2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
58 #define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
62 #define DO_NOT_DRIVE_TX 1
64 #define DO_NOT_QUEUE_DMA 0
71 * Macros to access SSP Registers with their offsets
73 #define SSP_CR0(r) (r + 0x000)
74 #define SSP_CR1(r) (r + 0x004)
75 #define SSP_DR(r) (r + 0x008)
76 #define SSP_SR(r) (r + 0x00C)
77 #define SSP_CPSR(r) (r + 0x010)
78 #define SSP_IMSC(r) (r + 0x014)
79 #define SSP_RIS(r) (r + 0x018)
80 #define SSP_MIS(r) (r + 0x01C)
81 #define SSP_ICR(r) (r + 0x020)
82 #define SSP_DMACR(r) (r + 0x024)
83 #define SSP_ITCR(r) (r + 0x080)
84 #define SSP_ITIP(r) (r + 0x084)
85 #define SSP_ITOP(r) (r + 0x088)
86 #define SSP_TDR(r) (r + 0x08C)
88 #define SSP_PID0(r) (r + 0xFE0)
89 #define SSP_PID1(r) (r + 0xFE4)
90 #define SSP_PID2(r) (r + 0xFE8)
91 #define SSP_PID3(r) (r + 0xFEC)
93 #define SSP_CID0(r) (r + 0xFF0)
94 #define SSP_CID1(r) (r + 0xFF4)
95 #define SSP_CID2(r) (r + 0xFF8)
96 #define SSP_CID3(r) (r + 0xFFC)
99 * SSP Control Register 0 - SSP_CR0
101 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF (0x3UL << 4)
103 #define SSP_CR0_MASK_SPO (0x1UL << 6)
104 #define SSP_CR0_MASK_SPH (0x1UL << 7)
105 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
111 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
118 * SSP Control Register 0 - SSP_CR1
120 #define SSP_CR1_MASK_LBM (0x1UL << 0)
121 #define SSP_CR1_MASK_SSE (0x1UL << 1)
122 #define SSP_CR1_MASK_MS (0x1UL << 2)
123 #define SSP_CR1_MASK_SOD (0x1UL << 3)
126 * The ST version of this block adds some bits
129 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 * SSP Status Register - SSP_SR
140 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
147 * SSP Clock Prescale Register - SSP_CPSR
149 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 * SSP Raw Interrupt Status Register - SSP_RIS
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
172 * SSP Masked Interrupt Status Register - SSP_MIS
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
184 * SSP Interrupt Clear Register - SSP_ICR
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
192 * SSP DMA Control Register - SSP_DMACR
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
200 * SSP Integration Test control Register - SSP_ITCR
202 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
206 * SSP Integration Test Input Register - SSP_ITIP
208 #define ITIP_MASK_SSPRXD (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
216 * SSP Integration Test output Register - SSP_ITOP
218 #define ITOP_MASK_SSPTXD (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
223 #define ITOP_MASK_RORINTR (0x1UL << 5)
224 #define ITOP_MASK_RTINTR (0x1UL << 6)
225 #define ITOP_MASK_RXINTR (0x1UL << 7)
226 #define ITOP_MASK_TXINTR (0x1UL << 8)
227 #define ITOP_MASK_INTR (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
234 * SSP Test Data Register - SSP_TDR
236 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
240 * we use the spi_message.state (void *) pointer to
241 * hold a single state value, that's why all this
242 * (void *) casting is done here.
244 #define STATE_START ((void *) 0)
245 #define STATE_RUNNING ((void *) 1)
246 #define STATE_DONE ((void *) 2)
247 #define STATE_ERROR ((void *) -1)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282 #define CLEAR_ALL_INTERRUPTS 0x3
284 #define SPI_POLLING_TIMEOUT 1000
288 * The type of reading going on on this chip
298 * The type of writing going on on this chip
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @workqueue: a workqueue on which any spi_message request is queued
336 * @pump_messages: work struct for scheduling work to the workqueue
337 * @queue_lock: spinlock to syncronise access to message queue
338 * @queue: message queue
339 * @busy: workqueue is busy
340 * @running: workqueue is running
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @tx: current position in TX buffer to be read
346 * @tx_end: end position in TX buffer to be read
347 * @rx: current position in RX buffer to be written
348 * @rx_end: end position in RX buffer to be written
349 * @read: the type of read currently going on
350 * @write: the type of write currently going on
351 * @exp_fifo_level: expected FIFO level
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
359 struct amba_device
*adev
;
360 struct vendor_data
*vendor
;
361 resource_size_t phybase
;
362 void __iomem
*virtbase
;
364 struct spi_master
*master
;
365 struct pl022_ssp_controller
*master_info
;
366 /* Driver message queue */
367 struct workqueue_struct
*workqueue
;
368 struct work_struct pump_messages
;
369 spinlock_t queue_lock
;
370 struct list_head queue
;
373 /* Message transfer pump */
374 struct tasklet_struct pump_transfers
;
375 struct spi_message
*cur_msg
;
376 struct spi_transfer
*cur_transfer
;
377 struct chip_data
*cur_chip
;
382 enum ssp_reading read
;
383 enum ssp_writing write
;
385 enum ssp_rx_level_trig rx_lev_trig
;
386 enum ssp_tx_level_trig tx_lev_trig
;
388 #ifdef CONFIG_DMA_ENGINE
389 struct dma_chan
*dma_rx_channel
;
390 struct dma_chan
*dma_tx_channel
;
391 struct sg_table sgt_rx
;
392 struct sg_table sgt_tx
;
398 * struct chip_data - To maintain runtime state of SSP for each client chip
399 * @cr0: Value of control register CR0 of SSP - on later ST variants this
400 * register is 32 bits wide rather than just 16
401 * @cr1: Value of control register CR1 of SSP
402 * @dmacr: Value of DMA control Register of SSP
403 * @cpsr: Value of Clock prescale register
404 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405 * @enable_dma: Whether to enable DMA or not
406 * @read: function ptr to be used to read when doing xfer for this chip
407 * @write: function ptr to be used to write when doing xfer for this chip
408 * @cs_control: chip select callback provided by chip
409 * @xfer_type: polling/interrupt/DMA
411 * Runtime state of the SSP controller, maintained per chip,
412 * This would be set according to the current message that would be served
421 enum ssp_reading read
;
422 enum ssp_writing write
;
423 void (*cs_control
) (u32 command
);
428 * null_cs_control - Dummy chip select function
429 * @command: select/delect the chip
431 * If no chip select function is provided by client this is used as dummy
434 static void null_cs_control(u32 command
)
436 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
440 * giveback - current spi_message is over, schedule next message and call
441 * callback of this message. Assumes that caller already
442 * set message->status; dma and pio irqs are blocked
443 * @pl022: SSP driver private data structure
445 static void giveback(struct pl022
*pl022
)
447 struct spi_transfer
*last_transfer
;
449 struct spi_message
*msg
;
450 void (*curr_cs_control
) (u32 command
);
453 * This local reference to the chip select function
454 * is needed because we set curr_chip to NULL
455 * as a step toward termininating the message.
