1 <refentry id="vidioc-g-fbuf">
3 <refentrytitle>ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF</refentrytitle>
8 <refname>VIDIOC_G_FBUF</refname>
9 <refname>VIDIOC_S_FBUF</refname>
10 <refpurpose>Get or set frame buffer overlay parameters</refpurpose>
16 <funcdef>int <function>ioctl</function></funcdef>
17 <paramdef>int <parameter>fd</parameter></paramdef>
18 <paramdef>int <parameter>request</parameter></paramdef>
19 <paramdef>struct v4l2_framebuffer *<parameter>argp</parameter></paramdef>
24 <funcdef>int <function>ioctl</function></funcdef>
25 <paramdef>int <parameter>fd</parameter></paramdef>
26 <paramdef>int <parameter>request</parameter></paramdef>
27 <paramdef>const struct v4l2_framebuffer *<parameter>argp</parameter></paramdef>
33 <title>Arguments</title>
37 <term><parameter>fd</parameter></term>
43 <term><parameter>request</parameter></term>
45 <para>VIDIOC_G_FBUF, VIDIOC_S_FBUF</para>
49 <term><parameter>argp</parameter></term>
58 <title>Description</title>
60 <para>Applications can use the <constant>VIDIOC_G_FBUF</constant> and
61 <constant>VIDIOC_S_FBUF</constant> ioctl to get and set the
62 framebuffer parameters for a <link linkend="overlay">Video
63 Overlay</link> or <link linkend="osd">Video Output Overlay</link>
64 (OSD). The type of overlay is implied by the device type (capture or
65 output device) and can be determined with the &VIDIOC-QUERYCAP; ioctl.
66 One <filename>/dev/videoN</filename> device must not support both
67 kinds of overlay.</para>
69 <para>The V4L2 API distinguishes destructive and non-destructive
70 overlays. A destructive overlay copies captured video images into the
71 video memory of a graphics card. A non-destructive overlay blends
72 video images into a VGA signal or graphics into a video signal.
73 <wordasword>Video Output Overlays</wordasword> are always
74 non-destructive.</para>
76 <para>To get the current parameters applications call the
77 <constant>VIDIOC_G_FBUF</constant> ioctl with a pointer to a
78 <structname>v4l2_framebuffer</structname> structure. The driver fills
79 all fields of the structure or returns an &EINVAL; when overlays are
82 <para>To set the parameters for a <wordasword>Video Output
83 Overlay</wordasword>, applications must initialize the
84 <structfield>flags</structfield> field of a struct
85 <structname>v4l2_framebuffer</structname>. Since the framebuffer is
86 implemented on the TV card all other parameters are determined by the
87 driver. When an application calls <constant>VIDIOC_S_FBUF</constant>
88 with a pointer to this structure, the driver prepares for the overlay
89 and returns the framebuffer parameters as
90 <constant>VIDIOC_G_FBUF</constant> does, or it returns an error
93 <para>To set the parameters for a <wordasword>non-destructive
94 Video Overlay</wordasword>, applications must initialize the
95 <structfield>flags</structfield> field, the
96 <structfield>fmt</structfield> substructure, and call
97 <constant>VIDIOC_S_FBUF</constant>. Again the driver prepares for the
98 overlay and returns the framebuffer parameters as
99 <constant>VIDIOC_G_FBUF</constant> does, or it returns an error
102 <para>For a <wordasword>destructive Video Overlay</wordasword>
103 applications must additionally provide a
104 <structfield>base</structfield> address. Setting up a DMA to a
105 random memory location can jeopardize the system security, its
