2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr
);
84 static DEFINE_MUTEX(loop_index_mutex
);
87 static int part_shift
;
92 static int transfer_none(struct loop_device
*lo
, int cmd
,
93 struct page
*raw_page
, unsigned raw_off
,
94 struct page
*loop_page
, unsigned loop_off
,
95 int size
, sector_t real_block
)
97 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
98 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
101 memcpy(loop_buf
, raw_buf
, size
);
103 memcpy(raw_buf
, loop_buf
, size
);
105 kunmap_atomic(loop_buf
, KM_USER1
);
106 kunmap_atomic(raw_buf
, KM_USER0
);
111 static int transfer_xor(struct loop_device
*lo
, int cmd
,
112 struct page
*raw_page
, unsigned raw_off
,
113 struct page
*loop_page
, unsigned loop_off
,
114 int size
, sector_t real_block
)
116 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
117 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
118 char *in
, *out
, *key
;
129 key
= lo
->lo_encrypt_key
;
130 keysize
= lo
->lo_encrypt_key_size
;
131 for (i
= 0; i
< size
; i
++)
132 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
134 kunmap_atomic(loop_buf
, KM_USER1
);
135 kunmap_atomic(raw_buf
, KM_USER0
);
140 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
142 if (unlikely(info
->lo_encrypt_key_size
<= 0))
147 static struct loop_func_table none_funcs
= {
148 .number
= LO_CRYPT_NONE
,
149 .transfer
= transfer_none
,
152 static struct loop_func_table xor_funcs
= {
153 .number
= LO_CRYPT_XOR
,
154 .transfer
= transfer_xor
,
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
164 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
166 loff_t size
, loopsize
;
168 /* Compute loopsize in bytes */
169 size
= i_size_read(file
->f_mapping
->host
);
170 loopsize
= size
- offset
;
171 /* offset is beyond i_size, wierd but possible */
175 if (sizelimit
> 0 && sizelimit
< loopsize
)
176 loopsize
= sizelimit
;
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
181 return loopsize
>> 9;
184 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
186 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
190 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
192 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
193 sector_t x
= (sector_t
)size
;
195 if (unlikely((loff_t
)x
!= size
))
197 if (lo
->lo_offset
!= offset
)
198 lo
->lo_offset
= offset
;
199 if (lo
->lo_sizelimit
!= sizelimit
)
200 lo
->lo_sizelimit
= sizelimit
;
201 set_capacity(lo
->lo_disk
, x
);
206 lo_do_transfer(struct loop_device
*lo
, int cmd
,
207 struct page
*rpage
, unsigned roffs
,
208 struct page
*lpage
, unsigned loffs
,
209 int size
, sector_t rblock
)
211 if (unlikely(!lo
->transfer
))
214 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
218 * __do_lo_send_write - helper for writing data to a loop device
220 * This helper just factors out common code between do_lo_send_direct_write()
221 * and do_lo_send_write().
223 static int __do_lo_send_write(struct file
*file
,
224 u8
*buf
, const int len
, loff_t pos
)
227 mm_segment_t old_fs
= get_fs();
230 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
232 if (likely(bw
== len
))
234 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
235 (unsigned long long)pos
, len
);
242 * do_lo_send_direct_write - helper for writing data to a loop device
244 * This is the fast, non-transforming version that does not need double
247 static int do_lo_send_direct_write(struct loop_device
*lo
,
248 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
250 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
251 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
253 kunmap(bvec
->bv_page
);
259 * do_lo_send_write - helper for writing data to a loop device
261 * This is the slow, transforming version that needs to double buffer the
262 * data as it cannot do the transformations in place without having direct
263 * access to the destination pages of the backing file.
265 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
266 loff_t pos
, struct page
*page
)
268 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
269 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
271 return __do_lo_send_write(lo
->lo_backing_file
,
272 page_address(page
), bvec
->bv_len
,
274 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
275 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
281 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
283 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
285 struct bio_vec
*bvec
;
286 struct page
*page
= NULL
;
289 if (lo
->transfer
!= transfer_none
) {
290 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
294 do_lo_send
= do_lo_send_write
;
296 do_lo_send
= do_lo_send_direct_write
;
299 bio_for_each_segment(bvec
, bio
, i
) {
300 ret
= do_lo_send(lo
, bvec
, pos
, page
);
312 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
317 struct lo_read_data
{
318 struct loop_device
*lo
;
325 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
326 struct splice_desc
*sd
)
328 struct lo_read_data
*p
= sd
->u
.data
;
329 struct loop_device
*lo
= p
->lo
;
330 struct page
*page
= buf
->page
;
334 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
340 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
341 printk(KERN_ERR
"loop: transfer error block %ld\n",
346 flush_dcache_page(p
->page
);
355 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
357 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
361 do_lo_receive(struct loop_device
*lo
,
362 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
364 struct lo_read_data cookie
;
365 struct splice_desc sd
;
370 cookie
.page
= bvec
->bv_page
;
371 cookie
.offset
= bvec
->bv_offset
;
372 cookie
.bsize
= bsize
;
375 sd
.total_len
= bvec
->bv_len
;
380 file
= lo
->lo_backing_file
;
381 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
385 if (retval
!= bvec
->bv_len
)
391 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
393 struct bio_vec
*bvec
;
396 bio_for_each_segment(bvec
, bio
, i
) {
397 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
405 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
410 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
412 if (bio_rw(bio
) == WRITE
) {
413 struct file
*file
= lo
->lo_backing_file
;
415 if (bio
->bi_rw
& REQ_FLUSH
) {
416 ret
= vfs_fsync(file
, 0);
417 if (unlikely(ret
&& ret
!= -EINVAL
)) {
424 * We use punch hole to reclaim the free space used by the
425 * image a.k.a. discard. However we do not support discard if
426 * encryption is enabled, because it may give an attacker
427 * useful information.