457 curr_cs_control
= pl022
->cur_chip
->cs_control
;
458 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
459 msg
= pl022
->cur_msg
;
460 pl022
->cur_msg
= NULL
;
461 pl022
->cur_transfer
= NULL
;
462 pl022
->cur_chip
= NULL
;
463 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
464 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
466 last_transfer
= list_entry(msg
->transfers
.prev
,
470 /* Delay if requested before any change in chip select */
471 if (last_transfer
->delay_usecs
)
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
476 udelay(last_transfer
->delay_usecs
);
479 * Drop chip select UNLESS cs_change is true or we are returning
480 * a message with an error, or next message is for another chip
482 if (!last_transfer
->cs_change
)
483 curr_cs_control(SSP_CHIP_DESELECT
);
485 struct spi_message
*next_msg
;
487 /* Holding of cs was hinted, but we need to make sure
488 * the next message is for the same chip. Don't waste
489 * time with the following tests unless this was hinted.
491 * We cannot postpone this until pump_messages, because
492 * after calling msg->complete (below) the driver that
493 * sent the current message could be unloaded, which
494 * could invalidate the cs_control() callback...
497 /* get a pointer to the next message, if any */
498 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
499 if (list_empty(&pl022
->queue
))
502 next_msg
= list_entry(pl022
->queue
.next
,
503 struct spi_message
, queue
);
504 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
506 /* see if the next and current messages point
509 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
511 if (!next_msg
|| msg
->state
== STATE_ERROR
)
512 curr_cs_control(SSP_CHIP_DESELECT
);
516 msg
->complete(msg
->context
);
517 /* This message is completed, so let's turn off the clocks & power */
518 clk_disable(pl022
->clk
);
519 amba_pclk_disable(pl022
->adev
);
520 amba_vcore_disable(pl022
->adev
);
521 pm_runtime_put(&pl022
->adev
->dev
);
525 * flush - flush the FIFO to reach a clean state
526 * @pl022: SSP driver private data structure
528 static int flush(struct pl022
*pl022
)
530 unsigned long limit
= loops_per_jiffy
<< 1;
532 dev_dbg(&pl022
->adev
->dev
, "flush\n");
534 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
535 readw(SSP_DR(pl022
->virtbase
));
536 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
538 pl022
->exp_fifo_level
= 0;
544 * restore_state - Load configuration of current chip
545 * @pl022: SSP driver private data structure
547 static void restore_state(struct pl022
*pl022
)
549 struct chip_data
*chip
= pl022
->cur_chip
;
551 if (pl022
->vendor
->extended_cr
)
552 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
554 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
555 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
556 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
557 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
558 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
559 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
563 * Default SSP Register Values
565 #define DEFAULT_SSP_REG_CR0 ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
567 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
573 /* ST versions have slightly different bit layout */
574 #define DEFAULT_SSP_REG_CR0_ST ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
584 /* The PL023 version is slightly different again */
585 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592 #define DEFAULT_SSP_REG_CR1 ( \
593 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
596 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
599 /* ST versions extend this register to use all 16 bits */
600 #define DEFAULT_SSP_REG_CR1_ST ( \
601 DEFAULT_SSP_REG_CR1 | \
602 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
610 * The PL023 variant has further differences: no loopback mode, no microwire
611 * support, and a new clock feedback delay setting.
613 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
624 #define DEFAULT_SSP_REG_CPSR ( \
625 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
628 #define DEFAULT_SSP_REG_DMACR (\
629 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
634 * load_ssp_default_config - Load default configuration for SSP
635 * @pl022: SSP driver private data structure
637 static void load_ssp_default_config(struct pl022
*pl022
)
639 if (pl022
->vendor
->pl023
) {
640 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
641 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
642 } else if (pl022
->vendor
->extended_cr
) {
643 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
644 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
646 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
647 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
649 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
650 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
651 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
652 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
656 * This will write to TX and read from RX according to the parameters
659 static void readwriter(struct pl022
*pl022
)
663 * The FIFO depth is different between primecell variants.
664 * I believe filling in too much in the FIFO might cause
665 * errons in 8bit wide transfers on ARM variants (just 8 words
666 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
668 * To prevent this issue, the TX FIFO is only filled to the
669 * unused RX FIFO fill length, regardless of what the TX
670 * FIFO status flag indicates.
672 dev_dbg(&pl022
->adev
->dev
,
673 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
676 /* Read as much as you can */
677 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
678 && (pl022
->rx
< pl022
->rx_end
)) {
679 switch (pl022
->read
) {
681 readw(SSP_DR(pl022
->virtbase
));
684 *(u8
*) (pl022
->rx
) =
685 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
688 *(u16
*) (pl022
->rx
) =
689 (u16
) readw(SSP_DR(pl022
->virtbase
));
692 *(u32
*) (pl022
->rx
) =
693 readl(SSP_DR(pl022
->virtbase
));
696 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
697 pl022
->exp_fifo_level
--;
700 * Write as much as possible up to the RX FIFO size
702 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
703 && (pl022
->tx
< pl022
->tx_end
)) {
704 switch (pl022
->write
) {
706 writew(0x0, SSP_DR(pl022
->virtbase
));
709 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
712 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
715 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
718 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
719 pl022
->exp_fifo_level
++;
721 * This inner reader takes care of things appearing in the RX
722 * FIFO as we're transmitting. This will happen a lot since the
723 * clock starts running when you put things into the TX FIFO,
724 * and then things are continuously clocked into the RX FIFO.
