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
828 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
829 list_add_tail(&qr
->qr_list
, &qobj
->qobj_list
);
830 atomic_inc(&T_TASK(cmd
)->t_transport_queue_active
);
831 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
833 atomic_inc(&qobj
->queue_cnt
);
834 wake_up_interruptible(&qobj
->thread_wq
);
839 * Called with struct se_queue_obj->cmd_queue_lock held.
841 static struct se_queue_req
*
842 __transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
845 struct se_queue_req
*qr
= NULL
;
847 if (list_empty(&qobj
->qobj_list
))
850 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
854 cmd
= (struct se_cmd
*)qr
->cmd
;
855 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
857 list_del(&qr
->qr_list
);
858 atomic_dec(&qobj
->queue_cnt
);
863 static struct se_queue_req
*
864 transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
867 struct se_queue_req
*qr
;
870 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
871 if (list_empty(&qobj
->qobj_list
)) {
872 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
876 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
880 cmd
= (struct se_cmd
*)qr
->cmd
;
881 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
883 list_del(&qr
->qr_list
);
884 atomic_dec(&qobj
->queue_cnt
);
885 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
890 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
891 struct se_queue_obj
*qobj
)
893 struct se_cmd
*q_cmd
;
894 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
897 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
898 if (!(atomic_read(&T_TASK(cmd
)->t_transport_queue_active
))) {
899 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
903 list_for_each_entry_safe(qr
, qr_p
, &qobj
->qobj_list
, qr_list
) {
904 q_cmd
= (struct se_cmd
*)qr
->cmd
;
908 atomic_dec(&T_TASK(q_cmd
)->t_transport_queue_active
);
909 atomic_dec(&qobj
->queue_cnt
);
910 list_del(&qr
->qr_list
);
913 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
915 if (atomic_read(&T_TASK(cmd
)->t_transport_queue_active
)) {
916 printk(KERN_ERR
"ITT: 0x%08x t_transport_queue_active: %d\n",
917 CMD_TFO(cmd
)->get_task_tag(cmd
),
918 atomic_read(&T_TASK(cmd
)->t_transport_queue_active
));
923 * Completion function used by TCM subsystem plugins (such as FILEIO)
924 * for queueing up response from struct se_subsystem_api->do_task()
926 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
928 struct se_task
*task
= list_entry(T_TASK(cmd
)->t_task_list
.next
,
929 struct se_task
, t_list
);
932 cmd
->scsi_status
= SAM_STAT_GOOD
;
933 task
->task_scsi_status
= GOOD
;
935 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
936 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
937 TASK_CMD(task
)->transport_error_status
=
938 PYX_TRANSPORT_ILLEGAL_REQUEST
;
941 transport_complete_task(task
, good
);
943 EXPORT_SYMBOL(transport_complete_sync_cache
);
945 /* transport_complete_task():
947 * Called from interrupt and non interrupt context depending
948 * on the transport plugin.
950 void transport_complete_task(struct se_task
*task
, int success
)
952 struct se_cmd
*cmd
= TASK_CMD(task
);
953 struct se_device
*dev
= task
->se_dev
;
957 printk(KERN_INFO
"task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
958 T_TASK(cmd
)->t_task_cdb
[0], dev
);
961 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
962 atomic_inc(&dev
->depth_left
);
963 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
964 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
967 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
968 atomic_set(&task
->task_active
, 0);
971 * See if any sense data exists, if so set the TASK_SENSE flag.
972 * Also check for any other post completion work that needs to be
973 * done by the plugins.
975 if (dev
&& dev
->transport
->transport_complete
) {
976 if (dev
->transport
->transport_complete(task
) != 0) {
977 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
978 task
->task_sense
= 1;
984 * See if we are waiting for outstanding struct se_task
985 * to complete for an exception condition
987 if (atomic_read(&task
->task_stop
)) {
989 * Decrement T_TASK(cmd)->t_se_count if this task had
990 * previously thrown its timeout exception handler.
992 if (atomic_read(&task
->task_timeout
)) {
993 atomic_dec(&T_TASK(cmd
)->t_se_count
);
994 atomic_set(&task
->task_timeout
, 0);
996 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
998 complete(&task
->task_stop_comp
);
1002 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1003 * left counter to determine when the struct se_cmd is ready to be queued to
1004 * the processing thread.
1006 if (atomic_read(&task
->task_timeout
)) {
1007 if (!(atomic_dec_and_test(
1008 &T_TASK(cmd
)->t_task_cdbs_timeout_left
))) {
1009 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
1013 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
1014 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1016 transport_add_cmd_to_queue(cmd
, t_state
);
1019 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_timeout_left
);
1022 * Decrement the outstanding t_task_cdbs_left count. The last
1023 * struct se_task from struct se_cmd will complete itself into the
1024 * device queue depending upon int success.
1026 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
1028 T_TASK(cmd
)->t_tasks_failed
= 1;
1030 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1034 if (!success
|| T_TASK(cmd
)->t_tasks_failed
) {
1035 t_state
= TRANSPORT_COMPLETE_FAILURE
;
1036 if (!task
->task_error_status
) {
1037 task
->task_error_status
=
1038 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1039 cmd
->transport_error_status
=
1040 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1043 atomic_set(&T_TASK(cmd
)->t_transport_complete
, 1);
1044 t_state
= TRANSPORT_COMPLETE_OK
;
1046 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1048 transport_add_cmd_to_queue(cmd
, t_state
);
1050 EXPORT_SYMBOL(transport_complete_task
);
1053 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1054 * struct se_task list are ready to be added to the active execution list
1057 * Called with se_dev_t->execute_task_lock called.
1059 static inline int transport_add_task_check_sam_attr(
1060 struct se_task
*task
,
1061 struct se_task
*task_prev
,
1062 struct se_device
*dev
)
1065 * No SAM Task attribute emulation enabled, add to tail of
1068 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
1069 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1073 * HEAD_OF_QUEUE attribute for received CDB, which means
1074 * the first task that is associated with a struct se_cmd goes to
1075 * head of the struct se_device->execute_task_list, and task_prev
1076 * after that for each subsequent task
1078 if (task
->task_se_cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
1079 list_add(&task
->t_execute_list
,
1080 (task_prev
!= NULL
) ?
1081 &task_prev
->t_execute_list
:
1082 &dev
->execute_task_list
);
1084 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1085 " in execution queue\n",
1086 T_TASK(task
->task_se_cmd
)->t_task_cdb
[0]);
1090 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1091 * transitioned from Dermant -> Active state, and are added to the end
1092 * of the struct se_device->execute_task_list
1094 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1098 /* __transport_add_task_to_execute_queue():
1100 * Called with se_dev_t->execute_task_lock called.
1102 static void __transport_add_task_to_execute_queue(
1103 struct se_task
*task
,
1104 struct se_task
*task_prev
,
1105 struct se_device
*dev
)
1109 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
1110 atomic_inc(&dev
->execute_tasks
);
1112 if (atomic_read(&task
->task_state_active
))
1115 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1116 * state list as well. Running with SAM Task Attribute emulation
1117 * will always return head_of_queue == 0 here
1120 list_add(&task
->t_state_list
, (task_prev
) ?
1121 &task_prev
->t_state_list
:
1122 &dev
->state_task_list
);
1124 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1126 atomic_set(&task
->task_state_active
, 1);
1128 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1129 CMD_TFO(task
->task_se_cmd
)->get_task_tag(task
->task_se_cmd
),
1133 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
1135 struct se_device
*dev
;
1136 struct se_task
*task
;
1137 unsigned long flags
;
1139 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1140 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1143 if (atomic_read(&task
->task_state_active
))
1146 spin_lock(&dev
->execute_task_lock
);
1147 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1148 atomic_set(&task
->task_state_active
, 1);
1150 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1151 CMD_TFO(task
->task_se_cmd
)->get_task_tag(
1152 task
->task_se_cmd
), task
, dev
);
1154 spin_unlock(&dev
->execute_task_lock
);
1156 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1159 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
1161 struct se_device
*dev
= SE_DEV(cmd
);
1162 struct se_task
*task
, *task_prev
= NULL
;
1163 unsigned long flags
;
1165 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1166 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1167 if (atomic_read(&task
->task_execute_queue
))
1170 * __transport_add_task_to_execute_queue() handles the
1171 * SAM Task Attribute emulation if enabled
1173 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
1174 atomic_set(&task
->task_execute_queue
, 1);
1177 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1182 /* transport_get_task_from_execute_queue():
1184 * Called with dev->execute_task_lock held.
1186 static struct se_task
*
1187 transport_get_task_from_execute_queue(struct se_device
*dev
)
1189 struct se_task
*task
;
1191 if (list_empty(&dev
->execute_task_list
))
1194 list_for_each_entry(task
, &dev
->execute_task_list
, t_execute_list
)
1197 list_del(&task
->t_execute_list
);
1198 atomic_dec(&dev
->execute_tasks
);
1203 /* transport_remove_task_from_execute_queue():
1207 void transport_remove_task_from_execute_queue(
1208 struct se_task
*task
,
1209 struct se_device
*dev
)
1211 unsigned long flags
;
1213 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1214 list_del(&task
->t_execute_list
);
1215 atomic_dec(&dev
->execute_tasks
);
1216 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1219 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1221 switch (cmd
->data_direction
) {
1224 case DMA_FROM_DEVICE
:
1228 case DMA_BIDIRECTIONAL
:
1237 void transport_dump_dev_state(
1238 struct se_device
*dev
,
1242 *bl
+= sprintf(b
+ *bl
, "Status: ");
1243 switch (dev
->dev_status
) {
1244 case TRANSPORT_DEVICE_ACTIVATED
:
1245 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1247 case TRANSPORT_DEVICE_DEACTIVATED
:
1248 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1250 case TRANSPORT_DEVICE_SHUTDOWN
:
1251 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1253 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1254 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1255 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1258 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1262 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1263 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1265 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1266 DEV_ATTRIB(dev
)->block_size
, DEV_ATTRIB(dev
)->max_sectors
);
1267 *bl
+= sprintf(b
+ *bl
, " ");
1270 /* transport_release_all_cmds():
1274 static void transport_release_all_cmds(struct se_device
*dev
)
1276 struct se_cmd
*cmd
= NULL
;
1277 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
1278 int bug_out
= 0, t_state
;
1279 unsigned long flags
;
1281 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1282 list_for_each_entry_safe(qr
, qr_p
, &dev
->dev_queue_obj
->qobj_list
,
1285 cmd
= (struct se_cmd
*)qr
->cmd
;
1286 t_state
= qr
->state
;
1287 list_del(&qr
->qr_list
);
1289 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
,
1292 printk(KERN_ERR
"Releasing ITT: 0x%08x, i_state: %u,"
1293 " t_state: %u directly\n",
1294 CMD_TFO(cmd
)->get_task_tag(cmd
),
1295 CMD_TFO(cmd
)->get_cmd_state(cmd
), t_state
);
1297 transport_release_fe_cmd(cmd
);
1300 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1302 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1309 void transport_dump_vpd_proto_id(
1310 struct t10_vpd
*vpd
,
1311 unsigned char *p_buf
,
1314 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1317 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1318 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1320 switch (vpd
->protocol_identifier
) {
1322 sprintf(buf
+len
, "Fibre Channel\n");
1325 sprintf(buf
+len
, "Parallel SCSI\n");
1328 sprintf(buf
+len
, "SSA\n");
1331 sprintf(buf
+len
, "IEEE 1394\n");
1334 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1338 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1341 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1344 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1348 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1351 sprintf(buf
+len
, "Unknown 0x%02x\n",
1352 vpd
->protocol_identifier
);
1357 strncpy(p_buf
, buf
, p_buf_len
);
1359 printk(KERN_INFO
"%s", buf
);
1363 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1366 * Check if the Protocol Identifier Valid (PIV) bit is set..
1368 * from spc3r23.pdf section 7.5.1
1370 if (page_83
[1] & 0x80) {
1371 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1372 vpd
->protocol_identifier_set
= 1;
1373 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1376 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1378 int transport_dump_vpd_assoc(
1379 struct t10_vpd
*vpd
,
1380 unsigned char *p_buf
,
1383 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1386 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1387 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1389 switch (vpd
->association
) {
1391 sprintf(buf
+len
, "addressed logical unit\n");
1394 sprintf(buf
+len
, "target port\n");
1397 sprintf(buf
+len
, "SCSI target device\n");
1400 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1406 strncpy(p_buf
, buf
, p_buf_len
);
1413 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1416 * The VPD identification association..
1418 * from spc3r23.pdf Section 7.6.3.1 Table 297
1420 vpd
->association
= (page_83
[1] & 0x30);
1421 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1423 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1425 int transport_dump_vpd_ident_type(
1426 struct t10_vpd
*vpd
,
1427 unsigned char *p_buf
,
1430 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1433 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1434 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1436 switch (vpd
->device_identifier_type
) {
1438 sprintf(buf
+len
, "Vendor specific\n");
1441 sprintf(buf
+len
, "T10 Vendor ID based\n");
1444 sprintf(buf
+len
, "EUI-64 based\n");
1447 sprintf(buf
+len
, "NAA\n");
1450 sprintf(buf
+len
, "Relative target port identifier\n");
1453 sprintf(buf
+len
, "SCSI name string\n");
1456 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1457 vpd
->device_identifier_type
);
1463 strncpy(p_buf
, buf
, p_buf_len
);
1470 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1473 * The VPD identifier type..
1475 * from spc3r23.pdf Section 7.6.3.1 Table 298
1477 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1478 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1480 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1482 int transport_dump_vpd_ident(
1483 struct t10_vpd
*vpd
,
1484 unsigned char *p_buf
,
1487 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1490 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1492 switch (vpd
->device_identifier_code_set
) {
1493 case 0x01: /* Binary */
1494 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1495 &vpd
->device_identifier
[0]);
1497 case 0x02: /* ASCII */
1498 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1499 &vpd
->device_identifier
[0]);
1501 case 0x03: /* UTF-8 */
1502 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1503 &vpd
->device_identifier
[0]);
1506 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1507 " 0x%02x", vpd
->device_identifier_code_set
);
1513 strncpy(p_buf
, buf
, p_buf_len
);
1521 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1523 static const char hex_str
[] = "0123456789abcdef";
1524 int j
= 0, i
= 4; /* offset to start of the identifer */
1527 * The VPD Code Set (encoding)
1529 * from spc3r23.pdf Section 7.6.3.1 Table 296
1531 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1532 switch (vpd
->device_identifier_code_set
) {
1533 case 0x01: /* Binary */
1534 vpd
->device_identifier
[j
++] =
1535 hex_str
[vpd
->device_identifier_type
];
1536 while (i
< (4 + page_83
[3])) {
1537 vpd
->device_identifier
[j
++] =
1538 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1539 vpd
->device_identifier
[j
++] =
1540 hex_str
[page_83
[i
] & 0x0f];
1544 case 0x02: /* ASCII */
1545 case 0x03: /* UTF-8 */
1546 while (i
< (4 + page_83
[3]))
1547 vpd
->device_identifier
[j
++] = page_83
[i
++];
1553 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1555 EXPORT_SYMBOL(transport_set_vpd_ident
);
1557 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1560 * If this device is from Target_Core_Mod/pSCSI, disable the
1561 * SAM Task Attribute emulation.
