tty/serial: atmel_serial: whitespace and braces modifications
[zen-stable.git] / drivers / isdn / mISDN / dsp_dtmf.c
blob5b484c3f4af6072bf3f93b611ba21a29877687ae
1 /*
2 * DTMF decoder.
4 * Copyright by Andreas Eversberg (jolly@eversberg.eu)
5 * based on different decoders such as ISDN4Linux
7 * This software may be used and distributed according to the terms
8 * of the GNU General Public License, incorporated herein by reference.
12 #include <linux/mISDNif.h>
13 #include <linux/mISDNdsp.h>
14 #include "core.h"
15 #include "dsp.h"
17 #define NCOEFF 8 /* number of frequencies to be analyzed */
19 /* For DTMF recognition:
20 * 2 * cos(2 * PI * k / N) precalculated for all k
22 static u64 cos2pik[NCOEFF] =
24 /* k << 15 (source: hfc-4s/8s documentation (www.colognechip.de)) */
25 55960, 53912, 51402, 48438, 38146, 32650, 26170, 18630
28 /* digit matrix */
29 static char dtmf_matrix[4][4] =
31 {'1', '2', '3', 'A'},
32 {'4', '5', '6', 'B'},
33 {'7', '8', '9', 'C'},
34 {'*', '0', '#', 'D'}
37 /* dtmf detection using goertzel algorithm
38 * init function
40 void dsp_dtmf_goertzel_init(struct dsp *dsp)
42 dsp->dtmf.size = 0;
43 dsp->dtmf.lastwhat = '\0';
44 dsp->dtmf.lastdigit = '\0';
45 dsp->dtmf.count = 0;
48 /* check for hardware or software features
50 void dsp_dtmf_hardware(struct dsp *dsp)
52 int hardware = 1;
54 if (!dsp->dtmf.enable)
55 return;
57 if (!dsp->features.hfc_dtmf)
58 hardware = 0;
60 /* check for volume change */
61 if (dsp->tx_volume) {
62 if (dsp_debug & DEBUG_DSP_DTMF)
63 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
64 "because tx_volume is changed\n",
65 __func__, dsp->name);
66 hardware = 0;
68 if (dsp->rx_volume) {
69 if (dsp_debug & DEBUG_DSP_DTMF)
70 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
71 "because rx_volume is changed\n",
72 __func__, dsp->name);
73 hardware = 0;
75 /* check if encryption is enabled */
76 if (dsp->bf_enable) {
77 if (dsp_debug & DEBUG_DSP_DTMF)
78 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
79 "because encryption is enabled\n",
80 __func__, dsp->name);
81 hardware = 0;
83 /* check if pipeline exists */
84 if (dsp->pipeline.inuse) {
85 if (dsp_debug & DEBUG_DSP_DTMF)
86 printk(KERN_DEBUG "%s dsp %s cannot do hardware DTMF, "
87 "because pipeline exists.\n",
88 __func__, dsp->name);
89 hardware = 0;
92 dsp->dtmf.hardware = hardware;
93 dsp->dtmf.software = !hardware;
97 /*************************************************************
98 * calculate the coefficients of the given sample and decode *
99 *************************************************************/
101 /* the given sample is decoded. if the sample is not long enough for a
102 * complete frame, the decoding is finished and continued with the next
103 * call of this function.
105 * the algorithm is very good for detection with a minimum of errors. i
106 * tested it allot. it even works with very short tones (40ms). the only
107 * disadvantage is, that it doesn't work good with different volumes of both
108 * tones. this will happen, if accoustically coupled dialers are used.
109 * it sometimes detects tones during speech, which is normal for decoders.
110 * use sequences to given commands during calls.
112 * dtmf - points to a structure of the current dtmf state
113 * spl and len - the sample
114 * fmt - 0 = alaw, 1 = ulaw, 2 = coefficients from HFC DTMF hw-decoder
118 *dsp_dtmf_goertzel_decode(struct dsp *dsp, u8 *data, int len, int fmt)
120 u8 what;
121 int size;
122 signed short *buf;
123 s32 sk, sk1, sk2;
124 int k, n, i;
125 s32 *hfccoeff;
126 s32 result[NCOEFF], tresh, treshl;
127 int lowgroup, highgroup;
128 s64 cos2pik_;
130 dsp->dtmf.digits[0] = '\0';
132 /* Note: The function will loop until the buffer has not enough samples
133 * left to decode a full frame.
