Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[zen-stable.git] / drivers / block / loop.c
blob1e888c9e85b3dd10a42238a6588dd4f0b2f7c9e1
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
90 * Transfer functions
92 static int transfer_none(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
97 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
100 if (cmd == READ)
101 memcpy(loop_buf, raw_buf, size);
102 else
103 memcpy(raw_buf, loop_buf, size);
105 kunmap_atomic(loop_buf, KM_USER1);
106 kunmap_atomic(raw_buf, KM_USER0);
107 cond_resched();
108 return 0;
111 static int transfer_xor(struct loop_device *lo, int cmd,
112 struct page *raw_page, unsigned raw_off,
113 struct page *loop_page, unsigned loop_off,
114 int size, sector_t real_block)
116 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
117 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
118 char *in, *out, *key;
119 int i, keysize;
121 if (cmd == READ) {
122 in = raw_buf;
123 out = loop_buf;
124 } else {
125 in = loop_buf;
126 out = raw_buf;
129 key = lo->lo_encrypt_key;
130 keysize = lo->lo_encrypt_key_size;
131 for (i = 0; i < size; i++)
132 *out++ = *in++ ^ key[(i & 511) % keysize];
134 kunmap_atomic(loop_buf, KM_USER1);
135 kunmap_atomic(raw_buf, KM_USER0);
136 cond_resched();
137 return 0;
140 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
142 if (unlikely(info->lo_encrypt_key_size <= 0))
143 return -EINVAL;
144 return 0;
147 static struct loop_func_table none_funcs = {
148 .number = LO_CRYPT_NONE,
149 .transfer = transfer_none,
152 static struct loop_func_table xor_funcs = {
153 .number = LO_CRYPT_XOR,
154 .transfer = transfer_xor,
155 .init = xor_init
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
160 &none_funcs,
161 &xor_funcs
164 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
166 loff_t size, loopsize;
168 /* Compute loopsize in bytes */
169 size = i_size_read(file->f_mapping->host);
170 loopsize = size - offset;
171 /* offset is beyond i_size, wierd but possible */
172 if (loopsize < 0)
173 return 0;
175 if (sizelimit > 0 && sizelimit < loopsize)
176 loopsize = sizelimit;
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
181 return loopsize >> 9;
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
186 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 sector_t x = (sector_t)size;
195 if (unlikely((loff_t)x != size))
196 return -EFBIG;
197 if (lo->lo_offset != offset)
198 lo->lo_offset = offset;
199 if (lo->lo_sizelimit != sizelimit)
200 lo->lo_sizelimit = sizelimit;
201 set_capacity(lo->lo_disk, x);
202 return 0;
205 static inline int
206 lo_do_transfer(struct loop_device *lo, int cmd,
207 struct page *rpage, unsigned roffs,
208 struct page *lpage, unsigned loffs,
209 int size, sector_t rblock)
211 if (unlikely(!lo->transfer))
212 return 0;
214 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
218 * __do_lo_send_write - helper for writing data to a loop device
220 * This helper just factors out common code between do_lo_send_direct_write()
221 * and do_lo_send_write().
223 static int __do_lo_send_write(struct file *file,
224 u8 *buf, const int len, loff_t pos)
226 ssize_t bw;
227 mm_segment_t old_fs = get_fs();
229 set_fs(get_ds());
230 bw = file->f_op->write(file, buf, len, &pos);
231 set_fs(old_fs);
232 if (likely(bw == len))
233 return 0;
234 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
235 (unsigned long long)pos, len);
236 if (bw >= 0)
237 bw = -EIO;
238 return bw;
242 * do_lo_send_direct_write - helper for writing data to a loop device
244 * This is the fast, non-transforming version that does not need double
245 * buffering.
247 static int do_lo_send_direct_write(struct loop_device *lo,
248 struct bio_vec *bvec, loff_t pos, struct page *page)
250 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
251 kmap(bvec->bv_page) + bvec->bv_offset,
252 bvec->bv_len, pos);
253 kunmap(bvec->bv_page);
254 cond_resched();
255 return bw;
259 * do_lo_send_write - helper for writing data to a loop device
261 * This is the slow, transforming version that needs to double buffer the
262 * data as it cannot do the transformations in place without having direct
263 * access to the destination pages of the backing file.