1563 * This is currently not available in upsream Linux/SCSI Target
1564 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1566 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1567 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1571 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1572 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1573 " device\n", TRANSPORT(dev
)->name
,
1574 TRANSPORT(dev
)->get_device_rev(dev
));
1577 static void scsi_dump_inquiry(struct se_device
*dev
)
1579 struct t10_wwn
*wwn
= DEV_T10_WWN(dev
);
1582 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1584 printk(" Vendor: ");
1585 for (i
= 0; i
< 8; i
++)
1586 if (wwn
->vendor
[i
] >= 0x20)
1587 printk("%c", wwn
->vendor
[i
]);
1592 for (i
= 0; i
< 16; i
++)
1593 if (wwn
->model
[i
] >= 0x20)
1594 printk("%c", wwn
->model
[i
]);
1598 printk(" Revision: ");
1599 for (i
= 0; i
< 4; i
++)
1600 if (wwn
->revision
[i
] >= 0x20)
1601 printk("%c", wwn
->revision
[i
]);
1607 device_type
= TRANSPORT(dev
)->get_device_type(dev
);
1608 printk(" Type: %s ", scsi_device_type(device_type
));
1609 printk(" ANSI SCSI revision: %02x\n",
1610 TRANSPORT(dev
)->get_device_rev(dev
));
1613 struct se_device
*transport_add_device_to_core_hba(
1615 struct se_subsystem_api
*transport
,
1616 struct se_subsystem_dev
*se_dev
,
1618 void *transport_dev
,
1619 struct se_dev_limits
*dev_limits
,
1620 const char *inquiry_prod
,
1621 const char *inquiry_rev
)
1624 struct se_device
*dev
;
1626 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1628 printk(KERN_ERR
"Unable to allocate memory for se_dev_t\n");
1631 dev
->dev_queue_obj
= kzalloc(sizeof(struct se_queue_obj
), GFP_KERNEL
);
1632 if (!(dev
->dev_queue_obj
)) {
1633 printk(KERN_ERR
"Unable to allocate memory for"
1634 " dev->dev_queue_obj\n");
1638 transport_init_queue_obj(dev
->dev_queue_obj
);
1640 dev
->dev_status_queue_obj
= kzalloc(sizeof(struct se_queue_obj
),
1642 if (!(dev
->dev_status_queue_obj
)) {
1643 printk(KERN_ERR
"Unable to allocate memory for"
1644 " dev->dev_status_queue_obj\n");
1645 kfree(dev
->dev_queue_obj
);
1649 transport_init_queue_obj(dev
->dev_status_queue_obj
);
1651 dev
->dev_flags
= device_flags
;
1652 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1653 dev
->dev_ptr
= (void *) transport_dev
;
1655 dev
->se_sub_dev
= se_dev
;
1656 dev
->transport
= transport
;
1657 atomic_set(&dev
->active_cmds
, 0);
1658 INIT_LIST_HEAD(&dev
->dev_list
);
1659 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1660 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1661 INIT_LIST_HEAD(&dev
->execute_task_list
);
1662 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1663 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1664 INIT_LIST_HEAD(&dev
->state_task_list
);
1665 spin_lock_init(&dev
->execute_task_lock
);
1666 spin_lock_init(&dev
->delayed_cmd_lock
);
1667 spin_lock_init(&dev
->ordered_cmd_lock
);
1668 spin_lock_init(&dev
->state_task_lock
);
1669 spin_lock_init(&dev
->dev_alua_lock
);
1670 spin_lock_init(&dev
->dev_reservation_lock
);
1671 spin_lock_init(&dev
->dev_status_lock
);
1672 spin_lock_init(&dev
->dev_status_thr_lock
);
1673 spin_lock_init(&dev
->se_port_lock
);
1674 spin_lock_init(&dev
->se_tmr_lock
);
1676 dev
->queue_depth
= dev_limits
->queue_depth
;
1677 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1678 atomic_set(&dev
->dev_ordered_id
, 0);
1680 se_dev_set_default_attribs(dev
, dev_limits
);
1682 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1683 dev
->creation_time
= get_jiffies_64();
1684 spin_lock_init(&dev
->stats_lock
);
1686 spin_lock(&hba
->device_lock
);
1687 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1689 spin_unlock(&hba
->device_lock
);
1691 * Setup the SAM Task Attribute emulation for struct se_device
1693 core_setup_task_attr_emulation(dev
);
1695 * Force PR and ALUA passthrough emulation with internal object use.
1697 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1699 * Setup the Reservations infrastructure for struct se_device
1701 core_setup_reservations(dev
, force_pt
);
1703 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1705 if (core_setup_alua(dev
, force_pt
) < 0)
1709 * Startup the struct se_device processing thread
1711 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1712 "LIO_%s", TRANSPORT(dev
)->name
);
1713 if (IS_ERR(dev
->process_thread
)) {
1714 printk(KERN_ERR
"Unable to create kthread: LIO_%s\n",
1715 TRANSPORT(dev
)->name
);
1720 * Preload the initial INQUIRY const values if we are doing
1721 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1722 * passthrough because this is being provided by the backend LLD.
1723 * This is required so that transport_get_inquiry() copies these
1724 * originals once back into DEV_T10_WWN(dev) for the virtual device
1727 if (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1728 if (!(inquiry_prod
) || !(inquiry_prod
)) {
1729 printk(KERN_ERR
"All non TCM/pSCSI plugins require"
1730 " INQUIRY consts\n");
1734 strncpy(&DEV_T10_WWN(dev
)->vendor
[0], "LIO-ORG", 8);
1735 strncpy(&DEV_T10_WWN(dev
)->model
[0], inquiry_prod
, 16);
1736 strncpy(&DEV_T10_WWN(dev
)->revision
[0], inquiry_rev
, 4);
1738 scsi_dump_inquiry(dev
);
1742 kthread_stop(dev
->process_thread
);
1744 spin_lock(&hba
->device_lock
);
1745 list_del(&dev
->dev_list
);
1747 spin_unlock(&hba
->device_lock
);
1749 se_release_vpd_for_dev(dev
);
1751 kfree(dev
->dev_status_queue_obj
);
1752 kfree(dev
->dev_queue_obj
);
1757 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1759 /* transport_generic_prepare_cdb():
1761 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1762 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1763 * The point of this is since we are mapping iSCSI LUNs to
1764 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1765 * devices and HBAs for a loop.
1767 static inline void transport_generic_prepare_cdb(
1771 case READ_10
: /* SBC - RDProtect */
1772 case READ_12
: /* SBC - RDProtect */
1773 case READ_16
: /* SBC - RDProtect */
1774 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1775 case VERIFY
: /* SBC - VRProtect */
1776 case VERIFY_16
: /* SBC - VRProtect */
1777 case WRITE_VERIFY
: /* SBC - VRProtect */
1778 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1781 cdb
[1] &= 0x1f; /* clear logical unit number */
1786 static struct se_task
*
1787 transport_generic_get_task(struct se_cmd
*cmd
,
1788 enum dma_data_direction data_direction
)
1790 struct se_task
*task
;
1791 struct se_device
*dev
= SE_DEV(cmd
);
1792 unsigned long flags
;
1794 task
= dev
->transport
->alloc_task(cmd
);
1796 printk(KERN_ERR
"Unable to allocate struct se_task\n");
1800 INIT_LIST_HEAD(&task
->t_list
);
1801 INIT_LIST_HEAD(&task
->t_execute_list
);
1802 INIT_LIST_HEAD(&task
->t_state_list
);
1803 init_completion(&task
->task_stop_comp
);
1804 task
->task_no
= T_TASK(cmd
)->t_tasks_no
++;
1805 task
->task_se_cmd
= cmd
;
1807 task
->task_data_direction
= data_direction
;
1809 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1810 list_add_tail(&task
->t_list
, &T_TASK(cmd
)->t_task_list
);
1811 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1816 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1818 void transport_device_setup_cmd(struct se_cmd
*cmd
)
1820 cmd
->se_dev
= SE_LUN(cmd
)->lun_se_dev
;
1822 EXPORT_SYMBOL(transport_device_setup_cmd
);
1825 * Used by fabric modules containing a local struct se_cmd within their
1826 * fabric dependent per I/O descriptor.
1828 void transport_init_se_cmd(
1830 struct target_core_fabric_ops
*tfo
,
1831 struct se_session
*se_sess
,
1835 unsigned char *sense_buffer
)
1837 INIT_LIST_HEAD(&cmd
->se_lun_list
);
1838 INIT_LIST_HEAD(&cmd
->se_delayed_list
);
1839 INIT_LIST_HEAD(&cmd
->se_ordered_list
);
1841 * Setup t_task pointer to t_task_backstore
1843 cmd
->t_task
= &cmd
->t_task_backstore
;
1845 INIT_LIST_HEAD(&T_TASK(cmd
)->t_task_list
);
1846 init_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
1847 init_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
1848 init_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
1849 spin_lock_init(&T_TASK(cmd
)->t_state_lock
);
1850 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 1);
1853 cmd
->se_sess
= se_sess
;
1854 cmd
->data_length
= data_length
;
1855 cmd
->data_direction
= data_direction
;
1856 cmd
->sam_task_attr
= task_attr
;
1857 cmd
->sense_buffer
= sense_buffer
;
1859 EXPORT_SYMBOL(transport_init_se_cmd
);
1861 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1864 * Check if SAM Task Attribute emulation is enabled for this
1865 * struct se_device storage object
1867 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1870 if (cmd
->sam_task_attr
== TASK_ATTR_ACA
) {
1871 DEBUG_STA("SAM Task Attribute ACA"
1872 " emulation is not supported\n");
1876 * Used to determine when ORDERED commands should go from
1877 * Dormant to Active status.
1879 cmd
->se_ordered_id
= atomic_inc_return(&SE_DEV(cmd
)->dev_ordered_id
);
1880 smp_mb__after_atomic_inc();
1881 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1882 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1883 TRANSPORT(cmd
->se_dev
)->name
);
1887 void transport_free_se_cmd(
1888 struct se_cmd
*se_cmd
)
1890 if (se_cmd
->se_tmr_req
)
1891 core_tmr_release_req(se_cmd
->se_tmr_req
);
1893 * Check and free any extended CDB buffer that was allocated
1895 if (T_TASK(se_cmd
)->t_task_cdb
!= T_TASK(se_cmd
)->__t_task_cdb
)
1896 kfree(T_TASK(se_cmd
)->t_task_cdb
);
1898 EXPORT_SYMBOL(transport_free_se_cmd
);
1900 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1902 /* transport_generic_allocate_tasks():
1904 * Called from fabric RX Thread.
1906 int transport_generic_allocate_tasks(
1912 transport_generic_prepare_cdb(cdb
);
1915 * This is needed for early exceptions.
1917 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1919 transport_device_setup_cmd(cmd
);
1921 * Ensure that the received CDB is less than the max (252 + 8) bytes
1922 * for VARIABLE_LENGTH_CMD
1924 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1925 printk(KERN_ERR
"Received SCSI CDB with command_size: %d that"
1926 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1927 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1931 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1932 * allocate the additional extended CDB buffer now.. Otherwise
1933 * setup the pointer from __t_task_cdb to t_task_cdb.
1935 if (scsi_command_size(cdb
) > sizeof(T_TASK(cmd
)->__t_task_cdb
)) {
1936 T_TASK(cmd
)->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1938 if (!(T_TASK(cmd
)->t_task_cdb
)) {
1939 printk(KERN_ERR
"Unable to allocate T_TASK(cmd)->t_task_cdb"
1940 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1941 scsi_command_size(cdb
),
1942 (unsigned long)sizeof(T_TASK(cmd
)->__t_task_cdb
));
1946 T_TASK(cmd
)->t_task_cdb
= &T_TASK(cmd
)->__t_task_cdb
[0];
1948 * Copy the original CDB into T_TASK(cmd).
1950 memcpy(T_TASK(cmd
)->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1952 * Setup the received CDB based on SCSI defined opcodes and
1953 * perform unit attention, persistent reservations and ALUA
1954 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1955 * pointer is expected to be setup before we reach this point.
1957 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1961 * Check for SAM Task Attribute Emulation
1963 if (transport_check_alloc_task_attr(cmd
) < 0) {
1964 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1965 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1968 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1969 if (cmd
->se_lun
->lun_sep
)
1970 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1971 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1974 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1977 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1978 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1980 int transport_generic_handle_cdb(
1985 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
1989 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1992 EXPORT_SYMBOL(transport_generic_handle_cdb
);
1995 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1996 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1997 * complete setup in TCM process context w/ TFO->new_cmd_map().
1999 int transport_generic_handle_cdb_map(
2004 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
2008 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
2011 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
2013 /* transport_generic_handle_data():
2017 int transport_generic_handle_data(
2021 * For the software fabric case, then we assume the nexus is being
2022 * failed/shutdown when signals are pending from the kthread context
2023 * caller, so we return a failure. For the HW target mode case running
2024 * in interrupt code, the signal_pending() check is skipped.
2026 if (!in_interrupt() && signal_pending(current
))
2029 * If the received CDB has aleady been ABORTED by the generic
2030 * target engine, we now call transport_check_aborted_status()
2031 * to queue any delated TASK_ABORTED status for the received CDB to the
2032 * fabric module as we are expecting no further incoming DATA OUT
2033 * sequences at this point.
2035 if (transport_check_aborted_status(cmd
, 1) != 0)
2038 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
2041 EXPORT_SYMBOL(transport_generic_handle_data
);
2043 /* transport_generic_handle_tmr():
2047 int transport_generic_handle_tmr(
2051 * This is needed for early exceptions.
2053 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
2054 transport_device_setup_cmd(cmd
);
2056 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
2059 EXPORT_SYMBOL(transport_generic_handle_tmr
);
2061 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
2063 struct se_task
*task
, *task_tmp
;
2064 unsigned long flags
;
2067 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2068 CMD_TFO(cmd
)->get_task_tag(cmd
));
2071 * No tasks remain in the execution queue
2073 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2074 list_for_each_entry_safe(task
, task_tmp
,
2075 &T_TASK(cmd
)->t_task_list
, t_list
) {
2076 DEBUG_TS("task_no[%d] - Processing task %p\n",
2077 task
->task_no
, task
);
2079 * If the struct se_task has not been sent and is not active,
2080 * remove the struct se_task from the execution queue.
2082 if (!atomic_read(&task
->task_sent
) &&
2083 !atomic_read(&task
->task_active
)) {
2084 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2086 transport_remove_task_from_execute_queue(task
,
2089 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2091 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2096 * If the struct se_task is active, sleep until it is returned
2099 if (atomic_read(&task
->task_active
)) {
2100 atomic_set(&task
->task_stop
, 1);
2101 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2104 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2106 wait_for_completion(&task
->task_stop_comp
);
2107 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2110 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2111 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
2113 atomic_set(&task
->task_active
, 0);
2114 atomic_set(&task
->task_stop
, 0);
2116 DEBUG_TS("task_no[%d] - Did nothing\n", task
->task_no
);
2120 __transport_stop_task_timer(task
, &flags
);
2122 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2127 static void transport_failure_reset_queue_depth(struct se_device
*dev
)
2129 unsigned long flags
;
2131 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2132 atomic_inc(&dev
->depth_left
);
2133 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
2134 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2138 * Handle SAM-esque emulation for generic transport request failures.
2140 static void transport_generic_request_failure(
2142 struct se_device
*dev
,
2146 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2147 " CDB: 0x%02x\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
2148 T_TASK(cmd
)->t_task_cdb
[0]);
2149 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2150 " %d/%d transport_error_status: %d\n",
2151 CMD_TFO(cmd
)->get_cmd_state(cmd
),
2152 cmd
->t_state
, cmd
->deferred_t_state
,
2153 cmd
->transport_error_status
);
2154 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2155 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2156 " t_transport_active: %d t_transport_stop: %d"
2157 " t_transport_sent: %d\n", T_TASK(cmd
)->t_task_cdbs
,
2158 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
2159 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
2160 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
),
2161 atomic_read(&T_TASK(cmd
)->t_transport_active
),
2162 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
2163 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
2165 transport_stop_all_task_timers(cmd
);
2168 transport_failure_reset_queue_depth(dev
);
2170 * For SAM Task Attribute emulation for failed struct se_cmd
2172 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2173 transport_complete_task_attr(cmd
);
2176 transport_direct_request_timeout(cmd
);
2177 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2180 switch (cmd
->transport_error_status
) {
2181 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
2182 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2184 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
2185 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
2187 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
2188 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
2190 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
2191 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
2193 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
2195 transport_new_cmd_failure(cmd
);
2197 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2198 * we force this session to fall back to session
2201 CMD_TFO(cmd
)->fall_back_to_erl0(cmd
->se_sess
);
2202 CMD_TFO(cmd
)->stop_session(cmd
->se_sess
, 0, 0);
2205 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2206 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2207 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2209 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2210 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2212 case PYX_TRANSPORT_WRITE_PROTECTED
:
2213 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2215 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2217 * No SENSE Data payload for this case, set SCSI Status
2218 * and queue the response to $FABRIC_MOD.
2220 * Uses linux/include/scsi/scsi.h SAM status codes defs
2222 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2224 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2225 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2228 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2231 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
2232 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
2233 cmd
->orig_fe_lun
, 0x2C,
2234 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2236 CMD_TFO(cmd
)->queue_status(cmd
);
2238 case PYX_TRANSPORT_USE_SENSE_REASON
:
2240 * struct se_cmd->scsi_sense_reason already set
2244 printk(KERN_ERR
"Unknown transport error for CDB 0x%02x: %d\n",
2245 T_TASK(cmd
)->t_task_cdb
[0],
2246 cmd
->transport_error_status
);
2247 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2252 transport_new_cmd_failure(cmd
);
2254 transport_send_check_condition_and_sense(cmd
,
2255 cmd
->scsi_sense_reason
, 0);
2257 transport_lun_remove_cmd(cmd
);
2258 if (!(transport_cmd_check_stop_to_fabric(cmd
)))
2262 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2264 unsigned long flags
;
2266 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2267 if (!(atomic_read(&T_TASK(cmd
)->t_transport_timeout
))) {
2268 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2271 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_timeout_left
)) {
2272 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2276 atomic_sub(atomic_read(&T_TASK(cmd
)->t_transport_timeout
),
2277 &T_TASK(cmd
)->t_se_count
);
2278 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2281 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2283 unsigned long flags
;
2286 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2287 * to allow last call to free memory resources.