726 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
727 && (pl022
->rx
< pl022
->rx_end
)) {
728 switch (pl022
->read
) {
730 readw(SSP_DR(pl022
->virtbase
));
733 *(u8
*) (pl022
->rx
) =
734 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
737 *(u16
*) (pl022
->rx
) =
738 (u16
) readw(SSP_DR(pl022
->virtbase
));
741 *(u32
*) (pl022
->rx
) =
742 readl(SSP_DR(pl022
->virtbase
));
745 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
746 pl022
->exp_fifo_level
--;
750 * When we exit here the TX FIFO should be full and the RX FIFO
757 * next_transfer - Move to the Next transfer in the current spi message
758 * @pl022: SSP driver private data structure
760 * This function moves though the linked list of spi transfers in the
761 * current spi message and returns with the state of current spi
762 * message i.e whether its last transfer is done(STATE_DONE) or
763 * Next transfer is ready(STATE_RUNNING)
765 static void *next_transfer(struct pl022
*pl022
)
767 struct spi_message
*msg
= pl022
->cur_msg
;
768 struct spi_transfer
*trans
= pl022
->cur_transfer
;
770 /* Move to next transfer */
771 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
772 pl022
->cur_transfer
=
773 list_entry(trans
->transfer_list
.next
,
774 struct spi_transfer
, transfer_list
);
775 return STATE_RUNNING
;
781 * This DMA functionality is only compiled in if we have
782 * access to the generic DMA devices/DMA engine.
784 #ifdef CONFIG_DMA_ENGINE
785 static void unmap_free_dma_scatter(struct pl022
*pl022
)
787 /* Unmap and free the SG tables */
788 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
789 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
790 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
791 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
792 sg_free_table(&pl022
->sgt_rx
);
793 sg_free_table(&pl022
->sgt_tx
);
796 static void dma_callback(void *data
)
798 struct pl022
*pl022
= data
;
799 struct spi_message
*msg
= pl022
->cur_msg
;
801 BUG_ON(!pl022
->sgt_rx
.sgl
);
805 * Optionally dump out buffers to inspect contents, this is
806 * good if you want to convince yourself that the loopback
807 * read/write contents are the same, when adopting to a new
811 struct scatterlist
*sg
;
814 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
819 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
820 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
821 print_hex_dump(KERN_ERR
, "SPI RX: ",
829 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
830 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
831 print_hex_dump(KERN_ERR
, "SPI TX: ",
842 unmap_free_dma_scatter(pl022
);
844 /* Update total bytes transferred */
845 msg
->actual_length
+= pl022
->cur_transfer
->len
;
846 if (pl022
->cur_transfer
->cs_change
)
848 cs_control(SSP_CHIP_DESELECT
);
850 /* Move to next transfer */
851 msg
->state
= next_transfer(pl022
);
852 tasklet_schedule(&pl022
->pump_transfers
);
855 static void setup_dma_scatter(struct pl022
*pl022
,
858 struct sg_table
*sgtab
)
860 struct scatterlist
*sg
;
861 int bytesleft
= length
;
867 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
869 * If there are less bytes left than what fits
870 * in the current page (plus page alignment offset)
871 * we just feed in this, else we stuff in as much
874 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
875 mapbytes
= bytesleft
;
877 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
878 sg_set_page(sg
, virt_to_page(bufp
),
879 mapbytes
, offset_in_page(bufp
));
881 bytesleft
-= mapbytes
;
882 dev_dbg(&pl022
->adev
->dev
,
883 "set RX/TX target page @ %p, %d bytes, %d left\n",
884 bufp
, mapbytes
, bytesleft
);
887 /* Map the dummy buffer on every page */
888 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
889 if (bytesleft
< PAGE_SIZE
)
890 mapbytes
= bytesleft
;
892 mapbytes
= PAGE_SIZE
;
893 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
895 bytesleft
-= mapbytes
;
896 dev_dbg(&pl022
->adev
->dev
,
897 "set RX/TX to dummy page %d bytes, %d left\n",
898 mapbytes
, bytesleft
);
906 * configure_dma - configures the channels for the next transfer
907 * @pl022: SSP driver's private data structure
909 static int configure_dma(struct pl022
*pl022
)
911 struct dma_slave_config rx_conf
= {
912 .src_addr
= SSP_DR(pl022
->phybase
),
913 .direction
= DMA_FROM_DEVICE
,
915 struct dma_slave_config tx_conf
= {
916 .dst_addr
= SSP_DR(pl022
->phybase
),
917 .direction
= DMA_TO_DEVICE
,
921 int rx_sglen
, tx_sglen
;
922 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
923 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
924 struct dma_async_tx_descriptor
*rxdesc
;
925 struct dma_async_tx_descriptor
*txdesc
;
927 /* Check that the channels are available */
928 if (!rxchan
|| !txchan
)
932 * If supplied, the DMA burstsize should equal the FIFO trigger level.
933 * Notice that the DMA engine uses one-to-one mapping. Since we can
934 * not trigger on 2 elements this needs explicit mapping rather than
937 switch (pl022
->rx_lev_trig
) {
938 case SSP_RX_1_OR_MORE_ELEM
:
939 rx_conf
.src_maxburst
= 1;
941 case SSP_RX_4_OR_MORE_ELEM
:
942 rx_conf
.src_maxburst
= 4;
944 case SSP_RX_8_OR_MORE_ELEM
:
945 rx_conf
.src_maxburst
= 8;
947 case SSP_RX_16_OR_MORE_ELEM
:
948 rx_conf
.src_maxburst
= 16;
950 case SSP_RX_32_OR_MORE_ELEM
:
951 rx_conf
.src_maxburst
= 32;
954 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
958 switch (pl022
->tx_lev_trig
) {
959 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
960 tx_conf
.dst_maxburst
= 1;
962 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
963 tx_conf
.dst_maxburst
= 4;
965 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
966 tx_conf
.dst_maxburst
= 8;
968 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
969 tx_conf
.dst_maxburst
= 16;
971 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
972 tx_conf
.dst_maxburst
= 32;
975 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
979 switch (pl022
->read
) {
981 /* Use the same as for writing */
982 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
985 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
988 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
991 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
995 switch (pl022
->write
) {
997 /* Use the same as for reading */
998 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
1001 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1004 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1007 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1011 /* SPI pecularity: we need to read and write the same width */
1012 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1013 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1014 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1015 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1016 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1018 dmaengine_slave_config(rxchan
, &rx_conf
);
1019 dmaengine_slave_config(txchan
, &tx_conf
);
1021 /* Create sglists for the transfers */
1022 pages
= (pl022
->cur_transfer
->len
>> PAGE_SHIFT
) + 1;
1023 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1025 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_KERNEL
);
1027 goto err_alloc_rx_sg
;
1029 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_KERNEL
);
1031 goto err_alloc_tx_sg
;
1033 /* Fill in the scatterlists for the RX+TX buffers */
1034 setup_dma_scatter(pl022
, pl022
->rx
,
1035 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1036 setup_dma_scatter(pl022