265 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
266 loff_t pos, struct page *page)
268 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
269 bvec->bv_offset, bvec->bv_len, pos >> 9);
270 if (likely(!ret))
271 return __do_lo_send_write(lo->lo_backing_file,
272 page_address(page), bvec->bv_len,
273 pos);
274 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
275 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
276 if (ret > 0)
277 ret = -EIO;
278 return ret;
281 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
283 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
284 struct page *page);
285 struct bio_vec *bvec;
286 struct page *page = NULL;
287 int i, ret = 0;
289 if (lo->transfer != transfer_none) {
290 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
291 if (unlikely(!page))
292 goto fail;
293 kmap(page);
294 do_lo_send = do_lo_send_write;
295 } else {
296 do_lo_send = do_lo_send_direct_write;
299 bio_for_each_segment(bvec, bio, i) {
300 ret = do_lo_send(lo, bvec, pos, page);
301 if (ret < 0)
302 break;
303 pos += bvec->bv_len;
305 if (page) {
306 kunmap(page);
307 __free_page(page);
309 out:
310 return ret;
311 fail:
312 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
313 ret = -ENOMEM;
314 goto out;
317 struct lo_read_data {
318 struct loop_device *lo;
319 struct page *page;
320 unsigned offset;
321 int bsize;
324 static int
325 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
326 struct splice_desc *sd)
328 struct lo_read_data *p = sd->u.data;
329 struct loop_device *lo = p->lo;
330 struct page *page = buf->page;
331 sector_t IV;
332 int size;
334 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
335 (buf->offset >> 9);
336 size = sd->len;
337 if (size > p->bsize)
338 size = p->bsize;
340 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
341 printk(KERN_ERR "loop: transfer error block %ld\n",
342 page->index);
343 size = -EINVAL;
346 flush_dcache_page(p->page);
348 if (size > 0)
349 p->offset += size;
351 return size;
354 static int
355 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
357 return __splice_from_pipe(pipe, sd, lo_splice_actor);
360 static int
361 do_lo_receive(struct loop_device *lo,
362 struct bio_vec *bvec, int bsize, loff_t pos)
364 struct lo_read_data cookie;
365 struct splice_desc sd;
366 struct file *file;
367 long retval;
369 cookie.lo = lo;
370 cookie.page = bvec->bv_page;
371 cookie.offset = bvec->bv_offset;
372 cookie.bsize = bsize;
374 sd.len = 0;
375 sd.total_len = bvec->bv_len;
376 sd.flags = 0;
377 sd.pos = pos;
378 sd.u.data = &cookie;
380 file = lo->lo_backing_file;
381 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
383 if (retval < 0)
384 return retval;
385 if (retval != bvec->bv_len)
386 return -EIO;
387 return 0;
390 static int
391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
393 struct bio_vec *bvec;
394 int i, ret = 0;
396 bio_for_each_segment(bvec, bio, i) {
397 ret = do_lo_receive(lo, bvec, bsize, pos);
398 if (ret < 0)
399 break;
400 pos += bvec->bv_len;
402 return ret;
405 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407 loff_t pos;
408 int ret;
410 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412 if (bio_rw(bio) == WRITE) {
413 struct file *file = lo->lo_backing_file;
415 if (bio->bi_rw & REQ_FLUSH) {
416 ret = vfs_fsync(file, 0);
417 if (unlikely(ret && ret != -EINVAL)) {
418 ret = -EIO;
419 goto out;
424 * We use punch hole to reclaim the free space used by the
425 * image a.k.a. discard. However we do not support discard if
426 * encryption is enabled, because it may give an attacker
427 * useful information.
429 if (bio->bi_rw & REQ_DISCARD) {
430 struct file *file = lo->lo_backing_file;
431 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
433 if ((!file->f_op->fallocate) ||
434 lo->lo_encrypt_key_size) {
435 ret = -EOPNOTSUPP;
436 goto out;
438 ret = file->f_op->fallocate(file, mode, pos,
439 bio->bi_size);
440 if (unlikely(ret && ret != -EINVAL &&
441 ret != -EOPNOTSUPP))
442 ret = -EIO;
443 goto out;
446 ret = lo_send(lo, bio, pos);
448 if ((bio->bi_rw & REQ_FUA) && !ret) {
449 ret = vfs_fsync(file, 0);
450 if (unlikely(ret && ret != -EINVAL))
451 ret = -EIO;
453 } else
454 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456 out:
457 return ret;
461 * Add bio to back of pending list
463 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465 bio_list_add(&lo->lo_bio_list, bio);
469 * Grab first pending buffer
471 static struct bio *loop_get_bio(struct loop_device *lo)
473 return bio_list_pop(&lo->lo_bio_list);
476 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
478 struct loop_device *lo = q->queuedata;
479 int rw = bio_rw(old_bio);
481 if (rw == READA)
482 rw = READ;
484 BUG_ON(!lo || (rw != READ && rw != WRITE));
486 spin_lock_irq(&lo->lo_lock);
487 if (lo->lo_state != Lo_bound)
488 goto out;
489 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
490 goto out;
491 loop_add_bio(lo, old_bio);
492 wake_up(&lo->lo_event);
493 spin_unlock_irq(&lo->lo_lock);
494 return;
496 out:
497 spin_unlock_irq(&lo->lo_lock);
498 bio_io_error(old_bio);
501 struct switch_request {
502 struct file *file;
503 struct completion wait;
506 static void do_loop_switch(struct loop_device *, struct switch_request *);
508 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
510 if (unlikely(!bio->bi_bdev)) {
511 do_loop_switch(lo, bio->bi_private);
512 bio_put(bio);
513 } else {
514 int ret = do_bio_filebacked(lo, bio);
515 bio_endio(bio, ret);
520 * worker thread that handles reads/writes to file backed loop devices,
521 * to avoid blocking in our make_request_fn. it also does loop decrypting
522 * on reads for block backed loop, as that is too heavy to do from
523 * b_end_io context where irqs may be disabled.
525 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
526 * calling kthread_stop(). Therefore once kthread_should_stop() is
527 * true, make_request will not place any more requests. Therefore
528 * once kthread_should_stop() is true and lo_bio is NULL, we are
529 * done with the loop.
531 static int loop_thread(void *data)
533 struct loop_device *lo = data;
534 struct bio *bio;
536 set_user_nice(current, -20);
538 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
540 wait_event_interruptible(lo->lo_event,
541 !bio_list_empty(&lo->lo_bio_list) ||
542 kthread_should_stop());
544 if (bio_list_empty(&lo->lo_bio_list))
545 continue;
546 spin_lock_irq(&lo->lo_lock);
547 bio = loop_get_bio(lo);
548 spin_unlock_irq(&lo->lo_lock);
550 BUG_ON(!bio);
551 loop_handle_bio(lo, bio);
554 return 0;
558 * loop_switch performs the hard work of switching a backing store.
559 * First it needs to flush existing IO, it does this by sending a magic
560 * BIO down the pipe. The completion of this BIO does the actual switch.