2289 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2290 if (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) > 1) {
2291 int tmp
= (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) - 1);
2293 atomic_sub(tmp
, &T_TASK(cmd
)->t_se_count
);
2295 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2297 transport_generic_remove(cmd
, 0, 0);
2301 transport_generic_allocate_buf(struct se_cmd
*cmd
, u32 data_length
)
2305 buf
= kzalloc(data_length
, GFP_KERNEL
);
2307 printk(KERN_ERR
"Unable to allocate memory for buffer\n");
2311 T_TASK(cmd
)->t_tasks_se_num
= 0;
2312 T_TASK(cmd
)->t_task_buf
= buf
;
2317 static inline u32
transport_lba_21(unsigned char *cdb
)
2319 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2322 static inline u32
transport_lba_32(unsigned char *cdb
)
2324 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2327 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2329 unsigned int __v1
, __v2
;
2331 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2332 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2334 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2338 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2340 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2342 unsigned int __v1
, __v2
;
2344 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2345 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2347 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2350 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2352 unsigned long flags
;
2354 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2355 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2356 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2360 * Called from interrupt context.
2362 static void transport_task_timeout_handler(unsigned long data
)
2364 struct se_task
*task
= (struct se_task
*)data
;
2365 struct se_cmd
*cmd
= TASK_CMD(task
);
2366 unsigned long flags
;
2368 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2370 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2371 if (task
->task_flags
& TF_STOP
) {
2372 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2375 task
->task_flags
&= ~TF_RUNNING
;
2378 * Determine if transport_complete_task() has already been called.
2380 if (!(atomic_read(&task
->task_active
))) {
2381 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2382 " == 0\n", task
, cmd
);
2383 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2387 atomic_inc(&T_TASK(cmd
)->t_se_count
);
2388 atomic_inc(&T_TASK(cmd
)->t_transport_timeout
);
2389 T_TASK(cmd
)->t_tasks_failed
= 1;
2391 atomic_set(&task
->task_timeout
, 1);
2392 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2393 task
->task_scsi_status
= 1;
2395 if (atomic_read(&task
->task_stop
)) {
2396 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2397 " == 1\n", task
, cmd
);
2398 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2399 complete(&task
->task_stop_comp
);
2403 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
2404 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2405 " t_task_cdbs_left\n", task
, cmd
);
2406 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2409 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2412 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2413 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2415 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2419 * Called with T_TASK(cmd)->t_state_lock held.
2421 static void transport_start_task_timer(struct se_task
*task
)
2423 struct se_device
*dev
= task
->se_dev
;
2426 if (task
->task_flags
& TF_RUNNING
)
2429 * If the task_timeout is disabled, exit now.
2431 timeout
= DEV_ATTRIB(dev
)->task_timeout
;
2435 init_timer(&task
->task_timer
);
2436 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2437 task
->task_timer
.data
= (unsigned long) task
;
2438 task
->task_timer
.function
= transport_task_timeout_handler
;
2440 task
->task_flags
|= TF_RUNNING
;
2441 add_timer(&task
->task_timer
);
2443 printk(KERN_INFO
"Starting task timer for cmd: %p task: %p seconds:"
2444 " %d\n", task
->task_se_cmd
, task
, timeout
);
2449 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2451 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2453 struct se_cmd
*cmd
= TASK_CMD(task
);
2455 if (!(task
->task_flags
& TF_RUNNING
))
2458 task
->task_flags
|= TF_STOP
;
2459 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, *flags
);
2461 del_timer_sync(&task
->task_timer
);
2463 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, *flags
);
2464 task
->task_flags
&= ~TF_RUNNING
;
2465 task
->task_flags
&= ~TF_STOP
;
2468 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2470 struct se_task
*task
= NULL
, *task_tmp
;
2471 unsigned long flags
;
2473 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2474 list_for_each_entry_safe(task
, task_tmp
,
2475 &T_TASK(cmd
)->t_task_list
, t_list
)
2476 __transport_stop_task_timer(task
, &flags
);
2477 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2480 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2482 if (dev
->dev_tcq_window_closed
++ <
2483 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2484 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2486 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2488 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
2493 * Called from Fabric Module context from transport_execute_tasks()
2495 * The return of this function determins if the tasks from struct se_cmd
2496 * get added to the execution queue in transport_execute_tasks(),
2497 * or are added to the delayed or ordered lists here.
2499 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2501 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2504 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2505 * to allow the passed struct se_cmd list of tasks to the front of the list.
2507 if (cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
2508 atomic_inc(&SE_DEV(cmd
)->dev_hoq_count
);
2509 smp_mb__after_atomic_inc();
2510 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2511 " 0x%02x, se_ordered_id: %u\n",
2512 T_TASK(cmd
)->t_task_cdb
[0],
2513 cmd
->se_ordered_id
);
2515 } else if (cmd
->sam_task_attr
== TASK_ATTR_ORDERED
) {
2516 spin_lock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2517 list_add_tail(&cmd
->se_ordered_list
,
2518 &SE_DEV(cmd
)->ordered_cmd_list
);
2519 spin_unlock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2521 atomic_inc(&SE_DEV(cmd
)->dev_ordered_sync
);
2522 smp_mb__after_atomic_inc();
2524 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2525 " list, se_ordered_id: %u\n",
2526 T_TASK(cmd
)->t_task_cdb
[0],
2527 cmd
->se_ordered_id
);
2529 * Add ORDERED command to tail of execution queue if
2530 * no other older commands exist that need to be
2533 if (!(atomic_read(&SE_DEV(cmd
)->simple_cmds
)))
2537 * For SIMPLE and UNTAGGED Task Attribute commands
2539 atomic_inc(&SE_DEV(cmd
)->simple_cmds
);
2540 smp_mb__after_atomic_inc();
2543 * Otherwise if one or more outstanding ORDERED task attribute exist,
2544 * add the dormant task(s) built for the passed struct se_cmd to the
2545 * execution queue and become in Active state for this struct se_device.
2547 if (atomic_read(&SE_DEV(cmd
)->dev_ordered_sync
) != 0) {
2549 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2550 * will be drained upon completion of HEAD_OF_QUEUE task.
2552 spin_lock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2553 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2554 list_add_tail(&cmd
->se_delayed_list
,
2555 &SE_DEV(cmd
)->delayed_cmd_list
);
2556 spin_unlock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2558 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2559 " delayed CMD list, se_ordered_id: %u\n",
2560 T_TASK(cmd
)->t_task_cdb
[0], cmd
->sam_task_attr
,
2561 cmd
->se_ordered_id
);
2563 * Return zero to let transport_execute_tasks() know
2564 * not to add the delayed tasks to the execution list.
2569 * Otherwise, no ORDERED task attributes exist..
2575 * Called from fabric module context in transport_generic_new_cmd() and
2576 * transport_generic_process_write()
2578 static int transport_execute_tasks(struct se_cmd
*cmd
)
2582 if (!(cmd
->se_cmd_flags
& SCF_SE_DISABLE_ONLINE_CHECK
)) {
2583 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2584 cmd
->transport_error_status
=
2585 PYX_TRANSPORT_LU_COMM_FAILURE
;
2586 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2591 * Call transport_cmd_check_stop() to see if a fabric exception
2592 * has occurred that prevents execution.
2594 if (!(transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
))) {
2596 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2597 * attribute for the tasks of the received struct se_cmd CDB
2599 add_tasks
= transport_execute_task_attr(cmd
);
2603 * This calls transport_add_tasks_from_cmd() to handle
2604 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2605 * (if enabled) in __transport_add_task_to_execute_queue() and
2606 * transport_add_task_check_sam_attr().
2608 transport_add_tasks_from_cmd(cmd
);
2611 * Kick the execution queue for the cmd associated struct se_device
2615 __transport_execute_tasks(SE_DEV(cmd
));
2620 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2621 * from struct se_device->execute_task_list and
2623 * Called from transport_processing_thread()
2625 static int __transport_execute_tasks(struct se_device
*dev
)
2628 struct se_cmd
*cmd
= NULL
;
2629 struct se_task
*task
;
2630 unsigned long flags
;
2633 * Check if there is enough room in the device and HBA queue to send
2634 * struct se_transport_task's to the selected transport.
2637 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2638 if (!(atomic_read(&dev
->depth_left
)) ||
2639 !(atomic_read(&SE_HBA(dev
)->left_queue_depth
))) {
2640 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2641 return transport_tcq_window_closed(dev
);
2643 dev
->dev_tcq_window_closed
= 0;
2645 spin_lock(&dev
->execute_task_lock
);
2646 task
= transport_get_task_from_execute_queue(dev
);
2647 spin_unlock(&dev
->execute_task_lock
);
2650 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2654 atomic_dec(&dev
->depth_left
);
2655 atomic_dec(&SE_HBA(dev
)->left_queue_depth
);
2656 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2658 cmd
= TASK_CMD(task
);
2660 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2661 atomic_set(&task
->task_active
, 1);
2662 atomic_set(&task
->task_sent
, 1);
2663 atomic_inc(&T_TASK(cmd
)->t_task_cdbs_sent
);
2665 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
) ==
2666 T_TASK(cmd
)->t_task_cdbs
)
2667 atomic_set(&cmd
->transport_sent
, 1);
2669 transport_start_task_timer(task
);
2670 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2672 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2673 * to grab REPORT_LUNS CDBs before they hit the
2674 * struct se_subsystem_api->do_task() caller below.
2676 if (cmd
->transport_emulate_cdb
) {
2677 error
= cmd
->transport_emulate_cdb(cmd
);
2679 cmd
->transport_error_status
= error
;
2680 atomic_set(&task
->task_active
, 0);
2681 atomic_set(&cmd
->transport_sent
, 0);
2682 transport_stop_tasks_for_cmd(cmd
);
2683 transport_generic_request_failure(cmd
, dev
, 0, 1);
2687 * Handle the successful completion for transport_emulate_cdb()
2688 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2689 * Otherwise the caller is expected to complete the task with
2692 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2693 cmd
->scsi_status
= SAM_STAT_GOOD
;
2694 task
->task_scsi_status
= GOOD
;
2695 transport_complete_task(task
, 1);
2699 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2700 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2701 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2702 * LUN emulation code.
2704 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2705 * call ->do_task() directly and let the underlying TCM subsystem plugin
2706 * code handle the CDB emulation.
2708 if ((TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2709 (!(TASK_CMD(task
)->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2710 error
= transport_emulate_control_cdb(task
);
2712 error
= TRANSPORT(dev
)->do_task(task
);
2715 cmd
->transport_error_status
= error
;
2716 atomic_set(&task
->task_active
, 0);
2717 atomic_set(&cmd
->transport_sent
, 0);
2718 transport_stop_tasks_for_cmd(cmd
);
2719 transport_generic_request_failure(cmd
, dev
, 0, 1);
2728 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2730 unsigned long flags
;
2732 * Any unsolicited data will get dumped for failed command inside of
2735 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2736 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2737 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2738 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2740 CMD_TFO(se_cmd
)->new_cmd_failure(se_cmd
);
2743 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2745 static inline u32
transport_get_sectors_6(
2750 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2753 * Assume TYPE_DISK for non struct se_device objects.
2754 * Use 8-bit sector value.
2760 * Use 24-bit allocation length for TYPE_TAPE.
2762 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2763 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2766 * Everything else assume TYPE_DISK Sector CDB location.
2767 * Use 8-bit sector value.
2773 static inline u32
transport_get_sectors_10(
2778 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2781 * Assume TYPE_DISK for non struct se_device objects.
2782 * Use 16-bit sector value.
2788 * XXX_10 is not defined in SSC, throw an exception
2790 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2796 * Everything else assume TYPE_DISK Sector CDB location.
2797 * Use 16-bit sector value.
2800 return (u32
)(cdb
[7] << 8) + cdb
[8];
2803 static inline u32
transport_get_sectors_12(
2808 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2811 * Assume TYPE_DISK for non struct se_device objects.
2812 * Use 32-bit sector value.
2818 * XXX_12 is not defined in SSC, throw an exception
2820 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2826 * Everything else assume TYPE_DISK Sector CDB location.
2827 * Use 32-bit sector value.
2830 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2833 static inline u32
transport_get_sectors_16(
2838 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2841 * Assume TYPE_DISK for non struct se_device objects.
2842 * Use 32-bit sector value.
2848 * Use 24-bit allocation length for TYPE_TAPE.
2850 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2851 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2854 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2855 (cdb
[12] << 8) + cdb
[13];
2859 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2861 static inline u32
transport_get_sectors_32(
2867 * Assume TYPE_DISK for non struct se_device objects.
2868 * Use 32-bit sector value.
2870 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2871 (cdb
[30] << 8) + cdb
[31];
2875 static inline u32
transport_get_size(
2880 struct se_device
*dev
= SE_DEV(cmd
);
2882 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2883 if (cdb
[1] & 1) { /* sectors */
2884 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2889 printk(KERN_INFO
"Returning block_size: %u, sectors: %u == %u for"
2890 " %s object\n", DEV_ATTRIB(dev
)->block_size
, sectors
,
2891 DEV_ATTRIB(dev
)->block_size
* sectors
,
2892 TRANSPORT(dev
)->name
);
2894 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2897 unsigned char transport_asciihex_to_binaryhex(unsigned char val
[2])
2899 unsigned char result
= 0;
2903 if ((val
[0] >= 'a') && (val
[0] <= 'f'))
2904 result
= ((val
[0] - 'a' + 10) & 0xf) << 4;
2906 if ((val
[0] >= 'A') && (val
[0] <= 'F'))
2907 result
= ((val
[0] - 'A' + 10) & 0xf) << 4;
2909 result
= ((val
[0] - '0') & 0xf) << 4;
2913 if ((val
[1] >= 'a') && (val
[1] <= 'f'))
2914 result
|= ((val
[1] - 'a' + 10) & 0xf);
2916 if ((val
[1] >= 'A') && (val
[1] <= 'F'))
2917 result
|= ((val
[1] - 'A' + 10) & 0xf);
2919 result
|= ((val
[1] - '0') & 0xf);
2923 EXPORT_SYMBOL(transport_asciihex_to_binaryhex
);
2925 static void transport_xor_callback(struct se_cmd
*cmd
)
2927 unsigned char *buf
, *addr
;
2928 struct se_mem
*se_mem
;
2929 unsigned int offset
;
2932 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2934 * 1) read the specified logical block(s);
2935 * 2) transfer logical blocks from the data-out buffer;
2936 * 3) XOR the logical blocks transferred from the data-out buffer with
2937 * the logical blocks read, storing the resulting XOR data in a buffer;
2938 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2939 * blocks transferred from the data-out buffer; and
2940 * 5) transfer the resulting XOR data to the data-in buffer.