, pl022
->tx
,
1037 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1039 /* Map DMA buffers */
1040 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1041 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1045 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1046 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1050 /* Send both scatterlists */
1051 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
1055 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1059 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
1063 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1067 /* Put the callback on the RX transfer only, that should finish last */
1068 rxdesc
->callback
= dma_callback
;
1069 rxdesc
->callback_param
= pl022
;
1071 /* Submit and fire RX and TX with TX last so we're ready to read! */
1072 dmaengine_submit(rxdesc
);
1073 dmaengine_submit(txdesc
);
1074 dma_async_issue_pending(rxchan
);
1075 dma_async_issue_pending(txchan
);
1080 dmaengine_terminate_all(txchan
);
1082 dmaengine_terminate_all(rxchan
);
1083 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1084 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1086 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1087 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1089 sg_free_table(&pl022
->sgt_tx
);
1091 sg_free_table(&pl022
->sgt_rx
);
1096 static int __init
pl022_dma_probe(struct pl022
*pl022
)
1098 dma_cap_mask_t mask
;
1100 /* Try to acquire a generic DMA engine slave channel */
1102 dma_cap_set(DMA_SLAVE
, mask
);
1104 * We need both RX and TX channels to do DMA, else do none
1107 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1108 pl022
->master_info
->dma_filter
,
1109 pl022
->master_info
->dma_rx_param
);
1110 if (!pl022
->dma_rx_channel
) {
1111 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1115 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1116 pl022
->master_info
->dma_filter
,
1117 pl022
->master_info
->dma_tx_param
);
1118 if (!pl022
->dma_tx_channel
) {
1119 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1123 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1124 if (!pl022
->dummypage
) {
1125 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1126 goto err_no_dummypage
;
1129 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1130 dma_chan_name(pl022
->dma_rx_channel
),
1131 dma_chan_name(pl022
->dma_tx_channel
));
1136 dma_release_channel(pl022
->dma_tx_channel
);
1138 dma_release_channel(pl022
->dma_rx_channel
);
1139 pl022
->dma_rx_channel
= NULL
;
1141 dev_err(&pl022
->adev
->dev
,
1142 "Failed to work in dma mode, work without dma!\n");
1146 static void terminate_dma(struct pl022
*pl022
)
1148 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1149 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1151 dmaengine_terminate_all(rxchan
);
1152 dmaengine_terminate_all(txchan
);
1153 unmap_free_dma_scatter(pl022
);
1156 static void pl022_dma_remove(struct pl022
*pl022
)
1159 terminate_dma(pl022
);
1160 if (pl022
->dma_tx_channel
)
1161 dma_release_channel(pl022
->dma_tx_channel
);
1162 if (pl022
->dma_rx_channel
)
1163 dma_release_channel(pl022
->dma_rx_channel
);
1164 kfree(pl022
->dummypage
);
1168 static inline int configure_dma(struct pl022
*pl022
)
1173 static inline int pl022_dma_probe(struct pl022
*pl022
)
1178 static inline void pl022_dma_remove(struct pl022
*pl022
)
1184 * pl022_interrupt_handler - Interrupt handler for SSP controller
1186 * This function handles interrupts generated for an interrupt based transfer.
1187 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1188 * current message's state as STATE_ERROR and schedule the tasklet
1189 * pump_transfers which will do the postprocessing of the current message by
1190 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1191 * more data, and writes data in TX FIFO till it is not full. If we complete
1192 * the transfer we move to the next transfer and schedule the tasklet.
1194 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1196 struct pl022
*pl022
= dev_id
;
1197 struct spi_message
*msg
= pl022
->cur_msg
;
1201 if (unlikely(!msg
)) {
1202 dev_err(&pl022
->adev
->dev
,
1203 "bad message state in interrupt handler");
1208 /* Read the Interrupt Status Register */
1209 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1211 if (unlikely(!irq_status
))
1215 * This handles the FIFO interrupts, the timeout
1216 * interrupts are flatly ignored, they cannot be
1219 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1221 * Overrun interrupt - bail out since our Data has been
1224 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1225 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1226 dev_err(&pl022
->adev
->dev
,
1227 "RXFIFO is full\n");
1228 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1229 dev_err(&pl022
->adev
->dev
,
1230 "TXFIFO is full\n");
1233 * Disable and clear interrupts, disable SSP,
1234 * mark message with bad status so it can be
1237 writew(DISABLE_ALL_INTERRUPTS
,
1238 SSP_IMSC(pl022
->virtbase
));
1239 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1240 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1241 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1242 msg
->state
= STATE_ERROR
;
1244 /* Schedule message queue handler */
1245 tasklet_schedule(&pl022
->pump_transfers
);
1251 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1253 /* Disable Transmit interrupt */
1254 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
1255 (~SSP_IMSC_MASK_TXIM
),
1256 SSP_IMSC(pl022
->virtbase
));
1260 * Since all transactions must write as much as shall be read,
1261 * we can conclude the entire transaction once RX is complete.
1262 * At this point, all TX will always be finished.
1264 if (pl022
->rx
>= pl022
->rx_end
) {
1265 writew(DISABLE_ALL_INTERRUPTS
,
1266 SSP_IMSC(pl022
->virtbase
));
1267 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1268 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1269 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1270 "bytes (did you request an odd "
1271 "number of bytes on a 16bit bus?)\n",
1272 (u32
) (pl022
->rx
- pl022
->rx_end
));
1274 /* Update total bytes transferred */
1275 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1276 if (pl022
->cur_transfer
->cs_change
)
1278 cs_control(SSP_CHIP_DESELECT
);
1279 /* Move to next transfer */
1280 msg
->state
= next_transfer(pl022
);
1281 tasklet_schedule(&pl022
->pump_transfers
);
1289 * This sets up the pointers to memory for the next message to
1290 * send out on the SPI bus.
1292 static int set_up_next_transfer(struct pl022
*pl022
,
1293 struct spi_transfer
*transfer
)
1297 /* Sanity check the message for this bus width */
1298 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1299 if (unlikely(residue
!= 0)) {
1300 dev_err(&pl022
->adev
->dev
,
1301 "message of %u bytes to transmit but the current "
1302 "chip bus has a data width of %u bytes!\n",
1303 pl022
->cur_transfer
->len
,
1304 pl022
->cur_chip
->n_bytes
);
1305 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1308 pl022
->tx
= (void *)transfer
->tx_buf
;
1309 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1310 pl022
->rx
= (void *)transfer
->rx_buf
;
1311 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1313 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1314 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1319 * pump_transfers - Tasklet function which schedules next transfer
1320 * when running in interrupt or DMA transfer mode.