429 if (bio
->bi_rw
& REQ_DISCARD
) {
430 struct file
*file
= lo
->lo_backing_file
;
431 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
433 if ((!file
->f_op
->fallocate
) ||
434 lo
->lo_encrypt_key_size
) {
438 ret
= file
->f_op
->fallocate(file
, mode
, pos
,
440 if (unlikely(ret
&& ret
!= -EINVAL
&&
446 ret
= lo_send(lo
, bio
, pos
);
448 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
449 ret
= vfs_fsync(file
, 0);
450 if (unlikely(ret
&& ret
!= -EINVAL
))
454 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
461 * Add bio to back of pending list
463 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
465 bio_list_add(&lo
->lo_bio_list
, bio
);
469 * Grab first pending buffer
471 static struct bio
*loop_get_bio(struct loop_device
*lo
)
473 return bio_list_pop(&lo
->lo_bio_list
);
476 static void loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
478 struct loop_device
*lo
= q
->queuedata
;
479 int rw
= bio_rw(old_bio
);
484 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
486 spin_lock_irq(&lo
->lo_lock
);
487 if (lo
->lo_state
!= Lo_bound
)
489 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
491 loop_add_bio(lo
, old_bio
);
492 wake_up(&lo
->lo_event
);
493 spin_unlock_irq(&lo
->lo_lock
);
497 spin_unlock_irq(&lo
->lo_lock
);
498 bio_io_error(old_bio
);
501 struct switch_request
{
503 struct completion wait
;
506 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
508 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
510 if (unlikely(!bio
->bi_bdev
)) {
511 do_loop_switch(lo
, bio
->bi_private
);
514 int ret
= do_bio_filebacked(lo
, bio
);
520 * worker thread that handles reads/writes to file backed loop devices,
521 * to avoid blocking in our make_request_fn. it also does loop decrypting
522 * on reads for block backed loop, as that is too heavy to do from
523 * b_end_io context where irqs may be disabled.
525 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
526 * calling kthread_stop(). Therefore once kthread_should_stop() is
527 * true, make_request will not place any more requests. Therefore
528 * once kthread_should_stop() is true and lo_bio is NULL, we are
529 * done with the loop.
531 static int loop_thread(void *data
)
533 struct loop_device
*lo
= data
;
536 set_user_nice(current
, -20);
538 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
540 wait_event_interruptible(lo
->lo_event
,
541 !bio_list_empty(&lo
->lo_bio_list
) ||
542 kthread_should_stop());
544 if (bio_list_empty(&lo
->lo_bio_list
))
546 spin_lock_irq(&lo
->lo_lock
);
547 bio
= loop_get_bio(lo
);
548 spin_unlock_irq(&lo
->lo_lock
);
551 loop_handle_bio(lo
, bio
);
558 * loop_switch performs the hard work of switching a backing store.
559 * First it needs to flush existing IO, it does this by sending a magic
560 * BIO down the pipe. The completion of this BIO does the actual switch.
562 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
564 struct switch_request w
;
565 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
568 init_completion(&w
.wait
);
570 bio
->bi_private
= &w
;
572 loop_make_request(lo
->lo_queue
, bio
);
573 wait_for_completion(&w
.wait
);
578 * Helper to flush the IOs in loop, but keeping loop thread running
580 static int loop_flush(struct loop_device
*lo
)
582 /* loop not yet configured, no running thread, nothing to flush */
586 return loop_switch(lo
, NULL
);
590 * Do the actual switch; called from the BIO completion routine
592 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
594 struct file
*file
= p
->file
;
595 struct file
*old_file
= lo
->lo_backing_file
;
596 struct address_space
*mapping
;
598 /* if no new file, only flush of queued bios requested */
602 mapping
= file
->f_mapping
;
603 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
604 lo
->lo_backing_file
= file
;
605 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
606 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
607 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
608 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
615 * loop_change_fd switched the backing store of a loopback device to
616 * a new file. This is useful for operating system installers to free up
617 * the original file and in High Availability environments to switch to
618 * an alternative location for the content in case of server meltdown.
