2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/ioport.h>
31 #include <linux/errno.h>
32 #include <linux/interrupt.h>
33 #include <linux/spi/spi.h>
34 #include <linux/workqueue.h>
35 #include <linux/delay.h>
36 #include <linux/clk.h>
37 #include <linux/err.h>
38 #include <linux/amba/bus.h>
39 #include <linux/amba/pl022.h>
41 #include <linux/slab.h>
42 #include <linux/dmaengine.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/scatterlist.h>
47 * This macro is used to define some register default values.
48 * reg is masked with mask, the OR:ed with an (again masked)
49 * val shifted sb steps to the left.
51 #define SSP_WRITE_BITS(reg, val, mask, sb) \
52 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
55 * This macro is also used to define some default values.
56 * It will just shift val by sb steps to the left and mask
57 * the result with mask.
59 #define GEN_MASK_BITS(val, mask, sb) \
60 (((val)<<(sb)) & (mask))
63 #define DO_NOT_DRIVE_TX 1
65 #define DO_NOT_QUEUE_DMA 0
72 * Macros to access SSP Registers with their offsets
74 #define SSP_CR0(r) (r + 0x000)
75 #define SSP_CR1(r) (r + 0x004)
76 #define SSP_DR(r) (r + 0x008)
77 #define SSP_SR(r) (r + 0x00C)
78 #define SSP_CPSR(r) (r + 0x010)
79 #define SSP_IMSC(r) (r + 0x014)
80 #define SSP_RIS(r) (r + 0x018)
81 #define SSP_MIS(r) (r + 0x01C)
82 #define SSP_ICR(r) (r + 0x020)
83 #define SSP_DMACR(r) (r + 0x024)
84 #define SSP_ITCR(r) (r + 0x080)
85 #define SSP_ITIP(r) (r + 0x084)
86 #define SSP_ITOP(r) (r + 0x088)
87 #define SSP_TDR(r) (r + 0x08C)
89 #define SSP_PID0(r) (r + 0xFE0)
90 #define SSP_PID1(r) (r + 0xFE4)
91 #define SSP_PID2(r) (r + 0xFE8)
92 #define SSP_PID3(r) (r + 0xFEC)
94 #define SSP_CID0(r) (r + 0xFF0)
95 #define SSP_CID1(r) (r + 0xFF4)
96 #define SSP_CID2(r) (r + 0xFF8)
97 #define SSP_CID3(r) (r + 0xFFC)
100 * SSP Control Register 0 - SSP_CR0
102 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
103 #define SSP_CR0_MASK_FRF (0x3UL << 4)
104 #define SSP_CR0_MASK_SPO (0x1UL << 6)
105 #define SSP_CR0_MASK_SPH (0x1UL << 7)
106 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
109 * The ST version of this block moves som bits
110 * in SSP_CR0 and extends it to 32 bits
112 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
113 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
114 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
115 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
119 * SSP Control Register 0 - SSP_CR1
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
127 * The ST version of this block adds some bits
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
139 * SSP Status Register - SSP_SR
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
148 * SSP Clock Prescale Register - SSP_CPSR
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
161 * SSP Raw Interrupt Status Register - SSP_RIS
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
173 * SSP Masked Interrupt Status Register - SSP_MIS
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
185 * SSP Interrupt Clear Register - SSP_ICR
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
193 * SSP DMA Control Register - SSP_DMACR
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
201 * SSP Integration Test control Register - SSP_ITCR
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
207 * SSP Integration Test Input Register - SSP_ITIP
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
217 * SSP Integration Test output Register - SSP_ITOP
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
235 * SSP Test Data Register - SSP_TDR
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
251 * SSP State - Whether Enabled or Disabled
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
257 * SSP DMA State - Whether DMA Enabled or Disabled
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
269 * SSP Clock Parameter ranges
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
277 * SSP Interrupt related Macros
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
283 #define CLEAR_ALL_INTERRUPTS 0x3
285 #define SPI_POLLING_TIMEOUT 1000
289 * The type of reading going on on this chip
299 * The type of writing going on on this chip
309 * struct vendor_data - vendor-specific config parameters
310 * for PL022 derivates
311 * @fifodepth: depth of FIFOs (both)
312 * @max_bpw: maximum number of bits per word
313 * @unidir: supports unidirection transfers
314 * @extended_cr: 32 bit wide control register 0 with extra
315 * features and extra features in CR1 as found in the ST variants
316 * @pl023: supports a subset of the ST extensions called "PL023"
328 * struct pl022 - This is the private SSP driver data structure
329 * @adev: AMBA device model hookup
330 * @vendor: vendor data for the IP block
331 * @phybase: the physical memory where the SSP device resides
332 * @virtbase: the virtual memory where the SSP is mapped
333 * @clk: outgoing clock "SPICLK" for the SPI bus
334 * @master: SPI framework hookup
335 * @master_info: controller-specific data from machine setup
336 * @workqueue: a workqueue on which any spi_message request is queued
337 * @pump_messages: work struct for scheduling work to the workqueue
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: workqueue is busy
341 * @running: workqueue is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @tx: current position in TX buffer to be read
347 * @tx_end: end position in TX buffer to be read
348 * @rx: current position in RX buffer to be written
349 * @rx_end: end position in RX buffer to be written
350 * @read: the type of read currently going on
351 * @write: the type of write currently going on
352 * @exp_fifo_level: expected FIFO level
353 * @dma_rx_channel: optional channel for RX DMA
354 * @dma_tx_channel: optional channel for TX DMA
355 * @sgt_rx: scattertable for the RX transfer
356 * @sgt_tx: scattertable for the TX transfer
357 * @dummypage: a dummy page used for driving data on the bus with DMA
360 struct amba_device
*adev
;
361 struct vendor_data
*vendor
;
362 resource_size_t phybase
;
363 void __iomem
*virtbase
;
365 struct spi_master
*master
;
366 struct pl022_ssp_controller
*master_info
;
367 /* Driver message queue */
368 struct workqueue_struct
*workqueue
;
369 struct work_struct pump_messages
;
370 spinlock_t queue_lock
;
371 struct list_head queue
;
374 /* Message transfer pump */
375 struct tasklet_struct pump_transfers
;
376 struct spi_message
*cur_msg
;
377 struct spi_transfer
*cur_transfer
;
378 struct chip_data
*cur_chip
;
383 enum ssp_reading read
;
384 enum ssp_writing write
;
387 #ifdef CONFIG_DMA_ENGINE
388 struct dma_chan
*dma_rx_channel
;
389 struct dma_chan
*dma_tx_channel
;
390 struct sg_table sgt_rx
;
391 struct sg_table sgt_tx
;
397 * struct chip_data - To maintain runtime state of SSP for each client chip
398 * @cr0: Value of control register CR0 of SSP - on later ST variants this
399 * register is 32 bits wide rather than just 16
400 * @cr1: Value of control register CR1 of SSP
401 * @dmacr: Value of DMA control Register of SSP
402 * @cpsr: Value of Clock prescale register
403 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
404 * @enable_dma: Whether to enable DMA or not
405 * @read: function ptr to be used to read when doing xfer for this chip
406 * @write: function ptr to be used to write when doing xfer for this chip
407 * @cs_control: chip select callback provided by chip
408 * @xfer_type: polling/interrupt/DMA
410 * Runtime state of the SSP controller, maintained per chip,
411 * This would be set according to the current message that would be served
420 enum ssp_reading read
;
421 enum ssp_writing write
;
422 void (*cs_control
) (u32 command
);
427 * null_cs_control - Dummy chip select function
428 * @command: select/delect the chip
430 * If no chip select function is provided by client this is used as dummy
433 static void null_cs_control(u32 command
)
435 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
439 * giveback - current spi_message is over, schedule next message and call
440 * callback of this message. Assumes that caller already
441 * set message->status; dma and pio irqs are blocked
442 * @pl022: SSP driver private data structure
444 static void giveback(struct pl022
*pl022
)
446 struct spi_transfer
*last_transfer
;
448 struct spi_message
*msg
;
449 void (*curr_cs_control
) (u32 command
);
452 * This local reference to the chip select function
453 * is needed because we set curr_chip to NULL
454 * as a step toward termininating the message.