1321 * @data: SSP driver private data structure
1324 static void pump_transfers(unsigned long data
)
1326 struct pl022
*pl022
= (struct pl022
*) data
;
1327 struct spi_message
*message
= NULL
;
1328 struct spi_transfer
*transfer
= NULL
;
1329 struct spi_transfer
*previous
= NULL
;
1331 /* Get current state information */
1332 message
= pl022
->cur_msg
;
1333 transfer
= pl022
->cur_transfer
;
1335 /* Handle for abort */
1336 if (message
->state
== STATE_ERROR
) {
1337 message
->status
= -EIO
;
1342 /* Handle end of message */
1343 if (message
->state
== STATE_DONE
) {
1344 message
->status
= 0;
1349 /* Delay if requested at end of transfer before CS change */
1350 if (message
->state
== STATE_RUNNING
) {
1351 previous
= list_entry(transfer
->transfer_list
.prev
,
1352 struct spi_transfer
,
1354 if (previous
->delay_usecs
)
1356 * FIXME: This runs in interrupt context.
1357 * Is this really smart?
1359 udelay(previous
->delay_usecs
);
1361 /* Drop chip select only if cs_change is requested */
1362 if (previous
->cs_change
)
1363 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1366 message
->state
= STATE_RUNNING
;
1369 if (set_up_next_transfer(pl022
, transfer
)) {
1370 message
->state
= STATE_ERROR
;
1371 message
->status
= -EIO
;
1375 /* Flush the FIFOs and let's go! */
1378 if (pl022
->cur_chip
->enable_dma
) {
1379 if (configure_dma(pl022
)) {
1380 dev_dbg(&pl022
->adev
->dev
,
1381 "configuration of DMA failed, fall back to interrupt mode\n");
1382 goto err_config_dma
;
1388 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
1391 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1393 u32 irqflags
= ENABLE_ALL_INTERRUPTS
;
1395 /* Enable target chip */
1396 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1397 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1399 pl022
->cur_msg
->state
= STATE_ERROR
;
1400 pl022
->cur_msg
->status
= -EIO
;
1404 /* If we're using DMA, set up DMA here */
1405 if (pl022
->cur_chip
->enable_dma
) {
1406 /* Configure DMA transfer */
1407 if (configure_dma(pl022
)) {
1408 dev_dbg(&pl022
->adev
->dev
,
1409 "configuration of DMA failed, fall back to interrupt mode\n");
1410 goto err_config_dma
;
1412 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1413 irqflags
= DISABLE_ALL_INTERRUPTS
;
1416 /* Enable SSP, turn on interrupts */
1417 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1418 SSP_CR1(pl022
->virtbase
));
1419 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1422 static void do_polling_transfer(struct pl022
*pl022
)
1424 struct spi_message
*message
= NULL
;
1425 struct spi_transfer
*transfer
= NULL
;
1426 struct spi_transfer
*previous
= NULL
;
1427 struct chip_data
*chip
;
1428 unsigned long time
, timeout
;
1430 chip
= pl022
->cur_chip
;
1431 message
= pl022
->cur_msg
;
1433 while (message
->state
!= STATE_DONE
) {
1434 /* Handle for abort */
1435 if (message
->state
== STATE_ERROR
)
1437 transfer
= pl022
->cur_transfer
;
1439 /* Delay if requested at end of transfer */
1440 if (message
->state
== STATE_RUNNING
) {
1442 list_entry(transfer
->transfer_list
.prev
,
1443 struct spi_transfer
, transfer_list
);
1444 if (previous
->delay_usecs
)
1445 udelay(previous
->delay_usecs
);
1446 if (previous
->cs_change
)
1447 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1450 message
->state
= STATE_RUNNING
;
1451 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1454 /* Configuration Changing Per Transfer */
1455 if (set_up_next_transfer(pl022
, transfer
)) {
1457 message
->state
= STATE_ERROR
;
1460 /* Flush FIFOs and enable SSP */
1462 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1463 SSP_CR1(pl022
->virtbase
));
1465 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1467 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1468 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1471 if (time_after(time
, timeout
)) {
1472 dev_warn(&pl022
->adev
->dev
,
1473 "%s: timeout!\n", __func__
);
1474 message
->state
= STATE_ERROR
;
1480 /* Update total byte transferred */
1481 message
->actual_length
+= pl022
->cur_transfer
->len
;
1482 if (pl022
->cur_transfer
->cs_change
)
1483 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1484 /* Move to next transfer */
1485 message
->state
= next_transfer(pl022
);
1488 /* Handle end of message */
1489 if (message
->state
== STATE_DONE
)
1490 message
->status
= 0;
1492 message
->status
= -EIO
;
1499 * pump_messages - Workqueue function which processes spi message queue
1500 * @data: pointer to private data of SSP driver
1502 * This function checks if there is any spi message in the queue that
1503 * needs processing and delegate control to appropriate function
1504 * do_polling_transfer()/do_interrupt_dma_transfer()
1505 * based on the kind of the transfer
1508 static void pump_messages(struct work_struct
*work
)
1510 struct pl022
*pl022
=
1511 container_of(work
, struct pl022
, pump_messages
);
1512 unsigned long flags
;
1514 /* Lock queue and check for queue work */
1515 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1516 if (list_empty(&pl022
->queue
) || !pl022
->running
) {
1517 pl022
->busy
= false;
1518 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1521 /* Make sure we are not already running a message */
1522 if (pl022
->cur_msg
) {
1523 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1526 /* Extract head of queue */
1528 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1530 list_del_init(&pl022
->cur_msg
->queue
);
1532 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1534 /* Initial message state */
1535 pl022
->cur_msg
->state
= STATE_START
;
1536 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1537 struct spi_transfer
,
1540 /* Setup the SPI using the per chip configuration */
1541 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1543 * We enable the core voltage and clocks here, then the clocks
1544 * and core will be disabled when giveback() is called in each method
1545 * (poll/interrupt/DMA)
1547 pm_runtime_get_sync(&pl022
->adev
->dev
);
1548 amba_vcore_enable(pl022
->adev
);
1549 amba_pclk_enable(pl022
->adev
);
1550 clk_enable(pl022
->clk
);
1551 restore_state(pl022
);
1554 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1555 do_polling_transfer(pl022
);
1557 do_interrupt_dma_transfer(pl022
);
1561 static int __init
init_queue(struct pl022
*pl022
)
1563 INIT_LIST_HEAD(&pl022
->queue
);
1564 spin_lock_init(&pl022
->queue_lock
);
1566 pl022
->running
= false;
1567 pl022
->busy
= false;
1569 tasklet_init(&pl022
->pump_transfers
,
1570 pump_transfers
, (unsigned long)pl022
);
1572 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1573 pl022
->workqueue
= create_singlethread_workqueue(
1574 dev_name(pl022
->master
->dev
.parent
));
1575 if (pl022
->workqueue
== NULL
)
1582 static int start_queue(struct pl022
*pl022
)
1584 unsigned long flags
;
1586 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1588 if (pl022
->running
|| pl022
->busy
) {
1589 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1593 pl022
->running
= true;
1594 pl022
->cur_msg
= NULL
;
1595 pl022
->cur_transfer
= NULL
;
1596 pl022
->cur_chip
= NULL
;
1597 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1599 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1605 static int stop_queue(struct pl022
*pl022
)
1607 unsigned long flags
;
1608 unsigned limit
= 500;
1611 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1613 /* This is a bit lame, but is optimized for the common execution path.