619 * This can only work if the loop device is used read-only, and if the
620 * new backing store is the same size and type as the old backing store.
622 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
625 struct file
*file
, *old_file
;
630 if (lo
->lo_state
!= Lo_bound
)
633 /* the loop device has to be read-only */
635 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
643 inode
= file
->f_mapping
->host
;
644 old_file
= lo
->lo_backing_file
;
648 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
651 /* size of the new backing store needs to be the same */
652 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
656 error
= loop_switch(lo
, file
);
661 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
662 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
671 static inline int is_loop_device(struct file
*file
)
673 struct inode
*i
= file
->f_mapping
->host
;
675 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
678 /* loop sysfs attributes */
680 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
681 ssize_t (*callback
)(struct loop_device
*, char *))
683 struct gendisk
*disk
= dev_to_disk(dev
);
684 struct loop_device
*lo
= disk
->private_data
;
686 return callback(lo
, page
);
689 #define LOOP_ATTR_RO(_name) \
690 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
691 static ssize_t loop_attr_do_show_##_name(struct device *d, \
692 struct device_attribute *attr, char *b) \
694 return loop_attr_show(d, b, loop_attr_##_name##_show); \
696 static struct device_attribute loop_attr_##_name = \
697 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
704 spin_lock_irq(&lo
->lo_lock
);
705 if (lo
->lo_backing_file
)
706 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
707 spin_unlock_irq(&lo
->lo_lock
);
709 if (IS_ERR_OR_NULL(p
))
713 memmove(buf
, p
, ret
);
721 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
723 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
726 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
728 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
731 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
733 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
735 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
738 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
740 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
742 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
745 LOOP_ATTR_RO(backing_file
);
746 LOOP_ATTR_RO(offset
);
747 LOOP_ATTR_RO(sizelimit
);
748 LOOP_ATTR_RO(autoclear
);
749 LOOP_ATTR_RO(partscan
);
751 static struct attribute
*loop_attrs
[] = {
752 &loop_attr_backing_file
.attr
,
753 &loop_attr_offset
.attr
,
754 &loop_attr_sizelimit
.attr
,
755 &loop_attr_autoclear
.attr
,
756 &loop_attr_partscan
.attr
,
760 static struct attribute_group loop_attribute_group
= {
765 static int loop_sysfs_init(struct loop_device
*lo
)
767 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
768 &loop_attribute_group
);
771 static void loop_sysfs_exit(struct loop_device
*lo
)
773 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
774 &loop_attribute_group
);
777 static void loop_config_discard(struct loop_device
*lo
)
779 struct file
*file
= lo
->lo_backing_file
;
780 struct inode
*inode
= file
->f_mapping
->host
;
781 struct request_queue
*q
= lo
->lo_queue
;
784 * We use punch hole to reclaim the free space used by the
785 * image a.k.a. discard. However we do support discard if
786 * encryption is enabled, because it may give an attacker
787 * useful information.
789 if ((!file
->f_op
->fallocate
) ||
790 lo
->lo_encrypt_key_size
) {
791 q
->limits
.discard_granularity
= 0;
792 q
->limits
.discard_alignment
= 0;
793 q
->limits
.max_discard_sectors
= 0;
794 q
->limits
.discard_zeroes_data
= 0;
795 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
799 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
800 q
->limits
.discard_alignment
= 0;
801 q
->limits
.max_discard_sectors
= UINT_MAX
>> 9;
802 q
->limits
.discard_zeroes_data
= 1;
803 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
806 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
807 struct block_device
*bdev
, unsigned int arg
)
809 struct file
*file
, *f
;
811 struct address_space
*mapping
;
812 unsigned lo_blocksize
;
817 /* This is safe, since we have a reference from open(). */
818 __module_get(THIS_MODULE
);
826 if (lo
->lo_state
!= Lo_unbound
)
829 /* Avoid recursion */
831 while (is_loop_device(f
)) {
832 struct loop_device