456 curr_cs_control
= pl022
->cur_chip
->cs_control
;
457 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
458 msg
= pl022
->cur_msg
;
459 pl022
->cur_msg
= NULL
;
460 pl022
->cur_transfer
= NULL
;
461 pl022
->cur_chip
= NULL
;
462 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
463 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
465 last_transfer
= list_entry(msg
->transfers
.prev
,
469 /* Delay if requested before any change in chip select */
470 if (last_transfer
->delay_usecs
)
472 * FIXME: This runs in interrupt context.
473 * Is this really smart?
475 udelay(last_transfer
->delay_usecs
);
478 * Drop chip select UNLESS cs_change is true or we are returning
479 * a message with an error, or next message is for another chip
481 if (!last_transfer
->cs_change
)
482 curr_cs_control(SSP_CHIP_DESELECT
);
484 struct spi_message
*next_msg
;
486 /* Holding of cs was hinted, but we need to make sure
487 * the next message is for the same chip. Don't waste
488 * time with the following tests unless this was hinted.
490 * We cannot postpone this until pump_messages, because
491 * after calling msg->complete (below) the driver that
492 * sent the current message could be unloaded, which
493 * could invalidate the cs_control() callback...
496 /* get a pointer to the next message, if any */
497 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
498 if (list_empty(&pl022
->queue
))
501 next_msg
= list_entry(pl022
->queue
.next
,
502 struct spi_message
, queue
);
503 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
505 /* see if the next and current messages point
508 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
510 if (!next_msg
|| msg
->state
== STATE_ERROR
)
511 curr_cs_control(SSP_CHIP_DESELECT
);
515 msg
->complete(msg
->context
);
516 /* This message is completed, so let's turn off the clocks & power */
517 clk_disable(pl022
->clk
);
518 amba_pclk_disable(pl022
->adev
);
519 amba_vcore_disable(pl022
->adev
);
523 * flush - flush the FIFO to reach a clean state
524 * @pl022: SSP driver private data structure
526 static int flush(struct pl022
*pl022
)
528 unsigned long limit
= loops_per_jiffy
<< 1;
530 dev_dbg(&pl022
->adev
->dev
, "flush\n");
532 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
533 readw(SSP_DR(pl022
->virtbase
));
534 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
536 pl022
->exp_fifo_level
= 0;
542 * restore_state - Load configuration of current chip
543 * @pl022: SSP driver private data structure
545 static void restore_state(struct pl022
*pl022
)
547 struct chip_data
*chip
= pl022
->cur_chip
;
549 if (pl022
->vendor
->extended_cr
)
550 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
552 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
553 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
554 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
555 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
556 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
557 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
561 * Default SSP Register Values
563 #define DEFAULT_SSP_REG_CR0 ( \
564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
565 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
571 /* ST versions have slightly different bit layout */
572 #define DEFAULT_SSP_REG_CR0_ST ( \
573 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
574 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
575 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
576 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
577 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
578 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
579 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
582 /* The PL023 version is slightly different again */
583 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
584 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
585 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
586 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
587 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590 #define DEFAULT_SSP_REG_CR1 ( \
591 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
592 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
593 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
594 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
597 /* ST versions extend this register to use all 16 bits */
598 #define DEFAULT_SSP_REG_CR1_ST ( \
599 DEFAULT_SSP_REG_CR1 | \
600 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
601 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
602 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
603 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
604 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
608 * The PL023 variant has further differences: no loopback mode, no microwire
609 * support, and a new clock feedback delay setting.
611 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
612 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
613 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
614 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
615 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
616 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
617 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
618 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
619 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
622 #define DEFAULT_SSP_REG_CPSR ( \
623 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
626 #define DEFAULT_SSP_REG_DMACR (\
627 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
628 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
632 * load_ssp_default_config - Load default configuration for SSP
633 * @pl022: SSP driver private data structure
635 static void load_ssp_default_config(struct pl022
*pl022
)
637 if (pl022
->vendor
->pl023
) {
638 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
639 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
640 } else if (pl022
->vendor
->extended_cr
) {
641 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
642 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
644 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
645 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
647 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
648 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
649 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
650 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
654 * This will write to TX and read from RX according to the parameters
657 static void readwriter(struct pl022
*pl022
)
661 * The FIFO depth is different between primecell variants.
662 * I believe filling in too much in the FIFO might cause
663 * errons in 8bit wide transfers on ARM variants (just 8 words
664 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
666 * To prevent this issue, the TX FIFO is only filled to the
667 * unused RX FIFO fill length, regardless of what the TX
668 * FIFO status flag indicates.