562 static int loop_switch(struct loop_device *lo, struct file *file)
564 struct switch_request w;
565 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
566 if (!bio)
567 return -ENOMEM;
568 init_completion(&w.wait);
569 w.file = file;
570 bio->bi_private = &w;
571 bio->bi_bdev = NULL;
572 loop_make_request(lo->lo_queue, bio);
573 wait_for_completion(&w.wait);
574 return 0;
578 * Helper to flush the IOs in loop, but keeping loop thread running
580 static int loop_flush(struct loop_device *lo)
582 /* loop not yet configured, no running thread, nothing to flush */
583 if (!lo->lo_thread)
584 return 0;
586 return loop_switch(lo, NULL);
590 * Do the actual switch; called from the BIO completion routine
592 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
594 struct file *file = p->file;
595 struct file *old_file = lo->lo_backing_file;
596 struct address_space *mapping;
598 /* if no new file, only flush of queued bios requested */
599 if (!file)
600 goto out;
602 mapping = file->f_mapping;
603 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
604 lo->lo_backing_file = file;
605 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
606 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
607 lo->old_gfp_mask = mapping_gfp_mask(mapping);
608 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
609 out:
610 complete(&p->wait);
615 * loop_change_fd switched the backing store of a loopback device to
616 * a new file. This is useful for operating system installers to free up
617 * the original file and in High Availability environments to switch to
618 * an alternative location for the content in case of server meltdown.
619 * This can only work if the loop device is used read-only, and if the
620 * new backing store is the same size and type as the old backing store.
622 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
623 unsigned int arg)
625 struct file *file, *old_file;
626 struct inode *inode;
627 int error;
629 error = -ENXIO;
630 if (lo->lo_state != Lo_bound)
631 goto out;
633 /* the loop device has to be read-only */
634 error = -EINVAL;
635 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
636 goto out;
638 error = -EBADF;
639 file = fget(arg);
640 if (!file)
641 goto out;
643 inode = file->f_mapping->host;
644 old_file = lo->lo_backing_file;
646 error = -EINVAL;
648 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
649 goto out_putf;
651 /* size of the new backing store needs to be the same */
652 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
653 goto out_putf;
655 /* and ... switch */
656 error = loop_switch(lo, file);
657 if (error)
658 goto out_putf;
660 fput(old_file);
661 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
662 ioctl_by_bdev(bdev, BLKRRPART, 0);
663 return 0;
665 out_putf:
666 fput(file);
667 out:
668 return error;
671 static inline int is_loop_device(struct file *file)
673 struct inode *i = file->f_mapping->host;
675 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
678 /* loop sysfs attributes */
680 static ssize_t loop_attr_show(struct device *dev, char *page,
681 ssize_t (*callback)(struct loop_device *, char *))
683 struct gendisk *disk = dev_to_disk(dev);
684 struct loop_device *lo = disk->private_data;
686 return callback(lo, page);
689 #define LOOP_ATTR_RO(_name) \
690 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
691 static ssize_t loop_attr_do_show_##_name(struct device *d, \
692 struct device_attribute *attr, char *b) \
694 return loop_attr_show(d, b, loop_attr_##_name##_show); \
696 static struct device_attribute loop_attr_##_name = \
697 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701 ssize_t ret;
702 char *p = NULL;
704 spin_lock_irq(&lo->lo_lock);
705 if (lo->lo_backing_file)
706 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
707 spin_unlock_irq(&lo->lo_lock);
709 if (IS_ERR_OR_NULL(p))
710 ret = PTR_ERR(p);
711 else {
712 ret = strlen(p);
713 memmove(buf, p, ret);
714 buf[ret++] = '\n';
715 buf[ret] = 0;
718 return ret;
721 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
726 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
731 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
738 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742 return sprintf(buf, "%s\n", partscan ? "1" : "0");
745 LOOP_ATTR_RO(backing_file);
746 LOOP_ATTR_RO(offset);
747 LOOP_ATTR_RO(sizelimit);
748 LOOP_ATTR_RO(autoclear);
749 LOOP_ATTR_RO(partscan);
751 static struct attribute *loop_attrs[] = {
752 &loop_attr_backing_file.attr,
753 &loop_attr_offset.attr,
754 &loop_attr_sizelimit.attr,
755 &loop_attr_autoclear.attr,
756 &loop_attr_partscan.attr,
757 NULL,
760 static struct attribute_group loop_attribute_group = {
761 .name = "loop",
762 .attrs= loop_attrs,
765 static int loop_sysfs_init(struct loop_device *lo)
767 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
768 &loop_attribute_group);
771 static void loop_sysfs_exit(struct loop_device *lo)
773 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
774 &loop_attribute_group);
777 static void loop_config_discard(struct loop_device *lo)
779 struct file *file = lo->lo_backing_file;
780 struct inode *inode = file->f_mapping->host;
781 struct request_queue *q = lo->lo_queue;
784 * We use punch hole to reclaim the free space used by the
785 * image a.k.a. discard. However we do support discard if
786 * encryption is enabled, because it may give an attacker
787 * useful information.
789 if ((!file->f_op->fallocate) ||
790 lo->lo_encrypt_key_size) {
791 q->limits.discard_granularity = 0;
792 q->limits.discard_alignment = 0;
793 q->limits.max_discard_sectors = 0;
794 q->limits.discard_zeroes_data = 0;
795 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
796 return;
799 q->limits.discard_granularity = inode->i_sb->s_blocksize;
800 q->limits.discard_alignment = 0;
801 q->limits.max_discard_sectors = UINT_MAX >> 9;
802 q->limits.discard_zeroes_data = 1;
803 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
806 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
807 struct block_device *bdev, unsigned int arg)
809 struct file *file, *f;
810 struct inode *inode;
811 struct address_space *mapping;
812 unsigned lo_blocksize;
813 int lo_flags = 0;
814 int error;
815 loff_t size;
817 /* This is safe, since we have a reference from open(). */
818 __module_get(THIS_MODULE);
820 error = -EBADF;
821 file = fget(arg);
822 if (!file)
823 goto out;
825 error = -EBUSY;
826 if (lo->lo_state != Lo_unbound)
827 goto out_putf;
829 /* Avoid recursion */
830 f = file;
831 while (is_loop_device(f)) {
832 struct loop_device *l;
834 if (f->f_mapping->host->i_bdev == bdev)
835 goto out_putf;
837 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
838 if (l->lo_state == Lo_unbound) {
839 error = -EINVAL;
840 goto out_putf;
842 f = l->lo_backing_file;
845 mapping = file->f_mapping;
846 inode = mapping->host;
848 error = -EINVAL;
849 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
850 goto out_putf;
852 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
853 !file->f_op->write)
854 lo_flags |= LO_FLAGS_READ_ONLY;
856 lo_blocksize = S_ISBLK(inode->i_mode) ?