*l
;
834 if (f
->f_mapping
->host
->i_bdev
== bdev
)
837 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
838 if (l
->lo_state
== Lo_unbound
) {
842 f
= l
->lo_backing_file
;
845 mapping
= file
->f_mapping
;
846 inode
= mapping
->host
;
849 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
852 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
854 lo_flags
|= LO_FLAGS_READ_ONLY
;
856 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
857 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
860 size
= get_loop_size(lo
, file
);
861 if ((loff_t
)(sector_t
)size
!= size
)
866 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
868 lo
->lo_blocksize
= lo_blocksize
;
869 lo
->lo_device
= bdev
;
870 lo
->lo_flags
= lo_flags
;
871 lo
->lo_backing_file
= file
;
872 lo
->transfer
= transfer_none
;
874 lo
->lo_sizelimit
= 0;
875 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
876 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
878 bio_list_init(&lo
->lo_bio_list
);
881 * set queue make_request_fn, and add limits based on lower level
884 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
885 lo
->lo_queue
->queuedata
= lo
;
887 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
888 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
890 set_capacity(lo
->lo_disk
, size
);
891 bd_set_size(bdev
, size
<< 9);
893 /* let user-space know about the new size */
894 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
896 set_blocksize(bdev
, lo_blocksize
);
898 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
900 if (IS_ERR(lo
->lo_thread
)) {
901 error
= PTR_ERR(lo
->lo_thread
);
904 lo
->lo_state
= Lo_bound
;
905 wake_up_process(lo
->lo_thread
);
907 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
908 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
909 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
914 lo
->lo_thread
= NULL
;
915 lo
->lo_device
= NULL
;
916 lo
->lo_backing_file
= NULL
;
918 set_capacity(lo
->lo_disk
, 0);
919 invalidate_bdev(bdev
);
920 bd_set_size(bdev
, 0);
921 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
922 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
923 lo
->lo_state
= Lo_unbound
;
927 /* This is safe: open() is still holding a reference. */
928 module_put(THIS_MODULE
);
933 loop_release_xfer(struct loop_device
*lo
)
936 struct loop_func_table
*xfer
= lo
->lo_encryption
;
940 err
= xfer
->release(lo
);
942 lo
->lo_encryption
= NULL
;
943 module_put(xfer
->owner
);
949 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
950 const struct loop_info64
*i
)
955 struct module
*owner
= xfer
->owner
;
957 if (!try_module_get(owner
))
960 err
= xfer
->init(lo
, i
);
964 lo
->lo_encryption
= xfer
;
969 static int loop_clr_fd(struct loop_device
*lo
)
971 struct file
*filp
= lo
->lo_backing_file
;
972 gfp_t gfp
= lo
->old_gfp_mask
;
973 struct block_device
*bdev
= lo
->lo_device
;
975 if (lo
->lo_state
!= Lo_bound
)
978 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
984 spin_lock_irq(&lo
->lo_lock
);
985 lo
->lo_state
= Lo_rundown
;
986 spin_unlock_irq(&lo
->lo_lock
);
988 kthread_stop(lo
->lo_thread
);
990 spin_lock_irq(&lo
->lo_lock
);
991 lo
->lo_backing_file
= NULL
;
992 spin_unlock_irq(&lo
->lo_lock
);
994 loop_release_xfer(lo
);
997 lo
->lo_device
= NULL
;
998 lo
->lo_encryption
= NULL
;
1000 lo
->lo_sizelimit
= 0;
1001 lo
->lo_encrypt_key_size
= 0;
1002 lo
->lo_thread
= NULL
;
1003 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1004 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1005 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1007 invalidate_bdev(bdev
);
1008 set_capacity(lo
->lo_disk
, 0);
1009 loop_sysfs_exit(lo
);
1011 bd_set_size(bdev
, 0);
1012 /* let user-space know about this change */
1013 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1015 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1016 lo
->lo_state
= Lo_unbound
;
1017 /* This is safe: open() is still holding a reference. */
1018 module_put(THIS_MODULE
);
1019 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1020 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1023 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1024 mutex_unlock(&lo
->lo_ctl_mutex
);
1026 * Need not hold lo_ctl_mutex to fput backing file.
1027 * Calling fput holding lo_ctl_mutex triggers a circular
1028 * lock dependency possibility warning as fput can take
1029 * bd_mutex which is usually taken before lo_ctl_mutex.