670 dev_dbg(&pl022
->adev
->dev
,
671 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
672 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
674 /* Read as much as you can */
675 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
676 && (pl022
->rx
< pl022
->rx_end
)) {
677 switch (pl022
->read
) {
679 readw(SSP_DR(pl022
->virtbase
));
682 *(u8
*) (pl022
->rx
) =
683 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
686 *(u16
*) (pl022
->rx
) =
687 (u16
) readw(SSP_DR(pl022
->virtbase
));
690 *(u32
*) (pl022
->rx
) =
691 readl(SSP_DR(pl022
->virtbase
));
694 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
695 pl022
->exp_fifo_level
--;
698 * Write as much as possible up to the RX FIFO size
700 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
701 && (pl022
->tx
< pl022
->tx_end
)) {
702 switch (pl022
->write
) {
704 writew(0x0, SSP_DR(pl022
->virtbase
));
707 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
710 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
713 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
716 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
717 pl022
->exp_fifo_level
++;
719 * This inner reader takes care of things appearing in the RX
720 * FIFO as we're transmitting. This will happen a lot since the
721 * clock starts running when you put things into the TX FIFO,
722 * and then things are continuously clocked into the RX FIFO.
724 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
725 && (pl022
->rx
< pl022
->rx_end
)) {
726 switch (pl022
->read
) {
728 readw(SSP_DR(pl022
->virtbase
));
731 *(u8
*) (pl022
->rx
) =
732 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
735 *(u16
*) (pl022
->rx
) =
736 (u16
) readw(SSP_DR(pl022
->virtbase
));
739 *(u32
*) (pl022
->rx
) =
740 readl(SSP_DR(pl022
->virtbase
));
743 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
744 pl022
->exp_fifo_level
--;
748 * When we exit here the TX FIFO should be full and the RX FIFO
755 * next_transfer - Move to the Next transfer in the current spi message
756 * @pl022: SSP driver private data structure
758 * This function moves though the linked list of spi transfers in the
759 * current spi message and returns with the state of current spi
760 * message i.e whether its last transfer is done(STATE_DONE) or
761 * Next transfer is ready(STATE_RUNNING)
763 static void *next_transfer(struct pl022
*pl022
)
765 struct spi_message
*msg
= pl022
->cur_msg
;
766 struct spi_transfer
*trans
= pl022
->cur_transfer
;
768 /* Move to next transfer */
769 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
770 pl022
->cur_transfer
=
771 list_entry(trans
->transfer_list
.next
,
772 struct spi_transfer
, transfer_list
);
773 return STATE_RUNNING
;
779 * This DMA functionality is only compiled in if we have
780 * access to the generic DMA devices/DMA engine.
782 #ifdef CONFIG_DMA_ENGINE
783 static void unmap_free_dma_scatter(struct pl022
*pl022
)
785 /* Unmap and free the SG tables */
786 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
787 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
788 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
789 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
790 sg_free_table(&pl022
->sgt_rx
);
791 sg_free_table(&pl022
->sgt_tx
);
794 static void dma_callback(void *data
)
796 struct pl022
*pl022
= data
;
797 struct spi_message
*msg
= pl022
->cur_msg
;
799 BUG_ON(!pl022
->sgt_rx
.sgl
);
803 * Optionally dump out buffers to inspect contents, this is
804 * good if you want to convince yourself that the loopback
805 * read/write contents are the same, when adopting to a new
809 struct scatterlist
*sg
;
812 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
817 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
818 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
819 print_hex_dump(KERN_ERR
, "SPI RX: ",
827 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
828 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
829 print_hex_dump(KERN_ERR
, "SPI TX: ",
840 unmap_free_dma_scatter(pl022
);
842 /* Update total bytes transferred */
843 msg
->actual_length
+= pl022
->cur_transfer
->len
;
844 if (pl022
->cur_transfer
->cs_change
)
846 cs_control(SSP_CHIP_DESELECT
);
848 /* Move to next transfer */
849 msg
->state
= next_transfer(pl022
);
850 tasklet_schedule(&pl022
->pump_transfers
);
853 static void setup_dma_scatter(struct pl022
*pl022
,
856 struct sg_table
*sgtab
)
858 struct scatterlist
*sg
;
859 int bytesleft
= length
;
865 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
867 * If there are less bytes left than what fits
868 * in the current page (plus page alignment offset)
869 * we just feed in this, else we stuff in as much
872 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
873 mapbytes
= bytesleft
;
875 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
876 sg_set_page(sg
, virt_to_page(bufp
),
877 mapbytes
, offset_in_page(bufp
));
879 bytesleft
-= mapbytes
;
880 dev_dbg(&pl022
->adev
->dev
,
881 "set RX/TX target page @ %p, %d bytes, %d left\n",
882 bufp
, mapbytes
, bytesleft
);
885 /* Map the dummy buffer on every page */
886 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
887 if (bytesleft
< PAGE_SIZE
)
888 mapbytes
= bytesleft
;
890 mapbytes
= PAGE_SIZE
;
891 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
893 bytesleft
-= mapbytes
;
894 dev_dbg(&pl022
->adev
->dev
,
895 "set RX/TX to dummy page %d bytes, %d left\n",
896 mapbytes
, bytesleft
);
904 * configure_dma - configures the channels for the next transfer
905 * @pl022: SSP driver's private data structure
907 static int configure_dma(struct pl022
*pl022
)
909 struct dma_slave_config rx_conf
= {
910 .src_addr
= SSP_DR(pl022
->phybase
),
911 .direction
= DMA_FROM_DEVICE
,
912 .src_maxburst
= pl022
->vendor
->fifodepth
>> 1,
914 struct dma_slave_config tx_conf
= {
915 .dst_addr
= SSP_DR(pl022
->phybase
),
916 .direction
= DMA_TO_DEVICE
,
917 .dst_maxburst
= pl022
->vendor
->fifodepth
>> 1,
921 int rx_sglen
, tx_sglen
;
922 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
923 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
924 struct dma_async_tx_descriptor
*rxdesc
;
925 struct dma_async_tx_descriptor
*txdesc
;
927 /* Check that the channels are available */
928 if (!rxchan
|| !txchan
)
931 switch (pl022
->read
) {
933 /* Use the same as for writing */
934 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
937 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
940 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
943 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
947 switch (pl022
->write
) {
949 /* Use the same as for reading */
950 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
953 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
956 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
959 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
963 /* SPI pecularity: we need to read and write the same width */
964 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
965 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
966 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
967 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
968 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