857 inode->i_bdev->bd_block_size : PAGE_SIZE;
859 error = -EFBIG;
860 size = get_loop_size(lo, file);
861 if ((loff_t)(sector_t)size != size)
862 goto out_putf;
864 error = 0;
866 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
868 lo->lo_blocksize = lo_blocksize;
869 lo->lo_device = bdev;
870 lo->lo_flags = lo_flags;
871 lo->lo_backing_file = file;
872 lo->transfer = transfer_none;
873 lo->ioctl = NULL;
874 lo->lo_sizelimit = 0;
875 lo->old_gfp_mask = mapping_gfp_mask(mapping);
876 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
878 bio_list_init(&lo->lo_bio_list);
881 * set queue make_request_fn, and add limits based on lower level
882 * device
884 blk_queue_make_request(lo->lo_queue, loop_make_request);
885 lo->lo_queue->queuedata = lo;
887 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
888 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
890 set_capacity(lo->lo_disk, size);
891 bd_set_size(bdev, size << 9);
892 loop_sysfs_init(lo);
893 /* let user-space know about the new size */
894 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
896 set_blocksize(bdev, lo_blocksize);
898 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
899 lo->lo_number);
900 if (IS_ERR(lo->lo_thread)) {
901 error = PTR_ERR(lo->lo_thread);
902 goto out_clr;
904 lo->lo_state = Lo_bound;
905 wake_up_process(lo->lo_thread);
906 if (part_shift)
907 lo->lo_flags |= LO_FLAGS_PARTSCAN;
908 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
909 ioctl_by_bdev(bdev, BLKRRPART, 0);
910 return 0;
912 out_clr:
913 loop_sysfs_exit(lo);
914 lo->lo_thread = NULL;
915 lo->lo_device = NULL;
916 lo->lo_backing_file = NULL;
917 lo->lo_flags = 0;
918 set_capacity(lo->lo_disk, 0);
919 invalidate_bdev(bdev);
920 bd_set_size(bdev, 0);
921 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
922 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
923 lo->lo_state = Lo_unbound;
924 out_putf:
925 fput(file);
926 out:
927 /* This is safe: open() is still holding a reference. */
928 module_put(THIS_MODULE);
929 return error;
932 static int
933 loop_release_xfer(struct loop_device *lo)
935 int err = 0;
936 struct loop_func_table *xfer = lo->lo_encryption;
938 if (xfer) {
939 if (xfer->release)
940 err = xfer->release(lo);
941 lo->transfer = NULL;
942 lo->lo_encryption = NULL;
943 module_put(xfer->owner);
945 return err;
948 static int
949 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
950 const struct loop_info64 *i)
952 int err = 0;
954 if (xfer) {
955 struct module *owner = xfer->owner;
957 if (!try_module_get(owner))
958 return -EINVAL;
959 if (xfer->init)
960 err = xfer->init(lo, i);
961 if (err)
962 module_put(owner);
963 else
964 lo->lo_encryption = xfer;
966 return err;
969 static int loop_clr_fd(struct loop_device *lo)
971 struct file *filp = lo->lo_backing_file;
972 gfp_t gfp = lo->old_gfp_mask;
973 struct block_device *bdev = lo->lo_device;
975 if (lo->lo_state != Lo_bound)
976 return -ENXIO;
978 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
979 return -EBUSY;
981 if (filp == NULL)
982 return -EINVAL;
984 spin_lock_irq(&lo->lo_lock);
985 lo->lo_state = Lo_rundown;
986 spin_unlock_irq(&lo->lo_lock);
988 kthread_stop(lo->lo_thread);
990 spin_lock_irq(&lo->lo_lock);
991 lo->lo_backing_file = NULL;
992 spin_unlock_irq(&lo->lo_lock);
994 loop_release_xfer(lo);
995 lo->transfer = NULL;
996 lo->ioctl = NULL;
997 lo->lo_device = NULL;
998 lo->lo_encryption = NULL;
999 lo->lo_offset = 0;
1000 lo->lo_sizelimit = 0;
1001 lo->lo_encrypt_key_size = 0;
1002 lo->lo_thread = NULL;
1003 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1004 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1005 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1006 if (bdev)
1007 invalidate_bdev(bdev);
1008 set_capacity(lo->lo_disk, 0);
1009 loop_sysfs_exit(lo);
1010 if (bdev) {
1011 bd_set_size(bdev, 0);
1012 /* let user-space know about this change */
1013 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1015 mapping_set_gfp_mask(filp->f_mapping, gfp);
1016 lo->lo_state = Lo_unbound;
1017 /* This is safe: open() is still holding a reference. */
1018 module_put(THIS_MODULE);
1019 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1020 ioctl_by_bdev(bdev, BLKRRPART, 0);
1021 lo->lo_flags = 0;
1022 if (!part_shift)
1023 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1024 mutex_unlock(&lo->lo_ctl_mutex);
1026 * Need not hold lo_ctl_mutex to fput backing file.
1027 * Calling fput holding lo_ctl_mutex triggers a circular
1028 * lock dependency possibility warning as fput can take
1029 * bd_mutex which is usually taken before lo_ctl_mutex.
