1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
32 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
33 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
36 static struct lock_class_key socket_class
;
40 static void queue_con(struct ceph_connection
*con
);
41 static void con_work(struct work_struct
*);
42 static void ceph_fault(struct ceph_connection
*con
);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str
[MAX_ADDR_STR
][MAX_ADDR_STR_LEN
];
50 static DEFINE_SPINLOCK(addr_str_lock
);
51 static int last_addr_str
;
53 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
57 struct sockaddr_in
*in4
= (void *)ss
;
58 struct sockaddr_in6
*in6
= (void *)ss
;
60 spin_lock(&addr_str_lock
);
62 if (last_addr_str
== MAX_ADDR_STR
)
64 spin_unlock(&addr_str_lock
);
67 switch (ss
->ss_family
) {
69 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%u", &in4
->sin_addr
,
70 (unsigned int)ntohs(in4
->sin_port
));
74 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%u", &in6
->sin6_addr
,
75 (unsigned int)ntohs(in6
->sin6_port
));
79 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %d)",
85 EXPORT_SYMBOL(ceph_pr_addr
);
87 static void encode_my_addr(struct ceph_messenger
*msgr
)
89 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
90 ceph_encode_addr(&msgr
->my_enc_addr
);
94 * work queue for all reading and writing to/from the socket.
96 struct workqueue_struct
*ceph_msgr_wq
;
98 int ceph_msgr_init(void)
100 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT
, 0);
102 pr_err("msgr_init failed to create workqueue\n");
107 EXPORT_SYMBOL(ceph_msgr_init
);
109 void ceph_msgr_exit(void)
111 destroy_workqueue(ceph_msgr_wq
);
113 EXPORT_SYMBOL(ceph_msgr_exit
);
115 void ceph_msgr_flush(void)
117 flush_workqueue(ceph_msgr_wq
);
119 EXPORT_SYMBOL(ceph_msgr_flush
);
123 * socket callback functions
126 /* data available on socket, or listen socket received a connect */
127 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
129 struct ceph_connection
*con
=
130 (struct ceph_connection
*)sk
->sk_user_data
;
131 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
132 dout("ceph_data_ready on %p state = %lu, queueing work\n",
138 /* socket has buffer space for writing */
139 static void ceph_write_space(struct sock
*sk
)
141 struct ceph_connection
*con
=
142 (struct ceph_connection
*)sk
->sk_user_data
;
144 /* only queue to workqueue if there is data we want to write. */
145 if (test_bit(WRITE_PENDING
, &con
->state
)) {
146 dout("ceph_write_space %p queueing write work\n", con
);
149 dout("ceph_write_space %p nothing to write\n", con
);
152 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
153 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
156 /* socket's state has changed */
157 static void ceph_state_change(struct sock
*sk
)
159 struct ceph_connection
*con
=
160 (struct ceph_connection
*)sk
->sk_user_data
;
162 dout("ceph_state_change %p state = %lu sk_state = %u\n",
163 con
, con
->state
, sk
->sk_state
);
165 if (test_bit(CLOSED
, &con
->state
))
168 switch (sk
->sk_state
) {
170 dout("ceph_state_change TCP_CLOSE\n");
172 dout("ceph_state_change TCP_CLOSE_WAIT\n");
173 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
174 if (test_bit(CONNECTING
, &con
->state
))
175 con
->error_msg
= "connection failed";
177 con
->error_msg
= "socket closed";
181 case TCP_ESTABLISHED
:
182 dout("ceph_state_change TCP_ESTABLISHED\n");
189 * set up socket callbacks
191 static void set_sock_callbacks(struct socket
*sock
,
192 struct ceph_connection
*con
)
194 struct sock
*sk
= sock
->sk
;
195 sk
->sk_user_data
= (void *)con
;
196 sk
->sk_data_ready
= ceph_data_ready
;
197 sk
->sk_write_space
= ceph_write_space
;
198 sk
->sk_state_change
= ceph_state_change
;
207 * initiate connection to a remote socket.
209 static struct socket
*ceph_tcp_connect(struct ceph_connection
*con
)
211 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
216 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
221 sock
->sk
->sk_allocation
= GFP_NOFS
;
223 #ifdef CONFIG_LOCKDEP
224 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
227 set_sock_callbacks(sock
, con
);
229 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
231 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
233 if (ret
== -EINPROGRESS
) {
234 dout("connect %s EINPROGRESS sk_state = %u\n",
235 ceph_pr_addr(&con
->peer_addr
.in_addr
),
240 pr_err("connect %s error %d\n",
241 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
244 con
->error_msg
= "connect error";
252 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
254 struct kvec iov
= {buf
, len
};
255 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
258 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
265 * write something. @more is true if caller will be sending more data
268 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
269 size_t kvlen
, size_t len
, int more
)
271 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
275 msg
.msg_flags
|= MSG_MORE
;
277 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
279 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
287 * Shutdown/close the socket for the given connection.
289 static int con_close_socket(struct ceph_connection
*con
)
293 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
296 set_bit(SOCK_CLOSED
, &con
->state
);
297 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
298 sock_release(con
->sock
);
300 clear_bit(SOCK_CLOSED
, &con
->state
);
305 * Reset a connection. Discard all incoming and outgoing messages
306 * and clear *_seq state.
308 static void ceph_msg_remove(struct ceph_msg
*msg
)
310 list_del_init(&msg
->list_head
);
313 static void ceph_msg_remove_list(struct list_head
*head
)
315 while (!list_empty(head
)) {
316 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
318 ceph_msg_remove(msg
);
322 static void reset_connection(struct ceph_connection
*con
)
324 /* reset connection, out_queue, msg_ and connect_seq */
325 /* discard existing out_queue and msg_seq */
326 ceph_msg_remove_list(&con
->out_queue
);
327 ceph_msg_remove_list(&con
->out_sent
);
330 ceph_msg_put(con
->in_msg
);
334 con
->connect_seq
= 0;
337 ceph_msg_put(con
->out_msg
);
341 con
->in_seq_acked
= 0;
345 * mark a peer down. drop any open connections.
347 void ceph_con_close(struct ceph_connection
*con
)
349 dout("con_close %p peer %s\n", con
,
350 ceph_pr_addr(&con
->peer_addr
.in_addr
));
351 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
352 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
353 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
354 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
355 clear_bit(WRITE_PENDING
, &con
->state
);
356 mutex_lock(&con
->mutex
);
357 reset_connection(con
);
358 con
->peer_global_seq
= 0;
359 cancel_delayed_work(&con
->work
);
360 mutex_unlock(&con
->mutex
);
363 EXPORT_SYMBOL(ceph_con_close
);
366 * Reopen a closed connection, with a new peer address.