1036 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1039 struct loop_func_table
*xfer
;
1040 uid_t uid
= current_uid();
1042 if (lo
->lo_encrypt_key_size
&&
1043 lo
->lo_key_owner
!= uid
&&
1044 !capable(CAP_SYS_ADMIN
))
1046 if (lo
->lo_state
!= Lo_bound
)
1048 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1051 err
= loop_release_xfer(lo
);
1055 if (info
->lo_encrypt_type
) {
1056 unsigned int type
= info
->lo_encrypt_type
;
1058 if (type
>= MAX_LO_CRYPT
)
1060 xfer
= xfer_funcs
[type
];
1066 err
= loop_init_xfer(lo
, xfer
, info
);
1070 if (lo
->lo_offset
!= info
->lo_offset
||
1071 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1072 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
))
1075 loop_config_discard(lo
);
1077 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1078 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1079 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1080 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1084 lo
->transfer
= xfer
->transfer
;
1085 lo
->ioctl
= xfer
->ioctl
;
1087 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1088 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1089 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1091 if ((info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1092 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1093 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1094 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1095 ioctl_by_bdev(lo
->lo_device
, BLKRRPART
, 0);
1098 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1099 lo
->lo_init
[0] = info
->lo_init
[0];
1100 lo
->lo_init
[1] = info
->lo_init
[1];
1101 if (info
->lo_encrypt_key_size
) {
1102 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1103 info
->lo_encrypt_key_size
);
1104 lo
->lo_key_owner
= uid
;
1111 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1113 struct file
*file
= lo
->lo_backing_file
;
1117 if (lo
->lo_state
!= Lo_bound
)
1119 error
= vfs_getattr(file
->f_path
.mnt
, file
->f_path
.dentry
, &stat
);
1122 memset(info
, 0, sizeof(*info
));
1123 info
->lo_number
= lo
->lo_number
;
1124 info
->lo_device
= huge_encode_dev(stat
.dev
);
1125 info
->lo_inode
= stat
.ino
;
1126 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1127 info
->lo_offset
= lo
->lo_offset
;
1128 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1129 info
->lo_flags
= lo
->lo_flags
;
1130 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1131 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1132 info
->lo_encrypt_type
=
1133 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1134 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1135 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1136 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1137 lo
->lo_encrypt_key_size
);
1143 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1145 memset(info64
, 0, sizeof(*info64
));
1146 info64
->lo_number
= info
->lo_number
;
1147 info64
->lo_device
= info
->lo_device
;
1148 info64
->lo_inode
= info
->lo_inode
;
1149 info64
->lo_rdevice
= info
->lo_rdevice
;
1150 info64
->lo_offset
= info
->lo_offset
;
1151 info64
->lo_sizelimit
= 0;
1152 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1153 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1154 info64
->lo_flags
= info
->lo_flags
;
1155 info64
->lo_init
[0] = info
->lo_init
[0];
1156 info64
->lo_init
[1] = info
->lo_init
[1];
1157 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1158 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1160 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1161 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1165 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1167 memset(info
, 0, sizeof(*info
));
1168 info
->lo_number
= info64
->lo_number
;
1169 info
->lo_device
= info64
->lo_device
;
1170 info
->lo_inode
= info64
->lo_inode
;
1171 info
->lo_rdevice
= info64
->lo_rdevice
;
1172 info
->lo_offset
= info64
->lo_offset
;
1173 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1174 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1175 info
->lo_flags
= info64
->lo_flags
;
1176 info
->lo_init
[0] = info64
->lo_init
[0];
1177 info
->lo_init
[1] = info64
->lo_init
[1];
1178 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1179 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1181 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1182 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1184 /* error in case values were truncated */
1185 if (info
->lo_device
!= info64
->lo_device
||
1186 info
->lo_rdevice
!= info64
->lo_rdevice
||
1187 info
->lo_inode
!= info64
->lo_inode
||
1188 info
->lo_offset
!= info64
->lo_offset
)
1195 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1197 struct loop_info info
;
1198 struct loop_info64 info64
;
1200 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1202 loop_info64_from_old(&info
, &info64
);
1203 return loop_set_status(lo
, &info64
);
1207 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1209 struct loop_info64 info64
;
1211 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1213 return loop_set_status(lo
, &info64
);
1217 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1218 struct loop_info info
;
1219 struct loop_info64 info64
;
1225 err
= loop_get_status(lo
, &info64
);
1227 err
= loop_info64_to_old(&info64
, &info
);
1228 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1235 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1236 struct loop_info64 info64
;
1242 err
= loop_get_status(lo
, &info64
);
1243 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1249 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1256 if (unlikely(lo
->lo_state
!= Lo_bound
))
1258 err
= figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1261 sec
= get_capacity(lo
->lo_disk
);
1262 /* the width of sector_t may be narrow for bit-shift */
1265 mutex_lock(&bdev
->bd_mutex
);
1266 bd_set_size(bdev
, sz
);
1267 /* let user-space know about the new size */
1268 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1269 mutex_unlock(&bdev