106 stability or even damage the hardware, therefore only the superuser
107 can set the parameters for a destructive video overlay.</para>
109 <!-- NB v4l2_pix_format is also specified in pixfmt.sgml.-->
111 <table pgwide="1" frame="none" id="v4l2-framebuffer">
112 <title>struct <structname>v4l2_framebuffer</structname></title>
118 <entry><structfield>capability</structfield></entry>
120 <entry>Overlay capability flags set by the driver, see
121 <xref linkend="framebuffer-cap" />.</entry>
125 <entry><structfield>flags</structfield></entry>
127 <entry>Overlay control flags set by application and
128 driver, see <xref linkend="framebuffer-flags" /></entry>
131 <entry>void *</entry>
132 <entry><structfield>base</structfield></entry>
134 <entry>Physical base address of the framebuffer,
135 that is the address of the pixel in the top left corner of the
136 framebuffer.<footnote><para>A physical base address may not suit all
137 platforms. GK notes in theory we should pass something like PCI device
138 + memory region + offset instead. If you encounter problems please
139 discuss on the linux-media mailing list: &v4l-ml;.</para></footnote></entry>
145 <entry>This field is irrelevant to
146 <wordasword>non-destructive Video Overlays</wordasword>. For
147 <wordasword>destructive Video Overlays</wordasword> applications must
148 provide a base address. The driver may accept only base addresses
149 which are a multiple of two, four or eight bytes. For
150 <wordasword>Video Output Overlays</wordasword> the driver must return
151 a valid base address, so applications can find the corresponding Linux
152 framebuffer device (see <xref linkend="osd" />).</entry>
155 <entry>&v4l2-pix-format;</entry>
156 <entry><structfield>fmt</structfield></entry>
158 <entry>Layout of the frame buffer. The
159 <structname>v4l2_pix_format</structname> structure is defined in <xref
160 linkend="pixfmt" />, for clarification the fields and acceptable values
161 are listed below:</entry>
166 <entry><structfield>width</structfield></entry>
167 <entry>Width of the frame buffer in pixels.</entry>
172 <entry><structfield>height</structfield></entry>
173 <entry>Height of the frame buffer in pixels.</entry>
178 <entry><structfield>pixelformat</structfield></entry>
179 <entry>The pixel format of the
186 <entry>For <wordasword>non-destructive Video
187 Overlays</wordasword> this field only defines a format for the
188 &v4l2-window; <structfield>chromakey</structfield> field.</entry>
194 <entry>For <wordasword>destructive Video
195 Overlays</wordasword> applications must initialize this field. For
196 <wordasword>Video Output Overlays</wordasword> the driver must return
197 a valid format.</entry>
203 <entry>Usually this is an RGB format (for example
204 <link linkend="V4L2-PIX-FMT-RGB565"><constant>V4L2_PIX_FMT_RGB565</constant></link>)
205 but YUV formats (only packed YUV formats when chroma keying is used,
206 not including <constant>V4L2_PIX_FMT_YUYV</constant> and
207 <constant>V4L2_PIX_FMT_UYVY</constant>) and the
208 <constant>V4L2_PIX_FMT_PAL8</constant> format are also permitted. The
209 behavior of the driver when an application requests a compressed
210 format is undefined. See <xref linkend="pixfmt" /> for information on
211 pixel formats.</entry>
215 <entry>&v4l2-field;</entry>
216 <entry><structfield>field</structfield></entry>
217 <entry>Drivers and applications shall ignore this field.