368 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
370 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
371 set_bit(OPENING
, &con
->state
);
372 clear_bit(CLOSED
, &con
->state
);
373 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
374 con
->delay
= 0; /* reset backoff memory */
377 EXPORT_SYMBOL(ceph_con_open
);
380 * return true if this connection ever successfully opened
382 bool ceph_con_opened(struct ceph_connection
*con
)
384 return con
->connect_seq
> 0;
390 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
392 dout("con_get %p nref = %d -> %d\n", con
,
393 atomic_read(&con
->nref
), atomic_read(&con
->nref
) + 1);
394 if (atomic_inc_not_zero(&con
->nref
))
399 void ceph_con_put(struct ceph_connection
*con
)
401 dout("con_put %p nref = %d -> %d\n", con
,
402 atomic_read(&con
->nref
), atomic_read(&con
->nref
) - 1);
403 BUG_ON(atomic_read(&con
->nref
) == 0);
404 if (atomic_dec_and_test(&con
->nref
)) {
411 * initialize a new connection.
413 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
415 dout("con_init %p\n", con
);
416 memset(con
, 0, sizeof(*con
));
417 atomic_set(&con
->nref
, 1);
419 mutex_init(&con
->mutex
);
420 INIT_LIST_HEAD(&con
->out_queue
);
421 INIT_LIST_HEAD(&con
->out_sent
);
422 INIT_DELAYED_WORK(&con
->work
, con_work
);
424 EXPORT_SYMBOL(ceph_con_init
);
428 * We maintain a global counter to order connection attempts. Get
429 * a unique seq greater than @gt.
431 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
435 spin_lock(&msgr
->global_seq_lock
);
436 if (msgr
->global_seq
< gt
)
437 msgr
->global_seq
= gt
;
438 ret
= ++msgr
->global_seq
;
439 spin_unlock(&msgr
->global_seq_lock
);
445 * Prepare footer for currently outgoing message, and finish things
446 * off. Assumes out_kvec* are already valid.. we just add on to the end.
448 static void prepare_write_message_footer(struct ceph_connection
*con
, int v
)
450 struct ceph_msg
*m
= con
->out_msg
;
452 dout("prepare_write_message_footer %p\n", con
);
453 con
->out_kvec_is_msg
= true;
454 con
->out_kvec
[v
].iov_base
= &m
->footer
;
455 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
456 con
->out_kvec_bytes
+= sizeof(m
->footer
);
457 con
->out_kvec_left
++;
458 con
->out_more
= m
->more_to_follow
;
459 con
->out_msg_done
= true;
463 * Prepare headers for the next outgoing message.
465 static void prepare_write_message(struct ceph_connection
*con
)
470 con
->out_kvec_bytes
= 0;
471 con
->out_kvec_is_msg
= true;
472 con
->out_msg_done
= false;
474 /* Sneak an ack in there first? If we can get it into the same
475 * TCP packet that's a good thing. */
476 if (con
->in_seq
> con
->in_seq_acked
) {
477 con
->in_seq_acked
= con
->in_seq
;
478 con
->out_kvec
[v
].iov_base
= &tag_ack
;
479 con
->out_kvec
[v
++].iov_len
= 1;
480 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
481 con
->out_kvec
[v
].iov_base
= &con
->out_temp_ack
;
482 con
->out_kvec
[v
++].iov_len
= sizeof(con
->out_temp_ack
);
483 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
486 m
= list_first_entry(&con
->out_queue
,
487 struct ceph_msg
, list_head
);
490 /* put message on sent list */
492 list_move_tail(&m
->list_head
, &con
->out_sent
);
495 * only assign outgoing seq # if we haven't sent this message
496 * yet. if it is requeued, resend with it's original seq.
498 if (m
->needs_out_seq
) {
499 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
500 m
->needs_out_seq
= false;
503 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
504 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
505 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
506 le32_to_cpu(m
->hdr
.data_len
),
508 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
510 /* tag + hdr + front + middle */
511 con
->out_kvec
[v
].iov_base
= &tag_msg
;
512 con
->out_kvec
[v
++].iov_len
= 1;
513 con
->out_kvec
[v
].iov_base
= &m
->hdr
;
514 con
->out_kvec
[v
++].iov_len
= sizeof(m
->hdr
);
515 con
->out_kvec
[v
++] = m
->front
;
517 con
->out_kvec
[v
++] = m
->middle
->vec
;
518 con
->out_kvec_left
= v
;
519 con
->out_kvec_bytes
+= 1 + sizeof(m
->hdr
) + m
->front
.iov_len
+
520 (m
->middle
? m
->middle
->vec
.iov_len
: 0);
521 con
->out_kvec_cur
= con
->out_kvec
;
523 /* fill in crc (except data pages), footer */
524 con
->out_msg
->hdr
.crc
=
525 cpu_to_le32(crc32c(0, (void *)&m
->hdr
,
526 sizeof(m
->hdr
) - sizeof(m
->hdr
.crc
)));
527 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
528 con
->out_msg
->footer
.front_crc
=
529 cpu_to_le32(crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
));
531 con
->out_msg
->footer
.middle_crc
=
532 cpu_to_le32(crc32c(0, m
->middle
->vec
.iov_base
,
533 m
->middle
->vec
.iov_len
));
535 con
->out_msg
->footer
.middle_crc
= 0;
536 con
->out_msg
->footer
.data_crc
= 0;
537 dout("prepare_write_message front_crc %u data_crc %u\n",
538 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
539 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
541 /* is there a data payload? */
542 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
543 /* initialize page iterator */
544 con
->out_msg_pos
.page
= 0;
546 con
->out_msg_pos
.page_pos
= m
->page_alignment
;
548 con
->out_msg_pos
.page_pos
= 0;
549 con
->out_msg_pos
.data_pos
= 0;
550 con
->out_msg_pos
.did_page_crc
= 0;
551 con
->out_more
= 1; /* data + footer will follow */
553 /* no, queue up footer too and be done */
554 prepare_write_message_footer(con
, v
);
557 set_bit(WRITE_PENDING
, &con
->state
);
563 static void prepare_write_ack(struct ceph_connection
*con
)
565 dout("prepare_write_ack %p %llu -> %llu\n", con
,
566 con
->in_seq_acked
, con
->in_seq
);
567 con
->in_seq_acked
= con
->in_seq
;
569 con
->out_kvec
[0].iov_base
= &tag_ack
;
570 con
->out_kvec
[0].iov_len
= 1;
571 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
572 con
->out_kvec
[1].iov_base
= &con
->out_temp_ack
;
573 con
->out_kvec
[1].iov_len
= sizeof(con
->out_temp_ack
);
574 con
->out_kvec_left
= 2;
575 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
576 con
->out_kvec_cur
= con
->out_kvec
;
577 con
->out_more
= 1; /* more will follow.. eventually.. */
578 set_bit(WRITE_PENDING
, &con
->state
);
582 * Prepare to write keepalive byte.
584 static void prepare_write_keepalive(struct ceph_connection
*con
)
586 dout("prepare_write_keepalive %p\n", con
);
587 con
->out_kvec
[0].iov_base
= &tag_keepalive
;
588 con
->out_kvec
[0].iov_len
= 1;
589 con
->out_kvec_left
= 1;
590 con
->out_kvec_bytes
= 1;
591 con
->out_kvec_cur
= con
->out_kvec
;
592 set_bit(WRITE_PENDING
, &con
->state
);
596 * Connection negotiation.