2942 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2944 printk(KERN_ERR
"Unable to allocate xor_callback buf\n");
2948 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2949 * into the locally allocated *buf
2951 transport_memcpy_se_mem_read_contig(cmd
, buf
, T_TASK(cmd
)->t_mem_list
);
2953 * Now perform the XOR against the BIDI read memory located at
2954 * T_TASK(cmd)->t_mem_bidi_list
2958 list_for_each_entry(se_mem
, T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
2959 addr
= (unsigned char *)kmap_atomic(se_mem
->se_page
, KM_USER0
);
2963 for (i
= 0; i
< se_mem
->se_len
; i
++)
2964 *(addr
+ se_mem
->se_off
+ i
) ^= *(buf
+ offset
+ i
);
2966 offset
+= se_mem
->se_len
;
2967 kunmap_atomic(addr
, KM_USER0
);
2974 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2976 static int transport_get_sense_data(struct se_cmd
*cmd
)
2978 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2979 struct se_device
*dev
;
2980 struct se_task
*task
= NULL
, *task_tmp
;
2981 unsigned long flags
;
2985 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
2988 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2989 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2990 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2994 list_for_each_entry_safe(task
, task_tmp
,
2995 &T_TASK(cmd
)->t_task_list
, t_list
) {
2997 if (!task
->task_sense
)
3004 if (!TRANSPORT(dev
)->get_sense_buffer
) {
3005 printk(KERN_ERR
"TRANSPORT(dev)->get_sense_buffer"
3010 sense_buffer
= TRANSPORT(dev
)->get_sense_buffer(task
);
3011 if (!(sense_buffer
)) {
3012 printk(KERN_ERR
"ITT[0x%08x]_TASK[%d]: Unable to locate"
3013 " sense buffer for task with sense\n",
3014 CMD_TFO(cmd
)->get_task_tag(cmd
), task
->task_no
);
3017 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3019 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
3020 TRANSPORT_SENSE_BUFFER
);
3022 memcpy((void *)&buffer
[offset
], (void *)sense_buffer
,
3023 TRANSPORT_SENSE_BUFFER
);
3024 cmd
->scsi_status
= task
->task_scsi_status
;
3025 /* Automatically padded */
3026 cmd
->scsi_sense_length
=
3027 (TRANSPORT_SENSE_BUFFER
+ offset
);
3029 printk(KERN_INFO
"HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3031 dev
->se_hba
->hba_id
, TRANSPORT(dev
)->name
,
3035 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3040 static int transport_allocate_resources(struct se_cmd
*cmd
)
3042 u32 length
= cmd
->data_length
;
3044 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3045 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
))
3046 return transport_generic_get_mem(cmd
, length
, PAGE_SIZE
);
3047 else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
)
3048 return transport_generic_allocate_buf(cmd
, length
);
3054 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
3056 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3057 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3058 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
3059 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
3061 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3062 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3065 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3068 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
3069 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
3070 cmd
->orig_fe_lun
, 0x2C,
3071 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
3075 /* transport_generic_cmd_sequencer():
3077 * Generic Command Sequencer that should work for most DAS transport
3080 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3083 * FIXME: Need to support other SCSI OPCODES where as well.
3085 static int transport_generic_cmd_sequencer(
3089 struct se_device
*dev
= SE_DEV(cmd
);
3090 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
3091 int ret
= 0, sector_ret
= 0, passthrough
;
3092 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
3096 * Check for an existing UNIT ATTENTION condition
3098 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
3099 cmd
->transport_wait_for_tasks
=
3100 &transport_nop_wait_for_tasks
;
3101 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3102 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
3106 * Check status of Asymmetric Logical Unit Assignment port
3108 ret
= T10_ALUA(su_dev
)->alua_state_check(cmd
, cdb
, &alua_ascq
);
3110 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3112 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3113 * The ALUA additional sense code qualifier (ASCQ) is determined
3114 * by the ALUA primary or secondary access state..
3118 printk(KERN_INFO
"[%s]: ALUA TG Port not available,"
3119 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3120 CMD_TFO(cmd
)->get_fabric_name(), alua_ascq
);
3122 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
3123 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3124 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
3127 goto out_invalid_cdb_field
;
3130 * Check status for SPC-3 Persistent Reservations
3132 if (T10_PR_OPS(su_dev
)->t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
3133 if (T10_PR_OPS(su_dev
)->t10_seq_non_holder(
3134 cmd
, cdb
, pr_reg_type
) != 0)
3135 return transport_handle_reservation_conflict(cmd
);
3137 * This means the CDB is allowed for the SCSI Initiator port
3138 * when said port is *NOT* holding the legacy SPC-2 or
3139 * SPC-3 Persistent Reservation.
3145 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3147 goto out_unsupported_cdb
;
3148 size
= transport_get_size(sectors
, cdb
, cmd
);
3149 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3150 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3151 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3154 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3156 goto out_unsupported_cdb
;
3157 size
= transport_get_size(sectors
, cdb
, cmd
);
3158 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3159 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3160 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3163 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3165 goto out_unsupported_cdb
;
3166 size
= transport_get_size(sectors
, cdb
, cmd
);
3167 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3168 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3169 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3172 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3174 goto out_unsupported_cdb
;
3175 size
= transport_get_size(sectors
, cdb
, cmd
);
3176 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3177 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3178 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3181 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3183 goto out_unsupported_cdb
;
3184 size
= transport_get_size(sectors
, cdb
, cmd
);
3185 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3186 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3187 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3190 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3192 goto out_unsupported_cdb
;
3193 size
= transport_get_size(sectors
, cdb
, cmd
);
3194 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3195 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3196 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3197 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3200 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3202 goto out_unsupported_cdb
;
3203 size
= transport_get_size(sectors
, cdb
, cmd
);
3204 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3205 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3206 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3207 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3210 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3212 goto out_unsupported_cdb
;
3213 size
= transport_get_size(sectors
, cdb
, cmd
);
3214 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3215 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3216 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3217 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3219 case XDWRITEREAD_10
:
3220 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3221 !(T_TASK(cmd
)->t_tasks_bidi
))
3222 goto out_invalid_cdb_field
;
3223 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3225 goto out_unsupported_cdb
;
3226 size
= transport_get_size(sectors
, cdb
, cmd
);
3227 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3228 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3229 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3230 passthrough
= (TRANSPORT(dev
)->transport_type
==
3231 TRANSPORT_PLUGIN_PHBA_PDEV
);
3233 * Skip the remaining assignments for TCM/PSCSI passthrough
3238 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3240 cmd
->transport_complete_callback
= &transport_xor_callback
;
3241 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3243 case VARIABLE_LENGTH_CMD
:
3244 service_action
= get_unaligned_be16(&cdb
[8]);
3246 * Determine if this is TCM/PSCSI device and we should disable
3247 * internal emulation for this CDB.
3249 passthrough
= (TRANSPORT(dev
)->transport_type
==
3250 TRANSPORT_PLUGIN_PHBA_PDEV
);
3252 switch (service_action
) {
3253 case XDWRITEREAD_32
:
3254 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3256 goto out_unsupported_cdb
;
3257 size
= transport_get_size(sectors
, cdb
, cmd
);
3259 * Use WRITE_32 and READ_32 opcodes for the emulated
3260 * XDWRITE_READ_32 logic.
3262 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3263 T_TASK(cmd
)->t_task_lba
= transport_lba_64_ext(cdb
);
3264 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3267 * Skip the remaining assignments for TCM/PSCSI passthrough
3273 * Setup BIDI XOR callback to be run during
3274 * transport_generic_complete_ok()
3276 cmd
->transport_complete_callback
= &transport_xor_callback
;
3277 T_TASK(cmd
)->t_tasks_fua
= (cdb
[10] & 0x8);
3280 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3282 goto out_unsupported_cdb
;
3283 size
= transport_get_size(sectors
, cdb
, cmd
);
3284 T_TASK(cmd
)->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3285 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3288 * Skip the remaining assignments for TCM/PSCSI passthrough
3293 if ((cdb
[10] & 0x04) || (cdb
[10] & 0x02)) {
3294 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3295 " bits not supported for Block Discard"
3297 goto out_invalid_cdb_field
;
3300 * Currently for the emulated case we only accept
3301 * tpws with the UNMAP=1 bit set.
3303 if (!(cdb
[10] & 0x08)) {
3304 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not"
3305 " supported for Block Discard Emulation\n");
3306 goto out_invalid_cdb_field
;
3310 printk(KERN_ERR
"VARIABLE_LENGTH_CMD service action"
3311 " 0x%04x not supported\n", service_action
);
3312 goto out_unsupported_cdb
;
3316 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3317 /* MAINTENANCE_IN from SCC-2 */
3319 * Check for emulated MI_REPORT_TARGET_PGS.
3321 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3322 cmd
->transport_emulate_cdb
=
3323 (T10_ALUA(su_dev
)->alua_type
==
3324 SPC3_ALUA_EMULATED
) ?
3325 &core_emulate_report_target_port_groups
:
3328 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3329 (cdb
[8] << 8) | cdb
[9];
3331 /* GPCMD_SEND_KEY from multi media commands */
3332 size
= (cdb
[8] << 8) + cdb
[9];
3334 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3338 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3340 case MODE_SELECT_10
:
3341 size
= (cdb
[7] << 8) + cdb
[8];
3342 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3346 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3349 case GPCMD_READ_BUFFER_CAPACITY
:
3350 case GPCMD_SEND_OPC
:
3353 size
= (cdb
[7] << 8) + cdb
[8];
3354 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3356 case READ_BLOCK_LIMITS
:
3357 size
= READ_BLOCK_LEN
;
3358 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3360 case GPCMD_GET_CONFIGURATION
:
3361 case GPCMD_READ_FORMAT_CAPACITIES
:
3362 case GPCMD_READ_DISC_INFO
:
3363 case GPCMD_READ_TRACK_RZONE_INFO
:
3364 size
= (cdb
[7] << 8) + cdb
[8];
3365 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3367 case PERSISTENT_RESERVE_IN
:
3368 case PERSISTENT_RESERVE_OUT
:
3369 cmd
->transport_emulate_cdb
=
3370 (T10_RES(su_dev
)->res_type
==
3371 SPC3_PERSISTENT_RESERVATIONS
) ?
3372 &core_scsi3_emulate_pr
: NULL
;
3373 size
= (cdb
[7] << 8) + cdb
[8];
3374 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3376 case GPCMD_MECHANISM_STATUS
:
3377 case GPCMD_READ_DVD_STRUCTURE
:
3378 size
= (cdb
[8] << 8) + cdb
[9];
3379 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3382 size
= READ_POSITION_LEN
;
3383 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3386 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3387 /* MAINTENANCE_OUT from SCC-2
3389 * Check for emulated MO_SET_TARGET_PGS.
3391 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3392 cmd
->transport_emulate_cdb
=
3393 (T10_ALUA(su_dev
)->alua_type
==
3394 SPC3_ALUA_EMULATED
) ?
3395 &core_emulate_set_target_port_groups
:
3399 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3400 (cdb
[8] << 8) | cdb
[9];
3402 /* GPCMD_REPORT_KEY from multi media commands */
3403 size
= (cdb
[8] << 8) + cdb
[9];
3405 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3408 size
= (cdb
[3] << 8) + cdb
[4];
3410 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3411 * See spc4r17 section 5.3
3413 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3414 cmd
->sam_task_attr
= TASK_ATTR_HOQ
;
3415 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3418 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3419 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3422 size
= READ_CAP_LEN
;
3423 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3425 case READ_MEDIA_SERIAL_NUMBER
:
3426 case SECURITY_PROTOCOL_IN
:
3427 case SECURITY_PROTOCOL_OUT
:
3428 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3429 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3431 case SERVICE_ACTION_IN
:
3432 case ACCESS_CONTROL_IN
:
3433 case ACCESS_CONTROL_OUT
:
3435 case READ_ATTRIBUTE
:
3436 case RECEIVE_COPY_RESULTS
:
3437 case WRITE_ATTRIBUTE
:
3438 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3439 (cdb
[12] << 8) | cdb
[13];
3440 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3442 case RECEIVE_DIAGNOSTIC
:
3443 case SEND_DIAGNOSTIC
:
3444 size
= (cdb
[3] << 8) | cdb
[4];
3445 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3447 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3450 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3451 size
= (2336 * sectors
);
3452 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3457 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3461 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3463 case READ_ELEMENT_STATUS
:
3464 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3465 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3468 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3469 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3474 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3475 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3477 if (cdb
[0] == RESERVE_10
)
3478 size
= (cdb
[7] << 8) | cdb
[8];
3480 size
= cmd
->data_length
;
3483 * Setup the legacy emulated handler for SPC-2 and
3484 * >= SPC-3 compatible reservation handling (CRH=1)
3485 * Otherwise, we assume the underlying SCSI logic is
3486 * is running in SPC_PASSTHROUGH, and wants reservations
3487 * emulation disabled.
3489 cmd
->transport_emulate_cdb
=
3490 (T10_RES(su_dev
)->res_type
!=
3492 &core_scsi2_emulate_crh
: NULL
;
3493 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3498 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3499 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3501 if (cdb
[0] == RELEASE_10
)
3502 size
= (cdb
[7] << 8) | cdb
[8];
3504 size
= cmd
->data_length
;
3506 cmd
->transport_emulate_cdb
=
3507 (T10_RES(su_dev
)->res_type
!=
3509 &core_scsi2_emulate_crh
: NULL
;
3510 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3512 case SYNCHRONIZE_CACHE
:
3513 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3515 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3517 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3518 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3519 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3521 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3522 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3525 goto out_unsupported_cdb
;
3527 size
= transport_get_size(sectors
, cdb
, cmd
);
3528 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3531 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3533 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3536 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3537 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3539 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3541 * Check to ensure that LBA + Range does not exceed past end of
3544 if (transport_get_sectors(cmd
) < 0)
3545 goto out_invalid_cdb_field
;
3548 size
= get_unaligned_be16(&cdb
[7]);
3549 passthrough
= (TRANSPORT(dev
)->transport_type
==
3550 TRANSPORT_PLUGIN_PHBA_PDEV
);
3552 * Determine if the received UNMAP used to for direct passthrough
3553 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3554 * signaling the use of internal transport_generic_unmap() emulation
3555 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3556 * subsystem plugin backstores.
3559 cmd
->se_cmd_flags
|= SCF_EMULATE_SYNC_UNMAP
;
3561 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3564 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3566 goto out_unsupported_cdb
;
3567 size
= transport_get_size(sectors
, cdb
, cmd
);
3568 T_TASK(cmd
)->t_task_lba
= get_unaligned_be16(&cdb
[2]);
3569 passthrough
= (TRANSPORT(dev
)->transport_type
==
3570 TRANSPORT_PLUGIN_PHBA_PDEV
);
3572 * Determine if the received WRITE_SAME_16 is used to for direct
3573 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3574 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3575 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3576 * TCM/FILEIO subsystem plugin backstores.
3578 if (!(passthrough
)) {
3579 if ((cdb
[1] & 0x04) || (cdb
[1] & 0x02)) {
3580 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3581 " bits not supported for Block Discard"
3583 goto out_invalid_cdb_field
;
3586 * Currently for the emulated case we only accept
3587 * tpws with the UNMAP=1 bit set.
3589 if (!(cdb
[1] & 0x08)) {
3590 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not "
3591 " supported for Block Discard Emulation\n");
3592 goto out_invalid_cdb_field
;
3595 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3597 case ALLOW_MEDIUM_REMOVAL
:
3598 case GPCMD_CLOSE_TRACK
:
3600 case INITIALIZE_ELEMENT_STATUS
:
3601 case GPCMD_LOAD_UNLOAD
:
3604 case GPCMD_SET_SPEED
:
3607 case TEST_UNIT_READY
:
3609 case WRITE_FILEMARKS
:
3611 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3614 cmd
->transport_emulate_cdb
=
3615 &transport_core_report_lun_response
;
3616 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3618 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3619 * See spc4r17 section 5.3
3621 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3622 cmd
->sam_task_attr
= TASK_ATTR_HOQ
;
3623 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3626 printk(KERN_WARNING
"TARGET_CORE[%s]: Unsupported SCSI Opcode"
3627 " 0x%02x, sending CHECK_CONDITION.\n",
3628 CMD_TFO(cmd
)->get_fabric_name(), cdb
[0]);
3629 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3630 goto out_unsupported_cdb
;
3633 if (size
!= cmd
->data_length
) {
3634 printk(KERN_WARNING
"TARGET_CORE[%s]: Expected Transfer Length:"
3635 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3636 " 0x%02x\n", CMD_TFO(cmd
)->get_fabric_name(),
3637 cmd
->data_length
, size
, cdb
[0]);
3639 cmd
->cmd_spdtl
= size
;
3641 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3642 printk(KERN_ERR
"Rejecting underflow/overflow"
3644 goto out_invalid_cdb_field
;
3647 * Reject READ_* or WRITE_* with overflow/underflow for
3648 * type SCF_SCSI_DATA_SG_IO_CDB.
3650 if (!(ret
) && (DEV_ATTRIB(dev
)->block_size
!= 512)) {
3651 printk(KERN_ERR
"Failing OVERFLOW/UNDERFLOW for LBA op"
3652 " CDB on non 512-byte sector setup subsystem"
3653 " plugin: %s\n", TRANSPORT(dev
)->name
);
3654 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3655 goto out_invalid_cdb_field
;
3658 if (size
> cmd
->data_length
) {
3659 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3660 cmd
->residual_count
= (size
- cmd
->data_length
);
3662 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3663 cmd
->residual_count
= (cmd
->data_length
- size
);
3665 cmd
->data_length
= size
;
3668 transport_set_supported_SAM_opcode(cmd
);
3671 out_unsupported_cdb
:
3672 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3673 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3675 out_invalid_cdb_field
:
3676 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3677 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3681 static inline void transport_release_tasks(struct se_cmd
*);
3684 * This function will copy a contiguous *src buffer into a destination
3685 * struct scatterlist array.