970 dmaengine_slave_config(rxchan
, &rx_conf
);
971 dmaengine_slave_config(txchan
, &tx_conf
);
973 /* Create sglists for the transfers */
974 pages
= (pl022
->cur_transfer
->len
>> PAGE_SHIFT
) + 1;
975 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
977 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_KERNEL
);
979 goto err_alloc_rx_sg
;
981 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_KERNEL
);
983 goto err_alloc_tx_sg
;
985 /* Fill in the scatterlists for the RX+TX buffers */
986 setup_dma_scatter(pl022
, pl022
->rx
,
987 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
988 setup_dma_scatter(pl022
, pl022
->tx
,
989 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
991 /* Map DMA buffers */
992 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
993 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
997 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
998 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1002 /* Send both scatterlists */
1003 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
1007 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1011 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
1015 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1019 /* Put the callback on the RX transfer only, that should finish last */
1020 rxdesc
->callback
= dma_callback
;
1021 rxdesc
->callback_param
= pl022
;
1023 /* Submit and fire RX and TX with TX last so we're ready to read! */
1024 dmaengine_submit(rxdesc
);
1025 dmaengine_submit(txdesc
);
1026 dma_async_issue_pending(rxchan
);
1027 dma_async_issue_pending(txchan
);
1032 dmaengine_terminate_all(txchan
);
1034 dmaengine_terminate_all(rxchan
);
1035 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1036 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1038 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1039 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1041 sg_free_table(&pl022
->sgt_tx
);
1043 sg_free_table(&pl022
->sgt_rx
);
1048 static int __init
pl022_dma_probe(struct pl022
*pl022
)
1050 dma_cap_mask_t mask
;
1052 /* Try to acquire a generic DMA engine slave channel */
1054 dma_cap_set(DMA_SLAVE
, mask
);
1056 * We need both RX and TX channels to do DMA, else do none
1059 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1060 pl022
->master_info
->dma_filter
,
1061 pl022
->master_info
->dma_rx_param
);
1062 if (!pl022
->dma_rx_channel
) {
1063 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1067 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1068 pl022
->master_info
->dma_filter
,
1069 pl022
->master_info
->dma_tx_param
);
1070 if (!pl022
->dma_tx_channel
) {
1071 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1075 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1076 if (!pl022
->dummypage
) {
1077 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1078 goto err_no_dummypage
;
1081 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1082 dma_chan_name(pl022
->dma_rx_channel
),
1083 dma_chan_name(pl022
->dma_tx_channel
));
1088 dma_release_channel(pl022
->dma_tx_channel
);
1090 dma_release_channel(pl022
->dma_rx_channel
);
1091 pl022
->dma_rx_channel
= NULL
;
1093 dev_err(&pl022
->adev
->dev
,
1094 "Failed to work in dma mode, work without dma!\n");
1098 static void terminate_dma(struct pl022
*pl022
)
1100 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1101 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1103 dmaengine_terminate_all(rxchan
);
1104 dmaengine_terminate_all(txchan
);
1105 unmap_free_dma_scatter(pl022
);
1108 static void pl022_dma_remove(struct pl022
*pl022
)
1111 terminate_dma(pl022
);
1112 if (pl022
->dma_tx_channel
)
1113 dma_release_channel(pl022
->dma_tx_channel
);
1114 if (pl022
->dma_rx_channel
)
1115 dma_release_channel(pl022
->dma_rx_channel
);
1116 kfree(pl022
->dummypage
);
1120 static inline int configure_dma(struct pl022
*pl022
)
1125 static inline int pl022_dma_probe(struct pl022
*pl022
)
1130 static inline void pl022_dma_remove(struct pl022
*pl022
)
1136 * pl022_interrupt_handler - Interrupt handler for SSP controller
1138 * This function handles interrupts generated for an interrupt based transfer.
1139 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1140 * current message's state as STATE_ERROR and schedule the tasklet
1141 * pump_transfers which will do the postprocessing of the current message by
1142 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1143 * more data, and writes data in TX FIFO till it is not full. If we complete
1144 * the transfer we move to the next transfer and schedule the tasklet.
1146 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1148 struct pl022
*pl022
= dev_id
;
1149 struct spi_message
*msg
= pl022
->cur_msg
;
1153 if (unlikely(!msg
)) {
1154 dev_err(&pl022
->adev
->dev
,
1155 "bad message state in interrupt handler");
1160 /* Read the Interrupt Status Register */
1161 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1163 if (unlikely(!irq_status
))
1167 * This handles the FIFO interrupts, the timeout
1168 * interrupts are flatly ignored, they cannot be
1171 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1173 * Overrun interrupt - bail out since our Data has been
1176 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1177 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1178 dev_err(&pl022
->adev
->dev
,
1179 "RXFIFO is full\n");
1180 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1181 dev_err(&pl022
->adev
->dev
,
1182 "TXFIFO is full\n");
1185 * Disable and clear interrupts, disable SSP,
1186 * mark message with bad status so it can be
1189 writew(DISABLE_ALL_INTERRUPTS
,
1190 SSP_IMSC(pl022
->virtbase
));
1191 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1192 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1193 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1194 msg
->state
= STATE_ERROR
;
1196 /* Schedule message queue handler */
1197 tasklet_schedule(&pl022
->pump_transfers
);
1203 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1205 /* Disable Transmit interrupt */
1206 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
1207 (~SSP_IMSC_MASK_TXIM
),
1208 SSP_IMSC(pl022
->virtbase
));
1212 * Since all transactions must write as much as shall be read,
1213 * we can conclude the entire transaction once RX is complete.
1214 * At this point, all TX will always be finished.
1216 if (pl022
->rx
>= pl022
->rx_end
) {
1217 writew(DISABLE_ALL_INTERRUPTS
,
1218 SSP_IMSC(pl022
->virtbase
));
1219 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1220 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1221 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1222 "bytes (did you request an odd "
1223 "number of bytes on a 16bit bus?)\n",
1224 (u32
) (pl022
->rx
- pl022
->rx_end
));
1226 /* Update total bytes transferred */
1227 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1228 if (pl022
->cur_transfer
->cs_change
)
1230 cs_control(SSP_CHIP_DESELECT
);
1231 /* Move to next transfer */
1232 msg
->state
= next_transfer(pl022
);
1233 tasklet_schedule(&pl022
->pump_transfers
);
1241 * This sets up the pointers to memory for the next message to
1242 * send out on the SPI bus.