599 static int prepare_connect_authorizer(struct ceph_connection
*con
)
603 int auth_protocol
= 0;
605 mutex_unlock(&con
->mutex
);
606 if (con
->ops
->get_authorizer
)
607 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
608 &auth_protocol
, &con
->auth_reply_buf
,
609 &con
->auth_reply_buf_len
,
611 mutex_lock(&con
->mutex
);
613 if (test_bit(CLOSED
, &con
->state
) ||
614 test_bit(OPENING
, &con
->state
))
617 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
618 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
621 con
->out_kvec
[con
->out_kvec_left
].iov_base
= auth_buf
;
622 con
->out_kvec
[con
->out_kvec_left
].iov_len
= auth_len
;
623 con
->out_kvec_left
++;
624 con
->out_kvec_bytes
+= auth_len
;
630 * We connected to a peer and are saying hello.
632 static void prepare_write_banner(struct ceph_messenger
*msgr
,
633 struct ceph_connection
*con
)
635 int len
= strlen(CEPH_BANNER
);
637 con
->out_kvec
[0].iov_base
= CEPH_BANNER
;
638 con
->out_kvec
[0].iov_len
= len
;
639 con
->out_kvec
[1].iov_base
= &msgr
->my_enc_addr
;
640 con
->out_kvec
[1].iov_len
= sizeof(msgr
->my_enc_addr
);
641 con
->out_kvec_left
= 2;
642 con
->out_kvec_bytes
= len
+ sizeof(msgr
->my_enc_addr
);
643 con
->out_kvec_cur
= con
->out_kvec
;
645 set_bit(WRITE_PENDING
, &con
->state
);
648 static int prepare_write_connect(struct ceph_messenger
*msgr
,
649 struct ceph_connection
*con
,
652 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
655 switch (con
->peer_name
.type
) {
656 case CEPH_ENTITY_TYPE_MON
:
657 proto
= CEPH_MONC_PROTOCOL
;
659 case CEPH_ENTITY_TYPE_OSD
:
660 proto
= CEPH_OSDC_PROTOCOL
;
662 case CEPH_ENTITY_TYPE_MDS
:
663 proto
= CEPH_MDSC_PROTOCOL
;
669 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
670 con
->connect_seq
, global_seq
, proto
);
672 con
->out_connect
.features
= cpu_to_le64(msgr
->supported_features
);
673 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
674 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
675 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
676 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
677 con
->out_connect
.flags
= 0;
680 con
->out_kvec_left
= 0;
681 con
->out_kvec_bytes
= 0;
683 con
->out_kvec
[con
->out_kvec_left
].iov_base
= &con
->out_connect
;
684 con
->out_kvec
[con
->out_kvec_left
].iov_len
= sizeof(con
->out_connect
);
685 con
->out_kvec_left
++;
686 con
->out_kvec_bytes
+= sizeof(con
->out_connect
);
687 con
->out_kvec_cur
= con
->out_kvec
;
689 set_bit(WRITE_PENDING
, &con
->state
);
691 return prepare_connect_authorizer(con
);
696 * write as much of pending kvecs to the socket as we can.
698 * 0 -> socket full, but more to do
701 static int write_partial_kvec(struct ceph_connection
*con
)
705 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
706 while (con
->out_kvec_bytes
> 0) {
707 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
708 con
->out_kvec_left
, con
->out_kvec_bytes
,
712 con
->out_kvec_bytes
-= ret
;
713 if (con
->out_kvec_bytes
== 0)
716 if (ret
>= con
->out_kvec_cur
->iov_len
) {
717 ret
-= con
->out_kvec_cur
->iov_len
;
719 con
->out_kvec_left
--;
721 con
->out_kvec_cur
->iov_len
-= ret
;
722 con
->out_kvec_cur
->iov_base
+= ret
;
728 con
->out_kvec_left
= 0;
729 con
->out_kvec_is_msg
= false;
732 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
733 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
734 return ret
; /* done! */
738 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
749 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
751 if (*bio_iter
== NULL
)
754 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
757 if (*seg
== (*bio_iter
)->bi_vcnt
)
758 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
763 * Write as much message data payload as we can. If we finish, queue
765 * 1 -> done, footer is now queued in out_kvec[].
766 * 0 -> socket full, but more to do
769 static int write_partial_msg_pages(struct ceph_connection
*con
)
771 struct ceph_msg
*msg
= con
->out_msg
;
772 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
774 int crc
= con
->msgr
->nocrc
;
778 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
780 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
781 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
782 con
->out_msg_pos
.page_pos
);
785 if (msg
->bio
&& !msg
->bio_iter
)
786 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
789 while (data_len
> con
->out_msg_pos
.data_pos
) {
790 struct page
*page
= NULL
;
792 int max_write
= PAGE_SIZE
;
795 total_max_write
= data_len
- trail_len
-
796 con
->out_msg_pos
.data_pos
;
799 * if we are calculating the data crc (the default), we need
800 * to map the page. if our pages[] has been revoked, use the
804 /* have we reached the trail part of the data? */
805 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
808 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
810 page
= list_first_entry(&msg
->trail
->head
,
814 max_write
= PAGE_SIZE
;
815 } else if (msg
->pages
) {
816 page
= msg
->pages
[con
->out_msg_pos
.page
];
819 } else if (msg
->pagelist
) {
820 page
= list_first_entry(&msg
->pagelist
->head
,
825 } else if (msg
->bio
) {
828 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
830 page_shift
= bv
->bv_offset
;
832 kaddr
= kmap(page
) + page_shift
;
833 max_write
= bv
->bv_len
;
836 page
= con
->msgr
->zero_page
;
838 kaddr
= page_address(con
->msgr
->zero_page
);
840 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
843 if (crc
&& !con
->out_msg_pos
.did_page_crc
) {
844 void *base
= kaddr
+ con
->out_msg_pos
.page_pos
;
845 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
847 BUG_ON(kaddr
== NULL
);
848 con
->out_msg
->footer
.data_crc
=
849 cpu_to_le32(crc32c(tmpcrc
, base
, len
));
850 con
->out_msg_pos
.did_page_crc
= 1;
852 ret
= kernel_sendpage(con
->sock
, page
,
853 con
->out_msg_pos
.page_pos
+ page_shift
,
855 MSG_DONTWAIT
| MSG_NOSIGNAL
|
859 (msg
->pages
|| msg
->pagelist
|| msg
->bio
|| in_trail
))
867 con
->out_msg_pos
.data_pos
+= ret
;
868 con
->out_msg_pos
.page_pos
+= ret
;
870 con
->out_msg_pos
.page_pos
= 0;
871 con
->out_msg_pos
.page
++;
872 con
->out_msg_pos
.did_page_crc
= 0;
874 list_move_tail(&page
->lru
,
876 else if (msg
->pagelist
)
877 list_move_tail(&page
->lru
,
878 &msg
->pagelist
->head
);
881 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
886 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
888 /* prepare and queue up footer, too */
890 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
891 con
->out_kvec_bytes
= 0;
892 con
->out_kvec_left
= 0;
893 con
->out_kvec_cur
= con
->out_kvec
;
894 prepare_write_message_footer(con
, 0);
903 static int write_partial_skip(struct ceph_connection
*con
)
907 while (con
->out_skip
> 0) {
909 .iov_base
= page_address(con
->msgr
->zero_page
),
910 .iov_len
= min(con
->out_skip
, (int)PAGE_CACHE_SIZE
)
913 ret
= ceph_tcp_sendmsg(con
->sock
, &iov
, 1, iov
.iov_len
, 1);
916 con
->out_skip
-= ret
;
924 * Prepare to read connection handshake, or an ack.