3687 static void transport_memcpy_write_contig(
3689 struct scatterlist
*sg_d
,
3692 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3695 while (total_length
) {
3696 length
= sg_d
[i
].length
;
3698 if (length
> total_length
)
3699 length
= total_length
;
3701 dst
= sg_virt(&sg_d
[i
]);
3703 memcpy(dst
, src
, length
);
3705 if (!(total_length
-= length
))
3714 * This function will copy a struct scatterlist array *sg_s into a destination
3715 * contiguous *dst buffer.
3717 static void transport_memcpy_read_contig(
3720 struct scatterlist
*sg_s
)
3722 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3725 while (total_length
) {
3726 length
= sg_s
[i
].length
;
3728 if (length
> total_length
)
3729 length
= total_length
;
3731 src
= sg_virt(&sg_s
[i
]);
3733 memcpy(dst
, src
, length
);
3735 if (!(total_length
-= length
))
3743 static void transport_memcpy_se_mem_read_contig(
3746 struct list_head
*se_mem_list
)
3748 struct se_mem
*se_mem
;
3750 u32 length
= 0, total_length
= cmd
->data_length
;
3752 list_for_each_entry(se_mem
, se_mem_list
, se_list
) {
3753 length
= se_mem
->se_len
;
3755 if (length
> total_length
)
3756 length
= total_length
;
3758 src
= page_address(se_mem
->se_page
) + se_mem
->se_off
;
3760 memcpy(dst
, src
, length
);
3762 if (!(total_length
-= length
))
3770 * Called from transport_generic_complete_ok() and
3771 * transport_generic_request_failure() to determine which dormant/delayed
3772 * and ordered cmds need to have their tasks added to the execution queue.
3774 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3776 struct se_device
*dev
= SE_DEV(cmd
);
3777 struct se_cmd
*cmd_p
, *cmd_tmp
;
3778 int new_active_tasks
= 0;
3780 if (cmd
->sam_task_attr
== TASK_ATTR_SIMPLE
) {
3781 atomic_dec(&dev
->simple_cmds
);
3782 smp_mb__after_atomic_dec();
3783 dev
->dev_cur_ordered_id
++;
3784 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3785 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3786 cmd
->se_ordered_id
);
3787 } else if (cmd
->sam_task_attr
== TASK_ATTR_HOQ
) {
3788 atomic_dec(&dev
->dev_hoq_count
);
3789 smp_mb__after_atomic_dec();
3790 dev
->dev_cur_ordered_id
++;
3791 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3792 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3793 cmd
->se_ordered_id
);
3794 } else if (cmd
->sam_task_attr
== TASK_ATTR_ORDERED
) {
3795 spin_lock(&dev
->ordered_cmd_lock
);
3796 list_del(&cmd
->se_ordered_list
);
3797 atomic_dec(&dev
->dev_ordered_sync
);
3798 smp_mb__after_atomic_dec();
3799 spin_unlock(&dev
->ordered_cmd_lock
);
3801 dev
->dev_cur_ordered_id
++;
3802 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3803 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3806 * Process all commands up to the last received
3807 * ORDERED task attribute which requires another blocking
3810 spin_lock(&dev
->delayed_cmd_lock
);
3811 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3812 &dev
->delayed_cmd_list
, se_delayed_list
) {
3814 list_del(&cmd_p
->se_delayed_list
);
3815 spin_unlock(&dev
->delayed_cmd_lock
);
3817 DEBUG_STA("Calling add_tasks() for"
3818 " cmd_p: 0x%02x Task Attr: 0x%02x"
3819 " Dormant -> Active, se_ordered_id: %u\n",
3820 T_TASK(cmd_p
)->t_task_cdb
[0],
3821 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3823 transport_add_tasks_from_cmd(cmd_p
);
3826 spin_lock(&dev
->delayed_cmd_lock
);
3827 if (cmd_p
->sam_task_attr
== TASK_ATTR_ORDERED
)
3830 spin_unlock(&dev
->delayed_cmd_lock
);
3832 * If new tasks have become active, wake up the transport thread
3833 * to do the processing of the Active tasks.
3835 if (new_active_tasks
!= 0)
3836 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
3839 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3843 * Check if we need to move delayed/dormant tasks from cmds on the
3844 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3847 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3848 transport_complete_task_attr(cmd
);
3850 * Check if we need to retrieve a sense buffer from
3851 * the struct se_cmd in question.
3853 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3854 if (transport_get_sense_data(cmd
) < 0)
3855 reason
= TCM_NON_EXISTENT_LUN
;
3858 * Only set when an struct se_task->task_scsi_status returned
3859 * a non GOOD status.
3861 if (cmd
->scsi_status
) {
3862 transport_send_check_condition_and_sense(
3864 transport_lun_remove_cmd(cmd
);
3865 transport_cmd_check_stop_to_fabric(cmd
);
3870 * Check for a callback, used by amongst other things
3871 * XDWRITE_READ_10 emulation.
3873 if (cmd
->transport_complete_callback
)
3874 cmd
->transport_complete_callback(cmd
);
3876 switch (cmd
->data_direction
) {
3877 case DMA_FROM_DEVICE
:
3878 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3879 if (SE_LUN(cmd
)->lun_sep
) {
3880 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3883 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3885 * If enabled by TCM fabirc module pre-registered SGL
3886 * memory, perform the memcpy() from the TCM internal
3887 * contigious buffer back to the original SGL.
3889 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
3890 transport_memcpy_write_contig(cmd
,
3891 T_TASK(cmd
)->t_task_pt_sgl
,
3892 T_TASK(cmd
)->t_task_buf
);
3894 CMD_TFO(cmd
)->queue_data_in(cmd
);
3897 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3898 if (SE_LUN(cmd
)->lun_sep
) {
3899 SE_LUN(cmd
)->lun_sep
->sep_stats
.rx_data_octets
+=
3902 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3904 * Check if we need to send READ payload for BIDI-COMMAND
3906 if (T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) {
3907 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3908 if (SE_LUN(cmd
)->lun_sep
) {
3909 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3912 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3913 CMD_TFO(cmd
)->queue_data_in(cmd
);
3916 /* Fall through for DMA_TO_DEVICE */
3918 CMD_TFO(cmd
)->queue_status(cmd
);
3924 transport_lun_remove_cmd(cmd
);
3925 transport_cmd_check_stop_to_fabric(cmd
);
3928 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3930 struct se_task
*task
, *task_tmp
;
3931 unsigned long flags
;
3933 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3934 list_for_each_entry_safe(task
, task_tmp
,
3935 &T_TASK(cmd
)->t_task_list
, t_list
) {
3936 if (atomic_read(&task
->task_active
))
3939 kfree(task
->task_sg_bidi
);
3940 kfree(task
->task_sg
);
3942 list_del(&task
->t_list
);
3944 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3946 TRANSPORT(task
->se_dev
)->free_task(task
);
3948 printk(KERN_ERR
"task[%u] - task->se_dev is NULL\n",
3950 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3952 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3955 static inline void transport_free_pages(struct se_cmd
*cmd
)
3957 struct se_mem
*se_mem
, *se_mem_tmp
;
3960 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3962 if (cmd
->se_dev
->transport
->do_se_mem_map
)
3965 if (T_TASK(cmd
)->t_task_buf
) {
3966 kfree(T_TASK(cmd
)->t_task_buf
);
3967 T_TASK(cmd
)->t_task_buf
= NULL
;
3972 * Caller will handle releasing of struct se_mem.
3974 if (cmd
->se_cmd_flags
& SCF_CMD_PASSTHROUGH_NOALLOC
)
3977 if (!(T_TASK(cmd
)->t_tasks_se_num
))
3980 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3981 T_TASK(cmd
)->t_mem_list
, se_list
) {
3983 * We only release call __free_page(struct se_mem->se_page) when
3984 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3987 __free_page(se_mem
->se_page
);
3989 list_del(&se_mem
->se_list
);
3990 kmem_cache_free(se_mem_cache
, se_mem
);
3993 if (T_TASK(cmd
)->t_mem_bidi_list
&& T_TASK(cmd
)->t_tasks_se_bidi_num
) {
3994 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3995 T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
3997 * We only release call __free_page(struct se_mem->se_page) when
3998 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4001 __free_page(se_mem
->se_page
);
4003 list_del(&se_mem
->se_list
);
4004 kmem_cache_free(se_mem_cache
, se_mem
);
4008 kfree(T_TASK(cmd
)->t_mem_bidi_list
);
4009 T_TASK(cmd
)->t_mem_bidi_list
= NULL
;
4010 kfree(T_TASK(cmd
)->t_mem_list
);
4011 T_TASK(cmd
)->t_mem_list
= NULL
;
4012 T_TASK(cmd
)->t_tasks_se_num
= 0;
4015 static inline void transport_release_tasks(struct se_cmd
*cmd
)
4017 transport_free_dev_tasks(cmd
);
4020 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
4022 unsigned long flags
;
4024 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4025 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
4026 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_fe_count
))) {
4027 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4033 if (atomic_read(&T_TASK(cmd
)->t_se_count
)) {
4034 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_se_count
))) {
4035 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4040 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4045 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
4047 unsigned long flags
;
4049 if (transport_dec_and_check(cmd
))
4052 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4053 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4054 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4057 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4058 transport_all_task_dev_remove_state(cmd
);
4059 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4061 transport_release_tasks(cmd
);
4063 transport_free_pages(cmd
);
4064 transport_free_se_cmd(cmd
);
4065 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4068 static int transport_generic_remove(
4070 int release_to_pool
,
4071 int session_reinstatement
)
4073 unsigned long flags
;
4078 if (transport_dec_and_check(cmd
)) {
4079 if (session_reinstatement
) {
4080 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4081 transport_all_task_dev_remove_state(cmd
);
4082 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4088 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4089 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4090 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4093 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4094 transport_all_task_dev_remove_state(cmd
);
4095 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4097 transport_release_tasks(cmd
);
4099 transport_free_pages(cmd
);
4102 if (release_to_pool
) {
4103 transport_release_cmd_to_pool(cmd
);
4105 transport_free_se_cmd(cmd
);
4106 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4113 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4114 * @cmd: Associated se_cmd descriptor
4115 * @mem: SGL style memory for TCM WRITE / READ
4116 * @sg_mem_num: Number of SGL elements
4117 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4118 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4120 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4123 int transport_generic_map_mem_to_cmd(
4125 struct scatterlist
*mem
,
4127 struct scatterlist
*mem_bidi_in
,
4128 u32 sg_mem_bidi_num
)
4130 u32 se_mem_cnt_out
= 0;
4133 if (!(mem
) || !(sg_mem_num
))
4136 * Passed *mem will contain a list_head containing preformatted
4137 * struct se_mem elements...
4139 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM
)) {
4140 if ((mem_bidi_in
) || (sg_mem_bidi_num
)) {
4141 printk(KERN_ERR
"SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4142 " with BIDI-COMMAND\n");
4146 T_TASK(cmd
)->t_mem_list
= (struct list_head
*)mem
;
4147 T_TASK(cmd
)->t_tasks_se_num
= sg_mem_num
;
4148 cmd
->se_cmd_flags
|= SCF_CMD_PASSTHROUGH_NOALLOC
;
4152 * Otherwise, assume the caller is passing a struct scatterlist
4153 * array from include/linux/scatterlist.h
4155 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
4156 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
4158 * For CDB using TCM struct se_mem linked list scatterlist memory
4159 * processed into a TCM struct se_subsystem_dev, we do the mapping
4160 * from the passed physical memory to struct se_mem->se_page here.
4162 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4163 if (!(T_TASK(cmd
)->t_mem_list
))
4166 ret
= transport_map_sg_to_mem(cmd
,
4167 T_TASK(cmd
)->t_mem_list
, mem
, &se_mem_cnt_out
);
4171 T_TASK(cmd
)->t_tasks_se_num
= se_mem_cnt_out
;
4173 * Setup BIDI READ list of struct se_mem elements
4175 if ((mem_bidi_in
) && (sg_mem_bidi_num
)) {
4176 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4177 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4178 kfree(T_TASK(cmd
)->t_mem_list
);
4183 ret
= transport_map_sg_to_mem(cmd
,
4184 T_TASK(cmd
)->t_mem_bidi_list
, mem_bidi_in
,
4187 kfree(T_TASK(cmd
)->t_mem_list
);
4191 T_TASK(cmd
)->t_tasks_se_bidi_num
= se_mem_cnt_out
;
4193 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
4195 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
4196 if (mem_bidi_in
|| sg_mem_bidi_num
) {
4197 printk(KERN_ERR
"BIDI-Commands not supported using "
4198 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4202 * For incoming CDBs using a contiguous buffer internall with TCM,
4203 * save the passed struct scatterlist memory. After TCM storage object
4204 * processing has completed for this struct se_cmd, TCM core will call
4205 * transport_memcpy_[write,read]_contig() as necessary from
4206 * transport_generic_complete_ok() and transport_write_pending() in order
4207 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4208 * struct scatterlist format.
4210 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_CONTIG_TO_SG
;
4211 T_TASK(cmd
)->t_task_pt_sgl
= mem
;
4216 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
4219 static inline long long transport_dev_end_lba(struct se_device
*dev
)
4221 return dev
->transport
->get_blocks(dev
) + 1;
4224 static int transport_get_sectors(struct se_cmd
*cmd
)
4226 struct se_device
*dev
= SE_DEV(cmd
);
4228 T_TASK(cmd
)->t_tasks_sectors
=
4229 (cmd
->data_length
/ DEV_ATTRIB(dev
)->block_size
);
4230 if (!(T_TASK(cmd
)->t_tasks_sectors
))
4231 T_TASK(cmd
)->t_tasks_sectors
= 1;
4233 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_DISK
)
4236 if ((T_TASK(cmd
)->t_task_lba
+ T_TASK(cmd
)->t_tasks_sectors
) >
4237 transport_dev_end_lba(dev
)) {
4238 printk(KERN_ERR
"LBA: %llu Sectors: %u exceeds"
4239 " transport_dev_end_lba(): %llu\n",
4240 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4241 transport_dev_end_lba(dev
));
4242 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4243 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
4244 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
;
4250 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
4252 struct se_device
*dev
= SE_DEV(cmd
);
4253 u32 task_cdbs
= 0, rc
;
4255 if (!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
4257 T_TASK(cmd
)->t_task_cdbs
++;
4262 * Setup any BIDI READ tasks and memory from
4263 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4264 * are queued first for the non pSCSI passthrough case.
4266 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4267 (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4268 rc
= transport_generic_get_cdb_count(cmd
,
4269 T_TASK(cmd
)->t_task_lba
,
4270 T_TASK(cmd
)->t_tasks_sectors
,
4271 DMA_FROM_DEVICE
, T_TASK(cmd
)->t_mem_bidi_list
,
4274 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4275 cmd
->scsi_sense_reason
=
4276 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4277 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4282 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4283 * Note for BIDI transfers this will contain the WRITE payload
4285 task_cdbs
= transport_generic_get_cdb_count(cmd
,
4286 T_TASK(cmd
)->t_task_lba
,
4287 T_TASK(cmd
)->t_tasks_sectors
,
4288 cmd
->data_direction
, T_TASK(cmd
)->t_mem_list
,
4291 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4292 cmd
->scsi_sense_reason
=
4293 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4294 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4296 T_TASK(cmd
)->t_task_cdbs
+= task_cdbs
;
4299 printk(KERN_INFO
"data_length: %u, LBA: %llu t_tasks_sectors:"
4300 " %u, t_task_cdbs: %u\n", obj_ptr
, cmd
->data_length
,
4301 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4302 T_TASK(cmd
)->t_task_cdbs
);
4306 atomic_set(&T_TASK(cmd
)->t_task_cdbs_left
, task_cdbs
);
4307 atomic_set(&T_TASK(cmd
)->t_task_cdbs_ex_left
, task_cdbs
);
4308 atomic_set(&T_TASK(cmd
)->t_task_cdbs_timeout_left
, task_cdbs
);
4312 static struct list_head
*transport_init_se_mem_list(void)
4314 struct list_head
*se_mem_list
;
4316 se_mem_list
= kzalloc(sizeof(struct list_head
), GFP_KERNEL
);
4317 if (!(se_mem_list
)) {
4318 printk(KERN_ERR
"Unable to allocate memory for se_mem_list\n");
4321 INIT_LIST_HEAD(se_mem_list
);
4327 transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
, u32 dma_size
)
4330 struct se_mem
*se_mem
;
4332 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4333 if (!(T_TASK(cmd
)->t_mem_list
))
4337 * If the device uses memory mapping this is enough.