->bd_mutex
);
1275 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1276 unsigned int cmd
, unsigned long arg
)
1278 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1281 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1284 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1286 case LOOP_CHANGE_FD
:
1287 err
= loop_change_fd(lo
, bdev
, arg
);
1290 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1291 err
= loop_clr_fd(lo
);
1295 case LOOP_SET_STATUS
:
1297 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1298 err
= loop_set_status_old(lo
,
1299 (struct loop_info __user
*)arg
);
1301 case LOOP_GET_STATUS
:
1302 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1304 case LOOP_SET_STATUS64
:
1306 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1307 err
= loop_set_status64(lo
,
1308 (struct loop_info64 __user
*) arg
);
1310 case LOOP_GET_STATUS64
:
1311 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1313 case LOOP_SET_CAPACITY
:
1315 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1316 err
= loop_set_capacity(lo
, bdev
);
1319 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1321 mutex_unlock(&lo
->lo_ctl_mutex
);
1327 #ifdef CONFIG_COMPAT
1328 struct compat_loop_info
{
1329 compat_int_t lo_number
; /* ioctl r/o */
1330 compat_dev_t lo_device
; /* ioctl r/o */
1331 compat_ulong_t lo_inode
; /* ioctl r/o */
1332 compat_dev_t lo_rdevice
; /* ioctl r/o */
1333 compat_int_t lo_offset
;
1334 compat_int_t lo_encrypt_type
;
1335 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1336 compat_int_t lo_flags
; /* ioctl r/o */
1337 char lo_name
[LO_NAME_SIZE
];
1338 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1339 compat_ulong_t lo_init
[2];
1344 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1345 * - noinlined to reduce stack space usage in main part of driver
1348 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1349 struct loop_info64
*info64
)
1351 struct compat_loop_info info
;
1353 if (copy_from_user(&info
, arg
, sizeof(info
)))
1356 memset(info64
, 0, sizeof(*info64
));
1357 info64
->lo_number
= info
.lo_number
;
1358 info64
->lo_device
= info
.lo_device
;
1359 info64
->lo_inode
= info
.lo_inode
;
1360 info64
->lo_rdevice
= info
.lo_rdevice
;
1361 info64
->lo_offset
= info
.lo_offset
;
1362 info64
->lo_sizelimit
= 0;
1363 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1364 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1365 info64
->lo_flags
= info
.lo_flags
;
1366 info64
->lo_init
[0] = info
.lo_init
[0];
1367 info64
->lo_init
[1] = info
.lo_init
[1];
1368 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1369 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1371 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1372 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1377 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1378 * - noinlined to reduce stack space usage in main part of driver
1381 loop_info64_to_compat(const struct loop_info64
*info64
,
1382 struct compat_loop_info __user
*arg
)
1384 struct compat_loop_info info
;
1386 memset(&info
, 0, sizeof(info
));
1387 info
.lo_number
= info64
->lo_number
;
1388 info
.lo_device
= info64
->lo_device
;
1389 info
.lo_inode
= info64
->lo_inode
;
1390 info
.lo_rdevice
= info64
->lo_rdevice
;
1391 info
.lo_offset
= info64
->lo_offset
;
1392 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1393 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1394 info
.lo_flags
= info64
->lo_flags
;
1395 info
.lo_init
[0] = info64
->lo_init
[0];
1396 info
.lo_init
[1] = info64
->lo_init
[1];
1397 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1398 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1400 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1401 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1403 /* error in case values were truncated */
1404 if (info
.lo_device
!= info64
->lo_device
||
1405 info
.lo_rdevice
!= info64
->lo_rdevice
||
1406 info
.lo_inode
!= info64
->lo_inode
||
1407 info
.lo_offset
!= info64
->lo_offset
||
1408 info
.lo_init
[0] != info64
->lo_init
[0] ||
1409 info
.lo_init
[1] != info64
->lo_init
[1])
1412 if (copy_to_user(arg
, &info
, sizeof(info
)))
1418 loop_set_status_compat(struct loop_device
*lo
,
1419 const struct compat_loop_info __user
*arg
)
1421 struct loop_info64 info64
;
1424 ret
= loop_info64_from_compat(arg
, &info64
);
1427 return loop_set_status(lo
, &info64
);
1431 loop_get_status_compat(struct loop_device
*lo
,
1432 struct compat_loop_info __user
*arg
)
1434 struct loop_info64 info64
;
1440 err
= loop_get_status(lo
, &info64
);
1442 err
= loop_info64_to_compat(&info64
, arg
);
1446 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1447 unsigned int cmd
, unsigned long arg
)
1449 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1453 case LOOP_SET_STATUS
:
1454 mutex_lock(&lo
->lo_ctl_mutex
);
1455 err
= loop_set_status_compat(
1456 lo
, (const struct compat_loop_info __user
*) arg
);
1457 mutex_unlock(&lo
->lo_ctl_mutex
);
1459 case LOOP_GET_STATUS
:
1460 mutex_lock(&lo
->lo_ctl_mutex
);
1461 err
= loop_get_status_compat(
1462 lo
, (struct compat_loop_info __user
*) arg
);
1463 mutex_unlock(&lo
->lo_ctl_mutex
);
1465 case LOOP_SET_CAPACITY
:
1467 case LOOP_GET_STATUS64
:
1468 case LOOP_SET_STATUS64
:
1469 arg
= (unsigned long) compat_ptr(arg
);
1471 case LOOP_CHANGE_FD
:
1472 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1482 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1484 struct loop_device
*lo
;
1487 mutex_lock(&loop_index_mutex
);
1488 lo
= bdev
->bd_disk
->private_data
;
1494 mutex_lock(&lo
->lo_ctl_mutex
);
1496 mutex_unlock(&lo
->lo_ctl_mutex
);
1498 mutex_unlock(&loop_index_mutex
);
1502 static int lo_release(struct gendisk
*disk
, fmode_t mode
)
1504 struct loop_device
*lo
= disk
->private_data
;
1507 mutex_lock(&lo
->lo_ctl_mutex
);
1509 if (--lo
->lo_refcnt
)
1512 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1514 * In autoclear mode, stop the loop thread
1515 * and remove configuration after last close.