926 static void prepare_read_banner(struct ceph_connection
*con
)
928 dout("prepare_read_banner %p\n", con
);
929 con
->in_base_pos
= 0;
932 static void prepare_read_connect(struct ceph_connection
*con
)
934 dout("prepare_read_connect %p\n", con
);
935 con
->in_base_pos
= 0;
938 static void prepare_read_ack(struct ceph_connection
*con
)
940 dout("prepare_read_ack %p\n", con
);
941 con
->in_base_pos
= 0;
944 static void prepare_read_tag(struct ceph_connection
*con
)
946 dout("prepare_read_tag %p\n", con
);
947 con
->in_base_pos
= 0;
948 con
->in_tag
= CEPH_MSGR_TAG_READY
;
952 * Prepare to read a message.
954 static int prepare_read_message(struct ceph_connection
*con
)
956 dout("prepare_read_message %p\n", con
);
957 BUG_ON(con
->in_msg
!= NULL
);
958 con
->in_base_pos
= 0;
959 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
964 static int read_partial(struct ceph_connection
*con
,
965 int *to
, int size
, void *object
)
968 while (con
->in_base_pos
< *to
) {
969 int left
= *to
- con
->in_base_pos
;
970 int have
= size
- left
;
971 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
974 con
->in_base_pos
+= ret
;
981 * Read all or part of the connect-side handshake on a new connection
983 static int read_partial_banner(struct ceph_connection
*con
)
987 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
990 ret
= read_partial(con
, &to
, strlen(CEPH_BANNER
), con
->in_banner
);
993 ret
= read_partial(con
, &to
, sizeof(con
->actual_peer_addr
),
994 &con
->actual_peer_addr
);
997 ret
= read_partial(con
, &to
, sizeof(con
->peer_addr_for_me
),
998 &con
->peer_addr_for_me
);
1005 static int read_partial_connect(struct ceph_connection
*con
)
1009 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1011 ret
= read_partial(con
, &to
, sizeof(con
->in_reply
), &con
->in_reply
);
1014 ret
= read_partial(con
, &to
, le32_to_cpu(con
->in_reply
.authorizer_len
),
1015 con
->auth_reply_buf
);
1019 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1020 con
, (int)con
->in_reply
.tag
,
1021 le32_to_cpu(con
->in_reply
.connect_seq
),
1022 le32_to_cpu(con
->in_reply
.global_seq
));
1029 * Verify the hello banner looks okay.
1031 static int verify_hello(struct ceph_connection
*con
)
1033 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1034 pr_err("connect to %s got bad banner\n",
1035 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1036 con
->error_msg
= "protocol error, bad banner";
1042 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1044 switch (ss
->ss_family
) {
1046 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1049 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1050 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1051 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1052 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1057 static int addr_port(struct sockaddr_storage
*ss
)
1059 switch (ss
->ss_family
) {
1061 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1063 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1068 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1070 switch (ss
->ss_family
) {
1072 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1075 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1081 * Parse an ip[:port] list into an addr array. Use the default
1082 * monitor port if a port isn't specified.
1084 int ceph_parse_ips(const char *c
, const char *end
,
1085 struct ceph_entity_addr
*addr
,
1086 int max_count
, int *count
)
1091 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1092 for (i
= 0; i
< max_count
; i
++) {
1094 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1095 struct sockaddr_in
*in4
= (void *)ss
;
1096 struct sockaddr_in6
*in6
= (void *)ss
;
1105 memset(ss
, 0, sizeof(*ss
));
1106 if (in4_pton(p
, end
- p
, (u8
*)&in4
->sin_addr
.s_addr
,
1108 ss
->ss_family
= AF_INET
;
1109 else if (in6_pton(p
, end
- p
, (u8
*)&in6
->sin6_addr
.s6_addr
,
1111 ss
->ss_family
= AF_INET6
;
1118 dout("missing matching ']'\n");
1125 if (p
< end
&& *p
== ':') {
1128 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1129 port
= (port
* 10) + (*p
- '0');
1132 if (port
> 65535 || port
== 0)
1135 port
= CEPH_MON_PORT
;
1138 addr_set_port(ss
, port
);
1140 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1157 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1160 EXPORT_SYMBOL(ceph_parse_ips
);
1162 static int process_banner(struct ceph_connection
*con
)
1164 dout("process_banner on %p\n", con
);
1166 if (verify_hello(con
) < 0)
1169 ceph_decode_addr(&con
->actual_peer_addr
);
1170 ceph_decode_addr(&con
->peer_addr_for_me
);
1173 * Make sure the other end is who we wanted. note that the other
1174 * end may not yet know their ip address, so if it's 0.0.0.0, give
1175 * them the benefit of the doubt.
1177 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1178 sizeof(con
->peer_addr
)) != 0 &&
1179 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1180 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1181 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1182 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1183 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1184 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1185 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1186 con
->error_msg
= "wrong peer at address";
1191 * did we learn our address?