1244 static int set_up_next_transfer(struct pl022
*pl022
,
1245 struct spi_transfer
*transfer
)
1249 /* Sanity check the message for this bus width */
1250 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1251 if (unlikely(residue
!= 0)) {
1252 dev_err(&pl022
->adev
->dev
,
1253 "message of %u bytes to transmit but the current "
1254 "chip bus has a data width of %u bytes!\n",
1255 pl022
->cur_transfer
->len
,
1256 pl022
->cur_chip
->n_bytes
);
1257 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1260 pl022
->tx
= (void *)transfer
->tx_buf
;
1261 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1262 pl022
->rx
= (void *)transfer
->rx_buf
;
1263 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1265 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1266 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1271 * pump_transfers - Tasklet function which schedules next transfer
1272 * when running in interrupt or DMA transfer mode.
1273 * @data: SSP driver private data structure
1276 static void pump_transfers(unsigned long data
)
1278 struct pl022
*pl022
= (struct pl022
*) data
;
1279 struct spi_message
*message
= NULL
;
1280 struct spi_transfer
*transfer
= NULL
;
1281 struct spi_transfer
*previous
= NULL
;
1283 /* Get current state information */
1284 message
= pl022
->cur_msg
;
1285 transfer
= pl022
->cur_transfer
;
1287 /* Handle for abort */
1288 if (message
->state
== STATE_ERROR
) {
1289 message
->status
= -EIO
;
1294 /* Handle end of message */
1295 if (message
->state
== STATE_DONE
) {
1296 message
->status
= 0;
1301 /* Delay if requested at end of transfer before CS change */
1302 if (message
->state
== STATE_RUNNING
) {
1303 previous
= list_entry(transfer
->transfer_list
.prev
,
1304 struct spi_transfer
,
1306 if (previous
->delay_usecs
)
1308 * FIXME: This runs in interrupt context.
1309 * Is this really smart?
1311 udelay(previous
->delay_usecs
);
1313 /* Drop chip select only if cs_change is requested */
1314 if (previous
->cs_change
)
1315 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1318 message
->state
= STATE_RUNNING
;
1321 if (set_up_next_transfer(pl022
, transfer
)) {
1322 message
->state
= STATE_ERROR
;
1323 message
->status
= -EIO
;
1327 /* Flush the FIFOs and let's go! */
1330 if (pl022
->cur_chip
->enable_dma
) {
1331 if (configure_dma(pl022
)) {
1332 dev_dbg(&pl022
->adev
->dev
,
1333 "configuration of DMA failed, fall back to interrupt mode\n");
1334 goto err_config_dma
;
1340 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
1343 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1345 u32 irqflags
= ENABLE_ALL_INTERRUPTS
;
1347 /* Enable target chip */
1348 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1349 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1351 pl022
->cur_msg
->state
= STATE_ERROR
;
1352 pl022
->cur_msg
->status
= -EIO
;
1356 /* If we're using DMA, set up DMA here */
1357 if (pl022
->cur_chip
->enable_dma
) {
1358 /* Configure DMA transfer */
1359 if (configure_dma(pl022
)) {
1360 dev_dbg(&pl022
->adev
->dev
,
1361 "configuration of DMA failed, fall back to interrupt mode\n");
1362 goto err_config_dma
;
1364 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1365 irqflags
= DISABLE_ALL_INTERRUPTS
;
1368 /* Enable SSP, turn on interrupts */
1369 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1370 SSP_CR1(pl022
->virtbase
));
1371 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1374 static void do_polling_transfer(struct pl022
*pl022
)
1376 struct spi_message
*message
= NULL
;
1377 struct spi_transfer
*transfer
= NULL
;
1378 struct spi_transfer
*previous
= NULL
;
1379 struct chip_data
*chip
;
1380 unsigned long time
, timeout
;
1382 chip
= pl022
->cur_chip
;
1383 message
= pl022
->cur_msg
;
1385 while (message
->state
!= STATE_DONE
) {
1386 /* Handle for abort */
1387 if (message
->state
== STATE_ERROR
)
1389 transfer
= pl022
->cur_transfer
;
1391 /* Delay if requested at end of transfer */
1392 if (message
->state
== STATE_RUNNING
) {
1394 list_entry(transfer
->transfer_list
.prev
,
1395 struct spi_transfer
, transfer_list
);
1396 if (previous
->delay_usecs
)
1397 udelay(previous
->delay_usecs
);
1398 if (previous
->cs_change
)
1399 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1402 message
->state
= STATE_RUNNING
;
1403 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1406 /* Configuration Changing Per Transfer */
1407 if (set_up_next_transfer(pl022
, transfer
)) {
1409 message
->state
= STATE_ERROR
;
1412 /* Flush FIFOs and enable SSP */
1414 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1415 SSP_CR1(pl022
->virtbase
));
1417 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1419 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1420 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1423 if (time_after(time
, timeout
)) {
1424 dev_warn(&pl022
->adev
->dev
,
1425 "%s: timeout!\n", __func__
);
1426 message
->state
= STATE_ERROR
;
1432 /* Update total byte transferred */
1433 message
->actual_length
+= pl022
->cur_transfer
->len
;
1434 if (pl022
->cur_transfer
->cs_change
)
1435 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1436 /* Move to next transfer */
1437 message
->state
= next_transfer(pl022
);
1440 /* Handle end of message */
1441 if (message
->state
== STATE_DONE
)
1442 message
->status
= 0;
1444 message
->status
= -EIO
;
1451 * pump_messages - Workqueue function which processes spi message queue
1452 * @data: pointer to private data of SSP driver
1454 * This function checks if there is any spi message in the queue that
1455 * needs processing and delegate control to appropriate function
1456 * do_polling_transfer()/do_interrupt_dma_transfer()
1457 * based on the kind of the transfer
1460 static void pump_messages(struct work_struct
*work
)
1462 struct pl022
*pl022
=
1463 container_of(work
, struct pl022
, pump_messages
);
1464 unsigned long flags
;
1466 /* Lock queue and check for queue work */
1467 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1468 if (list_empty(&pl022
->queue
) || !pl022
->running
) {
1469 pl022
->busy
= false;
1470 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1473 /* Make sure we are not already running a message */
1474 if (pl022
->cur_msg
) {
1475 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1478 /* Extract head of queue */
1480 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1482 list_del_init(&pl022
->cur_msg
->queue
);
1484 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1486 /* Initial message state */
1487 pl022
->cur_msg
->state
= STATE_START
;
1488 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1489 struct spi_transfer
,
1492 /* Setup the SPI using the per chip configuration */
1493 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1495 * We enable the core voltage and clocks here, then the clocks
1496 * and core will be disabled when giveback() is called in each method
1497 * (poll/interrupt/DMA)
1499 amba_vcore_enable(pl022
->adev
);
1500 amba_pclk_enable(pl022
->adev
);
1501 clk_enable(pl022
->clk
);
1502 restore_state(pl022
);
1505 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1506 do_polling_transfer(pl022
);
1508 do_interrupt_dma_transfer(pl022
);
1512 static int __init
init_queue(struct pl022
*pl022
)
1514 INIT_LIST_HEAD(&pl022
->queue
);
1515 spin_lock_init(&pl022
->queue_lock
);
1517 pl022
->running
= false;
1518 pl022
->busy
= false;
1520 tasklet_init(&pl022
->pump_transfers
,
1521 pump_transfers
, (unsigned long)pl022
);
1523 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1524 pl022
->workqueue
= create_singlethread_workqueue(
1525 dev_name(pl022
->master
->dev
.parent
));
1526 if (pl022
->workqueue
== NULL
)
1533 static int start_queue(struct pl022
*pl022
)
1535 unsigned long flags
;
1537 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1539 if (pl022
->running
|| pl022
->busy
) {
1540 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1544 pl022
->running
= true;
1545 pl022
->cur_msg
= NULL
;
1546 pl022
->cur_transfer
= NULL
;
1547 pl022
->cur_chip
= NULL
;
1548 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1550 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1556 static int stop_queue(struct pl022
*pl022
)
1558 unsigned long flags
;
1559 unsigned limit
= 500;
1562 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1564 /* This is a bit lame, but is optimized for the common execution path.