218 If applicable, the field order is selected with the &VIDIOC-S-FMT;
219 ioctl, using the <structfield>field</structfield> field of
220 &v4l2-window;.</entry>
225 <entry><structfield>bytesperline</structfield></entry>
226 <entry>Distance in bytes between the leftmost pixels in
227 two adjacent lines.</entry>
230 <entry spanname="hspan"><para>This field is irrelevant to
231 <wordasword>non-destructive Video
232 Overlays</wordasword>.</para><para>For <wordasword>destructive Video
233 Overlays</wordasword> both applications and drivers can set this field
234 to request padding bytes at the end of each line. Drivers however may
235 ignore the requested value, returning <structfield>width</structfield>
236 times bytes-per-pixel or a larger value required by the hardware. That
237 implies applications can just set this field to zero to get a
238 reasonable default.</para><para>For <wordasword>Video Output
239 Overlays</wordasword> the driver must return a valid
240 value.</para><para>Video hardware may access padding bytes, therefore
241 they must reside in accessible memory. Consider for example the case
242 where padding bytes after the last line of an image cross a system
243 page boundary. Capture devices may write padding bytes, the value is
244 undefined. Output devices ignore the contents of padding
245 bytes.</para><para>When the image format is planar the
246 <structfield>bytesperline</structfield> value applies to the largest
247 plane and is divided by the same factor as the
248 <structfield>width</structfield> field for any smaller planes. For
249 example the Cb and Cr planes of a YUV 4:2:0 image have half as many
250 padding bytes following each line as the Y plane. To avoid ambiguities
251 drivers must return a <structfield>bytesperline</structfield> value
252 rounded up to a multiple of the scale factor.</para></entry>
257 <entry><structfield>sizeimage</structfield></entry>
258 <entry><para>This field is irrelevant to
259 <wordasword>non-destructive Video Overlays</wordasword>. For
260 <wordasword>destructive Video Overlays</wordasword> applications must
261 initialize this field. For <wordasword>Video Output
262 Overlays</wordasword> the driver must return a valid
263 format.</para><para>Together with <structfield>base</structfield> it
264 defines the framebuffer memory accessible by the
265 driver.</para></entry>
269 <entry>&v4l2-colorspace;</entry>
270 <entry><structfield>colorspace</structfield></entry>
271 <entry>This information supplements the
272 <structfield>pixelformat</structfield> and must be set by the driver,
273 see <xref linkend="colorspaces" />.</entry>
278 <entry><structfield>priv</structfield></entry>
279 <entry>Reserved for additional information about custom
280 (driver defined) formats. When not used drivers and applications must
281 set this field to zero.</entry>
287 <table pgwide="1" frame="none" id="framebuffer-cap">
288 <title>Frame Buffer Capability Flags</title>
293 <entry><constant>V4L2_FBUF_CAP_EXTERNOVERLAY</constant></entry>
294 <entry>0x0001</entry>
295 <entry>The device is capable of non-destructive overlays.
296 When the driver clears this flag, only destructive overlays are
297 supported. There are no drivers yet which support both destructive and
298 non-destructive overlays. Video Output Overlays are in practice always
299 non-destructive.</entry>
302 <entry><constant>V4L2_FBUF_CAP_CHROMAKEY</constant></entry>
303 <entry>0x0002</entry>
304 <entry>The device supports clipping by chroma-keying the
305 images. That is, image pixels replace pixels in the VGA or video
306 signal only where the latter assume a certain color. Chroma-keying
307 makes no sense for destructive overlays.</entry>
310 <entry><constant>V4L2_FBUF_CAP_LIST_CLIPPING</constant></entry>
311 <entry>0x0004</entry>
312 <entry>The device supports clipping using a list of clip
316 <entry><constant>V4L2_FBUF_CAP_BITMAP_CLIPPING</constant></entry>
317 <entry>0x0008</entry>
318 <entry>The device supports clipping using a bit mask.</entry>
321 <entry><constant>V4L2_FBUF_CAP_LOCAL_ALPHA</constant></entry>
322 <entry>0x0010</entry>
323 <entry>The device supports clipping/blending using the
324 alpha channel of the framebuffer or VGA signal. Alpha blending makes
325 no sense for destructive overlays.</entry>
328 <entry><constant>V4L2_FBUF_CAP_GLOBAL_ALPHA</constant></entry>
329 <entry>0x0020</entry>
330 <entry>The device supports alpha blending using a global
331 alpha value. Alpha blending makes no sense for destructive overlays.</entry>
334 <entry><constant>V4L2_FBUF_CAP_LOCAL_INV_ALPHA</constant></entry>
335 <entry>0x0040</entry>
336 <entry>The device supports clipping/blending using the
337 inverted alpha channel of the framebuffer or VGA signal. Alpha
338 blending makes no sense for destructive overlays.</entry>
341 <entry><constant>V4L2_FBUF_CAP_SRC_CHROMAKEY</constant></entry>
342 <entry>0x0080</entry>
343 <entry>The device supports Source Chroma-keying. Video pixels
344 with the chroma-key colors are replaced by framebuffer pixels, which is exactly opposite of
345 <constant>V4L2_FBUF_CAP_CHROMAKEY</constant></entry>
351 <table pgwide="1" frame="none" id="framebuffer-flags">
352 <title>Frame Buffer Flags</title>
357 <entry><constant>V4L2_FBUF_FLAG_PRIMARY</constant></entry>
358 <entry>0x0001</entry>
359 <entry>The framebuffer is the primary graphics surface.