1614 * A wait_queue on the pl022->busy could be used, but then the common
1615 * execution path (pump_messages) would be required to call wake_up or
1616 * friends on every SPI message. Do this instead */
1617 while ((!list_empty(&pl022
->queue
) || pl022
->busy
) && limit
--) {
1618 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1620 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1623 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1626 pl022
->running
= false;
1628 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1633 static int destroy_queue(struct pl022
*pl022
)
1637 status
= stop_queue(pl022
);
1638 /* we are unloading the module or failing to load (only two calls
1639 * to this routine), and neither call can handle a return value.
1640 * However, destroy_workqueue calls flush_workqueue, and that will
1641 * block until all work is done. If the reason that stop_queue
1642 * timed out is that the work will never finish, then it does no
1643 * good to call destroy_workqueue, so return anyway. */
1647 destroy_workqueue(pl022
->workqueue
);
1652 static int verify_controller_parameters(struct pl022
*pl022
,
1653 struct pl022_config_chip
const *chip_info
)
1655 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1656 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1657 dev_err(&pl022
->adev
->dev
,
1658 "interface is configured incorrectly\n");
1661 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1662 (!pl022
->vendor
->unidir
)) {
1663 dev_err(&pl022
->adev
->dev
,
1664 "unidirectional mode not supported in this "
1665 "hardware version\n");
1668 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1669 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1670 dev_err(&pl022
->adev
->dev
,
1671 "hierarchy is configured incorrectly\n");
1674 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1675 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1676 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1677 dev_err(&pl022
->adev
->dev
,
1678 "Communication mode is configured incorrectly\n");
1681 switch (chip_info
->rx_lev_trig
) {
1682 case SSP_RX_1_OR_MORE_ELEM
:
1683 case SSP_RX_4_OR_MORE_ELEM
:
1684 case SSP_RX_8_OR_MORE_ELEM
:
1685 /* These are always OK, all variants can handle this */
1687 case SSP_RX_16_OR_MORE_ELEM
:
1688 if (pl022
->vendor
->fifodepth
< 16) {
1689 dev_err(&pl022
->adev
->dev
,
1690 "RX FIFO Trigger Level is configured incorrectly\n");
1694 case SSP_RX_32_OR_MORE_ELEM
:
1695 if (pl022
->vendor
->fifodepth
< 32) {
1696 dev_err(&pl022
->adev
->dev
,
1697 "RX FIFO Trigger Level is configured incorrectly\n");
1702 dev_err(&pl022
->adev
->dev
,
1703 "RX FIFO Trigger Level is configured incorrectly\n");
1707 switch (chip_info
->tx_lev_trig
) {
1708 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1709 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1710 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1711 /* These are always OK, all variants can handle this */
1713 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1714 if (pl022
->vendor
->fifodepth
< 16) {
1715 dev_err(&pl022
->adev
->dev
,
1716 "TX FIFO Trigger Level is configured incorrectly\n");
1720 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1721 if (pl022
->vendor
->fifodepth
< 32) {
1722 dev_err(&pl022
->adev
->dev
,
1723 "TX FIFO Trigger Level is configured incorrectly\n");
1728 dev_err(&pl022
->adev
->dev
,
1729 "TX FIFO Trigger Level is configured incorrectly\n");
1733 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1734 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1735 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1736 dev_err(&pl022
->adev
->dev
,
1737 "CTRL LEN is configured incorrectly\n");
1740 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1741 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1742 dev_err(&pl022
->adev
->dev
,
1743 "Wait State is configured incorrectly\n");
1746 /* Half duplex is only available in the ST Micro version */
1747 if (pl022
->vendor
->extended_cr
) {
1748 if ((chip_info
->duplex
!=
1749 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1750 && (chip_info
->duplex
!=
1751 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1752 dev_err(&pl022
->adev
->dev
,
1753 "Microwire duplex mode is configured incorrectly\n");
1757 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1758 dev_err(&pl022
->adev
->dev
,
1759 "Microwire half duplex mode requested,"
1760 " but this is only available in the"
1761 " ST version of PL022\n");
1769 * pl022_transfer - transfer function registered to SPI master framework
1770 * @spi: spi device which is requesting transfer
1771 * @msg: spi message which is to handled is queued to driver queue
1773 * This function is registered to the SPI framework for this SPI master
1774 * controller. It will queue the spi_message in the queue of driver if
1775 * the queue is not stopped and return.