1565 * A wait_queue on the pl022->busy could be used, but then the common
1566 * execution path (pump_messages) would be required to call wake_up or
1567 * friends on every SPI message. Do this instead */
1568 while ((!list_empty(&pl022
->queue
) || pl022
->busy
) && limit
--) {
1569 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1571 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1574 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1577 pl022
->running
= false;
1579 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1584 static int destroy_queue(struct pl022
*pl022
)
1588 status
= stop_queue(pl022
);
1589 /* we are unloading the module or failing to load (only two calls
1590 * to this routine), and neither call can handle a return value.
1591 * However, destroy_workqueue calls flush_workqueue, and that will
1592 * block until all work is done. If the reason that stop_queue
1593 * timed out is that the work will never finish, then it does no
1594 * good to call destroy_workqueue, so return anyway. */
1598 destroy_workqueue(pl022
->workqueue
);
1603 static int verify_controller_parameters(struct pl022
*pl022
,
1604 struct pl022_config_chip
const *chip_info
)
1606 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1607 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1608 dev_err(&pl022
->adev
->dev
,
1609 "interface is configured incorrectly\n");
1612 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1613 (!pl022
->vendor
->unidir
)) {
1614 dev_err(&pl022
->adev
->dev
,
1615 "unidirectional mode not supported in this "
1616 "hardware version\n");
1619 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1620 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1621 dev_err(&pl022
->adev
->dev
,
1622 "hierarchy is configured incorrectly\n");
1625 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1626 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1627 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1628 dev_err(&pl022
->adev
->dev
,
1629 "Communication mode is configured incorrectly\n");
1632 if ((chip_info
->rx_lev_trig
< SSP_RX_1_OR_MORE_ELEM
)
1633 || (chip_info
->rx_lev_trig
> SSP_RX_32_OR_MORE_ELEM
)) {
1634 dev_err(&pl022
->adev
->dev
,
1635 "RX FIFO Trigger Level is configured incorrectly\n");
1638 if ((chip_info
->tx_lev_trig
< SSP_TX_1_OR_MORE_EMPTY_LOC
)
1639 || (chip_info
->tx_lev_trig
> SSP_TX_32_OR_MORE_EMPTY_LOC
)) {
1640 dev_err(&pl022
->adev
->dev
,
1641 "TX FIFO Trigger Level is configured incorrectly\n");
1644 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1645 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1646 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1647 dev_err(&pl022
->adev
->dev
,
1648 "CTRL LEN is configured incorrectly\n");
1651 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1652 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1653 dev_err(&pl022
->adev
->dev
,
1654 "Wait State is configured incorrectly\n");
1657 /* Half duplex is only available in the ST Micro version */
1658 if (pl022
->vendor
->extended_cr
) {
1659 if ((chip_info
->duplex
!=
1660 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1661 && (chip_info
->duplex
!=
1662 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1663 dev_err(&pl022
->adev
->dev
,
1664 "Microwire duplex mode is configured incorrectly\n");
1668 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1669 dev_err(&pl022
->adev
->dev
,
1670 "Microwire half duplex mode requested,"
1671 " but this is only available in the"
1672 " ST version of PL022\n");
1680 * pl022_transfer - transfer function registered to SPI master framework
1681 * @spi: spi device which is requesting transfer
1682 * @msg: spi message which is to handled is queued to driver queue
1684 * This function is registered to the SPI framework for this SPI master
1685 * controller. It will queue the spi_message in the queue of driver if
1686 * the queue is not stopped and return.