1031 fput(filp);
1032 return 0;
1035 static int
1036 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1038 int err;
1039 struct loop_func_table *xfer;
1040 uid_t uid = current_uid();
1042 if (lo->lo_encrypt_key_size &&
1043 lo->lo_key_owner != uid &&
1044 !capable(CAP_SYS_ADMIN))
1045 return -EPERM;
1046 if (lo->lo_state != Lo_bound)
1047 return -ENXIO;
1048 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1049 return -EINVAL;
1051 err = loop_release_xfer(lo);
1052 if (err)
1053 return err;
1055 if (info->lo_encrypt_type) {
1056 unsigned int type = info->lo_encrypt_type;
1058 if (type >= MAX_LO_CRYPT)
1059 return -EINVAL;
1060 xfer = xfer_funcs[type];
1061 if (xfer == NULL)
1062 return -EINVAL;
1063 } else
1064 xfer = NULL;
1066 err = loop_init_xfer(lo, xfer, info);
1067 if (err)
1068 return err;
1070 if (lo->lo_offset != info->lo_offset ||
1071 lo->lo_sizelimit != info->lo_sizelimit) {
1072 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1073 return -EFBIG;
1075 loop_config_discard(lo);
1077 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1078 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1079 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1080 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1082 if (!xfer)
1083 xfer = &none_funcs;
1084 lo->transfer = xfer->transfer;
1085 lo->ioctl = xfer->ioctl;
1087 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1088 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1089 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1091 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1092 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1093 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1094 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1095 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1098 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1099 lo->lo_init[0] = info->lo_init[0];
1100 lo->lo_init[1] = info->lo_init[1];
1101 if (info->lo_encrypt_key_size) {
1102 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1103 info->lo_encrypt_key_size);
1104 lo->lo_key_owner = uid;
1107 return 0;
1110 static int
1111 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1113 struct file *file = lo->lo_backing_file;
1114 struct kstat stat;
1115 int error;
1117 if (lo->lo_state != Lo_bound)
1118 return -ENXIO;
1119 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1120 if (error)
1121 return error;
1122 memset(info, 0, sizeof(*info));
1123 info->lo_number = lo->lo_number;
1124 info->lo_device = huge_encode_dev(stat.dev);
1125 info->lo_inode = stat.ino;
1126 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1127 info->lo_offset = lo->lo_offset;
1128 info->lo_sizelimit = lo->lo_sizelimit;
1129 info->lo_flags = lo->lo_flags;
1130 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1131 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1132 info->lo_encrypt_type =
1133 lo->lo_encryption ? lo->lo_encryption->number : 0;
1134 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1135 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1136 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1137 lo->lo_encrypt_key_size);
1139 return 0;
1142 static void
1143 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1145 memset(info64, 0, sizeof(*info64));
1146 info64->lo_number = info->lo_number;
1147 info64->lo_device = info->lo_device;
1148 info64->lo_inode = info->lo_inode;
1149 info64->lo_rdevice = info->lo_rdevice;
1150 info64->lo_offset = info->lo_offset;
1151 info64->lo_sizelimit = 0;
1152 info64->lo_encrypt_type = info->lo_encrypt_type;
1153 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1154 info64->lo_flags = info->lo_flags;
1155 info64->lo_init[0] = info->lo_init[0];
1156 info64->lo_init[1] = info->lo_init[1];
1157 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1158 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1159 else
1160 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1161 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1164 static int
1165 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1167 memset(info, 0, sizeof(*info));
1168 info->lo_number = info64->lo_number;
1169 info->lo_device = info64->lo_device;
1170 info->lo_inode = info64->lo_inode;
1171 info->lo_rdevice = info64->lo_rdevice;
1172 info->lo_offset = info64->lo_offset;
1173 info->lo_encrypt_type = info64->lo_encrypt_type;
1174 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1175 info->lo_flags = info64->lo_flags;
1176 info->lo_init[0] = info64->lo_init[0];
1177 info->lo_init[1] = info64->lo_init[1];
1178 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1179 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1180 else
1181 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1182 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1184 /* error in case values were truncated */
1185 if (info->lo_device != info64->lo_device ||
1186 info->lo_rdevice != info64->lo_rdevice ||
1187 info->lo_inode != info64->lo_inode ||
1188 info->lo_offset != info64->lo_offset)
1189 return -EOVERFLOW;
1191 return 0;
1194 static int
1195 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1197 struct loop_info info;
1198 struct loop_info64 info64;
1200 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1201 return -EFAULT;
1202 loop_info64_from_old(&info, &info64);
1203 return loop_set_status(lo, &info64);
1206 static int
1207 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1209 struct loop_info64 info64;
1211 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1212 return -EFAULT;
1213 return loop_set_status(lo, &info64);
1216 static int
1217 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1218 struct loop_info info;
1219 struct loop_info64 info64;
1220 int err = 0;
1222 if (!arg)
1223 err = -EINVAL;
1224 if (!err)
1225 err = loop_get_status(lo, &info64);
1226 if (!err)
1227 err = loop_info64_to_old(&info64, &info);
1228 if (!err && copy_to_user(arg, &info, sizeof(info)))
1229 err = -EFAULT;
1231 return err;
1234 static int
1235 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1236 struct loop_info64 info64;
1237 int err = 0;
1239 if (!arg)
1240 err = -EINVAL;
1241 if (!err)
1242 err = loop_get_status(lo, &info64);
1243 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1244 err = -EFAULT;
1246 return err;
1249 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1251 int err;
1252 sector_t sec;
1253 loff_t sz;
1255 err = -ENXIO;
1256 if (unlikely(lo->lo_state != Lo_bound))
1257 goto out;
1258 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1259 if (unlikely(err))
1260 goto out;
1261 sec = get_capacity(lo->lo_disk);
1262 /* the width of sector_t may be narrow for bit-shift */
1263 sz = sec;
1264 sz <<= 9;
1265 mutex_lock(&bdev->bd_mutex);
1266 bd_set_size(bdev, sz);
1267 /* let user-space know about the new size */
1268 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1269 mutex_unlock(&bdev->bd_mutex);