1777 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1779 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1780 unsigned long flags
;
1782 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1784 if (!pl022
->running
) {
1785 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1788 msg
->actual_length
= 0;
1789 msg
->status
= -EINPROGRESS
;
1790 msg
->state
= STATE_START
;
1792 list_add_tail(&msg
->queue
, &pl022
->queue
);
1793 if (pl022
->running
&& !pl022
->busy
)
1794 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1796 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1800 static int calculate_effective_freq(struct pl022
*pl022
,
1802 struct ssp_clock_params
*clk_freq
)
1804 /* Lets calculate the frequency parameters */
1807 bool freq_found
= false;
1812 rate
= clk_get_rate(pl022
->clk
);
1813 /* cpsdvscr = 2 & scr 0 */
1814 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1815 /* cpsdvsr = 254 & scr = 255 */
1816 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1818 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1819 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1820 while (scr
<= SCR_MAX
&& !freq_found
) {
1822 (cpsdvsr
* (1 + scr
))) > freq
)
1826 * This bool is made true when
1827 * effective frequency >=
1828 * target frequency is found
1832 (cpsdvsr
* (1 + scr
))) != freq
) {
1833 if (scr
== SCR_MIN
) {
1847 dev_dbg(&pl022
->adev
->dev
,
1848 "SSP Effective Frequency is %u\n",
1849 (rate
/ (cpsdvsr
* (1 + scr
))));
1850 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1851 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1852 dev_dbg(&pl022
->adev
->dev
,
1853 "SSP cpsdvsr = %d, scr = %d\n",
1854 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1857 dev_err(&pl022
->adev
->dev
,
1858 "controller data is incorrect: out of range frequency");
1866 * A piece of default chip info unless the platform
1869 static const struct pl022_config_chip pl022_default_chip_info
= {
1870 .com_mode
= POLLING_TRANSFER
,
1871 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1872 .hierarchy
= SSP_SLAVE
,
1873 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1874 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1875 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1876 .ctrl_len
= SSP_BITS_8
,
1877 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1878 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1879 .cs_control
= null_cs_control
,
1884 * pl022_setup - setup function registered to SPI master framework
1885 * @spi: spi device which is requesting setup
1887 * This function is registered to the SPI framework for this SPI master
1888 * controller. If it is the first time when setup is called by this device,
1889 * this function will initialize the runtime state for this chip and save
1890 * the same in the device structure. Else it will update the runtime info
1891 * with the updated chip info. Nothing is really being written to the
1892 * controller hardware here, that is not done until the actual transfer
1895 static int pl022_setup(struct spi_device
*spi
)
1897 struct pl022_config_chip
const *chip_info
;
1898 struct chip_data
*chip
;
1899 struct ssp_clock_params clk_freq
= {0, };
1901 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1902 unsigned int bits
= spi
->bits_per_word
;
1905 if (!spi
->max_speed_hz
)
1908 /* Get controller_state if one is supplied */
1909 chip
= spi_get_ctldata(spi
);
1912 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1915 "cannot allocate controller state\n");
1919 "allocated memory for controller's runtime state\n");
1922 /* Get controller data if one is supplied */
1923 chip_info
= spi
->controller_data
;
1925 if (chip_info
== NULL
) {
1926 chip_info
= &pl022_default_chip_info
;
1927 /* spi_board_info.controller_data not is supplied */
1929 "using default controller_data settings\n");
1932 "using user supplied controller_data settings\n");
1935 * We can override with custom divisors, else we use the board
1938 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1939 && (0 == chip_info
->clk_freq
.scr
)) {
1940 status
= calculate_effective_freq(pl022
,
1944 goto err_config_params
;
1946 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1947 if ((clk_freq
.cpsdvsr
% 2) != 0)
1949 clk_freq
.cpsdvsr
- 1;
1951 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1952 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1955 "cpsdvsr is configured incorrectly\n");
1956 goto err_config_params
;
1960 status
= verify_controller_parameters(pl022
, chip_info
);
1962 dev_err(&spi
->dev
, "controller data is incorrect");
1963 goto err_config_params
;
1966 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1967 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1969 /* Now set controller state based on controller data */
1970 chip
->xfer_type
= chip_info
->com_mode
;
1971 if (!chip_info
->cs_control
) {
1972 chip
->cs_control
= null_cs_control
;
1974 "chip select function is NULL for this chip\n");
1976 chip
->cs_control
= chip_info
->cs_control
;
1979 /* PL022 doesn't support less than 4-bits */
1981 goto err_config_params
;
1982 } else if (bits
<= 8) {
1983 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1985 chip
->read
= READING_U8
;
1986 chip
->write
= WRITING_U8
;
1987 } else if (bits
<= 16) {
1988 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1990 chip
->read
= READING_U16
;
1991 chip
->write
= WRITING_U16
;
1993 if (pl022
->vendor
->max_bpw
>= 32) {
1994 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1996 chip
->read
= READING_U32
;
1997 chip
->write
= WRITING_U32
;
2000 "illegal data size for this controller!\n");
2002 "a standard pl022 can only handle "
2003 "1 <= n <= 16 bit words\n");
2005 goto err_config_params
;
2009 /* Now Initialize all register settings required for this chip */
2014 if ((chip_info
->com_mode
== DMA_TRANSFER
)
2015 && ((pl022
->master_info
)->enable_dma
)) {
2016 chip
->enable_dma
= true;
2017 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
2018 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2019 SSP_DMACR_MASK_RXDMAE
, 0);
2020 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2021 SSP_DMACR_MASK_TXDMAE
, 1);
2023 chip
->enable_dma
= false;
2024 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
2025 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2026 SSP_DMACR_MASK_RXDMAE
, 0);
2027 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2028 SSP_DMACR_MASK_TXDMAE
, 1);
2031 chip
->cpsr
= clk_freq
.cpsdvsr
;
2033 /* Special setup for the ST micro extended control registers */
2034 if (pl022
->vendor
->extended_cr
) {
2037 if (pl022
->vendor
->pl023
) {
2038 /* These bits are only in the PL023 */
2039 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
2040 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
2042 /* These bits are in the PL022 but not PL023 */
2043 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
2044 SSP_CR0_MASK_HALFDUP_ST
, 5);
2045 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
2046 SSP_CR0_MASK_CSS_ST
, 16);
2047 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2048 SSP_CR0_MASK_FRF_ST
, 21);
2049 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
2050 SSP_CR1_MASK_MWAIT_ST
, 6);
2052 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2053 SSP_CR0_MASK_DSS_ST
, 0);
2055 if (spi
->mode
& SPI_LSB_FIRST
) {
2062 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2063 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2064 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2065 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2066 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2067 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2069 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2070 SSP_CR0_MASK_DSS
, 0);
2071 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2072 SSP_CR0_MASK_FRF
, 4);
2075 /* Stuff that is common for all versions */
2076 if (spi
->mode
& SPI_CPOL
)
2077 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2079 tmp
= SSP_CLK_POL_IDLE_LOW
;
2080 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2082 if (spi
->mode
& SPI_CPHA
)
2083 tmp
= SSP_CLK_SECOND_EDGE
;
2085 tmp
= SSP_CLK_FIRST_EDGE
;
2086 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2088 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2089 /* Loopback is available on all versions except PL023 */
2090 if (pl022
->vendor
->loopback
) {
2091 if (spi
->mode
& SPI_LOOP
)
2092 tmp
= LOOPBACK_ENABLED
;
2094 tmp
= LOOPBACK_DISABLED
;
2095 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2097 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2098 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2099 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
2101 /* Save controller_state */
2102 spi_set_ctldata(spi
, chip
);
2105 spi_set_ctldata(spi
, NULL
);
2111 * pl022_cleanup - cleanup function registered to SPI master framework
2112 * @spi: spi device which is requesting cleanup
2114 * This function is registered to the SPI framework for this SPI master
2115 * controller. It will free the runtime state of chip.