1517 err
= loop_clr_fd(lo
);
1522 * Otherwise keep thread (if running) and config,
1523 * but flush possible ongoing bios in thread.
1529 mutex_unlock(&lo
->lo_ctl_mutex
);
1534 static const struct block_device_operations lo_fops
= {
1535 .owner
= THIS_MODULE
,
1537 .release
= lo_release
,
1539 #ifdef CONFIG_COMPAT
1540 .compat_ioctl
= lo_compat_ioctl
,
1545 * And now the modules code and kernel interface.
1547 static int max_loop
;
1548 module_param(max_loop
, int, S_IRUGO
);
1549 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1550 module_param(max_part
, int, S_IRUGO
);
1551 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1552 MODULE_LICENSE("GPL");
1553 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1555 int loop_register_transfer(struct loop_func_table
*funcs
)
1557 unsigned int n
= funcs
->number
;
1559 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1561 xfer_funcs
[n
] = funcs
;
1565 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1567 struct loop_device
*lo
= ptr
;
1568 struct loop_func_table
*xfer
= data
;
1570 mutex_lock(&lo
->lo_ctl_mutex
);
1571 if (lo
->lo_encryption
== xfer
)
1572 loop_release_xfer(lo
);
1573 mutex_unlock(&lo
->lo_ctl_mutex
);
1577 int loop_unregister_transfer(int number
)
1579 unsigned int n
= number
;
1580 struct loop_func_table
*xfer
;
1582 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1585 xfer_funcs
[n
] = NULL
;
1586 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1590 EXPORT_SYMBOL(loop_register_transfer
);
1591 EXPORT_SYMBOL(loop_unregister_transfer
);
1593 static int loop_add(struct loop_device
**l
, int i
)
1595 struct loop_device
*lo
;
1596 struct gendisk
*disk
;
1599 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1605 err
= idr_pre_get(&loop_index_idr
, GFP_KERNEL
);
1612 /* create specific i in the index */
1613 err
= idr_get_new_above(&loop_index_idr
, lo
, i
, &m
);
1614 if (err
>= 0 && i
!= m
) {
1615 idr_remove(&loop_index_idr
, m
);
1618 } else if (i
== -1) {
1621 /* get next free nr */
1622 err
= idr_get_new(&loop_index_idr
, lo
, &m
);
1631 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1635 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1637 goto out_free_queue
;
1640 * Disable partition scanning by default. The in-kernel partition
1641 * scanning can be requested individually per-device during its
1642 * setup. Userspace can always add and remove partitions from all
1643 * devices. The needed partition minors are allocated from the
1644 * extended minor space, the main loop device numbers will continue
1645 * to match the loop minors, regardless of the number of partitions
1648 * If max_part is given, partition scanning is globally enabled for
1649 * all loop devices. The minors for the main loop devices will be
1650 * multiples of max_part.
1652 * Note: Global-for-all-devices, set-only-at-init, read-only module
1653 * parameteters like 'max_loop' and 'max_part' make things needlessly
1654 * complicated, are too static, inflexible and may surprise
1655 * userspace tools. Parameters like this in general should be avoided.