4339 if (cmd
->se_dev
->transport
->do_se_mem_map
)
4343 * Setup BIDI-COMMAND READ list of struct se_mem elements
4345 if (T_TASK(cmd
)->t_tasks_bidi
) {
4346 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4347 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4348 kfree(T_TASK(cmd
)->t_mem_list
);
4354 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4356 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4360 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4361 se_mem
->se_page
= alloc_pages(GFP_KERNEL
, 0);
4362 if (!(se_mem
->se_page
)) {
4363 printk(KERN_ERR
"alloc_pages() failed\n");
4367 buf
= kmap_atomic(se_mem
->se_page
, KM_IRQ0
);
4369 printk(KERN_ERR
"kmap_atomic() failed\n");
4372 INIT_LIST_HEAD(&se_mem
->se_list
);
4373 se_mem
->se_len
= (length
> dma_size
) ? dma_size
: length
;
4374 memset(buf
, 0, se_mem
->se_len
);
4375 kunmap_atomic(buf
, KM_IRQ0
);
4377 list_add_tail(&se_mem
->se_list
, T_TASK(cmd
)->t_mem_list
);
4378 T_TASK(cmd
)->t_tasks_se_num
++;
4380 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4381 " Offset(%u)\n", se_mem
->se_page
, se_mem
->se_len
,
4384 length
-= se_mem
->se_len
;
4387 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4388 T_TASK(cmd
)->t_tasks_se_num
);
4393 __free_pages(se_mem
->se_page
, 0);
4394 kmem_cache_free(se_mem_cache
, se_mem
);
4398 u32
transport_calc_sg_num(
4399 struct se_task
*task
,
4400 struct se_mem
*in_se_mem
,
4403 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4404 struct se_device
*se_dev
= SE_DEV(se_cmd
);
4405 struct se_mem
*se_mem
= in_se_mem
;
4406 struct target_core_fabric_ops
*tfo
= CMD_TFO(se_cmd
);
4407 u32 sg_length
, task_size
= task
->task_size
, task_sg_num_padded
;
4409 while (task_size
!= 0) {
4410 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4411 " se_mem->se_off(%u) task_offset(%u)\n",
4412 se_mem
->se_page
, se_mem
->se_len
,
4413 se_mem
->se_off
, task_offset
);
4415 if (task_offset
== 0) {
4416 if (task_size
>= se_mem
->se_len
) {
4417 sg_length
= se_mem
->se_len
;
4419 if (!(list_is_last(&se_mem
->se_list
,
4420 T_TASK(se_cmd
)->t_mem_list
)))
4421 se_mem
= list_entry(se_mem
->se_list
.next
,
4422 struct se_mem
, se_list
);
4424 sg_length
= task_size
;
4425 task_size
-= sg_length
;
4429 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4430 sg_length
, task_size
);
4432 if ((se_mem
->se_len
- task_offset
) > task_size
) {
4433 sg_length
= task_size
;
4434 task_size
-= sg_length
;
4437 sg_length
= (se_mem
->se_len
- task_offset
);
4439 if (!(list_is_last(&se_mem
->se_list
,
4440 T_TASK(se_cmd
)->t_mem_list
)))
4441 se_mem
= list_entry(se_mem
->se_list
.next
,
4442 struct se_mem
, se_list
);
4445 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4446 sg_length
, task_size
);
4450 task_size
-= sg_length
;
4452 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4453 task
->task_no
, task_size
);
4455 task
->task_sg_num
++;
4458 * Check if the fabric module driver is requesting that all
4459 * struct se_task->task_sg[] be chained together.. If so,
4460 * then allocate an extra padding SG entry for linking and
4461 * marking the end of the chained SGL.
4463 if (tfo
->task_sg_chaining
) {
4464 task_sg_num_padded
= (task
->task_sg_num
+ 1);
4465 task
->task_padded_sg
= 1;
4467 task_sg_num_padded
= task
->task_sg_num
;
4469 task
->task_sg
= kzalloc(task_sg_num_padded
*
4470 sizeof(struct scatterlist
), GFP_KERNEL
);
4471 if (!(task
->task_sg
)) {
4472 printk(KERN_ERR
"Unable to allocate memory for"
4473 " task->task_sg\n");
4476 sg_init_table(&task
->task_sg
[0], task_sg_num_padded
);
4478 * Setup task->task_sg_bidi for SCSI READ payload for
4479 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4481 if ((T_TASK(se_cmd
)->t_mem_bidi_list
!= NULL
) &&
4482 (TRANSPORT(se_dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4483 task
->task_sg_bidi
= kzalloc(task_sg_num_padded
*
4484 sizeof(struct scatterlist
), GFP_KERNEL
);
4485 if (!(task
->task_sg_bidi
)) {
4486 printk(KERN_ERR
"Unable to allocate memory for"
4487 " task->task_sg_bidi\n");
4490 sg_init_table(&task
->task_sg_bidi
[0], task_sg_num_padded
);
4493 * For the chaining case, setup the proper end of SGL for the
4494 * initial submission struct task into struct se_subsystem_api.
4495 * This will be cleared later by transport_do_task_sg_chain()
4497 if (task
->task_padded_sg
) {
4498 sg_mark_end(&task
->task_sg
[task
->task_sg_num
- 1]);
4500 * Added the 'if' check before marking end of bi-directional
4501 * scatterlist (which gets created only in case of request
4504 if (task
->task_sg_bidi
)
4505 sg_mark_end(&task
->task_sg_bidi
[task
->task_sg_num
- 1]);
4508 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4509 " task_sg_num_padded(%u)\n", task
->task_sg_num
,
4510 task_sg_num_padded
);
4512 return task
->task_sg_num
;
4515 static inline int transport_set_tasks_sectors_disk(
4516 struct se_task
*task
,
4517 struct se_device
*dev
,
4518 unsigned long long lba
,
4520 int *max_sectors_set
)
4522 if ((lba
+ sectors
) > transport_dev_end_lba(dev
)) {
4523 task
->task_sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4525 if (task
->task_sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4526 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4527 *max_sectors_set
= 1;
4530 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4531 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4532 *max_sectors_set
= 1;
4534 task
->task_sectors
= sectors
;
4540 static inline int transport_set_tasks_sectors_non_disk(
4541 struct se_task
*task
,
4542 struct se_device
*dev
,
4543 unsigned long long lba
,
4545 int *max_sectors_set
)
4547 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4548 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4549 *max_sectors_set
= 1;
4551 task
->task_sectors
= sectors
;
4556 static inline int transport_set_tasks_sectors(
4557 struct se_task
*task
,
4558 struct se_device
*dev
,
4559 unsigned long long lba
,
4561 int *max_sectors_set
)
4563 return (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_DISK
) ?
4564 transport_set_tasks_sectors_disk(task
, dev
, lba
, sectors
,
4566 transport_set_tasks_sectors_non_disk(task
, dev
, lba
, sectors
,
4570 static int transport_map_sg_to_mem(
4572 struct list_head
*se_mem_list
,
4576 struct se_mem
*se_mem
;
4577 struct scatterlist
*sg
;
4578 u32 sg_count
= 1, cmd_size
= cmd
->data_length
;
4581 printk(KERN_ERR
"No source scatterlist\n");
4584 sg
= (struct scatterlist
*)in_mem
;
4587 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4589 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4592 INIT_LIST_HEAD(&se_mem
->se_list
);
4593 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4594 " sg_page: %p offset: %d length: %d\n", cmd_size
,
4595 sg_page(sg
), sg
->offset
, sg
->length
);
4597 se_mem
->se_page
= sg_page(sg
);
4598 se_mem
->se_off
= sg
->offset
;
4600 if (cmd_size
> sg
->length
) {
4601 se_mem
->se_len
= sg
->length
;
4605 se_mem
->se_len
= cmd_size
;
4607 cmd_size
-= se_mem
->se_len
;
4609 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4610 *se_mem_cnt
, cmd_size
);
4611 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4612 se_mem
->se_page
, se_mem
->se_off
, se_mem
->se_len
);
4614 list_add_tail(&se_mem
->se_list
, se_mem_list
);
4618 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4619 " struct se_mem\n", sg_count
, *se_mem_cnt
);
4621 if (sg_count
!= *se_mem_cnt
)
4627 /* transport_map_mem_to_sg():
4631 int transport_map_mem_to_sg(
4632 struct se_task
*task
,
4633 struct list_head
*se_mem_list
,
4635 struct se_mem
*in_se_mem
,
4636 struct se_mem
**out_se_mem
,
4640 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4641 struct se_mem
*se_mem
= in_se_mem
;
4642 struct scatterlist
*sg
= (struct scatterlist
*)in_mem
;
4643 u32 task_size
= task
->task_size
, sg_no
= 0;
4646 printk(KERN_ERR
"Unable to locate valid struct"
4647 " scatterlist pointer\n");
4651 while (task_size
!= 0) {
4653 * Setup the contigious array of scatterlists for
4654 * this struct se_task.
4656 sg_assign_page(sg
, se_mem
->se_page
);
4658 if (*task_offset
== 0) {
4659 sg
->offset
= se_mem
->se_off
;
4661 if (task_size
>= se_mem
->se_len
) {
4662 sg
->length
= se_mem
->se_len
;
4664 if (!(list_is_last(&se_mem
->se_list
,
4665 T_TASK(se_cmd
)->t_mem_list
))) {
4666 se_mem
= list_entry(se_mem
->se_list
.next
,
4667 struct se_mem
, se_list
);
4671 sg
->length
= task_size
;
4673 * Determine if we need to calculate an offset
4674 * into the struct se_mem on the next go around..
4676 task_size
-= sg
->length
;
4678 *task_offset
= sg
->length
;
4684 sg
->offset
= (*task_offset
+ se_mem
->se_off
);
4686 if ((se_mem
->se_len
- *task_offset
) > task_size
) {
4687 sg
->length
= task_size
;
4689 * Determine if we need to calculate an offset
4690 * into the struct se_mem on the next go around..
4692 task_size
-= sg
->length
;
4694 *task_offset
+= sg
->length
;
4698 sg
->length
= (se_mem
->se_len
- *task_offset
);
4700 if (!(list_is_last(&se_mem
->se_list
,
4701 T_TASK(se_cmd
)->t_mem_list
))) {
4702 se_mem
= list_entry(se_mem
->se_list
.next
,
4703 struct se_mem
, se_list
);
4710 task_size
-= sg
->length
;
4712 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4713 " task_size to(%u), task_offset: %u\n", task
->task_no
, sg_no
,
4714 sg_page(sg
), sg
->length
, sg
->offset
, task_size
, *task_offset
);
4722 if (task_size
> se_cmd
->data_length
)
4725 *out_se_mem
= se_mem
;
4727 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4728 " SGs\n", task
->task_no
, *se_mem_cnt
, sg_no
);
4734 * This function can be used by HW target mode drivers to create a linked
4735 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4736 * This is intended to be called during the completion path by TCM Core
4737 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4739 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4741 struct scatterlist
*sg_head
= NULL
, *sg_link
= NULL
, *sg_first
= NULL
;
4742 struct scatterlist
*sg_head_cur
= NULL
, *sg_link_cur
= NULL
;
4743 struct scatterlist
*sg
, *sg_end
= NULL
, *sg_end_cur
= NULL
;
4744 struct se_task
*task
;
4745 struct target_core_fabric_ops
*tfo
= CMD_TFO(cmd
);
4746 u32 task_sg_num
= 0, sg_count
= 0;
4749 if (tfo
->task_sg_chaining
== 0) {
4750 printk(KERN_ERR
"task_sg_chaining is diabled for fabric module:"
4751 " %s\n", tfo
->get_fabric_name());
4756 * Walk the struct se_task list and setup scatterlist chains
4757 * for each contiguosly allocated struct se_task->task_sg[].
4759 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
4760 if (!(task
->task_sg
) || !(task
->task_padded_sg
))
4763 if (sg_head
&& sg_link
) {
4764 sg_head_cur
= &task
->task_sg
[0];
4765 sg_link_cur
= &task
->task_sg
[task
->task_sg_num
];
4767 * Either add chain or mark end of scatterlist
4769 if (!(list_is_last(&task
->t_list
,
4770 &T_TASK(cmd
)->t_task_list
))) {
4772 * Clear existing SGL termination bit set in
4773 * transport_calc_sg_num(), see sg_mark_end()
4775 sg_end_cur
= &task
->task_sg
[task
->task_sg_num
- 1];
4776 sg_end_cur
->page_link
&= ~0x02;
4778 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4779 sg_count
+= (task
->task_sg_num
+ 1);
4781 sg_count
+= task
->task_sg_num
;
4783 sg_head
= sg_head_cur
;
4784 sg_link
= sg_link_cur
;
4785 task_sg_num
= task
->task_sg_num
;
4788 sg_head
= sg_first
= &task
->task_sg
[0];
4789 sg_link
= &task
->task_sg
[task
->task_sg_num
];
4790 task_sg_num
= task
->task_sg_num
;
4792 * Check for single task..
4794 if (!(list_is_last(&task
->t_list
, &T_TASK(cmd
)->t_task_list
))) {
4796 * Clear existing SGL termination bit set in
4797 * transport_calc_sg_num(), see sg_mark_end()
4799 sg_end
= &task
->task_sg
[task
->task_sg_num
- 1];
4800 sg_end
->page_link
&= ~0x02;
4801 sg_count
+= (task
->task_sg_num
+ 1);
4803 sg_count
+= task
->task_sg_num
;
4806 * Setup the starting pointer and total t_tasks_sg_linked_no including
4807 * padding SGs for linking and to mark the end.
4809 T_TASK(cmd
)->t_tasks_sg_chained
= sg_first
;
4810 T_TASK(cmd
)->t_tasks_sg_chained_no
= sg_count
;
4812 DEBUG_CMD_M("Setup T_TASK(cmd)->t_tasks_sg_chained: %p and"
4813 " t_tasks_sg_chained_no: %u\n", T_TASK(cmd
)->t_tasks_sg_chained
,
4814 T_TASK(cmd
)->t_tasks_sg_chained_no
);
4816 for_each_sg(T_TASK(cmd
)->t_tasks_sg_chained
, sg
,
4817 T_TASK(cmd
)->t_tasks_sg_chained_no
, i
) {
4819 DEBUG_CMD_M("SG: %p page: %p length: %d offset: %d\n",
4820 sg
, sg_page(sg
), sg
->length
, sg
->offset
);
4821 if (sg_is_chain(sg
))
4822 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg
);
4824 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg
);
4828 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4830 static int transport_do_se_mem_map(
4831 struct se_device
*dev
,
4832 struct se_task
*task
,
4833 struct list_head
*se_mem_list
,
4835 struct se_mem
*in_se_mem
,
4836 struct se_mem
**out_se_mem
,
4838 u32
*task_offset_in
)
4840 u32 task_offset
= *task_offset_in
;
4843 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4844 * has been done by the transport plugin.
4846 if (TRANSPORT(dev
)->do_se_mem_map
) {
4847 ret
= TRANSPORT(dev
)->do_se_mem_map(task
, se_mem_list
,
4848 in_mem
, in_se_mem
, out_se_mem
, se_mem_cnt
,
4851 T_TASK(task
->task_se_cmd
)->t_tasks_se_num
+= *se_mem_cnt
;
4856 BUG_ON(list_empty(se_mem_list
));
4858 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4859 * WRITE payloads.. If we need to do BIDI READ passthrough for
4860 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4861 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4862 * allocation for task->task_sg_bidi, and the subsequent call to
4863 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4865 if (!(task
->task_sg_bidi
)) {
4867 * Assume default that transport plugin speaks preallocated
4870 if (!(transport_calc_sg_num(task
, in_se_mem
, task_offset
)))
4873 * struct se_task->task_sg now contains the struct scatterlist array.
4875 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg
,
4876 in_se_mem
, out_se_mem
, se_mem_cnt
,
4880 * Handle the se_mem_list -> struct task->task_sg_bidi
4881 * memory map for the extra BIDI READ payload
4883 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg_bidi
,
4884 in_se_mem
, out_se_mem
, se_mem_cnt
,
4888 static u32
transport_generic_get_cdb_count(
4890 unsigned long long lba
,
4892 enum dma_data_direction data_direction
,
4893 struct list_head
*mem_list
,
4896 unsigned char *cdb
= NULL
;
4897 struct se_task
*task
;
4898 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
4899 struct se_mem
*se_mem_bidi
= NULL
, *se_mem_bidi_lout
= NULL
;
4900 struct se_device
*dev
= SE_DEV(cmd
);
4901 int max_sectors_set
= 0, ret
;
4902 u32 task_offset_in
= 0, se_mem_cnt
= 0, se_mem_bidi_cnt
= 0, task_cdbs
= 0;
4905 printk(KERN_ERR
"mem_list is NULL in transport_generic_get"
4910 * While using RAMDISK_DR backstores is the only case where
4911 * mem_list will ever be empty at this point.