360 In other words, the overlay is destructive. This flag is typically set by any
361 driver that doesn't have the <constant>V4L2_FBUF_CAP_EXTERNOVERLAY</constant>
362 capability and it is cleared otherwise.</entry>
365 <entry><constant>V4L2_FBUF_FLAG_OVERLAY</constant></entry>
366 <entry>0x0002</entry>
367 <entry>If this flag is set for a video capture device, then the
368 driver will set the initial overlay size to cover the full framebuffer size,
369 otherwise the existing overlay size (as set by &VIDIOC-S-FMT;) will be used.
371 Only one video capture driver (bttv) supports this flag. The use of this flag
372 for capture devices is deprecated. There is no way to detect which drivers
373 support this flag, so the only reliable method of setting the overlay size is
374 through &VIDIOC-S-FMT;.
376 If this flag is set for a video output device, then the video output overlay
377 window is relative to the top-left corner of the framebuffer and restricted
378 to the size of the framebuffer. If it is cleared, then the video output
379 overlay window is relative to the video output display.
383 <entry><constant>V4L2_FBUF_FLAG_CHROMAKEY</constant></entry>
384 <entry>0x0004</entry>
385 <entry>Use chroma-keying. The chroma-key color is
386 determined by the <structfield>chromakey</structfield> field of
387 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
390 <xref linkend="osd" />.</entry>
393 <entry spanname="hspan">There are no flags to enable
394 clipping using a list of clip rectangles or a bitmap. These methods
395 are negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
396 linkend="overlay" /> and <xref linkend="osd" />.</entry>
399 <entry><constant>V4L2_FBUF_FLAG_LOCAL_ALPHA</constant></entry>
400 <entry>0x0008</entry>
401 <entry>Use the alpha channel of the framebuffer to clip or
402 blend framebuffer pixels with video images. The blend
403 function is: output = framebuffer pixel * alpha + video pixel * (1 -
404 alpha). The actual alpha depth depends on the framebuffer pixel
408 <entry><constant>V4L2_FBUF_FLAG_GLOBAL_ALPHA</constant></entry>
409 <entry>0x0010</entry>
410 <entry>Use a global alpha value to blend the framebuffer
411 with video images. The blend function is: output = (framebuffer pixel
412 * alpha + video pixel * (255 - alpha)) / 255. The alpha value is
413 determined by the <structfield>global_alpha</structfield> field of
414 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
416 and <xref linkend="osd" />.</entry>
419 <entry><constant>V4L2_FBUF_FLAG_LOCAL_INV_ALPHA</constant></entry>
420 <entry>0x0020</entry>
422 <constant>V4L2_FBUF_FLAG_LOCAL_ALPHA</constant>, use the alpha channel
423 of the framebuffer to clip or blend framebuffer pixels with video
424 images, but with an inverted alpha value. The blend function is:
425 output = framebuffer pixel * (1 - alpha) + video pixel * alpha. The
426 actual alpha depth depends on the framebuffer pixel format.</entry>
429 <entry><constant>V4L2_FBUF_FLAG_SRC_CHROMAKEY</constant></entry>
430 <entry>0x0040</entry>
431 <entry>Use source chroma-keying. The source chroma-key color is
432 determined by the <structfield>chromakey</structfield> field of
433 &v4l2-window; and negotiated with the &VIDIOC-S-FMT; ioctl, see <xref
434 linkend="overlay" /> and <xref linkend="osd" />.
435 Both chroma-keying are mutual exclusive to each other, so same
436 <structfield>chromakey</structfield> field of &v4l2-window; is being used.</entry>
448 <term><errorcode>EPERM</errorcode></term>
450 <para><constant>VIDIOC_S_FBUF</constant> can only be called
451 by a privileged user to negotiate the parameters for a destructive
456 <term><errorcode>EINVAL</errorcode></term>
458 <para>The <constant>VIDIOC_S_FBUF</constant> parameters are unsuitable.</para>