1193 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1194 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1196 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1197 &con
->peer_addr_for_me
.in_addr
,
1198 sizeof(con
->peer_addr_for_me
.in_addr
));
1199 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1200 encode_my_addr(con
->msgr
);
1201 dout("process_banner learned my addr is %s\n",
1202 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1205 set_bit(NEGOTIATING
, &con
->state
);
1206 prepare_read_connect(con
);
1210 static void fail_protocol(struct ceph_connection
*con
)
1212 reset_connection(con
);
1213 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1215 mutex_unlock(&con
->mutex
);
1216 if (con
->ops
->bad_proto
)
1217 con
->ops
->bad_proto(con
);
1218 mutex_lock(&con
->mutex
);
1221 static int process_connect(struct ceph_connection
*con
)
1223 u64 sup_feat
= con
->msgr
->supported_features
;
1224 u64 req_feat
= con
->msgr
->required_features
;
1225 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1228 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1230 switch (con
->in_reply
.tag
) {
1231 case CEPH_MSGR_TAG_FEATURES
:
1232 pr_err("%s%lld %s feature set mismatch,"
1233 " my %llx < server's %llx, missing %llx\n",
1234 ENTITY_NAME(con
->peer_name
),
1235 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1236 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1237 con
->error_msg
= "missing required protocol features";
1241 case CEPH_MSGR_TAG_BADPROTOVER
:
1242 pr_err("%s%lld %s protocol version mismatch,"
1243 " my %d != server's %d\n",
1244 ENTITY_NAME(con
->peer_name
),
1245 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1246 le32_to_cpu(con
->out_connect
.protocol_version
),
1247 le32_to_cpu(con
->in_reply
.protocol_version
));
1248 con
->error_msg
= "protocol version mismatch";
1252 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1254 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1256 if (con
->auth_retry
== 2) {
1257 con
->error_msg
= "connect authorization failure";
1260 con
->auth_retry
= 1;
1261 ret
= prepare_write_connect(con
->msgr
, con
, 0);
1264 prepare_read_connect(con
);
1267 case CEPH_MSGR_TAG_RESETSESSION
:
1269 * If we connected with a large connect_seq but the peer
1270 * has no record of a session with us (no connection, or
1271 * connect_seq == 0), they will send RESETSESION to indicate
1272 * that they must have reset their session, and may have
1275 dout("process_connect got RESET peer seq %u\n",
1276 le32_to_cpu(con
->in_connect
.connect_seq
));
1277 pr_err("%s%lld %s connection reset\n",
1278 ENTITY_NAME(con
->peer_name
),
1279 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1280 reset_connection(con
);
1281 prepare_write_connect(con
->msgr
, con
, 0);
1282 prepare_read_connect(con
);
1284 /* Tell ceph about it. */
1285 mutex_unlock(&con
->mutex
);
1286 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1287 if (con
->ops
->peer_reset
)
1288 con
->ops
->peer_reset(con
);
1289 mutex_lock(&con
->mutex
);
1290 if (test_bit(CLOSED
, &con
->state
) ||
1291 test_bit(OPENING
, &con
->state
))
1295 case CEPH_MSGR_TAG_RETRY_SESSION
:
1297 * If we sent a smaller connect_seq than the peer has, try
1298 * again with a larger value.
1300 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1301 le32_to_cpu(con
->out_connect
.connect_seq
),
1302 le32_to_cpu(con
->in_connect
.connect_seq
));
1303 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1304 prepare_write_connect(con
->msgr
, con
, 0);
1305 prepare_read_connect(con
);
1308 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1310 * If we sent a smaller global_seq than the peer has, try
1311 * again with a larger value.
1313 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1314 con
->peer_global_seq
,
1315 le32_to_cpu(con
->in_connect
.global_seq
));
1316 get_global_seq(con
->msgr
,
1317 le32_to_cpu(con
->in_connect
.global_seq
));
1318 prepare_write_connect(con
->msgr
, con
, 0);
1319 prepare_read_connect(con
);
1322 case CEPH_MSGR_TAG_READY
:
1323 if (req_feat
& ~server_feat
) {
1324 pr_err("%s%lld %s protocol feature mismatch,"
1325 " my required %llx > server's %llx, need %llx\n",
1326 ENTITY_NAME(con
->peer_name
),
1327 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1328 req_feat
, server_feat
, req_feat
& ~server_feat
);
1329 con
->error_msg
= "missing required protocol features";
1333 clear_bit(CONNECTING
, &con
->state
);
1334 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1336 con
->peer_features
= server_feat
;
1337 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1338 con
->peer_global_seq
,
1339 le32_to_cpu(con
->in_reply
.connect_seq
),
1341 WARN_ON(con
->connect_seq
!=
1342 le32_to_cpu(con
->in_reply
.connect_seq
));
1344 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1345 set_bit(LOSSYTX
, &con
->state
);
1347 prepare_read_tag(con
);
1350 case CEPH_MSGR_TAG_WAIT
:
1352 * If there is a connection race (we are opening
1353 * connections to each other), one of us may just have
1354 * to WAIT. This shouldn't happen if we are the
1357 pr_err("process_connect got WAIT as client\n");
1358 con
->error_msg
= "protocol error, got WAIT as client";
1362 pr_err("connect protocol error, will retry\n");
1363 con
->error_msg
= "protocol error, garbage tag during connect";
1371 * read (part of) an ack
1373 static int read_partial_ack(struct ceph_connection
*con
)
1377 return read_partial(con
, &to
, sizeof(con
->in_temp_ack
),
1383 * We can finally discard anything that's been acked.
1385 static void process_ack(struct ceph_connection
*con
)
1388 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1391 while (!list_empty(&con
->out_sent
)) {
1392 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1394 seq
= le64_to_cpu(m
->hdr
.seq
);
1397 dout("got ack for seq %llu type %d at %p\n", seq
,
1398 le16_to_cpu(m
->hdr
.type
), m
);
1399 m
->ack_stamp
= jiffies
;
1402 prepare_read_tag(con
);
1408 static int read_partial_message_section(struct ceph_connection
*con
,
1409 struct kvec
*section
,
1410 unsigned int sec_len
, u32
*crc
)
1416 while (section
->iov_len
< sec_len
) {
1417 BUG_ON(section
->iov_base
== NULL
);
1418 left
= sec_len
- section
->iov_len
;
1419 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1420 section
->iov_len
, left
);
1423 section
->iov_len
+= ret
;
1424 if (section
->iov_len
== sec_len
)
1425 *crc
= crc32c(0, section
->iov_base
,
1432 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1433 struct ceph_msg_header
*hdr
,
1437 static int read_partial_message_pages(struct ceph_connection
*con
,
1438 struct page
**pages
,
1439 unsigned data_len
, int datacrc
)
1445 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1446 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1448 BUG_ON(pages
== NULL
);
1449 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1450 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1452 if (ret
> 0 && datacrc
)
1454 crc32c(con
->in_data_crc
,
1455 p
+ con
->in_msg_pos
.page_pos
, ret
);
1456 kunmap(pages
[con
->in_msg_pos
.page
]);
1459 con
->in_msg_pos
.data_pos
+= ret
;
1460 con
->in_msg_pos
.page_pos
+= ret
;
1461 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1462 con
->in_msg_pos
.page_pos
= 0;
1463 con
->in_msg_pos
.page
++;
1470 static int read_partial_message_bio(struct ceph_connection
*con
,
1471 struct bio
**bio_iter
, int *bio_seg
,
1472 unsigned data_len
, int datacrc
)
1474 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1481 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1482 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1484 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1486 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1488 if (ret
> 0 && datacrc
)
1490 crc32c(con
->in_data_crc
,
1491 p
+ con
->in_msg_pos
.page_pos
, ret
);
1492 kunmap(bv
->bv_page
);
1495 con
->in_msg_pos
.data_pos
+= ret
;
1496 con
->in_msg_pos
.page_pos
+= ret
;
1497 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1498 con
->in_msg_pos
.page_pos
= 0;
1499 iter_bio_next(bio_iter
, bio_seg
);
1507 * read (part of) a message.