2117 static void pl022_cleanup(struct spi_device
*spi
)
2119 struct chip_data
*chip
= spi_get_ctldata(spi
);
2121 spi_set_ctldata(spi
, NULL
);
2126 static int __devinit
2127 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2129 struct device
*dev
= &adev
->dev
;
2130 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
2131 struct spi_master
*master
;
2132 struct pl022
*pl022
= NULL
; /*Data for this driver */
2135 dev_info(&adev
->dev
,
2136 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2137 if (platform_info
== NULL
) {
2138 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2143 /* Allocate master with space for data */
2144 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2145 if (master
== NULL
) {
2146 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2151 pl022
= spi_master_get_devdata(master
);
2152 pl022
->master
= master
;
2153 pl022
->master_info
= platform_info
;
2155 pl022
->vendor
= id
->data
;
2158 * Bus Number Which has been Assigned to this SSP controller
2161 master
->bus_num
= platform_info
->bus_id
;
2162 master
->num_chipselect
= platform_info
->num_chipselect
;
2163 master
->cleanup
= pl022_cleanup
;
2164 master
->setup
= pl022_setup
;
2165 master
->transfer
= pl022_transfer
;
2168 * Supports mode 0-3, loopback, and active low CS. Transfers are
2169 * always MS bit first on the original pl022.
2171 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2172 if (pl022
->vendor
->extended_cr
)
2173 master
->mode_bits
|= SPI_LSB_FIRST
;
2175 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2177 status
= amba_request_regions(adev
, NULL
);
2179 goto err_no_ioregion
;
2181 pl022
->phybase
= adev
->res
.start
;
2182 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2183 if (pl022
->virtbase
== NULL
) {
2185 goto err_no_ioremap
;
2187 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2188 adev
->res
.start
, pl022
->virtbase
);
2189 pm_runtime_enable(dev
);
2190 pm_runtime_resume(dev
);
2192 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2193 if (IS_ERR(pl022
->clk
)) {
2194 status
= PTR_ERR(pl022
->clk
);
2195 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2200 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2201 SSP_CR1(pl022
->virtbase
));
2202 load_ssp_default_config(pl022
);
2204 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2207 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2211 /* Get DMA channels */
2212 if (platform_info
->enable_dma
) {
2213 status
= pl022_dma_probe(pl022
);
2215 platform_info
->enable_dma
= 0;
2218 /* Initialize and start queue */
2219 status
= init_queue(pl022
);
2221 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
2222 goto err_init_queue
;
2224 status
= start_queue(pl022
);
2226 dev_err(&adev
->dev
, "probe - problem starting queue\n");
2227 goto err_start_queue
;
2229 /* Register with the SPI framework */
2230 amba_set_drvdata(adev
, pl022
);
2231 status
= spi_register_master(master
);
2234 "probe - problem registering spi master\n");
2235 goto err_spi_register
;
2237 dev_dbg(dev
, "probe succeeded\n");
2239 * Disable the silicon block pclk and any voltage domain and just
2240 * power it up and clock it when it's needed
2242 amba_pclk_disable(adev
);
2243 amba_vcore_disable(adev
);
2249 destroy_queue(pl022
);
2250 pl022_dma_remove(pl022
);
2251 free_irq(adev
->irq
[0], pl022
);
2252 pm_runtime_disable(&adev
->dev
);
2254 clk_put(pl022
->clk
);
2256 iounmap(pl022
->virtbase
);
2258 amba_release_regions(adev
);
2260 spi_master_put(master
);
2266 static int __devexit
2267 pl022_remove(struct amba_device
*adev
)
2269 struct pl022
*pl022
= amba_get_drvdata(adev
);
2274 /* Remove the queue */
2275 if (destroy_queue(pl022
) != 0)
2276 dev_err(&adev
->dev
, "queue remove failed\n");
2277 load_ssp_default_config(pl022
);
2278 pl022_dma_remove(pl022
);
2279 free_irq(adev
->irq
[0], pl022
);
2280 clk_disable(pl022
->clk
);
2281 clk_put(pl022
->clk
);
2282 iounmap(pl022
->virtbase
);
2283 amba_release_regions(adev
);
2284 tasklet_disable(&pl022
->pump_transfers
);
2285 spi_unregister_master(pl022
->master
);
2286 spi_master_put(pl022
->master
);
2287 amba_set_drvdata(adev
, NULL
);
2292 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
2294 struct pl022
*pl022
= amba_get_drvdata(adev
);
2297 status
= stop_queue(pl022
);
2299 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
2303 amba_vcore_enable(adev
);
2304 amba_pclk_enable(adev
);
2305 load_ssp_default_config(pl022
);
2306 amba_pclk_disable(adev
);
2307 amba_vcore_disable(adev
);
2308 dev_dbg(&adev
->dev
, "suspended\n");
2312 static int pl022_resume(struct amba_device
*adev
)
2314 struct pl022
*pl022
= amba_get_drvdata(adev
);
2317 /* Start the queue running */
2318 status
= start_queue(pl022
);
2320 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
2322 dev_dbg(&adev
->dev
, "resumed\n");
2327 #define pl022_suspend NULL
2328 #define pl022_resume NULL
2329 #endif /* CONFIG_PM */
2331 static struct vendor_data vendor_arm
= {
2335 .extended_cr
= false,
2341 static struct vendor_data vendor_st
= {
2345 .extended_cr
= true,
2350 static struct vendor_data vendor_st_pl023
= {
2354 .extended_cr
= true,
2359 static struct vendor_data vendor_db5500_pl023
= {
2363 .extended_cr
= true,
2368 static struct amba_id pl022_ids
[] = {
2371 * ARM PL022 variant, this has a 16bit wide
2372 * and 8 locations deep TX/RX FIFO
2376 .data
= &vendor_arm
,
2380 * ST Micro derivative, this has 32bit wide
2381 * and 32 locations deep TX/RX FIFO
2389 * ST-Ericsson derivative "PL023" (this is not
2390 * an official ARM number), this is a PL022 SSP block
2391 * stripped to SPI mode only, it has 32bit wide
2392 * and 32 locations deep TX/RX FIFO but no extended
2397 .data
= &vendor_st_pl023
,
2402 .data
= &vendor_db5500_pl023
,
2407 static struct amba_driver pl022_driver
= {
2409 .name
= "ssp-pl022",
2411 .id_table
= pl022_ids
,
2412 .probe
= pl022_probe
,
2413 .remove
= __devexit_p(pl022_remove
),
2414 .suspend
= pl022_suspend
,
2415 .resume
= pl022_resume
,
2419 static int __init
pl022_init(void)
2421 return amba_driver_register(&pl022_driver
);
2424 subsys_initcall(pl022_init
);
2426 static void __exit
pl022_exit(void)
2428 amba_driver_unregister(&pl022_driver
);
2431 module_exit(pl022_exit
);
2433 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2434 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2435 MODULE_LICENSE("GPL");