1271 out:
1272 return err;
1275 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1276 unsigned int cmd, unsigned long arg)
1278 struct loop_device *lo = bdev->bd_disk->private_data;
1279 int err;
1281 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1282 switch (cmd) {
1283 case LOOP_SET_FD:
1284 err = loop_set_fd(lo, mode, bdev, arg);
1285 break;
1286 case LOOP_CHANGE_FD:
1287 err = loop_change_fd(lo, bdev, arg);
1288 break;
1289 case LOOP_CLR_FD:
1290 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1291 err = loop_clr_fd(lo);
1292 if (!err)
1293 goto out_unlocked;
1294 break;
1295 case LOOP_SET_STATUS:
1296 err = -EPERM;
1297 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1298 err = loop_set_status_old(lo,
1299 (struct loop_info __user *)arg);
1300 break;
1301 case LOOP_GET_STATUS:
1302 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1303 break;
1304 case LOOP_SET_STATUS64:
1305 err = -EPERM;
1306 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1307 err = loop_set_status64(lo,
1308 (struct loop_info64 __user *) arg);
1309 break;
1310 case LOOP_GET_STATUS64:
1311 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1312 break;
1313 case LOOP_SET_CAPACITY:
1314 err = -EPERM;
1315 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1316 err = loop_set_capacity(lo, bdev);
1317 break;
1318 default:
1319 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1321 mutex_unlock(&lo->lo_ctl_mutex);
1323 out_unlocked:
1324 return err;
1327 #ifdef CONFIG_COMPAT
1328 struct compat_loop_info {
1329 compat_int_t lo_number; /* ioctl r/o */
1330 compat_dev_t lo_device; /* ioctl r/o */
1331 compat_ulong_t lo_inode; /* ioctl r/o */
1332 compat_dev_t lo_rdevice; /* ioctl r/o */
1333 compat_int_t lo_offset;
1334 compat_int_t lo_encrypt_type;
1335 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1336 compat_int_t lo_flags; /* ioctl r/o */
1337 char lo_name[LO_NAME_SIZE];
1338 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1339 compat_ulong_t lo_init[2];
1340 char reserved[4];
1344 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1345 * - noinlined to reduce stack space usage in main part of driver
1347 static noinline int
1348 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1349 struct loop_info64 *info64)
1351 struct compat_loop_info info;
1353 if (copy_from_user(&info, arg, sizeof(info)))
1354 return -EFAULT;
1356 memset(info64, 0, sizeof(*info64));
1357 info64->lo_number = info.lo_number;
1358 info64->lo_device = info.lo_device;
1359 info64->lo_inode = info.lo_inode;
1360 info64->lo_rdevice = info.lo_rdevice;
1361 info64->lo_offset = info.lo_offset;
1362 info64->lo_sizelimit = 0;
1363 info64->lo_encrypt_type = info.lo_encrypt_type;
1364 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1365 info64->lo_flags = info.lo_flags;
1366 info64->lo_init[0] = info.lo_init[0];
1367 info64->lo_init[1] = info.lo_init[1];
1368 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1369 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1370 else
1371 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1372 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1373 return 0;
1377 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1378 * - noinlined to reduce stack space usage in main part of driver
1380 static noinline int
1381 loop_info64_to_compat(const struct loop_info64 *info64,
1382 struct compat_loop_info __user *arg)
1384 struct compat_loop_info info;
1386 memset(&info, 0, sizeof(info));
1387 info.lo_number = info64->lo_number;
1388 info.lo_device = info64->lo_device;
1389 info.lo_inode = info64->lo_inode;
1390 info.lo_rdevice = info64->lo_rdevice;
1391 info.lo_offset = info64->lo_offset;
1392 info.lo_encrypt_type = info64->lo_encrypt_type;
1393 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1394 info.lo_flags = info64->lo_flags;
1395 info.lo_init[0] = info64->lo_init[0];
1396 info.lo_init[1] = info64->lo_init[1];
1397 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1398 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1399 else
1400 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1401 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1403 /* error in case values were truncated */
1404 if (info.lo_device != info64->lo_device ||
1405 info.lo_rdevice != info64->lo_rdevice ||
1406 info.lo_inode != info64->lo_inode ||
1407 info.lo_offset != info64->lo_offset ||
1408 info.lo_init[0] != info64->lo_init[0] ||
1409 info.lo_init[1] != info64->lo_init[1])
1410 return -EOVERFLOW;
1412 if (copy_to_user(arg, &info, sizeof(info)))
1413 return -EFAULT;
1414 return 0;
1417 static int
1418 loop_set_status_compat(struct loop_device *lo,
1419 const struct compat_loop_info __user *arg)
1421 struct loop_info64 info64;
1422 int ret;
1424 ret = loop_info64_from_compat(arg, &info64);
1425 if (ret < 0)
1426 return ret;
1427 return loop_set_status(lo, &info64);
1430 static int
1431 loop_get_status_compat(struct loop_device *lo,
1432 struct compat_loop_info __user *arg)
1434 struct loop_info64 info64;
1435 int err = 0;
1437 if (!arg)
1438 err = -EINVAL;
1439 if (!err)
1440 err = loop_get_status(lo, &info64);
1441 if (!err)
1442 err = loop_info64_to_compat(&info64, arg);
1443 return err;
1446 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1447 unsigned int cmd, unsigned long arg)
1449 struct loop_device *lo = bdev->bd_disk->private_data;
1450 int err;
1452 switch(cmd) {
1453 case LOOP_SET_STATUS:
1454 mutex_lock(&lo->lo_ctl_mutex);
1455 err = loop_set_status_compat(
1456 lo, (const struct compat_loop_info __user *) arg);
1457 mutex_unlock(&lo->lo_ctl_mutex);
1458 break;
1459 case LOOP_GET_STATUS:
1460 mutex_lock(&lo->lo_ctl_mutex);
1461 err = loop_get_status_compat(
1462 lo, (struct compat_loop_info __user *) arg);
1463 mutex_unlock(&lo->lo_ctl_mutex);
1464 break;
1465 case LOOP_SET_CAPACITY:
1466 case LOOP_CLR_FD:
1467 case LOOP_GET_STATUS64:
1468 case LOOP_SET_STATUS64:
1469 arg = (unsigned long) compat_ptr(arg);
1470 case LOOP_SET_FD:
1471 case LOOP_CHANGE_FD:
1472 err = lo_ioctl(bdev, mode, cmd, arg);
1473 break;
1474 default:
1475 err = -ENOIOCTLCMD;
1476 break;
1478 return err;
1480 #endif
1482 static int lo_open(struct block_device *bdev, fmode_t mode)
1484 struct loop_device *lo;
1485 int err = 0;
1487 mutex_lock(&loop_index_mutex);
1488 lo = bdev->bd_disk->private_data;
1489 if (!lo) {
1490 err = -ENXIO;
1491 goto out;
1494 mutex_lock(&lo->lo_ctl_mutex);
1495 lo->lo_refcnt++;
1496 mutex_unlock(&lo->lo_ctl_mutex);
1497 out:
1498 mutex_unlock(&loop_index_mutex);
1499 return err;
1502 static int lo_release(struct gendisk *disk, fmode_t mode)
1504 struct loop_device *lo = disk->private_data;
1505 int err;
1507 mutex_lock(&lo->lo_ctl_mutex);
1509 if (--lo->lo_refcnt)
1510 goto out;
1512 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1514 * In autoclear mode, stop the loop thread
1515 * and remove configuration after last close.