1688 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1690 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1691 unsigned long flags
;
1693 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1695 if (!pl022
->running
) {
1696 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1699 msg
->actual_length
= 0;
1700 msg
->status
= -EINPROGRESS
;
1701 msg
->state
= STATE_START
;
1703 list_add_tail(&msg
->queue
, &pl022
->queue
);
1704 if (pl022
->running
&& !pl022
->busy
)
1705 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1707 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1711 static int calculate_effective_freq(struct pl022
*pl022
,
1713 struct ssp_clock_params
*clk_freq
)
1715 /* Lets calculate the frequency parameters */
1718 bool freq_found
= false;
1723 rate
= clk_get_rate(pl022
->clk
);
1724 /* cpsdvscr = 2 & scr 0 */
1725 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1726 /* cpsdvsr = 254 & scr = 255 */
1727 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1729 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1730 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1731 while (scr
<= SCR_MAX
&& !freq_found
) {
1733 (cpsdvsr
* (1 + scr
))) > freq
)
1737 * This bool is made true when
1738 * effective frequency >=
1739 * target frequency is found
1743 (cpsdvsr
* (1 + scr
))) != freq
) {
1744 if (scr
== SCR_MIN
) {
1758 dev_dbg(&pl022
->adev
->dev
,
1759 "SSP Effective Frequency is %u\n",
1760 (rate
/ (cpsdvsr
* (1 + scr
))));
1761 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1762 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1763 dev_dbg(&pl022
->adev
->dev
,
1764 "SSP cpsdvsr = %d, scr = %d\n",
1765 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1768 dev_err(&pl022
->adev
->dev
,
1769 "controller data is incorrect: out of range frequency");
1777 * A piece of default chip info unless the platform
1780 static const struct pl022_config_chip pl022_default_chip_info
= {
1781 .com_mode
= POLLING_TRANSFER
,
1782 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1783 .hierarchy
= SSP_SLAVE
,
1784 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1785 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1786 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1787 .ctrl_len
= SSP_BITS_8
,
1788 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1789 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1790 .cs_control
= null_cs_control
,
1795 * pl022_setup - setup function registered to SPI master framework
1796 * @spi: spi device which is requesting setup
1798 * This function is registered to the SPI framework for this SPI master
1799 * controller. If it is the first time when setup is called by this device,
1800 * this function will initialize the runtime state for this chip and save
1801 * the same in the device structure. Else it will update the runtime info
1802 * with the updated chip info. Nothing is really being written to the
1803 * controller hardware here, that is not done until the actual transfer
1806 static int pl022_setup(struct spi_device
*spi
)
1808 struct pl022_config_chip
const *chip_info
;
1809 struct chip_data
*chip
;
1810 struct ssp_clock_params clk_freq
= {0, };
1812 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1813 unsigned int bits
= spi
->bits_per_word
;
1816 if (!spi
->max_speed_hz
)
1819 /* Get controller_state if one is supplied */
1820 chip
= spi_get_ctldata(spi
);
1823 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1826 "cannot allocate controller state\n");
1830 "allocated memory for controller's runtime state\n");
1833 /* Get controller data if one is supplied */
1834 chip_info
= spi
->controller_data
;
1836 if (chip_info
== NULL
) {
1837 chip_info
= &pl022_default_chip_info
;
1838 /* spi_board_info.controller_data not is supplied */
1840 "using default controller_data settings\n");
1843 "using user supplied controller_data settings\n");
1846 * We can override with custom divisors, else we use the board
1849 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1850 && (0 == chip_info
->clk_freq
.scr
)) {
1851 status
= calculate_effective_freq(pl022
,
1855 goto err_config_params
;
1857 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1858 if ((clk_freq
.cpsdvsr
% 2) != 0)
1860 clk_freq
.cpsdvsr
- 1;
1862 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1863 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1866 "cpsdvsr is configured incorrectly\n");
1867 goto err_config_params
;
1871 status
= verify_controller_parameters(pl022
, chip_info
);
1873 dev_err(&spi
->dev
, "controller data is incorrect");
1874 goto err_config_params
;
1877 /* Now set controller state based on controller data */
1878 chip
->xfer_type
= chip_info
->com_mode
;
1879 if (!chip_info
->cs_control
) {
1880 chip
->cs_control
= null_cs_control
;
1882 "chip select function is NULL for this chip\n");
1884 chip
->cs_control
= chip_info
->cs_control
;
1887 /* PL022 doesn't support less than 4-bits */
1889 goto err_config_params
;
1890 } else if (bits
<= 8) {
1891 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1893 chip
->read
= READING_U8
;
1894 chip
->write
= WRITING_U8
;
1895 } else if (bits
<= 16) {
1896 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1898 chip
->read
= READING_U16
;
1899 chip
->write
= WRITING_U16
;
1901 if (pl022
->vendor
->max_bpw
>= 32) {
1902 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1904 chip
->read
= READING_U32
;
1905 chip
->write
= WRITING_U32
;
1908 "illegal data size for this controller!\n");
1910 "a standard pl022 can only handle "
1911 "1 <= n <= 16 bit words\n");
1913 goto err_config_params
;
1917 /* Now Initialize all register settings required for this chip */
1922 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1923 && ((pl022
->master_info
)->enable_dma
)) {
1924 chip
->enable_dma
= true;
1925 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1926 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1927 SSP_DMACR_MASK_RXDMAE
, 0);
1928 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1929 SSP_DMACR_MASK_TXDMAE
, 1);
1931 chip
->enable_dma
= false;
1932 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1933 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1934 SSP_DMACR_MASK_RXDMAE
, 0);
1935 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1936 SSP_DMACR_MASK_TXDMAE
, 1);
1939 chip
->cpsr
= clk_freq
.cpsdvsr
;
1941 /* Special setup for the ST micro extended control registers */
1942 if (pl022
->vendor
->extended_cr
) {
1945 if (pl022
->vendor
->pl023
) {
1946 /* These bits are only in the PL023 */
1947 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
1948 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
1950 /* These bits are in the PL022 but not PL023 */
1951 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
1952 SSP_CR0_MASK_HALFDUP_ST
, 5);
1953 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
1954 SSP_CR0_MASK_CSS_ST
, 16);
1955 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1956 SSP_CR0_MASK_FRF_ST
, 21);
1957 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
1958 SSP_CR1_MASK_MWAIT_ST
, 6);
1960 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1961 SSP_CR0_MASK_DSS_ST
, 0);
1963 if (spi
->mode
& SPI_LSB_FIRST
) {
1970 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
1971 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
1972 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
1973 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
1974 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
1975 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
1977 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
1978 SSP_CR0_MASK_DSS
, 0);
1979 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
1980 SSP_CR0_MASK_FRF
, 4);
1983 /* Stuff that is common for all versions */
1984 if (spi
->mode
& SPI_CPOL
)
1985 tmp
= SSP_CLK_POL_IDLE_HIGH
;
1987 tmp
= SSP_CLK_POL_IDLE_LOW
;
1988 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
1990 if (spi
->mode
& SPI_CPHA
)
1991 tmp
= SSP_CLK_SECOND_EDGE
;
1993 tmp
= SSP_CLK_FIRST_EDGE
;
1994 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
1996 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1997 /* Loopback is available on all versions except PL023 */
1998 if (pl022
->vendor
->loopback
) {
1999 if (spi
->mode
& SPI_LOOP
)
2000 tmp
= LOOPBACK_ENABLED
;
2002 tmp
= LOOPBACK_DISABLED
;
2003 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2005 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2006 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2007 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
2009 /* Save controller_state */
2010 spi_set_ctldata(spi
, chip
);
2013 spi_set_ctldata(spi
, NULL
);
2019 * pl022_cleanup - cleanup function registered to SPI master framework
2020 * @spi: spi device which is requesting cleanup
2022 * This function is registered to the SPI framework for this SPI master
2023 * controller. It will free the runtime state of chip.