4913 if (!(list_empty(mem_list
)))
4914 se_mem
= list_entry(mem_list
->next
, struct se_mem
, se_list
);
4916 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4917 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4919 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4920 !(list_empty(T_TASK(cmd
)->t_mem_bidi_list
)) &&
4921 (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
))
4922 se_mem_bidi
= list_entry(T_TASK(cmd
)->t_mem_bidi_list
->next
,
4923 struct se_mem
, se_list
);
4926 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4927 CMD_TFO(cmd
)->get_task_tag(cmd
), lba
, sectors
,
4928 transport_dev_end_lba(dev
));
4930 task
= transport_generic_get_task(cmd
, data_direction
);
4934 transport_set_tasks_sectors(task
, dev
, lba
, sectors
,
4937 task
->task_lba
= lba
;
4938 lba
+= task
->task_sectors
;
4939 sectors
-= task
->task_sectors
;
4940 task
->task_size
= (task
->task_sectors
*
4941 DEV_ATTRIB(dev
)->block_size
);
4943 cdb
= TRANSPORT(dev
)->get_cdb(task
);
4945 memcpy(cdb
, T_TASK(cmd
)->t_task_cdb
,
4946 scsi_command_size(T_TASK(cmd
)->t_task_cdb
));
4947 cmd
->transport_split_cdb(task
->task_lba
,
4948 &task
->task_sectors
, cdb
);
4952 * Perform the SE OBJ plugin and/or Transport plugin specific
4953 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4954 * task->task_sg and if necessary task->task_sg_bidi
4956 ret
= transport_do_se_mem_map(dev
, task
, mem_list
,
4957 NULL
, se_mem
, &se_mem_lout
, &se_mem_cnt
,
4962 se_mem
= se_mem_lout
;
4964 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4965 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4967 * Note that the first call to transport_do_se_mem_map() above will
4968 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4969 * -> transport_calc_sg_num(), and the second here will do the
4970 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4972 if (task
->task_sg_bidi
!= NULL
) {
4973 ret
= transport_do_se_mem_map(dev
, task
,
4974 T_TASK(cmd
)->t_mem_bidi_list
, NULL
,
4975 se_mem_bidi
, &se_mem_bidi_lout
, &se_mem_bidi_cnt
,
4980 se_mem_bidi
= se_mem_bidi_lout
;
4984 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4985 task_cdbs
, task
->task_sg_num
);
4987 if (max_sectors_set
) {
4988 max_sectors_set
= 0;
4997 atomic_inc(&T_TASK(cmd
)->t_fe_count
);
4998 atomic_inc(&T_TASK(cmd
)->t_se_count
);
5001 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5002 CMD_TFO(cmd
)->get_task_tag(cmd
), (data_direction
== DMA_TO_DEVICE
)
5003 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs
);
5011 transport_map_control_cmd_to_task(struct se_cmd
*cmd
)
5013 struct se_device
*dev
= SE_DEV(cmd
);
5015 struct se_task
*task
;
5018 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
5020 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5022 cdb
= TRANSPORT(dev
)->get_cdb(task
);
5024 memcpy(cdb
, cmd
->t_task
->t_task_cdb
,
5025 scsi_command_size(cmd
->t_task
->t_task_cdb
));
5027 task
->task_size
= cmd
->data_length
;
5029 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) ? 1 : 0;
5031 atomic_inc(&cmd
->t_task
->t_fe_count
);
5032 atomic_inc(&cmd
->t_task
->t_se_count
);
5034 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
5035 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
5036 u32 se_mem_cnt
= 0, task_offset
= 0;
5038 if (!list_empty(T_TASK(cmd
)->t_mem_list
))
5039 se_mem
= list_entry(T_TASK(cmd
)->t_mem_list
->next
,
5040 struct se_mem
, se_list
);
5042 ret
= transport_do_se_mem_map(dev
, task
,
5043 cmd
->t_task
->t_mem_list
, NULL
, se_mem
,
5044 &se_mem_lout
, &se_mem_cnt
, &task_offset
);
5046 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5048 if (dev
->transport
->map_task_SG
)
5049 return dev
->transport
->map_task_SG(task
);
5051 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
5052 if (dev
->transport
->map_task_non_SG
)
5053 return dev
->transport
->map_task_non_SG(task
);
5055 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
5056 if (dev
->transport
->cdb_none
)
5057 return dev
->transport
->cdb_none(task
);
5061 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5065 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5067 * Allocate storage transport resources from a set of values predefined
5068 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5069 * Any non zero return here is treated as an "out of resource' op here.
5072 * Generate struct se_task(s) and/or their payloads for this CDB.
5074 static int transport_generic_new_cmd(struct se_cmd
*cmd
)
5076 struct se_portal_group
*se_tpg
;
5077 struct se_task
*task
;
5078 struct se_device
*dev
= SE_DEV(cmd
);
5082 * Determine is the TCM fabric module has already allocated physical
5083 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5084 * to setup beforehand the linked list of physical memory at
5085 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5087 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)) {
5088 ret
= transport_allocate_resources(cmd
);
5093 ret
= transport_get_sectors(cmd
);
5097 ret
= transport_new_cmd_obj(cmd
);
5102 * Determine if the calling TCM fabric module is talking to
5103 * Linux/NET via kernel sockets and needs to allocate a
5104 * struct iovec array to complete the struct se_cmd
5106 se_tpg
= SE_LUN(cmd
)->lun_sep
->sep_tpg
;
5107 if (TPG_TFO(se_tpg
)->alloc_cmd_iovecs
!= NULL
) {
5108 ret
= TPG_TFO(se_tpg
)->alloc_cmd_iovecs(cmd
);
5110 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5113 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
5114 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
5115 if (atomic_read(&task
->task_sent
))
5117 if (!dev
->transport
->map_task_SG
)
5120 ret
= dev
->transport
->map_task_SG(task
);
5125 ret
= transport_map_control_cmd_to_task(cmd
);
5131 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5132 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5133 * will be added to the struct se_device execution queue after its WRITE
5134 * data has arrived. (ie: It gets handled by the transport processing
5135 * thread a second time)
5137 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5138 transport_add_tasks_to_state_queue(cmd
);
5139 return transport_generic_write_pending(cmd
);
5142 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5143 * to the execution queue.
5145 transport_execute_tasks(cmd
);
5149 /* transport_generic_process_write():
5153 void transport_generic_process_write(struct se_cmd
*cmd
)
5157 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5160 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
5161 if (!T_TASK(cmd
)->t_tasks_se_num
) {
5162 unsigned char *dst
, *buf
=
5163 (unsigned char *)T_TASK(cmd
)->t_task_buf
;
5165 dst
= kzalloc(cmd
->cmd_spdtl
), GFP_KERNEL
);
5167 printk(KERN_ERR
"Unable to allocate memory for"
5168 " WRITE underflow\n");
5169 transport_generic_request_failure(cmd
, NULL
,
5170 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5173 memcpy(dst
, buf
, cmd
->cmd_spdtl
);
5175 kfree(T_TASK(cmd
)->t_task_buf
);
5176 T_TASK(cmd
)->t_task_buf
= dst
;
5178 struct scatterlist
*sg
=
5179 (struct scatterlist
*sg
)T_TASK(cmd
)->t_task_buf
;
5180 struct scatterlist
*orig_sg
;
5182 orig_sg
= kzalloc(sizeof(struct scatterlist
) *
5183 T_TASK(cmd
)->t_tasks_se_num
,
5186 printk(KERN_ERR
"Unable to allocate memory"
5187 " for WRITE underflow\n");
5188 transport_generic_request_failure(cmd
, NULL
,
5189 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5193 memcpy(orig_sg
, T_TASK(cmd
)->t_task_buf
,
5194 sizeof(struct scatterlist
) *
5195 T_TASK(cmd
)->t_tasks_se_num
);
5197 cmd
->data_length
= cmd
->cmd_spdtl
;
5199 * FIXME, clear out original struct se_task and state
5202 if (transport_generic_new_cmd(cmd
) < 0) {
5203 transport_generic_request_failure(cmd
, NULL
,
5204 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5209 transport_memcpy_write_sg(cmd
, orig_sg
);
5213 transport_execute_tasks(cmd
);
5215 EXPORT_SYMBOL(transport_generic_process_write
);
5217 /* transport_generic_write_pending():
5221 static int transport_generic_write_pending(struct se_cmd
*cmd
)
5223 unsigned long flags
;
5226 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5227 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
5228 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5230 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5231 * from the passed Linux/SCSI struct scatterlist located at
5232 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5233 * T_TASK(se_cmd)->t_task_buf.
5235 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
5236 transport_memcpy_read_contig(cmd
,
5237 T_TASK(cmd
)->t_task_buf
,
5238 T_TASK(cmd
)->t_task_pt_sgl
);
5240 * Clear the se_cmd for WRITE_PENDING status in order to set
5241 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5242 * can be called from HW target mode interrupt code. This is safe
5243 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5244 * because the se_cmd->se_lun pointer is not being cleared.
5246 transport_cmd_check_stop(cmd
, 1, 0);
5249 * Call the fabric write_pending function here to let the
5250 * frontend know that WRITE buffers are ready.
5252 ret
= CMD_TFO(cmd
)->write_pending(cmd
);
5256 return PYX_TRANSPORT_WRITE_PENDING
;
5259 /* transport_release_cmd_to_pool():
5263 void transport_release_cmd_to_pool(struct se_cmd
*cmd
)
5265 BUG_ON(!T_TASK(cmd
));
5266 BUG_ON(!CMD_TFO(cmd
));
5268 transport_free_se_cmd(cmd
);
5269 CMD_TFO(cmd
)->release_cmd_to_pool(cmd
);
5271 EXPORT_SYMBOL(transport_release_cmd_to_pool
);
5273 /* transport_generic_free_cmd():
5275 * Called from processing frontend to release storage engine resources
5277 void transport_generic_free_cmd(
5280 int release_to_pool
,
5281 int session_reinstatement
)
5283 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) || !T_TASK(cmd
))
5284 transport_release_cmd_to_pool(cmd
);
5286 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
5290 printk(KERN_INFO
"cmd: %p ITT: 0x%08x contains"
5291 " SE_LUN(cmd)\n", cmd
,
5292 CMD_TFO(cmd
)->get_task_tag(cmd
));
5294 transport_lun_remove_cmd(cmd
);
5297 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
5298 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
5300 transport_generic_remove(cmd
, release_to_pool
,
5301 session_reinstatement
);
5304 EXPORT_SYMBOL(transport_generic_free_cmd
);
5306 static void transport_nop_wait_for_tasks(
5309 int session_reinstatement
)
5314 /* transport_lun_wait_for_tasks():
5316 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5317 * an struct se_lun to be successfully shutdown.
5319 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
5321 unsigned long flags
;
5324 * If the frontend has already requested this struct se_cmd to
5325 * be stopped, we can safely ignore this struct se_cmd.
5327 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5328 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
5329 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5330 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5331 " TRUE, skipping\n", CMD_TFO(cmd
)->get_task_tag(cmd
));
5332 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5333 transport_cmd_check_stop(cmd
, 1, 0);
5336 atomic_set(&T_TASK(cmd
)->transport_lun_fe_stop
, 1);
5337 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5339 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5341 ret
= transport_stop_tasks_for_cmd(cmd
);
5343 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5344 " %d\n", cmd
, T_TASK(cmd
)->t_task_cdbs
, ret
);
5346 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5347 CMD_TFO(cmd
)->get_task_tag(cmd
));
5348 wait_for_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
5349 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5350 CMD_TFO(cmd
)->get_task_tag(cmd
));
5352 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
5357 /* #define DEBUG_CLEAR_LUN */
5358 #ifdef DEBUG_CLEAR_LUN
5359 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5361 #define DEBUG_CLEAR_L(x...)
5364 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
5366 struct se_cmd
*cmd
= NULL
;
5367 unsigned long lun_flags
, cmd_flags
;
5369 * Do exception processing and return CHECK_CONDITION status to the
5372 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5373 while (!list_empty_careful(&lun
->lun_cmd_list
)) {
5374 cmd
= list_entry(lun
->lun_cmd_list
.next
,
5375 struct se_cmd
, se_lun_list
);
5376 list_del(&cmd
->se_lun_list
);
5378 if (!(T_TASK(cmd
))) {
5379 printk(KERN_ERR
"ITT: 0x%08x, T_TASK(cmd) = NULL"
5380 "[i,t]_state: %u/%u\n",
5381 CMD_TFO(cmd
)->get_task_tag(cmd
),
5382 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5385 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
5387 * This will notify iscsi_target_transport.c:
5388 * transport_cmd_check_stop() that a LUN shutdown is in
5389 * progress for the iscsi_cmd_t.
5391 spin_lock(&T_TASK(cmd
)->t_state_lock
);
5392 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5393 "_lun_stop for ITT: 0x%08x\n",
5394 SE_LUN(cmd
)->unpacked_lun
,
5395 CMD_TFO(cmd
)->get_task_tag(cmd
));
5396 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 1);
5397 spin_unlock(&T_TASK(cmd
)->t_state_lock
);
5399 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5401 if (!(SE_LUN(cmd
))) {
5402 printk(KERN_ERR
"ITT: 0x%08x, [i,t]_state: %u/%u\n",
5403 CMD_TFO(cmd
)->get_task_tag(cmd
),
5404 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5408 * If the Storage engine still owns the iscsi_cmd_t, determine
5409 * and/or stop its context.
5411 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5412 "_lun_wait_for_tasks()\n", SE_LUN(cmd
)->unpacked_lun
,
5413 CMD_TFO(cmd
)->get_task_tag(cmd
));
5415 if (transport_lun_wait_for_tasks(cmd
, SE_LUN(cmd
)) < 0) {
5416 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5420 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5421 "_wait_for_tasks(): SUCCESS\n",
5422 SE_LUN(cmd
)->unpacked_lun
,
5423 CMD_TFO(cmd
)->get_task_tag(cmd
));
5425 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5426 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
5427 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5430 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
5431 transport_all_task_dev_remove_state(cmd
);
5432 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5434 transport_free_dev_tasks(cmd
);
5436 * The Storage engine stopped this struct se_cmd before it was
5437 * send to the fabric frontend for delivery back to the
5438 * Initiator Node. Return this SCSI CDB back with an
5439 * CHECK_CONDITION status.
5442 transport_send_check_condition_and_sense(cmd
,
5443 TCM_NON_EXISTENT_LUN
, 0);
5445 * If the fabric frontend is waiting for this iscsi_cmd_t to
5446 * be released, notify the waiting thread now that LU has
5447 * finished accessing it.
5449 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5450 if (atomic_read(&T_TASK(cmd
)->transport_lun_fe_stop
)) {
5451 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5452 " struct se_cmd: %p ITT: 0x%08x\n",
5454 cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5456 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
5458 transport_cmd_check_stop(cmd
, 1, 0);
5459 complete(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5460 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5463 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5464 lun
->unpacked_lun
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5466 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5467 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5469 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5472 static int transport_clear_lun_thread(void *p
)
5474 struct se_lun
*lun
= (struct se_lun
*)p
;
5476 __transport_clear_lun_from_sessions(lun
);
5477 complete(&lun
->lun_shutdown_comp
);
5482 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
5484 struct task_struct
*kt
;
5486 kt
= kthread_run(transport_clear_lun_thread
, (void *)lun
,
5487 "tcm_cl_%u", lun
->unpacked_lun
);
5489 printk(KERN_ERR
"Unable to start clear_lun thread\n");
5492 wait_for_completion(&lun
->lun_shutdown_comp
);
5497 /* transport_generic_wait_for_tasks():
5499 * Called from frontend or passthrough context to wait for storage engine
5500 * to pause and/or release frontend generated struct se_cmd.
5502 static void transport_generic_wait_for_tasks(
5505 int session_reinstatement
)
5507 unsigned long flags
;
5509 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
5512 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5514 * If we are already stopped due to an external event (ie: LUN shutdown)
5515 * sleep until the connection can have the passed struct se_cmd back.
5516 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5517 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5518 * has completed its operation on the struct se_cmd.