1509 static int read_partial_message(struct ceph_connection
*con
)
1511 struct ceph_msg
*m
= con
->in_msg
;
1514 unsigned front_len
, middle_len
, data_len
;
1515 int datacrc
= con
->msgr
->nocrc
;
1519 dout("read_partial_message con %p msg %p\n", con
, m
);
1522 while (con
->in_base_pos
< sizeof(con
->in_hdr
)) {
1523 left
= sizeof(con
->in_hdr
) - con
->in_base_pos
;
1524 ret
= ceph_tcp_recvmsg(con
->sock
,
1525 (char *)&con
->in_hdr
+ con
->in_base_pos
,
1529 con
->in_base_pos
+= ret
;
1530 if (con
->in_base_pos
== sizeof(con
->in_hdr
)) {
1531 u32 crc
= crc32c(0, (void *)&con
->in_hdr
,
1532 sizeof(con
->in_hdr
) - sizeof(con
->in_hdr
.crc
));
1533 if (crc
!= le32_to_cpu(con
->in_hdr
.crc
)) {
1534 pr_err("read_partial_message bad hdr "
1535 " crc %u != expected %u\n",
1536 crc
, con
->in_hdr
.crc
);
1541 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1542 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1544 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1545 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1547 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1548 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1552 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1553 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1554 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1555 ENTITY_NAME(con
->peer_name
),
1556 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1557 seq
, con
->in_seq
+ 1);
1558 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1560 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1562 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1563 pr_err("read_partial_message bad seq %lld expected %lld\n",
1564 seq
, con
->in_seq
+ 1);
1565 con
->error_msg
= "bad message sequence # for incoming message";
1569 /* allocate message? */
1571 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1572 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1574 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1576 /* skip this message */
1577 dout("alloc_msg said skip message\n");
1578 BUG_ON(con
->in_msg
);
1579 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1581 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1587 "error allocating memory for incoming message";
1591 m
->front
.iov_len
= 0; /* haven't read it yet */
1593 m
->middle
->vec
.iov_len
= 0;
1595 con
->in_msg_pos
.page
= 0;
1597 con
->in_msg_pos
.page_pos
= m
->page_alignment
;
1599 con
->in_msg_pos
.page_pos
= 0;
1600 con
->in_msg_pos
.data_pos
= 0;
1604 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1605 &con
->in_front_crc
);
1611 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1613 &con
->in_middle_crc
);
1618 if (m
->bio
&& !m
->bio_iter
)
1619 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1623 while (con
->in_msg_pos
.data_pos
< data_len
) {
1625 ret
= read_partial_message_pages(con
, m
->pages
,
1630 } else if (m
->bio
) {
1632 ret
= read_partial_message_bio(con
,
1633 &m
->bio_iter
, &m
->bio_seg
,
1644 to
= sizeof(m
->hdr
) + sizeof(m
->footer
);
1645 while (con
->in_base_pos
< to
) {
1646 left
= to
- con
->in_base_pos
;
1647 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)&m
->footer
+
1648 (con
->in_base_pos
- sizeof(m
->hdr
)),
1652 con
->in_base_pos
+= ret
;
1654 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1655 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1656 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1659 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1660 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1661 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1664 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1665 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1666 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1670 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1671 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1672 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1673 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1677 return 1; /* done! */
1681 * Process message. This happens in the worker thread. The callback should
1682 * be careful not to do anything that waits on other incoming messages or it
1685 static void process_message(struct ceph_connection
*con
)
1687 struct ceph_msg
*msg
;
1692 /* if first message, set peer_name */
1693 if (con
->peer_name
.type
== 0)
1694 con
->peer_name
= msg
->hdr
.src
;
1697 mutex_unlock(&con
->mutex
);
1699 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1700 msg
, le64_to_cpu(msg
->hdr
.seq
),
1701 ENTITY_NAME(msg
->hdr
.src
),
1702 le16_to_cpu(msg
->hdr
.type
),
1703 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1704 le32_to_cpu(msg
->hdr
.front_len
),
1705 le32_to_cpu(msg
->hdr
.data_len
),
1706 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1707 con
->ops
->dispatch(con
, msg
);
1709 mutex_lock(&con
->mutex
);
1710 prepare_read_tag(con
);
1715 * Write something to the socket. Called in a worker thread when the
1716 * socket appears to be writeable and we have something ready to send.
1718 static int try_write(struct ceph_connection
*con
)
1720 struct ceph_messenger
*msgr
= con
->msgr
;
1723 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1724 atomic_read(&con
->nref
));
1727 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1729 /* open the socket first? */
1730 if (con
->sock
== NULL
) {
1731 prepare_write_banner(msgr
, con
);
1732 prepare_write_connect(msgr
, con
, 1);
1733 prepare_read_banner(con
);
1734 set_bit(CONNECTING
, &con
->state
);
1735 clear_bit(NEGOTIATING
, &con
->state
);
1737 BUG_ON(con
->in_msg
);
1738 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1739 dout("try_write initiating connect on %p new state %lu\n",
1741 con
->sock
= ceph_tcp_connect(con
);
1742 if (IS_ERR(con
->sock
)) {
1744 con
->error_msg
= "connect error";
1751 /* kvec data queued? */
1752 if (con
->out_skip
) {
1753 ret
= write_partial_skip(con
);
1757 if (con
->out_kvec_left
) {
1758 ret
= write_partial_kvec(con
);
1765 if (con
->out_msg_done
) {
1766 ceph_msg_put(con
->out_msg
);
1767 con
->out_msg
= NULL
; /* we're done with this one */
1771 ret
= write_partial_msg_pages(con
);
1773 goto more_kvec
; /* we need to send the footer, too! */
1777 dout("try_write write_partial_msg_pages err %d\n",
1784 if (!test_bit(CONNECTING
, &con
->state
)) {
1785 /* is anything else pending? */
1786 if (!list_empty(&con
->out_queue
)) {
1787 prepare_write_message(con
);
1790 if (con
->in_seq
> con
->in_seq_acked
) {
1791 prepare_write_ack(con
);
1794 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1795 prepare_write_keepalive(con
);
1800 /* Nothing to do! */
1801 clear_bit(WRITE_PENDING
, &con
->state
);
1802 dout("try_write nothing else to write.\n");
1805 dout("try_write done on %p ret %d\n", con
, ret
);
1812 * Read what we can from the socket.
1814 static int try_read(struct ceph_connection
*con
)
1821 if (test_bit(STANDBY
, &con
->state
))
1824 dout("try_read start on %p\n", con
);
1827 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1831 * process_connect and process_message drop and re-take
1832 * con->mutex. make sure we handle a racing close or reopen.
1834 if (test_bit(CLOSED
, &con
->state
) ||
1835 test_bit(OPENING
, &con
->state
)) {
1840 if (test_bit(CONNECTING
, &con
->state
)) {
1841 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1842 dout("try_read connecting\n");
1843 ret
= read_partial_banner(con
);
1846 ret
= process_banner(con
);
1850 ret
= read_partial_connect(con
);
1853 ret
= process_connect(con
);
1859 if (con
->in_base_pos
< 0) {
1861 * skipping + discarding content.