135 again:
136 /* convert samples */
137 size = dsp->dtmf.size;
138 buf = dsp->dtmf.buffer;
139 switch (fmt) {
140 case 0: /* alaw */
141 case 1: /* ulaw */
142 while (size < DSP_DTMF_NPOINTS && len) {
143 buf[size++] = dsp_audio_law_to_s32[*data++];
144 len--;
146 break;
148 case 2: /* HFC coefficients */
149 default:
150 if (len < 64) {
151 if (len > 0)
152 printk(KERN_ERR "%s: coefficients have invalid "
153 "size. (is=%d < must=%d)\n",
154 __func__, len, 64);
155 return dsp->dtmf.digits;
157 hfccoeff = (s32 *)data;
158 for (k = 0; k < NCOEFF; k++) {
159 sk2 = (*hfccoeff++)>>4;
160 sk = (*hfccoeff++)>>4;
161 if (sk > 32767 || sk < -32767 || sk2 > 32767
162 || sk2 < -32767)
163 printk(KERN_WARNING
164 "DTMF-Detection overflow\n");
165 /* compute |X(k)|**2 */
166 result[k] =
167 (sk * sk) -
168 (((cos2pik[k] * sk) >> 15) * sk2) +
169 (sk2 * sk2);
171 data += 64;
172 len -= 64;
173 goto coefficients;
174 break;
176 dsp->dtmf.size = size;
178 if (size < DSP_DTMF_NPOINTS)
179 return dsp->dtmf.digits;
181 dsp->dtmf.size = 0;
183 /* now we have a full buffer of signed long samples - we do goertzel */
184 for (k = 0; k < NCOEFF; k++) {
185 sk = 0;
186 sk1 = 0;
187 sk2 = 0;
188 buf = dsp->dtmf.buffer;
189 cos2pik_ = cos2pik[k];
190 for (n = 0; n < DSP_DTMF_NPOINTS; n++) {
191 sk = ((cos2pik_*sk1)>>15) - sk2 + (*buf++);
192 sk2 = sk1;
193 sk1 = sk;
195 sk >>= 8;
196 sk2 >>= 8;
197 if (sk > 32767 || sk < -32767 || sk2 > 32767 || sk2 < -32767)
198 printk(KERN_WARNING "DTMF-Detection overflow\n");
199 /* compute |X(k)|**2 */
200 result[k] =
201 (sk * sk) -
202 (((cos2pik[k] * sk) >> 15) * sk2) +
203 (sk2 * sk2);
206 /* our (squared) coefficients have been calculated, we need to process
207 * them.
209 coefficients:
210 tresh = 0;
211 for (i = 0; i < NCOEFF; i++) {
212 if (result[i] < 0)
213 result[i] = 0;
214 if (result[i] > dsp->dtmf.treshold) {
215 if (result[i] > tresh)
216 tresh = result[i];
220 if (tresh == 0) {
221 what = 0;
222 goto storedigit;
225 if (dsp_debug & DEBUG_DSP_DTMFCOEFF)
226 printk(KERN_DEBUG "a %3d %3d %3d %3d %3d %3d %3d %3d"
227 " tr:%3d r %3d %3d %3d %3d %3d %3d %3d %3d\n",
228 result[0]/10000, result[1]/10000, result[2]/10000,
229 result[3]/10000, result[4]/10000, result[5]/10000,
230 result[6]/10000, result[7]/10000, tresh/10000,
231 result[0]/(tresh/100), result[1]/(tresh/100),
232 result[2]/(tresh/100), result[3]/(tresh/100),
233 result[4]/(tresh/100), result[5]/(tresh/100),
234 result[6]/(tresh/100), result[7]/(tresh/100));
236 /* calc digit (lowgroup/highgroup) */
237 lowgroup = -1;
238 highgroup = -1;
239 treshl = tresh >> 3; /* tones which are not on, must be below 9 dB */
240 tresh = tresh >> 2; /* touchtones must match within 6 dB */
241 for (i = 0; i < NCOEFF; i++) {
242 if (result[i] < treshl)
243 continue; /* ignore */
244 if (result[i] < tresh) {
245 lowgroup = -1;
246 highgroup = -1;
247 break; /* noise in between */
249 /* good level found. This is allowed only one time per group */
250 if (i < NCOEFF/2) {
251 /* lowgroup */
252 if (lowgroup >= 0) {
253 /* Bad. Another tone found. */
254 lowgroup = -1;
255 break;
256 } else
257 lowgroup = i;
258 } else {
259 /* higroup */
260 if (highgroup >= 0) {
261 /* Bad. Another tone found. */
262 highgroup = -1;
263 break;
264 } else
265 highgroup = i-(NCOEFF/2);
269 /* get digit or null */
270 what = 0;
271 if (lowgroup >= 0 && highgroup >= 0)
272 what = dtmf_matrix[lowgroup][highgroup];
274 storedigit:
275 if (what && (dsp_debug & DEBUG_DSP_DTMF))
276 printk(KERN_DEBUG "DTMF what: %c\n", what);
278 if (dsp->dtmf.lastwhat != what)
279 dsp->dtmf.count = 0;
281 /* the tone (or no tone) must remain 3 times without change */
282 if (dsp->dtmf.count == 2) {
283 if (dsp->dtmf.lastdigit != what) {
284 dsp->dtmf.lastdigit = what;
285 if (what) {
286 if (dsp_debug & DEBUG_DSP_DTMF)
287 printk(KERN_DEBUG "DTMF digit: %c\n",
288 what);
289 if ((strlen(dsp->dtmf.digits)+1)
290 < sizeof(dsp->dtmf.digits)) {
291 dsp->dtmf.digits[strlen(
292 dsp->dtmf.digits)+1] = '\0';
293 dsp->dtmf.digits[strlen(
294 dsp->dtmf.digits)] = what;
298 } else
299 dsp->dtmf.count++;
301 dsp->dtmf.lastwhat = what;
303 goto again;