1517 err = loop_clr_fd(lo);
1518 if (!err)
1519 goto out_unlocked;
1520 } else {
1522 * Otherwise keep thread (if running) and config,
1523 * but flush possible ongoing bios in thread.
1525 loop_flush(lo);
1528 out:
1529 mutex_unlock(&lo->lo_ctl_mutex);
1530 out_unlocked:
1531 return 0;
1534 static const struct block_device_operations lo_fops = {
1535 .owner = THIS_MODULE,
1536 .open = lo_open,
1537 .release = lo_release,
1538 .ioctl = lo_ioctl,
1539 #ifdef CONFIG_COMPAT
1540 .compat_ioctl = lo_compat_ioctl,
1541 #endif
1545 * And now the modules code and kernel interface.
1547 static int max_loop;
1548 module_param(max_loop, int, S_IRUGO);
1549 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1550 module_param(max_part, int, S_IRUGO);
1551 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1552 MODULE_LICENSE("GPL");
1553 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1555 int loop_register_transfer(struct loop_func_table *funcs)
1557 unsigned int n = funcs->number;
1559 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1560 return -EINVAL;
1561 xfer_funcs[n] = funcs;
1562 return 0;
1565 static int unregister_transfer_cb(int id, void *ptr, void *data)
1567 struct loop_device *lo = ptr;
1568 struct loop_func_table *xfer = data;
1570 mutex_lock(&lo->lo_ctl_mutex);
1571 if (lo->lo_encryption == xfer)
1572 loop_release_xfer(lo);
1573 mutex_unlock(&lo->lo_ctl_mutex);
1574 return 0;
1577 int loop_unregister_transfer(int number)
1579 unsigned int n = number;
1580 struct loop_func_table *xfer;
1582 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1583 return -EINVAL;
1585 xfer_funcs[n] = NULL;
1586 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1587 return 0;
1590 EXPORT_SYMBOL(loop_register_transfer);
1591 EXPORT_SYMBOL(loop_unregister_transfer);
1593 static int loop_add(struct loop_device **l, int i)
1595 struct loop_device *lo;
1596 struct gendisk *disk;
1597 int err;
1599 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1600 if (!lo) {
1601 err = -ENOMEM;
1602 goto out;
1605 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1606 if (err < 0)
1607 goto out_free_dev;
1609 if (i >= 0) {
1610 int m;
1612 /* create specific i in the index */
1613 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1614 if (err >= 0 && i != m) {
1615 idr_remove(&loop_index_idr, m);
1616 err = -EEXIST;
1618 } else if (i == -1) {
1619 int m;
1621 /* get next free nr */
1622 err = idr_get_new(&loop_index_idr, lo, &m);
1623 if (err >= 0)
1624 i = m;
1625 } else {
1626 err = -EINVAL;
1628 if (err < 0)
1629 goto out_free_dev;
1631 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1632 if (!lo->lo_queue)
1633 goto out_free_dev;
1635 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1636 if (!disk)
1637 goto out_free_queue;
1640 * Disable partition scanning by default. The in-kernel partition
1641 * scanning can be requested individually per-device during its
1642 * setup. Userspace can always add and remove partitions from all
1643 * devices. The needed partition minors are allocated from the
1644 * extended minor space, the main loop device numbers will continue
1645 * to match the loop minors, regardless of the number of partitions
1646 * used.
1648 * If max_part is given, partition scanning is globally enabled for
1649 * all loop devices. The minors for the main loop devices will be
1650 * multiples of max_part.
1652 * Note: Global-for-all-devices, set-only-at-init, read-only module
1653 * parameteters like 'max_loop' and 'max_part' make things needlessly
1654 * complicated, are too static, inflexible and may surprise
1655 * userspace tools. Parameters like this in general should be avoided.