1863 * FIXME: there must be a better way to do this!
1865 static char buf
[1024];
1866 int skip
= min(1024, -con
->in_base_pos
);
1867 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1868 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1871 con
->in_base_pos
+= ret
;
1872 if (con
->in_base_pos
)
1875 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
1879 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
1882 dout("try_read got tag %d\n", (int)con
->in_tag
);
1883 switch (con
->in_tag
) {
1884 case CEPH_MSGR_TAG_MSG
:
1885 prepare_read_message(con
);
1887 case CEPH_MSGR_TAG_ACK
:
1888 prepare_read_ack(con
);
1890 case CEPH_MSGR_TAG_CLOSE
:
1891 set_bit(CLOSED
, &con
->state
); /* fixme */
1897 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
1898 ret
= read_partial_message(con
);
1902 con
->error_msg
= "bad crc";
1906 con
->error_msg
= "io error";
1911 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
1913 process_message(con
);
1916 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
1917 ret
= read_partial_ack(con
);
1925 dout("try_read done on %p ret %d\n", con
, ret
);
1929 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
1930 con
->error_msg
= "protocol error, garbage tag";
1937 * Atomically queue work on a connection. Bump @con reference to
1938 * avoid races with connection teardown.
1940 static void queue_con(struct ceph_connection
*con
)
1942 if (test_bit(DEAD
, &con
->state
)) {
1943 dout("queue_con %p ignoring: DEAD\n",
1948 if (!con
->ops
->get(con
)) {
1949 dout("queue_con %p ref count 0\n", con
);
1953 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, 0)) {
1954 dout("queue_con %p - already queued\n", con
);
1957 dout("queue_con %p\n", con
);
1962 * Do some work on a connection. Drop a connection ref when we're done.
1964 static void con_work(struct work_struct
*work
)
1966 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
1970 mutex_lock(&con
->mutex
);
1972 if (test_and_clear_bit(BACKOFF
, &con
->state
)) {
1973 dout("con_work %p backing off\n", con
);
1974 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
1975 round_jiffies_relative(con
->delay
))) {
1976 dout("con_work %p backoff %lu\n", con
, con
->delay
);
1977 mutex_unlock(&con
->mutex
);
1981 dout("con_work %p FAILED to back off %lu\n", con
,
1986 if (test_bit(STANDBY
, &con
->state
)) {
1987 dout("con_work %p STANDBY\n", con
);
1990 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
1991 dout("con_work CLOSED\n");
1992 con_close_socket(con
);
1995 if (test_and_clear_bit(OPENING
, &con
->state
)) {
1996 /* reopen w/ new peer */
1997 dout("con_work OPENING\n");
1998 con_close_socket(con
);
2001 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
))
2004 ret
= try_read(con
);
2010 ret
= try_write(con
);
2017 mutex_unlock(&con
->mutex
);
2023 mutex_unlock(&con
->mutex
);
2024 ceph_fault(con
); /* error/fault path */
2030 * Generic error/fault handler. A retry mechanism is used with
2031 * exponential backoff
2033 static void ceph_fault(struct ceph_connection
*con
)
2035 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2036 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2037 dout("fault %p state %lu to peer %s\n",
2038 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2040 if (test_bit(LOSSYTX
, &con
->state
)) {
2041 dout("fault on LOSSYTX channel\n");
2045 mutex_lock(&con
->mutex
);
2046 if (test_bit(CLOSED
, &con
->state
))
2049 con_close_socket(con
);
2052 ceph_msg_put(con
->in_msg
);
2056 /* Requeue anything that hasn't been acked */
2057 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2059 /* If there are no messages queued or keepalive pending, place
2060 * the connection in a STANDBY state */
2061 if (list_empty(&con
->out_queue
) &&
2062 !test_bit(KEEPALIVE_PENDING
, &con
->state
)) {
2063 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2064 clear_bit(WRITE_PENDING
, &con
->state
);
2065 set_bit(STANDBY
, &con
->state
);
2067 /* retry after a delay. */
2068 if (con
->delay
== 0)
2069 con
->delay
= BASE_DELAY_INTERVAL
;
2070 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2073 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2074 round_jiffies_relative(con
->delay
))) {
2075 dout("fault queued %p delay %lu\n", con
, con
->delay
);
2078 dout("fault failed to queue %p delay %lu, backoff\n",
2081 * In many cases we see a socket state change
2082 * while con_work is running and end up
2083 * queuing (non-delayed) work, such that we
2084 * can't backoff with a delay. Set a flag so
2085 * that when con_work restarts we schedule the
2088 set_bit(BACKOFF
, &con
->state
);
2093 mutex_unlock(&con
->mutex
);
2096 * in case we faulted due to authentication, invalidate our
2097 * current tickets so that we can get new ones.
2099 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2100 dout("calling invalidate_authorizer()\n");
2101 con
->ops
->invalidate_authorizer(con
);
2104 if (con
->ops
->fault
)
2105 con
->ops
->fault(con
);
2111 * create a new messenger instance
2113 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2114 u32 supported_features
,
2115 u32 required_features
)
2117 struct ceph_messenger
*msgr
;
2119 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2121 return ERR_PTR(-ENOMEM
);
2123 msgr
->supported_features
= supported_features
;
2124 msgr
->required_features
= required_features
;
2126 spin_lock_init(&msgr
->global_seq_lock
);
2128 /* the zero page is needed if a request is "canceled" while the message
2129 * is being written over the socket */
2130 msgr
->zero_page
= __page_cache_alloc(GFP_KERNEL
| __GFP_ZERO
);
2131 if (!msgr
->zero_page
) {
2133 return ERR_PTR(-ENOMEM
);
2135 kmap(msgr
->zero_page
);
2138 msgr
->inst
.addr
= *myaddr
;
2140 /* select a random nonce */
2141 msgr
->inst
.addr
.type
= 0;
2142 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2143 encode_my_addr(msgr
);
2145 dout("messenger_create %p\n", msgr
);
2148 EXPORT_SYMBOL(ceph_messenger_create
);
2150 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2152 dout("destroy %p\n", msgr
);
2153 kunmap(msgr
->zero_page
);
2154 __free_page(msgr
->zero_page
);
2156 dout("destroyed messenger %p\n", msgr
);
2158 EXPORT_SYMBOL(ceph_messenger_destroy
);
2160 static void clear_standby(struct ceph_connection
*con
)
2162 /* come back from STANDBY? */
2163 if (test_and_clear_bit(STANDBY
, &con
->state
)) {
2164 mutex_lock(&con
->mutex
);
2165 dout("clear_standby %p and ++connect_seq\n", con
);
2167 WARN_ON(test_bit(WRITE_PENDING
, &con
->state
));
2168 WARN_ON(test_bit(KEEPALIVE_PENDING
, &con
->state
));
2169 mutex_unlock(&con
->mutex
);
2174 * Queue up an outgoing message on the given connection.