1658 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1659 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1660 mutex_init(&lo
->lo_ctl_mutex
);
1662 lo
->lo_thread
= NULL
;
1663 init_waitqueue_head(&lo
->lo_event
);
1664 spin_lock_init(&lo
->lo_lock
);
1665 disk
->major
= LOOP_MAJOR
;
1666 disk
->first_minor
= i
<< part_shift
;
1667 disk
->fops
= &lo_fops
;
1668 disk
->private_data
= lo
;
1669 disk
->queue
= lo
->lo_queue
;
1670 sprintf(disk
->disk_name
, "loop%d", i
);
1673 return lo
->lo_number
;
1676 blk_cleanup_queue(lo
->lo_queue
);
1683 static void loop_remove(struct loop_device
*lo
)
1685 del_gendisk(lo
->lo_disk
);
1686 blk_cleanup_queue(lo
->lo_queue
);
1687 put_disk(lo
->lo_disk
);
1691 static int find_free_cb(int id
, void *ptr
, void *data
)
1693 struct loop_device
*lo
= ptr
;
1694 struct loop_device
**l
= data
;
1696 if (lo
->lo_state
== Lo_unbound
) {
1703 static int loop_lookup(struct loop_device
**l
, int i
)
1705 struct loop_device
*lo
;
1711 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1714 ret
= lo
->lo_number
;
1719 /* lookup and return a specific i */
1720 lo
= idr_find(&loop_index_idr
, i
);
1723 ret
= lo
->lo_number
;
1729 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1731 struct loop_device
*lo
;
1732 struct kobject
*kobj
;
1735 mutex_lock(&loop_index_mutex
);
1736 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1738 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1740 kobj
= ERR_PTR(err
);
1742 kobj
= get_disk(lo
->lo_disk
);
1743 mutex_unlock(&loop_index_mutex
);
1749 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1752 struct loop_device
*lo
;
1755 mutex_lock(&loop_index_mutex
);
1758 ret
= loop_lookup(&lo
, parm
);
1763 ret
= loop_add(&lo
, parm
);
1765 case LOOP_CTL_REMOVE
:
1766 ret
= loop_lookup(&lo
, parm
);
1769 mutex_lock(&lo
->lo_ctl_mutex
);
1770 if (lo
->lo_state
!= Lo_unbound
) {
1772 mutex_unlock(&lo
->lo_ctl_mutex
);
1775 if (lo
->lo_refcnt
> 0) {
1777 mutex_unlock(&lo
->lo_ctl_mutex
);
1780 lo
->lo_disk
->private_data
= NULL
;
1781 mutex_unlock(&lo
->lo_ctl_mutex
);
1782 idr_remove(&loop_index_idr
, lo
->lo_number
);
1785 case LOOP_CTL_GET_FREE
:
1786 ret
= loop_lookup(&lo
, -1);
1789 ret
= loop_add(&lo
, -1);
1791 mutex_unlock(&loop_index_mutex
);
1796 static const struct file_operations loop_ctl_fops
= {
1797 .open
= nonseekable_open
,
1798 .unlocked_ioctl
= loop_control_ioctl
,
1799 .compat_ioctl
= loop_control_ioctl
,
1800 .owner
= THIS_MODULE
,
1801 .llseek
= noop_llseek
,
1804 static struct miscdevice loop_misc
= {
1805 .minor
= LOOP_CTRL_MINOR
,
1806 .name
= "loop-control",
1807 .fops
= &loop_ctl_fops
,
1810 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1811 MODULE_ALIAS("devname:loop-control");
1813 static int __init
loop_init(void)
1816 unsigned long range
;
1817 struct loop_device
*lo
;
1820 err
= misc_register(&loop_misc
);
1826 part_shift
= fls(max_part
);
1829 * Adjust max_part according to part_shift as it is exported
1830 * to user space so that user can decide correct minor number
1831 * if [s]he want to create more devices.
1833 * Note that -1 is required because partition 0 is reserved
1834 * for the whole disk.
1836 max_part
= (1UL << part_shift
) - 1;
1839 if ((1UL << part_shift
) > DISK_MAX_PARTS
)
1842 if (max_loop
> 1UL << (MINORBITS
- part_shift
))
1846 * If max_loop is specified, create that many devices upfront.
1847 * This also becomes a hard limit. If max_loop is not specified,
1848 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1849 * init time. Loop devices can be requested on-demand with the
1850 * /dev/loop-control interface, or be instantiated by accessing
1851 * a 'dead' device node.
1855 range
= max_loop
<< part_shift
;
1857 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1858 range
= 1UL << MINORBITS
;
1861 if (register_blkdev(LOOP_MAJOR
, "loop"))
1864 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1865 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1867 /* pre-create number of devices given by config or max_loop */
1868 mutex_lock(&loop_index_mutex
);
1869 for (i
= 0; i
< nr
; i
++)
1871 mutex_unlock(&loop_index_mutex
);
1873 printk(KERN_INFO
"loop: module loaded\n");
1877 static int loop_exit_cb(int id
, void *ptr
, void *data
)
1879 struct loop_device
*lo
= ptr
;
1885 static void __exit
loop_exit(void)
1887 unsigned long range
;
1889 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1891 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
1892 idr_remove_all(&loop_index_idr
);
1893 idr_destroy(&loop_index_idr
);
1895 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1896 unregister_blkdev(LOOP_MAJOR
, "loop");
1898 misc_deregister(&loop_misc
);
1901 module_init(loop_init
);
1902 module_exit(loop_exit
);
1905 static int __init
max_loop_setup(char *str
)
1907 max_loop
= simple_strtol(str
, NULL
, 0);
1911 __setup("max_loop=", max_loop_setup
);