5520 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
5522 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5523 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5524 "_stop_comp); for ITT: 0x%08x\n",
5525 CMD_TFO(cmd
)->get_task_tag(cmd
));
5527 * There is a special case for WRITES where a FE exception +
5528 * LUN shutdown means ConfigFS context is still sleeping on
5529 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5530 * We go ahead and up transport_lun_stop_comp just to be sure
5533 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5534 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
5535 wait_for_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5536 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5538 transport_all_task_dev_remove_state(cmd
);
5540 * At this point, the frontend who was the originator of this
5541 * struct se_cmd, now owns the structure and can be released through
5542 * normal means below.
5544 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5545 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5546 "stop_comp); for ITT: 0x%08x\n",
5547 CMD_TFO(cmd
)->get_task_tag(cmd
));
5549 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5551 if (!atomic_read(&T_TASK(cmd
)->t_transport_active
) ||
5552 atomic_read(&T_TASK(cmd
)->t_transport_aborted
))
5555 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 1);
5557 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5558 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5559 " = TRUE\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
5560 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
,
5561 cmd
->deferred_t_state
);
5563 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5565 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5567 wait_for_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
5569 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5570 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
5571 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 0);
5573 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5574 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5575 CMD_TFO(cmd
)->get_task_tag(cmd
));
5577 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5581 transport_generic_free_cmd(cmd
, 0, 0, session_reinstatement
);
5584 static int transport_get_sense_codes(
5589 *asc
= cmd
->scsi_asc
;
5590 *ascq
= cmd
->scsi_ascq
;
5595 static int transport_set_sense_codes(
5600 cmd
->scsi_asc
= asc
;
5601 cmd
->scsi_ascq
= ascq
;
5606 int transport_send_check_condition_and_sense(
5611 unsigned char *buffer
= cmd
->sense_buffer
;
5612 unsigned long flags
;
5614 u8 asc
= 0, ascq
= 0;
5616 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5617 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
5618 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5621 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
5622 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5624 if (!reason
&& from_transport
)
5627 if (!from_transport
)
5628 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
5630 * Data Segment and SenseLength of the fabric response PDU.
5632 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5633 * from include/scsi/scsi_cmnd.h
5635 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
5636 TRANSPORT_SENSE_BUFFER
);
5638 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5639 * SENSE KEY values from include/scsi/scsi.h
5642 case TCM_NON_EXISTENT_LUN
:
5643 case TCM_UNSUPPORTED_SCSI_OPCODE
:
5644 case TCM_SECTOR_COUNT_TOO_MANY
:
5646 buffer
[offset
] = 0x70;
5647 /* ILLEGAL REQUEST */
5648 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5649 /* INVALID COMMAND OPERATION CODE */
5650 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
5652 case TCM_UNKNOWN_MODE_PAGE
:
5654 buffer
[offset
] = 0x70;
5655 /* ILLEGAL REQUEST */
5656 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5657 /* INVALID FIELD IN CDB */
5658 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5660 case TCM_CHECK_CONDITION_ABORT_CMD
:
5662 buffer
[offset
] = 0x70;
5663 /* ABORTED COMMAND */
5664 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5665 /* BUS DEVICE RESET FUNCTION OCCURRED */
5666 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
5667 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
5669 case TCM_INCORRECT_AMOUNT_OF_DATA
:
5671 buffer
[offset
] = 0x70;
5672 /* ABORTED COMMAND */
5673 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5675 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5676 /* NOT ENOUGH UNSOLICITED DATA */
5677 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
5679 case TCM_INVALID_CDB_FIELD
:
5681 buffer
[offset
] = 0x70;
5682 /* ABORTED COMMAND */
5683 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5684 /* INVALID FIELD IN CDB */
5685 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5687 case TCM_INVALID_PARAMETER_LIST
:
5689 buffer
[offset
] = 0x70;
5690 /* ABORTED COMMAND */
5691 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5692 /* INVALID FIELD IN PARAMETER LIST */
5693 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
5695 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
5697 buffer
[offset
] = 0x70;
5698 /* ABORTED COMMAND */
5699 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5701 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5702 /* UNEXPECTED_UNSOLICITED_DATA */
5703 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
5705 case TCM_SERVICE_CRC_ERROR
:
5707 buffer
[offset
] = 0x70;
5708 /* ABORTED COMMAND */
5709 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5710 /* PROTOCOL SERVICE CRC ERROR */
5711 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
5713 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
5715 case TCM_SNACK_REJECTED
:
5717 buffer
[offset
] = 0x70;
5718 /* ABORTED COMMAND */
5719 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5721 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
5722 /* FAILED RETRANSMISSION REQUEST */
5723 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
5725 case TCM_WRITE_PROTECTED
:
5727 buffer
[offset
] = 0x70;
5729 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
5730 /* WRITE PROTECTED */
5731 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
5733 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
5735 buffer
[offset
] = 0x70;
5736 /* UNIT ATTENTION */
5737 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
5738 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
5739 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5740 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5742 case TCM_CHECK_CONDITION_NOT_READY
:
5744 buffer
[offset
] = 0x70;
5746 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
5747 transport_get_sense_codes(cmd
, &asc
, &ascq
);
5748 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5749 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5751 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
5754 buffer
[offset
] = 0x70;
5755 /* ILLEGAL REQUEST */
5756 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5757 /* LOGICAL UNIT COMMUNICATION FAILURE */
5758 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
5762 * This code uses linux/include/scsi/scsi.h SAM status codes!
5764 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
5766 * Automatically padded, this value is encoded in the fabric's
5767 * data_length response PDU containing the SCSI defined sense data.
5769 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
5772 CMD_TFO(cmd
)->queue_status(cmd
);
5775 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
5777 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
5781 if (atomic_read(&T_TASK(cmd
)->t_transport_aborted
) != 0) {
5782 if (!(send_status
) ||
5783 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
5786 printk(KERN_INFO
"Sending delayed SAM_STAT_TASK_ABORTED"
5787 " status for CDB: 0x%02x ITT: 0x%08x\n",
5788 T_TASK(cmd
)->t_task_cdb
[0],
5789 CMD_TFO(cmd
)->get_task_tag(cmd
));
5791 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
5792 CMD_TFO(cmd
)->queue_status(cmd
);
5797 EXPORT_SYMBOL(transport_check_aborted_status
);
5799 void transport_send_task_abort(struct se_cmd
*cmd
)
5802 * If there are still expected incoming fabric WRITEs, we wait
5803 * until until they have completed before sending a TASK_ABORTED
5804 * response. This response with TASK_ABORTED status will be
5805 * queued back to fabric module by transport_check_aborted_status().
5807 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5808 if (CMD_TFO(cmd
)->write_pending_status(cmd
) != 0) {
5809 atomic_inc(&T_TASK(cmd
)->t_transport_aborted
);
5810 smp_mb__after_atomic_inc();
5811 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5812 transport_new_cmd_failure(cmd
);
5816 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5818 printk(KERN_INFO
"Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5819 " ITT: 0x%08x\n", T_TASK(cmd
)->t_task_cdb
[0],
5820 CMD_TFO(cmd
)->get_task_tag(cmd
));
5822 CMD_TFO(cmd
)->queue_status(cmd
);
5825 /* transport_generic_do_tmr():
5829 int transport_generic_do_tmr(struct se_cmd
*cmd
)
5831 struct se_cmd
*ref_cmd
;
5832 struct se_device
*dev
= SE_DEV(cmd
);
5833 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
5836 switch (tmr
->function
) {
5837 case TMR_ABORT_TASK
:
5838 ref_cmd
= tmr
->ref_cmd
;
5839 tmr
->response
= TMR_FUNCTION_REJECTED
;
5841 case TMR_ABORT_TASK_SET
:
5843 case TMR_CLEAR_TASK_SET
:
5844 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
5847 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
5848 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
5849 TMR_FUNCTION_REJECTED
;
5851 case TMR_TARGET_WARM_RESET
:
5852 tmr
->response
= TMR_FUNCTION_REJECTED
;
5854 case TMR_TARGET_COLD_RESET
:
5855 tmr
->response
= TMR_FUNCTION_REJECTED
;
5858 printk(KERN_ERR
"Uknown TMR function: 0x%02x.\n",
5860 tmr
->response
= TMR_FUNCTION_REJECTED
;
5864 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
5865 CMD_TFO(cmd
)->queue_tm_rsp(cmd
);
5867 transport_cmd_check_stop(cmd
, 2, 0);
5872 * Called with spin_lock_irq(&dev->execute_task_lock); held
5875 static struct se_task
*
5876 transport_get_task_from_state_list(struct se_device
*dev
)
5878 struct se_task
*task
;
5880 if (list_empty(&dev
->state_task_list
))
5883 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5886 list_del(&task
->t_state_list
);
5887 atomic_set(&task
->task_state_active
, 0);
5892 static void transport_processing_shutdown(struct se_device
*dev
)
5895 struct se_queue_req
*qr
;
5896 struct se_task
*task
;
5898 unsigned long flags
;
5900 * Empty the struct se_device's struct se_task state list.
5902 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5903 while ((task
= transport_get_task_from_state_list(dev
))) {
5904 if (!(TASK_CMD(task
))) {
5905 printk(KERN_ERR
"TASK_CMD(task) is NULL!\n");
5908 cmd
= TASK_CMD(task
);
5911 printk(KERN_ERR
"T_TASK(cmd) is NULL for task: %p cmd:"
5912 " %p ITT: 0x%08x\n", task
, cmd
,
5913 CMD_TFO(cmd
)->get_task_tag(cmd
));
5916 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5918 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5920 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5921 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5922 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5923 CMD_TFO(cmd
)->get_task_tag(cmd
), cmd
->cmd_sn
,
5924 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->deferred_i_state
,
5925 cmd
->t_state
, cmd
->deferred_t_state
,
5926 T_TASK(cmd
)->t_task_cdb
[0]);
5927 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5928 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5929 " t_transport_stop: %d t_transport_sent: %d\n",
5930 CMD_TFO(cmd
)->get_task_tag(cmd
),
5931 T_TASK(cmd
)->t_task_cdbs
,
5932 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
5933 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
5934 atomic_read(&T_TASK(cmd
)->t_transport_active
),
5935 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
5936 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
5938 if (atomic_read(&task
->task_active
)) {
5939 atomic_set(&task
->task_stop
, 1);
5940 spin_unlock_irqrestore(
5941 &T_TASK(cmd
)->t_state_lock
, flags
);
5943 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5944 " %p\n", task
, dev
);
5945 wait_for_completion(&task
->task_stop_comp
);
5946 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5949 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5950 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
5952 atomic_set(&task
->task_active
, 0);
5953 atomic_set(&task
->task_stop
, 0);
5955 if (atomic_read(&task
->task_execute_queue
) != 0)
5956 transport_remove_task_from_execute_queue(task
, dev
);
5958 __transport_stop_task_timer(task
, &flags
);
5960 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_ex_left
))) {
5961 spin_unlock_irqrestore(
5962 &T_TASK(cmd
)->t_state_lock
, flags
);
5964 DEBUG_DO("Skipping task: %p, dev: %p for"
5965 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5966 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
));
5968 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5972 if (atomic_read(&T_TASK(cmd
)->t_transport_active
)) {
5973 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5974 " %p\n", task
, dev
);
5976 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
5977 spin_unlock_irqrestore(
5978 &T_TASK(cmd
)->t_state_lock
, flags
);
5979 transport_send_check_condition_and_sense(
5980 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
5982 transport_remove_cmd_from_queue(cmd
,
5983 SE_DEV(cmd
)->dev_queue_obj
);
5985 transport_lun_remove_cmd(cmd
);
5986 transport_cmd_check_stop(cmd
, 1, 0);
5988 spin_unlock_irqrestore(
5989 &T_TASK(cmd
)->t_state_lock
, flags
);
5991 transport_remove_cmd_from_queue(cmd
,
5992 SE_DEV(cmd
)->dev_queue_obj
);
5994 transport_lun_remove_cmd(cmd
);
5996 if (transport_cmd_check_stop(cmd
, 1, 0))
5997 transport_generic_remove(cmd
, 0, 0);
6000 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6003 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6006 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6007 spin_unlock_irqrestore(
6008 &T_TASK(cmd
)->t_state_lock
, flags
);
6009 transport_send_check_condition_and_sense(cmd
,
6010 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6011 transport_remove_cmd_from_queue(cmd
,
6012 SE_DEV(cmd
)->dev_queue_obj
);
6014 transport_lun_remove_cmd(cmd
);
6015 transport_cmd_check_stop(cmd
, 1, 0);
6017 spin_unlock_irqrestore(
6018 &T_TASK(cmd
)->t_state_lock
, flags
);
6020 transport_remove_cmd_from_queue(cmd
,
6021 SE_DEV(cmd
)->dev_queue_obj
);
6022 transport_lun_remove_cmd(cmd
);
6024 if (transport_cmd_check_stop(cmd
, 1, 0))
6025 transport_generic_remove(cmd
, 0, 0);
6028 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6030 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
6032 * Empty the struct se_device's struct se_cmd list.
6034 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6035 while ((qr
= __transport_get_qr_from_queue(dev
->dev_queue_obj
))) {
6036 spin_unlock_irqrestore(
6037 &dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6038 cmd
= (struct se_cmd
*)qr
->cmd
;
6042 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6045 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6046 transport_send_check_condition_and_sense(cmd
,
6047 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6049 transport_lun_remove_cmd(cmd
);
6050 transport_cmd_check_stop(cmd
, 1, 0);
6052 transport_lun_remove_cmd(cmd
);
6053 if (transport_cmd_check_stop(cmd
, 1, 0))
6054 transport_generic_remove(cmd
, 0, 0);
6056 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6058 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6061 /* transport_processing_thread():
6065 static int transport_processing_thread(void *param
)
6069 struct se_device
*dev
= (struct se_device
*) param
;
6070 struct se_queue_req
*qr
;
6072 set_user_nice(current
, -20);
6074 while (!kthread_should_stop()) {
6075 ret
= wait_event_interruptible(dev
->dev_queue_obj
->thread_wq
,
6076 atomic_read(&dev
->dev_queue_obj
->queue_cnt
) ||
6077 kthread_should_stop());
6081 spin_lock_irq(&dev
->dev_status_lock
);
6082 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
6083 spin_unlock_irq(&dev
->dev_status_lock
);
6084 transport_processing_shutdown(dev
);
6087 spin_unlock_irq(&dev
->dev_status_lock
);
6090 __transport_execute_tasks(dev
);
6092 qr
= transport_get_qr_from_queue(dev
->dev_queue_obj
);
6096 cmd
= (struct se_cmd
*)qr
->cmd
;
6097 t_state
= qr
->state
;
6101 case TRANSPORT_NEW_CMD_MAP
:
6102 if (!(CMD_TFO(cmd
)->new_cmd_map
)) {
6103 printk(KERN_ERR
"CMD_TFO(cmd)->new_cmd_map is"
6104 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6107 ret
= CMD_TFO(cmd
)->new_cmd_map(cmd
);
6109 cmd
->transport_error_status
= ret
;
6110 transport_generic_request_failure(cmd
, NULL
,
6111 0, (cmd
->data_direction
!=
6116 case TRANSPORT_NEW_CMD
:
6117 ret
= transport_generic_new_cmd(cmd
);
6119 cmd
->transport_error_status
= ret
;
6120 transport_generic_request_failure(cmd
, NULL
,
6121 0, (cmd
->data_direction
!=
6125 case TRANSPORT_PROCESS_WRITE
:
6126 transport_generic_process_write(cmd
);
6128 case TRANSPORT_COMPLETE_OK
:
6129 transport_stop_all_task_timers(cmd
);
6130 transport_generic_complete_ok(cmd
);
6132 case TRANSPORT_REMOVE
:
6133 transport_generic_remove(cmd
, 1, 0);
6135 case TRANSPORT_PROCESS_TMR
:
6136 transport_generic_do_tmr(cmd
);
6138 case TRANSPORT_COMPLETE_FAILURE
:
6139 transport_generic_request_failure(cmd
, NULL
, 1, 1);
6141 case TRANSPORT_COMPLETE_TIMEOUT
:
6142 transport_stop_all_task_timers(cmd
);
6143 transport_generic_request_timeout(cmd
);
6146 printk(KERN_ERR
"Unknown t_state: %d deferred_t_state:"
6147 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6148 " %u\n", t_state
, cmd
->deferred_t_state
,
6149 CMD_TFO(cmd
)->get_task_tag(cmd
),
6150 CMD_TFO(cmd
)->get_cmd_state(cmd
),
6151 SE_LUN(cmd
)->unpacked_lun
);
6159 transport_release_all_cmds(dev
);
6160 dev
->process_thread
= NULL
;