1657 if (!part_shift)
1658 disk->flags |= GENHD_FL_NO_PART_SCAN;
1659 disk->flags |= GENHD_FL_EXT_DEVT;
1660 mutex_init(&lo->lo_ctl_mutex);
1661 lo->lo_number = i;
1662 lo->lo_thread = NULL;
1663 init_waitqueue_head(&lo->lo_event);
1664 spin_lock_init(&lo->lo_lock);
1665 disk->major = LOOP_MAJOR;
1666 disk->first_minor = i << part_shift;
1667 disk->fops = &lo_fops;
1668 disk->private_data = lo;
1669 disk->queue = lo->lo_queue;
1670 sprintf(disk->disk_name, "loop%d", i);
1671 add_disk(disk);
1672 *l = lo;
1673 return lo->lo_number;
1675 out_free_queue:
1676 blk_cleanup_queue(lo->lo_queue);
1677 out_free_dev:
1678 kfree(lo);
1679 out:
1680 return err;
1683 static void loop_remove(struct loop_device *lo)
1685 del_gendisk(lo->lo_disk);
1686 blk_cleanup_queue(lo->lo_queue);
1687 put_disk(lo->lo_disk);
1688 kfree(lo);
1691 static int find_free_cb(int id, void *ptr, void *data)
1693 struct loop_device *lo = ptr;
1694 struct loop_device **l = data;
1696 if (lo->lo_state == Lo_unbound) {
1697 *l = lo;
1698 return 1;
1700 return 0;
1703 static int loop_lookup(struct loop_device **l, int i)
1705 struct loop_device *lo;
1706 int ret = -ENODEV;
1708 if (i < 0) {
1709 int err;
1711 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1712 if (err == 1) {
1713 *l = lo;
1714 ret = lo->lo_number;
1716 goto out;
1719 /* lookup and return a specific i */
1720 lo = idr_find(&loop_index_idr, i);
1721 if (lo) {
1722 *l = lo;
1723 ret = lo->lo_number;
1725 out:
1726 return ret;
1729 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1731 struct loop_device *lo;
1732 struct kobject *kobj;
1733 int err;
1735 mutex_lock(&loop_index_mutex);
1736 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1737 if (err < 0)
1738 err = loop_add(&lo, MINOR(dev) >> part_shift);
1739 if (err < 0)
1740 kobj = ERR_PTR(err);
1741 else
1742 kobj = get_disk(lo->lo_disk);
1743 mutex_unlock(&loop_index_mutex);
1745 *part = 0;
1746 return kobj;
1749 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1750 unsigned long parm)
1752 struct loop_device *lo;
1753 int ret = -ENOSYS;
1755 mutex_lock(&loop_index_mutex);
1756 switch (cmd) {
1757 case LOOP_CTL_ADD:
1758 ret = loop_lookup(&lo, parm);
1759 if (ret >= 0) {
1760 ret = -EEXIST;
1761 break;
1763 ret = loop_add(&lo, parm);
1764 break;
1765 case LOOP_CTL_REMOVE:
1766 ret = loop_lookup(&lo, parm);
1767 if (ret < 0)
1768 break;
1769 mutex_lock(&lo->lo_ctl_mutex);
1770 if (lo->lo_state != Lo_unbound) {
1771 ret = -EBUSY;
1772 mutex_unlock(&lo->lo_ctl_mutex);
1773 break;
1775 if (lo->lo_refcnt > 0) {
1776 ret = -EBUSY;
1777 mutex_unlock(&lo->lo_ctl_mutex);
1778 break;
1780 lo->lo_disk->private_data = NULL;
1781 mutex_unlock(&lo->lo_ctl_mutex);
1782 idr_remove(&loop_index_idr, lo->lo_number);
1783 loop_remove(lo);
1784 break;
1785 case LOOP_CTL_GET_FREE:
1786 ret = loop_lookup(&lo, -1);
1787 if (ret >= 0)
1788 break;
1789 ret = loop_add(&lo, -1);
1791 mutex_unlock(&loop_index_mutex);
1793 return ret;
1796 static const struct file_operations loop_ctl_fops = {
1797 .open = nonseekable_open,
1798 .unlocked_ioctl = loop_control_ioctl,
1799 .compat_ioctl = loop_control_ioctl,
1800 .owner = THIS_MODULE,
1801 .llseek = noop_llseek,
1804 static struct miscdevice loop_misc = {
1805 .minor = LOOP_CTRL_MINOR,
1806 .name = "loop-control",
1807 .fops = &loop_ctl_fops,
1810 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1811 MODULE_ALIAS("devname:loop-control");
1813 static int __init loop_init(void)
1815 int i, nr;
1816 unsigned long range;
1817 struct loop_device *lo;
1818 int err;
1820 err = misc_register(&loop_misc);
1821 if (err < 0)
1822 return err;
1824 part_shift = 0;
1825 if (max_part > 0) {
1826 part_shift = fls(max_part);
1829 * Adjust max_part according to part_shift as it is exported
1830 * to user space so that user can decide correct minor number
1831 * if [s]he want to create more devices.
1833 * Note that -1 is required because partition 0 is reserved
1834 * for the whole disk.
1836 max_part = (1UL << part_shift) - 1;
1839 if ((1UL << part_shift) > DISK_MAX_PARTS)
1840 return -EINVAL;
1842 if (max_loop > 1UL << (MINORBITS - part_shift))
1843 return -EINVAL;
1846 * If max_loop is specified, create that many devices upfront.
1847 * This also becomes a hard limit. If max_loop is not specified,
1848 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1849 * init time. Loop devices can be requested on-demand with the
1850 * /dev/loop-control interface, or be instantiated by accessing
1851 * a 'dead' device node.
1853 if (max_loop) {
1854 nr = max_loop;
1855 range = max_loop << part_shift;
1856 } else {
1857 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1858 range = 1UL << MINORBITS;
1861 if (register_blkdev(LOOP_MAJOR, "loop"))
1862 return -EIO;
1864 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1865 THIS_MODULE, loop_probe, NULL, NULL);
1867 /* pre-create number of devices given by config or max_loop */
1868 mutex_lock(&loop_index_mutex);
1869 for (i = 0; i < nr; i++)
1870 loop_add(&lo, i);
1871 mutex_unlock(&loop_index_mutex);
1873 printk(KERN_INFO "loop: module loaded\n");
1874 return 0;
1877 static int loop_exit_cb(int id, void *ptr, void *data)
1879 struct loop_device *lo = ptr;
1881 loop_remove(lo);
1882 return 0;
1885 static void __exit loop_exit(void)
1887 unsigned long range;
1889 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1891 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1892 idr_remove_all(&loop_index_idr);
1893 idr_destroy(&loop_index_idr);
1895 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1896 unregister_blkdev(LOOP_MAJOR, "loop");
1898 misc_deregister(&loop_misc);
1901 module_init(loop_init);
1902 module_exit(loop_exit);
1904 #ifndef MODULE
1905 static int __init max_loop_setup(char *str)
1907 max_loop = simple_strtol(str, NULL, 0);
1908 return 1;
1911 __setup("max_loop=", max_loop_setup);
1912 #endif