2176 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2178 if (test_bit(CLOSED
, &con
->state
)) {
2179 dout("con_send %p closed, dropping %p\n", con
, msg
);
2185 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2187 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2189 msg
->needs_out_seq
= true;
2192 mutex_lock(&con
->mutex
);
2193 BUG_ON(!list_empty(&msg
->list_head
));
2194 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2195 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2196 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2197 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2198 le32_to_cpu(msg
->hdr
.front_len
),
2199 le32_to_cpu(msg
->hdr
.middle_len
),
2200 le32_to_cpu(msg
->hdr
.data_len
));
2201 mutex_unlock(&con
->mutex
);
2203 /* if there wasn't anything waiting to send before, queue
2206 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2209 EXPORT_SYMBOL(ceph_con_send
);
2212 * Revoke a message that was previously queued for send
2214 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2216 mutex_lock(&con
->mutex
);
2217 if (!list_empty(&msg
->list_head
)) {
2218 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2219 list_del_init(&msg
->list_head
);
2223 if (con
->out_msg
== msg
) {
2224 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2225 con
->out_msg
= NULL
;
2226 if (con
->out_kvec_is_msg
) {
2227 con
->out_skip
= con
->out_kvec_bytes
;
2228 con
->out_kvec_is_msg
= false;
2233 mutex_unlock(&con
->mutex
);
2237 * Revoke a message that we may be reading data into
2239 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2241 mutex_lock(&con
->mutex
);
2242 if (con
->in_msg
&& con
->in_msg
== msg
) {
2243 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2244 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2245 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2247 /* skip rest of message */
2248 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2249 con
->in_base_pos
= con
->in_base_pos
-
2250 sizeof(struct ceph_msg_header
) -
2254 sizeof(struct ceph_msg_footer
);
2255 ceph_msg_put(con
->in_msg
);
2257 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2260 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2261 con
, con
->in_msg
, msg
);
2263 mutex_unlock(&con
->mutex
);
2267 * Queue a keepalive byte to ensure the tcp connection is alive.
2269 void ceph_con_keepalive(struct ceph_connection
*con
)
2271 dout("con_keepalive %p\n", con
);
2273 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2274 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2277 EXPORT_SYMBOL(ceph_con_keepalive
);
2281 * construct a new message with given type, size
2282 * the new msg has a ref count of 1.
2284 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
)
2288 m
= kmalloc(sizeof(*m
), flags
);
2291 kref_init(&m
->kref
);
2292 INIT_LIST_HEAD(&m
->list_head
);
2295 m
->hdr
.type
= cpu_to_le16(type
);
2296 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2298 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2299 m
->hdr
.middle_len
= 0;
2300 m
->hdr
.data_len
= 0;
2301 m
->hdr
.data_off
= 0;
2302 m
->hdr
.reserved
= 0;
2303 m
->footer
.front_crc
= 0;
2304 m
->footer
.middle_crc
= 0;
2305 m
->footer
.data_crc
= 0;
2306 m
->footer
.flags
= 0;
2307 m
->front_max
= front_len
;
2308 m
->front_is_vmalloc
= false;
2309 m
->more_to_follow
= false;
2317 m
->page_alignment
= 0;
2327 if (front_len
> PAGE_CACHE_SIZE
) {
2328 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2330 m
->front_is_vmalloc
= true;
2332 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2334 if (m
->front
.iov_base
== NULL
) {
2335 pr_err("msg_new can't allocate %d bytes\n",
2340 m
->front
.iov_base
= NULL
;
2342 m
->front
.iov_len
= front_len
;
2344 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2350 pr_err("msg_new can't create type %d front %d\n", type
, front_len
);
2353 EXPORT_SYMBOL(ceph_msg_new
);
2356 * Allocate "middle" portion of a message, if it is needed and wasn't
2357 * allocated by alloc_msg. This allows us to read a small fixed-size
2358 * per-type header in the front and then gracefully fail (i.e.,
2359 * propagate the error to the caller based on info in the front) when
2360 * the middle is too large.
2362 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2364 int type
= le16_to_cpu(msg
->hdr
.type
);
2365 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2367 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2368 ceph_msg_type_name(type
), middle_len
);
2369 BUG_ON(!middle_len
);
2370 BUG_ON(msg
->middle
);
2372 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2379 * Generic message allocator, for incoming messages.
2381 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2382 struct ceph_msg_header
*hdr
,
2385 int type
= le16_to_cpu(hdr
->type
);
2386 int front_len
= le32_to_cpu(hdr
->front_len
);
2387 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2388 struct ceph_msg
*msg
= NULL
;
2391 if (con
->ops
->alloc_msg
) {
2392 mutex_unlock(&con
->mutex
);
2393 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2394 mutex_lock(&con
->mutex
);
2400 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
);
2402 pr_err("unable to allocate msg type %d len %d\n",
2406 msg
->page_alignment
= le16_to_cpu(hdr
->data_off
);
2408 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2410 if (middle_len
&& !msg
->middle
) {
2411 ret
= ceph_alloc_middle(con
, msg
);
2423 * Free a generically kmalloc'd message.
2425 void ceph_msg_kfree(struct ceph_msg
*m
)
2427 dout("msg_kfree %p\n", m
);
2428 if (m
->front_is_vmalloc
)
2429 vfree(m
->front
.iov_base
);
2431 kfree(m
->front
.iov_base
);
2436 * Drop a msg ref. Destroy as needed.
2438 void ceph_msg_last_put(struct kref
*kref
)
2440 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2442 dout("ceph_msg_put last one on %p\n", m
);
2443 WARN_ON(!list_empty(&m
->list_head
));
2445 /* drop middle, data, if any */
2447 ceph_buffer_put(m
->middle
);
2454 ceph_pagelist_release(m
->pagelist
);
2462 ceph_msgpool_put(m
->pool
, m
);
2466 EXPORT_SYMBOL(ceph_msg_last_put
);
2468 void ceph_msg_dump(struct ceph_msg
*msg
)
2470 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2471 msg
->front_max
, msg
->nr_pages
);
2472 print_hex_dump(KERN_DEBUG
, "header: ",
2473 DUMP_PREFIX_OFFSET
, 16, 1,
2474 &msg
->hdr
, sizeof(msg
->hdr
), true);
2475 print_hex_dump(KERN_DEBUG
, " front: ",
2476 DUMP_PREFIX_OFFSET
, 16, 1,
2477 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2479 print_hex_dump(KERN_DEBUG
, "middle: ",
2480 DUMP_PREFIX_OFFSET
, 16, 1,
2481 msg
->middle
->vec
.iov_base
,
2482 msg
->middle
->vec
.iov_len
, true);
2483 print_hex_dump(KERN_DEBUG
, "footer: ",
2484 DUMP_PREFIX_OFFSET
, 16, 1,
2485 &msg
->footer
, sizeof(msg
->footer
), true);
2487 EXPORT_SYMBOL(ceph_msg_dump
);