2025 static void pl022_cleanup(struct spi_device
*spi
)
2027 struct chip_data
*chip
= spi_get_ctldata(spi
);
2029 spi_set_ctldata(spi
, NULL
);
2034 static int __devinit
2035 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2037 struct device
*dev
= &adev
->dev
;
2038 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
2039 struct spi_master
*master
;
2040 struct pl022
*pl022
= NULL
; /*Data for this driver */
2043 dev_info(&adev
->dev
,
2044 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2045 if (platform_info
== NULL
) {
2046 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2051 /* Allocate master with space for data */
2052 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2053 if (master
== NULL
) {
2054 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2059 pl022
= spi_master_get_devdata(master
);
2060 pl022
->master
= master
;
2061 pl022
->master_info
= platform_info
;
2063 pl022
->vendor
= id
->data
;
2066 * Bus Number Which has been Assigned to this SSP controller
2069 master
->bus_num
= platform_info
->bus_id
;
2070 master
->num_chipselect
= platform_info
->num_chipselect
;
2071 master
->cleanup
= pl022_cleanup
;
2072 master
->setup
= pl022_setup
;
2073 master
->transfer
= pl022_transfer
;
2076 * Supports mode 0-3, loopback, and active low CS. Transfers are
2077 * always MS bit first on the original pl022.
2079 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2080 if (pl022
->vendor
->extended_cr
)
2081 master
->mode_bits
|= SPI_LSB_FIRST
;
2083 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2085 status
= amba_request_regions(adev
, NULL
);
2087 goto err_no_ioregion
;
2089 pl022
->phybase
= adev
->res
.start
;
2090 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2091 if (pl022
->virtbase
== NULL
) {
2093 goto err_no_ioremap
;
2095 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2096 adev
->res
.start
, pl022
->virtbase
);
2098 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2099 if (IS_ERR(pl022
->clk
)) {
2100 status
= PTR_ERR(pl022
->clk
);
2101 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2106 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2107 SSP_CR1(pl022
->virtbase
));
2108 load_ssp_default_config(pl022
);
2110 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2113 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2117 /* Get DMA channels */
2118 if (platform_info
->enable_dma
) {
2119 status
= pl022_dma_probe(pl022
);
2121 platform_info
->enable_dma
= 0;
2124 /* Initialize and start queue */
2125 status
= init_queue(pl022
);
2127 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
2128 goto err_init_queue
;
2130 status
= start_queue(pl022
);
2132 dev_err(&adev
->dev
, "probe - problem starting queue\n");
2133 goto err_start_queue
;
2135 /* Register with the SPI framework */
2136 amba_set_drvdata(adev
, pl022
);
2137 status
= spi_register_master(master
);
2140 "probe - problem registering spi master\n");
2141 goto err_spi_register
;
2143 dev_dbg(dev
, "probe succeeded\n");
2145 * Disable the silicon block pclk and any voltage domain and just
2146 * power it up and clock it when it's needed
2148 amba_pclk_disable(adev
);
2149 amba_vcore_disable(adev
);
2155 destroy_queue(pl022
);
2156 pl022_dma_remove(pl022
);
2157 free_irq(adev
->irq
[0], pl022
);
2159 clk_put(pl022
->clk
);
2161 iounmap(pl022
->virtbase
);
2163 amba_release_regions(adev
);
2165 spi_master_put(master
);
2171 static int __devexit
2172 pl022_remove(struct amba_device
*adev
)
2174 struct pl022
*pl022
= amba_get_drvdata(adev
);
2179 /* Remove the queue */
2180 status
= destroy_queue(pl022
);
2183 "queue remove failed (%d)\n", status
);
2186 load_ssp_default_config(pl022
);
2187 pl022_dma_remove(pl022
);
2188 free_irq(adev
->irq
[0], pl022
);
2189 clk_disable(pl022
->clk
);
2190 clk_put(pl022
->clk
);
2191 iounmap(pl022
->virtbase
);
2192 amba_release_regions(adev
);
2193 tasklet_disable(&pl022
->pump_transfers
);
2194 spi_unregister_master(pl022
->master
);
2195 spi_master_put(pl022
->master
);
2196 amba_set_drvdata(adev
, NULL
);
2197 dev_dbg(&adev
->dev
, "remove succeeded\n");
2202 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
2204 struct pl022
*pl022
= amba_get_drvdata(adev
);
2207 status
= stop_queue(pl022
);
2209 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
2213 amba_vcore_enable(adev
);
2214 amba_pclk_enable(adev
);
2215 load_ssp_default_config(pl022
);
2216 amba_pclk_disable(adev
);
2217 amba_vcore_disable(adev
);
2218 dev_dbg(&adev
->dev
, "suspended\n");
2222 static int pl022_resume(struct amba_device
*adev
)
2224 struct pl022
*pl022
= amba_get_drvdata(adev
);
2227 /* Start the queue running */
2228 status
= start_queue(pl022
);
2230 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
2232 dev_dbg(&adev
->dev
, "resumed\n");
2237 #define pl022_suspend NULL
2238 #define pl022_resume NULL
2239 #endif /* CONFIG_PM */
2241 static struct vendor_data vendor_arm
= {
2245 .extended_cr
= false,
2251 static struct vendor_data vendor_st
= {
2255 .extended_cr
= true,
2260 static struct vendor_data vendor_st_pl023
= {
2264 .extended_cr
= true,
2269 static struct vendor_data vendor_db5500_pl023
= {
2273 .extended_cr
= true,
2278 static struct amba_id pl022_ids
[] = {
2281 * ARM PL022 variant, this has a 16bit wide
2282 * and 8 locations deep TX/RX FIFO
2286 .data
= &vendor_arm
,
2290 * ST Micro derivative, this has 32bit wide
2291 * and 32 locations deep TX/RX FIFO
2299 * ST-Ericsson derivative "PL023" (this is not
2300 * an official ARM number), this is a PL022 SSP block
2301 * stripped to SPI mode only, it has 32bit wide
2302 * and 32 locations deep TX/RX FIFO but no extended
2307 .data
= &vendor_st_pl023
,
2312 .data
= &vendor_db5500_pl023
,
2317 static struct amba_driver pl022_driver
= {
2319 .name
= "ssp-pl022",
2321 .id_table
= pl022_ids
,
2322 .probe
= pl022_probe
,
2323 .remove
= __devexit_p(pl022_remove
),
2324 .suspend
= pl022_suspend
,
2325 .resume
= pl022_resume
,
2329 static int __init
pl022_init(void)
2331 return amba_driver_register(&pl022_driver
);
2334 subsys_initcall(pl022_init
);
2336 static void __exit
pl022_exit(void)
2338 amba_driver_unregister(&pl022_driver
);
2341 module_exit(pl022_exit
);
2343 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2344 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2345 MODULE_LICENSE("GPL");